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Abstract

This paper presents a 3D nonlinear PET-CT image regis-
tration method guided by a B-Spline Free-Form Deforma-
tions (FFD) model, dedicated to thoracic and abdominal
regions. It is divided into two stages: one FFD-based reg-
istration of structures that can be identified in both images;
and a whole-image intensity registration step constrained
by the FFD computed during the first step. Different sim-
ilarity criteria have been adopted for both stages: Root
Mean Square (RMS) to register recognized structures and
Normalized Mutual Information (NMI) for optimizing the
whole-image intensity stage. Structure segmentation is per-
formed according to a hierarchical procedure, where the
extraction of a given structure is driven by information de-
rived from a simpler one. This information is composed of
spatial constraints and expressed by the means of regions
of interest, in which a 3D simplex mesh deformable model
based method is applied. The results have been very posi-
tively evaluated by three medical experts.

1. Introduction

In oncology, the joint use of anatomical and functional im-
ages is increasing, which can be explained both by the de-
velopment of acquisition devices and methods, and by the
complementarity between such modalities. On the func-
tional side, the development of Positron Emission Tomog-
raphy (PET) acquisitions with fluorine 18 fluorodeoxyglu-
cose (18-FDG) tracer gives access to a rich information for
diagnosis and therapeutic follow-up of both primary and
metastatic cancers. But the anatomical information is re-
duced, making difficult to localize the tumors with a high
precision with respect to the organs. This anatomical infor-
mation is provided by Computed Tomography (CT) or Mag-
netic Resonance Imaging (MRI) and allows the physician
to get an accurate localization of the lesions, as well as size
and shape measures. Unfortunately it does not provide suf-

ficient knowledge about the lesion malignancy. Therefore,
combining information from these two modalities would
have a significant impact on improving medical decisions
for diagnosis, therapy and treatment planning [1]. Such a
combination calls for a registration step in order to achieve
a good correspondence between the images and the struc-
tures they contain.

The aim of this paper is to propose a contribution to the
registration of CT and PET images for thoracic and abdom-
inal applications. For such problems, rigid registration is
not sufficient since it does not account for the strong defor-
mations existing between both images, and it is necessary to
develop nonrigid registration methods. These deformations,
induced by the specificities of the acquisitions, are mainly
due to the different acquisition protocols involved and the
elastic nature of the imaged regions.

We first present a brief review of nonlinear registration
algorithms. We then discuss the segmentation procedure
and describe the registration method for segmented struc-
tures and for grey-level intensities. Finally, some results
and a discussion of the technique are presented.

2 Registration framework

The goal of image registration is to determine the transfor-
mation that maps the information contained in one image
into its anatomical correspondence in the other. Image reg-
istration methods can be divided according to several crite-
ria: area of interest, nature of the transformation, similarity
measure and optimization method. An exhaustive review of
registration methods can be found in [2].

Several nonlinear transformations can be found in the
image processing literature. B-Spline Free Form Deforma-
tions (FFD) is a parametric model which provides a flexible
nonlinear transformation due to the fact that no assumptions
on the images or structures to register are made. This model
have been successfully used in different medical imaging
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applications, such as pre-and post contrast MR mammo-
gram registration [3], brain registration [4] or cardiac seg-
mentation [5]. In general, they perform a linear transfor-
mation before the nonlinear phase to get closer enough to
the final solution. Anyway, most of these applications work
with monomodality data, where relationship between cor-
responding intensities in both images to register is sim-
pler than in multimodality applications. This fact is ag-
gravated when functional images are considered due to the
large amount of noise and artifacts. Nevertheless, Mattes et
al. [6] have used the FFD model to register chest transmis-
sion PET-CT images, applying a hierarchical and multires-
olution scheme to avoid local minima and to alleviate the
need for accurate initialization. One problem of this method
is that it considers a functional relation between transmis-
sion and emission PET image acquisitions. Besides, au-
thors point out that results are not satisfactory in the regions
with larger deformations, such as at the diaphragm and the
abdomen.

One way to avoid this problem is to constrain these de-
formations to avoid the convergence towards local min-
ima and to reduce the computational cost of the algorithm.
These constraints led us to propose a methodology divided
into an initialization phase registering segmented structures
from both images, and a second registration based on the
whole-image intensities, refining the previous phase. Trans-
formations in both steps are modeled by means of Free
Form Deformations (FFD), governed by a grid of several
control points for each dimension. The segmentation step
is achieved by a 3D simplex mesh deformable model over
regions of interest in a hierarchical identification procedure.

3 Structure segmentation

3.1 Overview of the procedure

The initial registration step requires the segmentation of
some thoracic and abdominal structures in both images.
This first registration will then be refined using grey-level
information. Possible segmentation errors will not be prop-
agated to the final result, as the fine registration step will be
able to correct them.

Different levels of difficulty in the segmentation of struc-
tures suggest the use of a hierarchical procedure: the ex-
traction of a given structure will be driven by information
derived from a simpler one. This information can be com-
posed of spatial constraints inferred from the previously
segmented structures and be expressed by the means of Re-
gions Of Interest (ROI) in which the search for new struc-
tures will take place. The structures to be segmented for fur-
ther registration are lungs, kidneys and liver (in this order).
Although they will not be used in the registration process,
the skin and skeleton are also extracted as first steps of the

Figure 1: ROI used for the segmentation of the kidneys
(brighter area). Left: CT image. Right: PET image.

hierarchical procedure in the case of CT images.
Lungs, kidneys and liver are treated in two different

stages: a first stage is composed of automatic threshold-
ing and mathematical morphology operations in the ROI
defined by previously segmented objects. The second stage
consists in refining the result using a 3D deformable model.
Skin and skeleton are segmented using only the first stage.

3.2 First stage: rough segmentation

To constrain the segmentation, a ROI is defined using spa-
tial relationships with respect to other structures. These re-
lationships include directions (for example the liver is be-
low the lungs) and exclusion constraints (previously ob-
tained structures are subtracted from the ROI so that no pair
of objects overlap). The ROI for each structure are defined
as follows (see Figure 1 for examples of ROI):

� skin and skeleton: they constitute the first steps of the
procedure in CT and therefore no ROI is used. To lo-
cate the pelvis, we compute the area of the bounding
box of the skeleton on each axial slice. The first sig-
nificant decrease of this size (starting from the bottom)
gives an indication of the top of the pelvis;

� lungs: in CT, the ROI is derived from the skin. In PET,
we segment the lungs on the transmission image and
dilate them to produce a ROI in the emission image;

� kidneys: in CT images, the region is bounded using the
chest dimensions we have learned from the segmenta-
tion of the skeleton. An upper bound in the z axis is
derived from the lungs: the ROI is defined below a
line linking the lower-left limit of the right lung and
the lower-right limit of the left lung (a line is drawn on
each coronal slice). A lower bound can be computed
using the top of the pelvis extracted from the skele-
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Figure 2: Top-left: Axial slice of GVF computed on a CT image (left) and detail (right). Bottom-left: Example of a simplex mesh.
Middle: 3D rendering of segmented structures in CT image superimposed on a slice. Right: 3D rendering of segmented structures in PET
image superimposed on a slice.

ton. In PET images, as the skeleton is not available,
we only use the upper bound derived from the lungs;

� liver: the ROI is the same as above except that it ex-
cludes the kidneys. The ROI has been particularly use-
ful to separate it from the heart and the kidneys.

Within this defined region, we then perform the follow-
ing pipeline: k-means automatic thresholding, binary ero-
sion, selection of connected components, binary dilation
and 3D hole filling. In the case of the lungs and the liver, we
select the biggest connected components while for the kid-
neys the two most symmetrical components with respect to
the body symmetry plane are extracted using an algorithm
proposed in [7].

3.3 Second stage: refinement using a 3D de-
formable model

The first stage cannot be considered as a final segmenta-
tion. The main problem is the lack of regularization term.
This has proven to be a problem in the case of subtle struc-
tures which could be detected in one modality but not in the
other, thus introducing a difference that the registration pro-
cess would wrongly interpret as a deformation and would
try to compensate. A 3D deformable model has been im-
plemented to overcome this problem. Deformable models
are curves or surfaces defined within an image that evolve
under constraints computed from the image data and regu-
larity constraints.

We chose to implement a discrete model based on sim-
plex meshes (introduced by Delingette [8]). As a good ini-
tialization is very useful to achieve a fast convergence of the

model, an initial surface is derived from the first segmen-
tation stage. The segmentation obtained at the first stage
can be eroded to ensure that the initialization is inside the
object. Then, it is transformed to a triangulation using an
isosurface algorithm [9]. It is decimated and converted to a
simplex mesh using the dual operation.

The evolution of the deformable surface
�

is described
by the following dynamic force equation:

� �
�������	��

��� ����� ��������� ��� (1)

where ����
�� is the internal force that specifies the regularity
of the surface and � ����� is the external force that drives the
surface towards image edges. The chosen internal force is:

�	��
������! #" �%$'&  (")�* #" ��� (2)

where � and
&

respectively control the surface tension (pre-
vent it from stretching) and rigidity (prevent it from bend-
ing) and  " is the Laplacian operator.

In our case, the external force is not only derived from
image edges but also constrains the deformable model to
stay in the ROI. It can be written as a linear combination:

� ����� ��+-, �/. �	021�3 (3)

where , is a Gradient Vector Flow (GVF) (introduced by
Xu et al. [10]), ��021�3 is a force attached to the ROI and +
and

.
are weighting parameters. A GVF field is computed

by diffusion of the gradient vector of a given edge map.
The edge map is derived from the gradient after perform-

ing an anisotropic diffusion. Anisotropic diffusion [11] is
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an efficient way to remove noise in homogeneous regions
while preserving and even enhancing edges, which proves
to be very helpful for noisy structures such as the liver in
PET images.

The second term of the external force is used to prevent
the deformable model from going outside the ROI. � 021 3 is
a distance potential force and it can be written as follows:

� 021�3 � � � � $  � � � �
�  � � � � � (4)

where
�

is a distance map to the ROI (the force is switched-
off inside the ROI). It should be noted that we also use the
ROI as a mask on the GVF and thus the GVF is equal to
zero outside the ROI. Finally, we also use the ROI as a mask
on the obtained segmentation to ensure that no objects are
overlapping. Segmentation results are shown in Figure 2.

4 Nonlinear registration procedure

4.1 Overview

The nonlinear registration procedure is separated into two
stages: the first step consists of the registration between
segmented structures in both images; and the second step,
initialized with the precedently computed transformation,
performs a refined registration between the whole intensity
images.

4.2 Deformation model

A nonlinear transformation based on B-Spline Free Form
Deformations (FFD), introduced by Sederberg et al. [12],
has been chosen to establish the correspondence between
images. The choice of this method over other more con-
strained parametric models is due to the great variability of
the structures in our application. So, we preferred the flexi-
bility that FFDs get from the fact that no assumptions on the
structures are made. On the other hand, the speed require-
ments of the system make FFDs preferable to other more
realistic and time consuming deformation frameworks, such
as elastic or fluid models.

In this technique, deformations of the object volume are
achieved by tuning an underlying mesh of control points.
The number of control points would define the locality of
the deformations allowed by the FFD model. On the other
hand, convergence times will notably increase with a more
densely populated grid. Thus, a trade-off concerning these
two aspects must be taken, our choice being a mesh of 10
control points for dimension.

FFD model has been used for both stages of the regis-
tration procedure. This implementation allows us to easily
integrate the two phases into the same framework, struc-
tures registration being considered as just an extra step of

the multiresolution chain used in most voxel-based tech-
niques. Thus, fine registration procedure will start with the
grid found in the structure registration phase, which pro-
vides an initial transformation very close to the final solu-
tion, at least in the neighborhood of the segmented struc-
tures.

The optimization procedure is based on an iterative gra-
dient descent technique over the entire grid of control
points. At each iteration, we compute a local gradient es-
timation for each control point by finite differences. Fur-
thermore, a local spring force regularization term has been
added to prevent the nodes from intersecting, which could
lead to unwanted alterations of the structure topology.

4.3 Structure registration

The aim of this step is to provide an initialization to the
grey-level registration as close as possible to the desired fi-
nal result. This transformation will constrain the search of
the global solution that will undergo the next stage. There-
fore, this registration phase can be seen as a multiresolution
step, filtering out of all the data but the main structures, then
forwarding the result as an initial estimate to a higher level
where finer detail will be considered.

Before performing nonlinear registration between
anatomical features, we compute an initial approximation
of the transformation between both images. This approx-
imation is composed of a rigid motion, an independent
scaling along the three axes and the elimination of the parts
of the volumes that have no interest for our application.

The FFD framework implies tuning the control points
of the grid to minimize a given similarity criterion. The
choice of this criterion is straightforward in our case, as we
are working with segmented images with a linear intensity
relation. Thus, the Root Mean Square (RMS) difference of
corresponding pixel grey levels, summed across the whole
volume, will be used to determine the optimal deformation
parameters.

An overlap measure consisting of the quotient between
intersection and union among structures (being equal to 1 if
total superimposition is achieved) has been used to evaluate
CT and nonlinear registered PET recognized features. We
have obtained a value of 0.658 for the linear phase and a
value of 0.903 for the nonlinear phase, clearly improving
structure registration results, as can be seen in Fig. 3.

4.4 Fine registration

Transformation produced by the initialization step is not
necessarily valid for those regions away from the segmented
structures, so the computation of their displacement has to
be done by this fine registration stage. Another objective of
this stage is the correction of the errors that may have been
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Figure 3: Example of structure registration. Left: 3D rendering of PET segmented structures after rigid registration with slices from CT
original image. Right: 3D rendering of PET segmented structures after nonlinear structure registration with slices from CT original image,
illustrating the extent of the deformation.

introduced by the structure segmentation procedure, taking
advantage of the image grey level information.

As the deformation framework has not changed, the al-
gorithm is essentially the same as the one used in the struc-
ture registration stage. Nevertheless, the fact of working
with the whole image intensity levels forces us to change
the similarity criterion to maximize. The choice of a sim-
ilarity measure is strongly related to the imaging modali-
ties to be registered. A particularly complex situation arises
when the intensity distributions of two different modalities
do not follow a functional relation, such as in our case, im-
plicating PET and CT images. Mutual Information (MI), a
criterion proposed by Viola [13], has been demonstrated to
be a powerful tool for multimodal image registration with
a nonlinear intensity relation. MI expresses how much in-
formation from an image I is contained in another image J.
Therefore, Mutual Information will be maximal if the im-
ages are geometrically aligned. NMI is a variant of MI, in-
troduced by Studholme [14] to prevent the actual amount of
image overlap from affecting the measure. Its computation
requires an estimation of the marginal and joint probability
distributions from both images. We use a frequency-based
approximation, � ������� ������� , where � ��� is the estimated
probability of having an intensity i in one image and j in
the other, � ��� being the number of voxels with these inten-
sities and n the total number of voxels.

5 Results and conclusions

We tested our method on a set of 15 CT and PET scans
of the thoracic and abdominal regions. Some slices of
the superimposition between CT and registered PET im-
age can be seen in Figure 4 (All slices can be found at:
http://www.tsi.enst.fr/ ocamara/Evaluation3.html). We have
devised an evaluation protocol which has allowed a group
of three clinicians (Dr.Foehrenbach, Dr. Rigo and Dr.
Marchandise) to assess the registration results using an on-
line procedure. The measure generated provides an error
less than 1cm over the most relevant structures (lungs, liver,
kidneys, heart), which conforms to the objective of the ap-
plication (errors smaller than PET resolution images).

We have verified that the registration is better achieved
around segmented structures which have been already reg-
istered in the initialization stage, independently of its be-
longing to thoracic or abdominal zones. One exception is
the errors found in the stomach because of its important
movements between two acquisitions and the fact that no
constraints have been imposed on it, thus NMI registration
has not converged towards the correct registration. The fact
of constraining the FFD deformation by means of an ini-
tialization stage has speed up the convergence of the fine
registration step, the computational cost being reduced over
80%.

As a conclusion, the results presented in this paper in-
dicate that our method can provide an useful tool for data
analysis in thoracic and abdominal oncology applications.
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Figure 4: An axial and a coronal slice of registration results. Left: CT original image. Center: Registered PET image. Right: Superim-
position of both images. All slices can be found at: http://www.tsi.enst.fr/ ocamara/Evaluation3.html

The nonrigidity in the imaged regions is effectively mod-
eled by means of a Free Form Deformation (FFD), and sat-
isfactory registration results can be obtained by minimizing
a Normalized Mutual Information criterion, given a good
enough initialization. A progressive segmentation method
has been proposed to provide such an initialization, inte-
grating it as a first step of the multiresolution procedure.

Further work will focus on allowing the initialization
phase to assign a weight to the nodes of the FFD accord-
ing to the mechanical properties of the underlying tissue.
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