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On the quasi-static effective
behaviour of poroelastic media

containing elastic inclusions
Pascale Royer, Pierre Recho, Claude Verdier

Abstract

The aim of the present study is to derive the effective quasi-static behaviour of a composite medium,
made of a poroelastic matrix containing elastic impervious inclusions. For this purpose, the asymptotic
homogenisation method is used. On the local scale, the governing equations include Biot’s model of
poroelasticity in the porous matrix and Navier equations in the inclusions, with elastic properties of the same
order of magnitude. Biot’s diphasic model of poroelasticity is obtained on the macroscopic scale, but with
effective parameters that are strongly impacted by the distribution of inclusions, even at low volume fraction.
The impact on fluid flow is strictly geometrical, showing that the inclusions do not play the role of a porous
network.

I. Introduction

Composites made of a porous matrix rein-
forced with solid impervious inclusions occur
in several engineering disciplines, involving
natural media such as geomaterials Rice et al.
(1978), biological tissues Rauch et al. (2018),
Loboa et al. (2003), or tumors Xue et al. (2017),
as well as man-made structures as, cement-
based Lemarchand et al. (2002) or biomimetic
materials Rajkhowa et al. (2010). A comprehen-
sive understanding of the overall behaviour
of these composites, on the basis of their mi-
crostructure, can enhance the knowledge con-
cerning physical scenarios, with respect to key
physical properties. In this way, a generalisa-
tion of Eshelby’s formula is proposed in Berry-
man (1997), to give the response of a single
ellipsoidal elastic inclusion, in a poroelastic
whole space, to a uniform strain imposed at
infinity. Some other works focus on fluid flow
or solute transport, such as the mathemati-
cal model developed in Federico and Herzog
(2008), of the effect of fibre arrangement on the
permeability of a porous fibre-reinforced com-
posite, or the macroscopic models obtained in

Baltean et al. (2003) by asymptotic homogeni-
sation, for passive solute transport in a rigid
medium made of a porous matrix with imper-
vious inclusions.

The present work is aimed at deriving the
effective quasi-static mechanical behaviour of a
saturated poroelastic medium containing elas-
tic impervious inclusions and is focused on
constituents with elastic properties of the same
order of magnitude. For this purpose, the
method of asymptotic homogenisation is used
and Biot’s model of poroelasticity is obtained
on the macroscopic scale, but with effective
parameters that are strongly affected by the
distribution of inclusions. The paper is organ-
ised as follows. Section II presents a brief de-
scription of the homogenisation methodology.
Then, homogenisation of a poroelastic medium
with elastic inclusions is detailed in Section
III, and the derived macroscopic description
is commented in Section IV. Finally, Section
V presents a summary of the main theoretical
results contained in this work and highlights
conclusive remarks.
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II. Homogenisation method

i. Medium under consideration

We consider a periodic medium, of characteris-
tic size L, and made of a fluid saturated elastic
porous matrix which contains isolated elastic
impervious inclusions. We further denote the
spacing between two inclusions by l, and and
we formulate the condition of separation of
scales by ε = l/L� 1. Within the periodic cell
Ω, we denote by Ωp the fluid-saturated porous
matrix domain, by Ωc the volume occupied by
the inclusion, and by Γ their common interface,
as depicted in Fig.1. Using the two character-
istic lengths, l and L, and the physical space
variable, ~X, we define two dimensionless space
variables: ~y = ~X/l, ~x = ~X/L, and ~y and ~x
describe variations on the microscopic and the
macroscopic scales, respectively. Invoking the
differentiation rule of multiple variables, the
gradient operator with respect to ~X is written
as

~∇X =
1
l
~∇y +

1
L
~∇x. (1)

We further introduce the following cell aver-
ages

< . >Ω=< . >Ωp + < . >Ωc ,

< . >Ωff=
1
| Ω |

∫
Ωα

. dΩ (α = p, c).

ii. Homogenisation procedure

The methodology firstly consists in writing, in
dimensionless form, the governing equations
which describe the problem on the periodic
unit cell. This dimensionless writing of the
equations requires the choice of a characteristic
length for the dimensionless writing of space
derivatives. We arbitrarily choose L as the ref-
erence characteristic length. The dimensionless
gradient operator is thus L~∇X , which by Eq.(1)
is given by

~∇ = L~∇X = ε−1~∇y + ~∇x. (2)

The homogenisation method being used is
based upon the fundamental assumption that

the unknown fields can be written in the form
of asymptotic expansions in powers of ε

ψ = ψ0 (~y,~x) + εψ1 (~y,~x) + ε2ψ2 (~y,~x) + ...,
(3)

in which functions ψi are Ω-periodic in vari-
able ~y. The method consists in incorporating
the asymptotic expansions in the dimension-
less local description, while taking into account
the expression of the dimensionless gradient
operator Eq.(2). This leads to approximate
governing equations and boundary conditions
at the successive orders, which together with
the condition of periodicity define well posed
boundary value problems within the periodic
unit cell, from which functions ψi can be de-
termined. Existence of solutions requires that
volume averaged equations be satisfied. The
latter ones actually describe the macroscopic
behaviour at successive orders.

III. Quasi-static homogenisation

in a poroelastic medium with

elastic inclusions

i. Dimensionless governing equations
on the local scale

The poroelastic matrix (Ωp) is made of a linear
elastic skeleton saturated with a viscous incom-
pressible Newtonian fluid, and its behaviour
is described by quasi-static Biot’s model Biot
(1955)1:

~∇ · σ̃p =~0, (4)

σ̃p = c̃p : ẽ(~us)− α̃p pf, (5)

~∇ ·~vp = −α̃p : ẽ(
∂~us

∂t
)− βp

∂pf
∂t

, (6)

~vp = φp(~vf −
∂~us

∂t
) = −

K̃p

µ
~∇pf. (7)

The four above equations express the momen-
tum balance, the poroelastic constitutive law,
the conservation of fluid mass and Darcy’s
law, respectively. The distinct quantities in-
volved in the model are the following: σ̃p and

1This is possible provided that the matrix pore size, lp
be greatly smaller than the spacing between two inclusions,
l.
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Figure 1: Porous medium :(a) Macroscopic sample; (b) Periodic unit cell.

pf denote the total stress and the interstitial
fluid pressure, respectively; ~us is the solid dis-
placement of the porous matrix, while ~vf and
~vp stand for the mean fluid velocity within
the volume of the micropores and the mean
fluid relative velocity within the porous ma-
trix; ẽ(~us) = 1/2(~∇~us + ~∇T~us) is the strain
tensor, while c̃p, α̃p, βp > 0, and K̃p represent
the fourth order elastic tensor of the drained
porous matrix, the second order symmetric and
positive Biot coupling tensor, Biot’s bulk modu-
lus and the second order tensor of permeability
of the porous matrix, respectively; φp and µ de-
note the porosity of the porous matrix, and the
fluid viscosity, respectively.

The inclusion (Ωc) is linear elastic and satis-
fies the Navier equations{

~∇ · σ̃c =~0, (8)

σ̃c = c̃c : ẽ(~uc), (9)

where σ̃c and ~uc stand for the solid stress tensor
and displacement, respectively, and where c̃c
represents the elastic tensor.

The appropriate conditions over the interface
Γ between the porous matrix and the inclusion
include the continuity of normal stresses and
displacements and the normal mean fluid rela-
tive velocity within the porous matrix must be
set to zero Mikelic and Wheeler (2012):

σ̃p ·~n = σ̃c ·~n over Γ, (10)

~us = ~uc over Γ, (11)

~vp ·~n = 0 over Γ, (12)

where ~n denotes the unit vector giving the nor-
mal to Γ exterior to Ωp.

ii. Homogenisation

We consider equations Eqs.(4)-(9) and bound-
ary conditions Eqs.(10)-(12), and we look for
solutions in the form of Eq.(3) for σ̃p, σ̃c, ~us,
~uc, pf and ~vp. Note that, due to Eq.(2), the
expansion of ~vp starts with a term in ε−1. Fur-
thermore, the strain tensors read

ẽ(~uα) = ε−1 ẽy(~uα) + ẽx(~uα), (α = p, c),
(13)

and consequently the expansions of both stress
tensors also start with a ε−1 term. Incorporat-
ing the asymptotic expansions and the expres-
sions of the dimensionless gradient operator
Eq.(2) and of the strain tensors Eq.(13) into
Eqs.(4)-(12), then identifying terms of same
power of ε, leads to boundary value problems
at the successive orders.

ii.1 Boundary value problem for σ̃−1
p , σ̃−1

c ,
~u0

s and ~u0
c

Considering the leading order of Eqs.(4)-(5)
and Eqs.(8)-(11), we deduce the following
boundary value problem of unknowns ~u0

s and
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~u0
c : 

∂

∂yj

[
cpijlm eylm(~u

0
s)
]
= 0 within Ωp, (14)

∂

∂yj

[
ccijlm eylm(~u

0
s)
]
= 0 within Ωc, (15)[

cpijlm eylm(~u
0
s)
]

nj =[
ccijlm eylm(~u

0
c)
]

nj over Γ, (16)

u0
si
= u0

ci
over Γ, (17)

σ̃−1
p , σ̃−1

c ,~u0
s ,~u0

c : periodic in ~y, (18)

from which it is clear that the displacements
~u0

s and ~u0
c are constant over the period

~u0
s = ~u0

c = ~u0(x). (19)

Since by Eqs.(5) and (9) at O(ε−1)

σ−1
αij

= cpijlm eylm(~u
0) (α = p, s), (20)

we consequently get

σ̃−1
p = σ̃−1

c = 0̃. (21)

ii.2 Boundary value problem for ~v−1
p and p0

f

At the lowest order, Eqs.(6)-(7) lead to

∂

∂yi

[
Kpij

µ

∂p0
f

∂yj

]
= 0 within Ωp, (22)[

Kpij

µ

∂p0
f

∂yj

]
nj = 0 over Γ, (23)

p0
f : periodic in ~y. (24)

Consequently, we get:{
p0

f = p0
f (~x), (25)

~v−1
p =~0. (26)

ii.3 Boundary value problem for σ̃0
p, σ̃0

c , ~u1
s

and ~u1
c

We now consider the second order of Eqs.(4)-
(5) and Eqs.(8)-(11), from which we deduce the

following system of unknowns ~u1
s and ~u1

c :

∂

∂yj

[
cpijlm [eylm(~u

1
s) + exlm(~u

0
s)]− αpij p0

f

]
= 0

within Ωp, (27)
∂

∂yj

[
ccijlm [eylm(~u

1
c) + exlm(~u

0
c)]
]
= 0

within Ωc, (28)

(cpijlm [eylm(~u
1
s) + exlm(~u

0
s)]− αpij p0

f ) nj =

(ccijlm(eylm(~u
1
c) + exlm(~u

0
c))) nj over Γ, (29)

u1
si
= u1

ci
over Γ, (30)

~u1
s ,~u1

c : periodic in ~y. (31)

The above set of equations constitutes a well-
posed problem for ~u1

s and ~u1
c , and by virtue of

linearity, the solutions read (Cf. A):{
u1

si
= ωkh

pi
exkh(~u

0)− πpi p0
f + ū1

si
(~x), (32)

u1
ci
= ωkh

ci
exkh(~u

0) + ū1
ci
(~x), (33)

where ū1
si
(~x) and ū1

ci
(~x) are arbitrary functions.

Note that, to render the solution unique, we
impose that ω̃p, ~πp and ω̃c are with zero aver-
age Bensoussan et al. (1978), Sanchez-Palencia
(1980):

< ωkh
pi

>Ωp= 0, < ωkh
ci

>Ωc= 0, < πpi >
Ωp= 0.

By Eqs.(5) and (9) at O(ε0), we obtain
σ0

pij
= cpijlm [eylm(~u

1
s) + exlm(~u

0
s)]

−αpij p0
f , (34)

σ0
cij

= ccijlm [eylm(~u
1
c) + exlm(~u

0
c)], (35)

and then employing Eqs.(32)-(33), we deduce
σ0

pij
= (cpijlm eylm(~ω

kh) + cpijkh)exkh(~u
0),

−(cpijkh eykh(~π) + αpij)p0
f , (36)

σ0
cij

= (ccijlm eylm(~ω
kh) + ccijkh)exkh(~u

0), .(37)

ii.4 Boundary value problem for ~v0
p and p1

f

We now consider Eq.(6) at O(ε−1), Eq.(7) at
O(εO), and boundary condition Eq.(12) at
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O(ε0), from which we deduce the differential
system

∂

∂yi

[
Kpij

µ
(

∂p1
f

∂yj
+

∂p0
f

∂xj
)

]
= 0 in Ωp, (38)[

Kpij

µ
(

∂p1
f

∂yj
+

∂p0
f

∂xj
)

]
ni = 0 over Γ, (39)

p1
f : periodic in ~y. (40)

The above set of equations is a well-posed
boundary value problem of unknown p1

f , from
which it appears that p1

f is a linear function of
~∇x p0

f :

p1
f = χpi

∂p0
f

∂xi
+ p̄1

f (~x, t), (41)

where p̄1
f (~x, t) is an arbitrary function and

where
< ~χp >

Ωp
Ω =~0. (42)

Vector χpk is the specific solution for p1
f , corre-

sponding to ∂p0
f /∂xj = δjk. Then, by Eq.(7) at

O(ε−1)

v0
pi
= −

Kpij

µ
(

∂p1
f

∂yj
+

∂p0
f

∂xj
), (43)

and by Eq.(41), we deduce the following ex-
pression for ~v0

p:

v0
pi
= −

Kpij

µ
(

∂χk
∂yj

+ δjk)
∂p0

f
∂xk

, (44)

where δ̃ denotes Kronecker’s symbol.

ii.5 Macroscopic momentum balance

Let now consider Eqs.(4), (8), (10) at the third
order:

∂σ1
pij

∂yj
+

∂σ0
pij

∂xj
= 0 within Ωp, (45)

∂σ1
cij

∂yj
+

∂σ0
cij

∂xj
= 0 within Ωc, (46)

σ1
pij

nj = σ1
cij

nj over Γ. (47)

The homogenisation procedure consists now
in integrating Eqs.(45) and (46) over Ωp and

Ωc, respectively. This leads to a compatibility
condition, i.e. a necessary and sufficient condi-
tion for the existence of solutions for ~u2

s and ~u2
c ,

which further represents the first order macro-
scopic momentum balance. Invoking Gauss’
theorem, integration of Eq.(45) over Ωp yields

1
| Ω |

∫
Γ

σ1
pij

nj dS +
1
| Ω |

∫
Ωp

∂σ0
pij

∂xj
dΩ = 0,

(48)
where the contribution over the cell boundaries,
δΩ ∩ δΩp, cancel due to ~y-periodicity. Then,
employing Eq.(47) and Gauss’ theorem, we get

1
| Ω |

∫
Γ

σ1
pij

njdΩ =
1
| Ω |

∫
Ωc

∂σ0
cij

∂xj
dΩ. (49)

Finally, Eq.(48) becomes

∂ < σ0
pij

>Ωp

∂xi
+

∂ < σ0
cij

>Ωc

∂xi
= 0. (50)

Let us define the total stress σ̃T as

σ̃T =

{
σ̃p in Ωp,

σ̃c in Ωc.

Thus, Eq.(50) is rewritten as
∂ < σ0

Tij
>Ω

∂xi
= 0, (51)

< σ0
Tij

>Ω=< σ0
pij

>Ωp + < σ0
cij

>Ωc .(52)

Finally, using Eqs.(36)-(37), we get

< σ0
Tij

>Ω= Ceff
ijkh exkh(~u

0)− Aeff
ij p0

f , (53)

with
Ceff

ijkh =< cpijlm eylm(~ω
kh
p ) + cpijkh >

Ωp
Ω

+ < ccijlm eylm(~ω
kh
c ) + ccijkh >Ωc

Ω , (54)

Aeff
ij =< cpijkh eykh(~πp) + αpij >

Ωp
Ω . (55)

The first order momentum balance is thus de-
scribed by Eqs.(51), (53).
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ii.6 Macroscopic mass balance

At the second order, Eqs.(6) and (12) yield

∂v1
pi

∂yi
+

∂v0
pi

∂xi
= −αpij

[
eyij(

∂~u1
s

∂t
) + exij(

∂~u0

∂t
)

]
−βp

∂p0
f

∂t
within Ωp, (56)

v1
pi

ni = 0 over Γ. (57)

Integrating Eq.(56) and invoking Gauss’ theo-
rem, while taking boundary condition Eq.(57)
into account, together with the condition of
periodicity, yields

∂ < v0
pi
>Ωp

∂xi
=

− < αpij(eyij(
∂~u1

s
∂t

) + exij(
∂~u0

∂t
) >

Ωp
Ω

− < βp >
Ωp
Ω

∂p0
f

∂t
.

(58)

Using Eq.(32), the above equation can be writ-
ten as

∂ < v0
pi
>Ωp

∂xi
= −Geff

lm exlm(
∂~u0

∂t
)− Beff ∂p0

f
∂t

,

(59)
where{

Geff
lm =< αpij eyij(~ω

lm
p ) + αplm >Ωp , (60)

Beff =< βp − αpij eyij(~πp) >
Ωp . (61)

Now, by Eq.(44), we get
< v0

pi
>Ωp= −

Keff
ij

µ

∂p0
f

∂xj
, (62)

Keff
ik =< Kpij(

∂χk
∂yj

+ δjk) >
Ωp . (63)

The first order macroscopic mass balance is
thus given by Eqs.(59) and (62).

IV. Macroscopic description

The first order macroscopic description thus
consists of by Eqs.(51), (53), (59) and (62), with
the effective properties defined by Eqs.(54),
(55), (60), (61) and (63). From its definition,

it is clear that tensor Ceff
ijkh is the effective elastic

tensor of the whole empty medium, made of
the empty porous matrix and the inclusions. It
therefore coincides with the effective elasticity
tensor that would be obtained for a two-phase
elastic composite and thus possesses all the re-
quired symmetry properties that characterise
an elastic tensor (e.g. Penta and Gerish (2017)).
Now, from the variational formulation asso-
ciated with the definitions of ~u1

s and ~u1
c , we

show that the coupling tensors Ãeff and G̃eff

are equal (Cf. B), and that the bulk modulus
Beff is positive (Cf. C). Furthermore, from the
symmetries of c̃p and of α̃p, it follows that Ãeff

is symmetric. With the above mentioned prop-
erties, the macroscopic description, Eqs.(51),
(53), (59) and (62), is a Biot diphasic model of
poroelasticity, but in which the effective prop-
erties are strongly impacted by the local dis-
tribution of inclusions. An illustration of this
appears when considering homogeneous ma-
terials. The definitions of the effective Biot
parameters and permeability then reduce to

Aeff
ij = cpijkh < eykh(~πp) >

Ωp +(1− nc)αpij ,

Beff = (1− nc)βp − αpij < eyij(~πp) >
Ωp ,

Keff
ij = Kpik <

∂χj

∂yk
+ δkj >

Ωp ,

where nc = | Ωc |/| Ω | denotes the inclusion
volume fraction. We firstly note that at low
inclusion concentration, i.e. when nc ≈ 0, the
inclusions still have an impact since Ãeff 6= α̃p

and Beff 6= βp. Furthermore, when the porous
matrix is incompressible, i.e when α̃eff

p = Ĩ
and βeff

p = 0, the whole poroelastic compos-
ite remains compressible since Ãeff 6= Ĩ and
Beff 6= 0, even at low inclusion volume fraction.
Finally, we see that the permeability is such
that Keff

ij = Kpik Tpkj , where

Tpkj =<
∂χj

∂yk
+ δkj >

Ωp .

Tensor T̃p is a purely geometrical parameter,
and we note that φ−1T̃p actually represents the
tortuosity (e.g. see Royer and Cherblanc (2010))
associated with the distribution of inclusions.
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V. Conclusion

We have thus shown that the first order macro-
scopic behaviour, i.e. with precision in the or-
der of O(ε), of a poroelastic matrix containing
elastic inclusions is described by Biot’s dipha-
sic model of poroelasticity

∂ < σTij >
Ω

∂xi
= 0,

< σTij >
Ω= Ceff

ijkh exkh(~u)− Aeff
ij pf,

∂ < vpi >
Ωp

∂xi
= −Aeff

lm exlm(
∂~u
∂t

)− Beff ∂pf
∂t

,

< vpi >
Ωp= −

Keff
ij

µ

∂pf
∂xj

.

The effective parameters are strongly affected
by the distribution of inclusions, even at low
volume fraction. In the above developments, it
is implicitely assumed that the inclusion size,
lc, is of same order of magnitude as the dis-
tance between two inclusions. Considering the
case of low inclusion concentration, lc � l,
would not modify the macroscopic behaviour.
But, since this introduces the additional small
parameter lc/l � 1, simplified formulas can
be obtained for the effective parameters. While
sometimes qualified as a multiporous medium
and although three distinct scales are actually
involved, this composite is distinct from a dou-
ble porosity microstructure (e.g. Auriault and
Royer (1993), Royer and Boutin (2012), Boutin
and Royer (2015)), as the distribution of the
inclusions does not play the role of a porous
network. Indeed, the impact of inclusions on
fluid flow transfer is characterised by a purely
geometrical parameter, with no reference to
their fluid conductivity. Finally, we shall un-
derline that all the above results are valid for
elastic properties of both constituents in the
same order of magnitude and for perfect inter-
face bonding. A particular case of the model
is derived and solved in Chen et al. (2019), in
which an incompressible istropic porous matrix
reinforced with isotropic fibers is considered
to model a construct for tissue engineering.
Further work should include numerical simu-
lations on specific geometries, so as to analyse

the sensitivity of inclusion concentration.

A. Boundary value problem for ~u1
s

and ~u1
c

Let us multiply the system Eqs.(27)-(31) by a
vectorial test function ~γ, and then let us inte-
grate over Ω. We obtain the following varia-
tional formulation:∫

Ωp
cpijlm eylm(~u

1
s)eyij(~γ) dΩ

+
∫

Ωc
ccijlm eylm(~u

1
c)eyij(~γ) dΩ =

−
∫

Ωp
cpijlm eyij(~γ) dΩ exlm(~u

0)

−
∫

Ωc
ccijlm eyij(~γ) dΩ exlm(~u

0)

+
∫

Ωp
αpij eyij(~γ) dΩ p0

f ,

(64)

from which it appears that ~u1
s is a linear vecto-

rial function of ẽx(~u0) and p0
f , Eq.(32), and that

~u1
c is as a linear vectorial function of ẽx(~u0),

Eq.(33). Third-order tensors ωkh
pi

and ωkh
ci

are
the specific solutions, ~u1

s = ~ωkh
p , ~u1

c = ~ωkh
c , to

system Eqs.(27)-(31), corresponding to exlm(~u
0) =

1
2
(δlkδmh + δmkδlh) ,

p0
f = 0.

As for vector ~πp, it is the specific solution for
~u1

s when p0
f = −1 and exlm(~u

0
s ) = 0.

B. Equality of coupling tensors

Ãeff
and G̃eff

By taking ~u1
s = ~ωkh

p , ~u1
c = ~ωkh

c , ~γ = ~πp in Ωp,
and ~γ =~0 in Ωc, in the variational formulation
Eq.(64), we get∫

Ωp
cpijlm eylm(~ω

kh
p )eyij(~πp) dΩ =

−
∫

Ωp
cpijkh eyij(~πp) dΩ.

(65)
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Next, we take ~u1
s = ~πp and ~γ = ~ωkh

p in Eq.(64):

∫
Ωp

cpijlm eylm(~πp)eyij(~ω
kh
p ) dΩ =

−
∫

Ωp
αpij eyij(~ω

kh
p ) dΩ.

(66)

The left hand sides of Eqs.(65) and (66) are
equal. Then, from the equality of both right
hand sides, it appears by Eqs.(55), (60), that
Ãeff = G̃eff.

C. Positiveness of the effective

Biot bulk modulus Beff

Considering ~u1
s = ~πp, ~γ = ~πp, in Eq.(64), we

get: ∫
Ωp

cpijlm eylm(~πp)eyij(~πp)dΩ =

−
∫

Ωp
αpij eyij(~πp)dΩ.

The left hand side of the above equation is
positive, due to the positiveness of the local
strain energy. Then, from the positiveness of
the right hand side, it follows by Eq.(61), that
Beff > 0.
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