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Abstract

We study a new mathematical model which describes the equilibrium of a

locking material in contact with a foundation. The contact is frictionless and is

modeled with a nonsmoth multivalued interface law which involves unilateral

constraints and subdifferential conditions. We describe the model and derive its

weak formulation, which is in the form of an elliptic variational-hemivariatinal

inequality for the displacement field. Then, we establish the existence of a

unique weak solution to the problem. Next, we introduce a penalty method, for

which we state and prove a convergence result. Finally, we consider a particular

version of the model for which we prove the continuous dependence of the

solution on the bounds which govern the locking and the normal displacement

constraints, respectively. We apply this convergence result in the study of an

optimization problem associated to the contact model.

AMS Subject Classification : 74M15, 47J20, 49J45, 49J40.

Key words : locking material, frictionless contact, variational-hemivariational in-

equality, weak solution, penalty method, convergence results, optimization problem.

1 Introduction

This paper deals with the modeling and analysis of a contact problem for locking

materials. Locking materials belong to a class of hyperelastic bodies for which the
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strain tensor is constrained to belong in a given convex B. Their study started

with the pioneering works of Prager [17, 18, 19]. There, the constitutive law of such

materials was introduced and various mechanical interpretations have been provided.

Reference in the field include [7, 15, 16], for instance. The modeling of torsion of a

cylindrical bar made of a locking material was studied in [4].

Processes of contact between deformable bodies abound in industry and everyday

life. Their modeling, analysis and numerical simulation made the object of an im-

portant number of papers and the literature in the field is extensive. It includes the

books [2, 7, 8, 9, 10, 12, 15, 20, 21, 22], as well as the paper [23], for instance. There,

various mathematical models of contact have been considered, with both elastic, vis-

coelastic and viscoplastic materials, and different boundary conditions.

Contact problems with locking materials have been recently considered in [1, 14].

For the problem studied in [14] the contact was described with the Signorini unilateral

condition in a form without gap and the friction was modeled with a nonmonotone

multivalued subdifferential condition which depends on the slip. As a consequence,

the problem was governed by a convex set which describes the constraints of the

displacement field and a nonconvex locally Lipschitz potential, which describes the

friction. The existence of a unique weak solution to the problem was proved, by

using a surjectivity result for pseudomonotone operators combined with the Banach

contraction principle. The reference [1] deals with the numerical analysis of the

model considered in [14]. There, convergence results and error estimates are provided,

together with numerical simulations which represent an evidence of these theoretical

results.

This current paper parallels the study initiated in [1, 14]. It deals with the mod-

eling and analysis of a new contact problem which describes the contact of a body

made of locking material with a foundation made of a rigid material, covered by a

rigid-plastic crust and a deformable layer made of a soft material. The contact is

assumed to be frictionless, for simplicity. Nevertheless, we stress that part of the re-

sults we present in this paper still remain valid if we complete the model with various

friction laws, included the friction law considered in [1, 14]. The statement of the

model and its analysis, including various convergence results, represents the traits of

novelty of our current work.

The paper is structured as follows. In Section 2 we survey some preliminaries

of functional analysis we need in the rest of the paper. In Section 3 we introduce

the contact model and describe the boundary conditions. In Section 4 we introduce

the function spaces for the displacement and stress field, list the assumptions on

the data and derive the variational formulation of the contact problem. Then we

state and prove the existence of a unique weak solution of the model. The proof is

based, on arguments of variational-hemivariational inequalities which can be found in

[13, 22]. In Section 5 we introduce a class of penalized problems, prove their unique

solvability and the convergence of the corresponding solutions to the solution of the
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original problem, as the penalty parameter converges to zero. Finally, in Section 6

we investigate the continuous dependence of the solution with respect to the bounds

which govern the locking and the normal displacement constraints. We apply this

result in the study of an optimization problem associated to the contact model.

2 Preliminaries

Everywhere in this section X is assumed to be a reflexive Banach space with norm

denoted by ‖ · ‖X and X∗ will represent its topological dual. We denote by 〈·, ·〉 the
duality pairing between X∗ and X, by 0X and 0X∗ the zero element of X and X∗,

respectively, and by 2X
∗

set of parts of X∗. All the limits, upper and lower limits

below are considered as n → ∞, even if we do not mention it explicitly. We start

with the definition of some classes of operators.

Definition 2.1. An operator A : X → X∗ is said to be:

a) monotone, if for all u, v ∈ X, we have 〈Au− Av, u− v〉 ≥ 0;

b) bounded, if A maps bounded sets of X into bounded sets of X∗;

c) demicontinuous, if un → u in X implies Aun → Au weakly in X∗;

d) pseudomonotone, if it is bounded and un → u weakly in X with

lim sup 〈Aun, un − u〉 ≤ 0

imply

lim inf 〈Aun, un − v〉 ≥ 〈Au, u− v〉 for all v ∈ X.

Definition 2.2. Let K be a subset of X. An operator P : X → X∗ is said to be a

penalty operator of K if P is bounded, demicontinuous, monotone and, moreover,

K = {x ∈ X | Px = 0X∗}.

Let K ⊂ X be a nonempty subset. The function ψK defined by

ψK(x) =

{
0, if x ∈ K,

+∞, if x /∈ K,

is called the indicator function of K. Its subdifferential (in the sense of convex

analysis) is the multivalued operator ∂ψK : X → 2X
∗

defined by

∂ψK(x) =

{
{x∗ ∈ X∗ | 〈x∗, x− v〉 ≥ 0 for all v ∈ K } if x ∈ K,

∅ if x /∈ K.
(2.1)

An element x∗ ∈ ∂ψK(x) (if any) is called a subgradient of ∂ψK in x.
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Definition 2.3. A function ϕ : K → R is said to be (strongly) lower semicontinuous

(l.s.c.) at u ∈ K

lim inf
n→∞

ϕ(un) ≥ ϕ(u) (2.2)

for each sequence {un} ⊂ K converging (strongly) to u in X. The function ϕ is l.s.c.

if it is l.s.c. at every point u ∈ K.

We now recall the definition of the Clarke subdifferential for a locally Lipschitz

function.

Definition 2.4. A function h : X → R is said to be locally Lipschitz, if for every

x ∈ X, there exists a neighborhood of x, denoted Ux, and a constant Lx > 0 such that

|h(y)− h(z)| ≤ Lx‖y − z‖X for all y, z ∈ Ux.

We note that a convex continuous function h : X → R is locally Lipschitz. More-

over, if a function h : X → R is Lipschitz continuous on bounded sets of X, then it is

locally Lipschitz, while the converse does not hold, in general.

Definition 2.5. Let h : X → R be a locally Lipschitz function. The generalized

(Clarke) directional derivative of h at the point x ∈ X in the direction v ∈ X is

defined by

h0(x; v) = lim sup
y→x, λ↓0

h(y + λv)− h(y)

λ
.

The generalized gradient (subdifferential) of h at x is a subset of the dual space X∗

given by

∂h(x) = { ζ ∈ X∗ | h0(x; v) ≥ 〈ζ, v〉 ∀ v ∈ X }. (2.3)

A locally Lipschitz function h is said to be regular (in the sense of Clarke) at the

point x ∈ X if for all v ∈ X the one-sided directional derivative h′(x; v) exists and

h0(x; v) = h′(x; v).

We shall use the following properties of the generalized directional derivative and

the generalized gradient.

Proposition 2.6. Assume that h : X → R is a locally Lipschitz function. Then the

following hold:

(i) For every x ∈ X, the function X ∋ v 7→ h0(x; v) ∈ R is positively homogeneous

and subadditive, i.e., h0(x;λv) = λh0(x; v) for all λ ≥ 0, v ∈ X and h0(x; v1 + v2) ≤
h0(x; v1) + h0(x; v2) for all v1, v2 ∈ X, respectively.

(ii) For every v ∈ X, we have h0(x; v) = max { 〈ξ, v〉 | ξ ∈ ∂h(x) }.

For more details on the definitions and statements above we refer to the mono-

graphs [3, 5, 6, 12, 22, 27] as well as to the papers [11, 24, 25, 26].

We now recall some recent results in the study of variational-hemivariaional in-

equalities. The problem under consideration can be formulated as follows.
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Problem 1. Find an element u ∈ K such that

〈Au, v − u〉+ ϕ(v)− ϕ(u) + j0(u; v − u) ≥ 〈f, v − u〉 for all v ∈ K.

In the study of this problem we consider the following hypotheses on the data.

K is a nonempty closed convex subset of X. (2.4)




A : X → X∗ is such that

(a) it is pseudomonotone,

(b) there exist αA > 0, β, γ ∈ R and u0 ∈ K such that

〈Av, v − u0〉 ≥ αA ‖v‖2X − β ‖v‖X − γ for all v ∈ X,

(c) strongly monotone, i.e., there exists mA > 0 such that

〈Av1 − Av2, v1 − v2〉 ≥ mA‖v1 − v2‖2X for all v1, v2 ∈ X.

(2.5)

ϕ : K → R is convex and lower semicontinuous. (2.6)





j : X → R is such that

(a) j is locally Lipschitz,

(b) ‖∂j(v)‖X∗ ≤ c0 + c1 ‖v‖X for all v ∈ X with c0, c1 ≥ 0,

(c) there exists αj > 0 such that

j0(v1; v2 − v1) + j0(v2; v1 − v2) ≤ αj ‖v1 − v2‖2X
for all v1, v2 ∈ X.

(2.7)

f ∈ X∗. (2.8)

Note that in the statement of Problem 1, the function ϕ is assumed to be convex

and the function j is locally Lipschitz and, in general, nonconvex. For this rea-

son, following the terminology introduced in [16], the inequality in Problem 1 is a

variational-hemivariational inequality. Its unique solvability is provided by the fol-

lowing existence and uniqueness result.

Theorem 2.7. Assume that (2.4)–(2.8) hold and, in addition, assume that

αj < mA, (2.9)

Then, Problem 1 has a unique solution u ∈ K.

Theorem 2.7 represents a particular case of a result proved in [13, 22]. There, the

more general case in which the function ϕ depends on solution was considered. Its

proof was carried out in several steps, based on a surjectivity result for the sum of a

multivalued pseudomonotone operator and a maximal monotone one, combined with

the Banach fixed point argument.
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Assume now that P : X → X∗. Then, for every λ > 0, we consider the following

problem.

Problem 2. Find an element uλ ∈ X such that

〈Auλ, v − uλ〉+
1

λ
〈Puλ, v − uλ〉+ ϕ(v)− ϕ(uλ)

+ j0(uλ; v − uλ) ≥ 〈f, v − uλ〉 for all v ∈ X.

In the study of Problem 2 we assume the following additional hypotheses.

P : X → X∗ is a penalty operator of K. (2.10)

{
lim sup j0(un; v − un) ≤ j0(u; v − u)

for all u, v ∈ X and un → u weakly in X.
(2.11)

We have the following result, proved in [13].

Theorem 2.8. Assume that (2.4)–(2.11) hold. Then:

(i) For each λ > 0, there exists a unique solution uλ ∈ X to Problem 2.

(ii) uλ → u in X, as λ→ 0, where u ∈ K is the unique solution to Problem 1.

Note that Problem 2 represents a penalized version of Problem 1. It is formulated

on whole space, since the constraint on the solution was the removed. Theorem

2.8 states that the penalized problem has a unique solution which converges to the

solution of the original problem, as the penalty parameter converges to zero. Its

proof is obtained in several steps, by using well-known arguments of monotonicity,

compactness and lower semicontinuity. In this first step it is proved that the sequence

{uλ} is bounded and, therefore, it converges weakly to an element ũ ∈ X, as λ → 0.

In the second step it is proved that ũ = u, which guarantees that the whole sequence

{uλ} converges weakly to u in X, as λ → 0. Finally, in the last step the strong

convergence is proved, by using the strong monotonicity of the operator A.

3 The contact model

The physical setting, already considered in many papers and surveys, can be resumed

as follows. A deformable body occupies, in its reference configuration, a bounded

domain Ω ⊂ R
d (d = 1, 2, 3), with a Lipschitz continuous boundary Γ. The boundary

is divided into three measurable disjoint parts Γ1, Γ2 and Γ3, such that the d − 1

Lebesgue measure of Γ1, denoted by meas (Γ1), is positive. The body is fixed on Γ1,

is acted upon by given surface tractions on Γ2, and is in contact with an obstacle

on Γ3. The equilibrium of the body in this physical setting can be described by
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various mathematical models, obtained by using different mechanical assumptions.

The mathematical model we consider in this paper is based on specific constitutive

law and interface boundary conditions which will be described below in this section.

Its statement is as follows.

Problem 3. Find a displacement field u : Ω → R
d, a stress field σ : Ω → S

d and

two interface functions ην : Γ3 → R, ξν : Γ3 → R such that

σ ∈ Aε(u) + ∂ψBε(u) in Ω, (3.1)

Divσ + f 0 = 0 in Ω, (3.2)

u = 0 on Γ1, (3.3)

σν = f 2 on Γ2, (3.4)

uν ≤ g,

σν + ην + ξν ≤ 0,

(uν − g)(σν + ην + ξν) = 0,

0 ≤ ην ≤ F,

ην =





0 if uν < 0,

F if uν > 0,

ξν ∈ ∂jν(uν)





on Γ3, (3.5)

στ = 0 on Γ3. (3.6)

Here and below, in order to simplify the notation, we do not indicate explicitly

the dependence of various functions on the spatial variable x ∈ Ω ∪ Γ. Moreover,

S
d represents the space of second order symmetric tensors on R

d or, equivalently, the

space of symmetric matrices of order d. The zero element of the spaces R
d and S

d

will be denoted by 0. The inner product and norm on R
d and S

d are defined by

u · v = uivi , ‖v‖ = (v · v) 1

2 ∀u = (ui), v = (vi) ∈ R
d,

σ · τ = σijτij , ‖τ‖ = (τ · τ ) 1

2 ∀σ = (σij), τ = (τij) ∈ S
d,

where the indices i, j run between 1 and d and, unless stated otherwise, the summation

convention over repeated indices is used. In addition, an index that follows a comma

represents the partial derivative with respect to the corresponding component of the

spatial variable x, i.e., ui,j = ∂ui/∂xj. Also, ε and Div are the deformation and the

divergence operators, respectively, i.e.,

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Divσ = (σij,j)
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and, therefore, ε(u) represents the linearized strain tensor. Moreover, ν = (νi)

denotes the outward unit normal at Γ and uν , uτ represent the normal and tangential

components of u on Γ given by uν = u · ν and uτ = u − uνν, respectively. Finally,

σν and στ denote the normal and tangential stress on Γ, that is σν = (σν) · ν and

στ = σν − σνν.

We now provide a short description of the equations and boundary conditions in

Problem 3.

First, equation (3.1) represents the constitutive law of the locking material in

which A is the elasticity operator, assumed to be nonlinear, ψB is the indicator

function of the set B ⊂ S
d and ∂ψB represents its subdifferential, see (2.1). Example

of operators A which satisfy the conditions presented below in this paper can be

found in our books [12, 21, 22]. For the set B, which describes the locking constraints

of the material, various examples can be found in the literature, as explained in [7].

A typical example is given by

B = { τ ∈ S
d : F(τ ) ≤ k }, (3.7)

where F : Sd → R is a convex continuous function such that F(0) = 0 and k is a

positive constant. It is easy to see that in this case the set B is a nonempty convex

closed subset of Sd. Using (3.7) with the choice

F(τ ) =
1

2
‖τD‖ , (3.8)

where τD denotes the deviator of the tensor τ ∈ S
d, leads to the Von Mises convex.

This convex set was considered in [17, 18] to model the ideal-locking effect. The

choice

F(τ ) = tr(τ ) (3.9)

where tr(τ ) denotes the trace of the tensor τ ∈ S
d leads to the class of materials with

limited compressibility considered in [18].

Equation (3.2) is the equation of equilibrium that we use here since the process

is assumed to be static. Conditions (3.3), (3.4) represent the displacement and the

traction boundary conditions, respectively. Finally, condition (3.6) represents the

frictionless contact condition.

We now turn on the contact condition (3.5) in which our main interest is. Here

g > 0, F and jν are given functions which will be described below and ∂jν denotes

the Clarke subdifferential of jν . This condition models the contact with a foundation

made of a rigid body covered by a deformable layer of thickness g and a crust. It can

be derived in the following way.

First, the rigid body does not allow penetration and, therefore, the normal dis-

placement is limited by the bound g, i.e.,

uν ≤ g on Γ3. (3.10)
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Next, we assume that the normal stress has an additive decomposition of the form

σν = σC
ν + σD

ν + σR
ν on Γ3, (3.11)

in which the quantities σC
ν , σ

D
ν and σR

ν describe the reaction of the crust, the de-

formable layer and the rigid body, respectively. The part σC
ν of the normal stress is

such that

−F ≤ σC
ν ≤ 0, −σC

ν =

{
0 if uν < 0,

F if uν > 0
on Γ3, (3.12)

where F is a given nonnegative function. Assume F > 0. Then, using (3.12) we have

−F < σC
ν ≤ 0 =⇒ uν ≤ 0,

σC
ν = −F =⇒ uν ≥ 0.

This shows that the crust does not allow penetration (and, therefore, it behaves like

a rigid body) as far as the inequality −F < σC
ν ≤ 0 holds. It could allow penetration

only when σC
ν = −F and, in this case, it offers no additional resistance. We conclude

from here that the crust has a rigid-plastic behaviour and the function F could be

interpreted as its yield limit.

We also assume that that σD
ν satisfies a multivalued normal compliance contact

condition, that is

−σD
ν ∈ ∂jν(uν) on Γ3. (3.13)

Details on such condition, including examples and various mechanical interpretations,

can be found in [12]. Here we restrict ourselves to mention that it models the contact

with a deformable foundation. Finally, the part σR
ν (t) of the normal stress satisfies

the well known Signorini condition in the form with the gap g, i.e.,

σR
ν ≤ 0, σR

ν (uν − g) = 0 on Γ3. (3.14)

We denote −σC
ν = ην , −σD

ν = ξν and use (3.11) to see that

σR
ν = σν + ην + ξν on Γ3. (3.15)

Then we substitute equality (3.15) in (3.14) and use (3.10), (3.12), (3.13) to obtain

the contact condition (3.5).

4 Existence and uniqueness

In the study of Problem 3 we need to introduce further notation and preliminary

material. Everywhere in this paper we use the standard notation for Sobolev and

Lebesgue spaces associated to Ω and Γ. In particular, we use the spaces L2(Ω)d,

L2(Γ2)
d, L2(Γ3), L

2(Γ3)
d and H1(Ω)d, endowed with their canonical inner products
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and associated norms. Moreover, we recall that for an element v ∈ H1(Ω)d we usually

write v for the trace γv ∈ L2(Γ)d of v to Γ. In addition, we consider the following

spaces:

V = {v ∈ H1(Ω)d : v = 0 on Γ1 },
Q = {σ = (σij) : σij = σji ∈ L2(Ω) }.

The spaces V and Q are real Hilbert spaces endowed with the canonical inner

products given by

(u,v)V =

∫

Ω

ε(u) · ε(v) dx, (σ, τ )Q =

∫

Ω

σ · τ dx. (4.1)

The associated norms on these spaces are denoted by ‖ · ‖V and ‖ · ‖Q, respectively.
Recall that the completeness of the space V follows from the assumption meas (Γ1) >

0 which allows the use of Korn’s inequality. We denote by V ∗ and 〈·, ·〉 the topological
dual of V and the duality pairing between V ∗ and V , respectively. We also denote

by 0V the zero element of V and, for any element v ∈ V , we denote by vν and vτ

its normal and tangential components on Γ given by vν = v · ν and vτ = v − vνν,

respectively. Recall that, for a regular stress function σ, the following Green’s formula

holds:
∫

Ω

σ · ε(v) dx+
∫

Ω

Divσ · v dx =

∫

Γ

σν · v da for all v ∈ H1(Ω)d. (4.2)

Finally, we recall that the Sobolev trace theorem yields

‖v‖L2(Γ3)d ≤ ‖γ‖ ‖v‖V for all v ∈ V, (4.3)

‖γ‖ being the norm of the trace operator γ : V → L2(Γ3)
d.

In the study of the mechanical problem (3.1)–(3.6) we assume that the elasticity

operator A satisfies the following conditions.





(a) A : Ω× S
d → S

d.

(b) There exists LA > 0 such that

‖A(x, ε1)−A(x, ε2)‖ ≤ LA‖ε1 − ε2‖
∀ ε1, ε2 ∈ S

d, a.e. x ∈ Ω.

(c) There exists mA > 0 such that

(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ mA ‖ε1 − ε2‖2
∀ ε1, ε2 ∈ S

d, a.e. x ∈ Ω.

(d) The mapping x 7→ A(x, ε) is measurable on Ω,

for any ε ∈ S
d.

(e) The mapping x 7→ A(x,0) belongs to Q.

(4.4)
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We also assume that the set of locking constraints, the densities of body forces and

tractions, the yield limit of the crust and the bound of the normal displacement are

such that

B is a closed convex subset of Sd such that 0 ∈ B. (4.5)

f 0 ∈ L2(Ω)d. (4.6)

f 2 ∈ L2(Γ2)
d. (4.7)

F ∈ L2(Γ3), F (x) ≥ 0 a.e. x ∈ Γ3. (4.8)

g > 0. (4.9)

Finally, the normal compliance function jν satisfies the follwing condition.




jν : Γ3 × R → R is such that

(a) jν(·, r) is measurable on Γ3 for all r ∈ R and there

exists ē ∈ L2(Γ3) such that jν(·, ē(·)) ∈ L1(Γ3),

(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3,

(c) |∂jν(x, r)| ≤ c̄0 + c̄1 |r| for a.e. x ∈ Γ3,

for all r ∈ R with c̄0, c̄1 ≥ 0,

(d) j0ν(x, r1; r2 − r1) + j0ν(x, r2; r1 − r2) ≤ αjν |r1 − r2|2
for a.e. x ∈ Γ3, all r1, r2 ∈ R with αjν ≥ 0.

(4.10)

Here and below we denote by ∂jν(x, ·) and j0(x, ·; ·) the generalized gradient and the

generalized directional derivative of jν with respect to the second variable, for a.e.

x ∈ Γ3.

We now turn to the variational formulation of Problem 3 and, to this end, we

introduce the sets U , W and K defined by

U = {v ∈ V : vν ≤ g a.e. on Γ3 }, (4.11)

W = {v ∈ V : ε(v) ∈ B a.e. in Ω }, (4.12)

K = U ∩W. (4.13)

Assume that (u,σ) are sufficiently regular functions which satisfy (3.1)–(3.6). Then,

using (3.5) it follows that u ∈ U and, using (3.1) and (2.1) we deduce that u ∈ W .

Thus, definition (4.13) implies that

u ∈ K. (4.14)

Let v ∈ K. We use Green’s formula (4.2) and equalities (3.2)–(3.4), to see that
∫

Ω

σ · (ε(v)− ε(u)) dx

=

∫

Ω

f 0 · (v − u) dx+

∫

Γ2

f 2 · (v − u) da+

∫

Γ3

σν · (v − u) da.
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Moreover, since
∫

Γ3

σν · (v − u) da =

∫

Γ3

σν(vν − uν) da+

∫

Γ3

στ · (vτ − uτ ) da,

the frictionless condition (3.6) yields
∫

Ω

σ · (ε(v)− ε(u)) dx (4.15)

=

∫

Ω

f 0 · (v − u) dx+

∫

Γ2

f 2 · (v − u) da+

∫

Γ3

σν(vν − uν) da.

We now use the constitutive law (3.1) and (2.1) to deduce that

∫

Ω

Aε(u) · (ε(v)− ε(u)) dx ≥
∫

Ω

σ · (ε(v)− ε(u)) dx. (4.16)

On the other hand, using the contact conditions (3.5), assumption (4.8) and equa-

lity (2.3) it is easy to see that

(σν + ην + ξν)(vν − g) ≥ 0, (σν + ην + ξν)(g − uν) = 0

−ην(vν − uν) ≥ F (u+ν − v+ν ), −ξν(vν − uν) ≥ −j0ν(uν ; vν − uν)

a.e. on Γ3 where, here and below, r+ represent the positive part of r. Therefore,

writing

σν(vν − uν) = (σν + ην + ξν)(vν − g) + (σν + ην + ξν)(g − uν)

−ην(vν − uν)− ξ(vν − uν)

we deduce that

σν(vν − uν) ≥ F (u+ν − v+ν )− j0ν(uν ; vν − uν) a.e. on Γ3,

which implies that
∫

Γ3

σν(vν − uν) da ≥
∫

Γ3

F (u+ν − v+ν ) da−
∫

Γ3

j0ν(uν ; vν − uν) da. (4.17)

Finally, we combine equality (4.15) with inequalities (4.16), (4.17) and regularity

(4.14) to deduce the following variational formulation of Problem 3.

Problem 4. Find a displacement field u ∈ K such that
∫

Ω

Aε(u) · (ε(v)− ε(u)) dx+

∫

Γ3

Fv+ν da−
∫

Γ3

Fu+ν da (4.18)

+

∫

Γ3

j0ν(uν ; vν − uν) da ≥
∫

Ω

f 0 · (v − u) dx+

∫

Γ2

f 2 · (v − u) da

for all v ∈ K.
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In the study of Problem 4 we have the following existence and uniqueness result.

Theorem 4.1. Assume that (4.4)–(4.9) hold and, in addition, assume the smallness

condition

αjν‖γ‖2 < mA. (4.19)

Then Problem 4 has a unique solution u ∈ K.

The proof of Theorem 4.1 is based on Theorem 2.7. To present it we use arguments

of monotonicity, lower semicontinuity and the property of the Clarke subdifferential,

which guarantee that the assumptions of Theorem 2.7 are satisfied. We start with

some technical results that we gather in the following lemma.

Lemma 4.2. Assume that (4.10) holds and let j : V → R be the function defined by

j(v) =

∫

Γ3

jν(vν) da. (4.20)

Then, the following statements hold.

(i) j is a locally Lipschitz function on V .

(ii) j satisfies condition (2.7) with c0 =
√
2meas(Γ3) c̄0‖γ‖, c1 =

√
2 c̄1‖γ‖2 and

αj = αjν‖γ‖2.
(iii) For all u, v ∈ V , we have

j0(u;v) ≤
∫

Γ3

j0ν(uν ; vν) da. (4.21)

Moreover, if

either jν(x, ·) or − jν(x, ·) is regular on R for a.e. x ∈ Γ3, (4.22)

then j or −j is also regular and (4.21) holds with equality.

(iv) Under the additional assumption (4.22) the following property holds:

{
lim sup j0(un;v − un) ≤ j0(u;v − u)

for all u,v ∈ V and un → u weakly in V.

Note that the points (i)–(iii) of Lemma 4.2 correspond to Lemma 8 in [22, p. 126].

The point (iv) is a direct consequence of Lemma 6 in [22, p. 123]. The details in

proof can be found on [22, p. 228] and, for this reason, we omit them.

We now proceed with the proof of Theorem 4.1.
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Proof. We use Theorem 2.7 with X = V , K given by (4.13), j given by (4.20) and

A, ϕ, f defined as follows:

A : V → V ∗, 〈Au,v〉 =
∫

Ω

Aε(u) · ε(v) dx, (4.23)

ϕ : V → R, ϕ(v) =

∫

Γ3

Fv+ν da, (4.24)

f ∈ V ∗, 〈f ,v〉 =
∫

Ω

f 0 · v dx+
∫

Γ2

f 2 · v da (4.25)

for all u,v ∈ V . To this end, we check the validity of conditions (2.4)–(2.9).

First, we use the definition (4.13) and assumptions (4.5), (4.9) to see that K is a

closed convex subset of V such that 0V ∈ K and, therefore, condition (2.4) is satisfied.

Next, we use the definition (4.23) and assumption (4.4)(c) to obtain that

〈Au− Av,u− v〉 ≥ mA ‖u− v‖2V ∀u, v ∈ V. (4.26)

On the other hand, using assumption (4.4)(b) yields

‖Au− Av‖V ∗ ≤ LA ‖u− v‖V ∀u, v ∈ V. (4.27)

We conclude by (4.26) and (4.27) that A is a strongly monotone Lipschitz continuous

operator on the space V and, therefore, it satisfies condition (2.5). Moreover, using

(4.8) and (4.3) it is easy to see that the functional ϕ defined by (4.24) is a seminorm

on the space V and, in addition,

ϕ(v) ≤ ‖γ‖‖F‖L2(Γ3)‖v‖V ∀v ∈ V.

It follows from here that ϕ is a continuous seminorm and, therefore, it satisfies con-

dition (2.6). On the other hand, by Lemma 4.2 we see that condition (2.7) holds.

Moreover, assumptions (4.6) and (4.7) imply (2.8) for f . Finally, since Lemma 4.2

guarantees that αj = αjν‖γ‖2, we see that assumption (4.19) implies the smallness

condition (2.9).

Therefore, we are in a position to use Theorem 2.7. In this way we deduce that

there exists a unique element u ∈ K such that

〈Au,v − u〉+ ϕ(v)− ϕ(u) + j0(u;v − u) (4.28)

≥ 〈f ,v − u〉 for all v ∈ K.

We now combine (4.28) with inequality (4.21) and notation (4.23)–(4.25) to see that

the solution u of (4.28) satisfies (4.18), which proves the existence part of the theorem.

We now turn to the proof of the uniqueness part. To this end, let u1, u2 ∈ K be

solutions to inequality (4.18). Then, the inequalities below hold, for all v ∈ K:
∫

Ω

Aε(u1) · (ε(v)− ε(u1)) dx+

∫

Γ3

F (u1ν)(v
+
ν − u+1ν) da

+

∫

Γ3

j0ν(u1ν ; vν − u1ν) da ≥
∫

Ω

f 0 · (v − u1) dx+

∫

Γ2

f 2 · (v − u1) da,
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∫

Ω

Aε(u2) · (ε(v)− ε(u2)) dx+

∫

Γ3

F (u2ν)(v
+
ν − u+2ν) da

+

∫

Γ3

j0ν(u2ν ; vν − u2ν) da ≥
∫

Ω

f 0 · (v − u2) dx+

∫

Γ2

f 2 · (v − u2) da.

We take v = u2 in the first inequality and v = u1 in the second one, then we add

the resulting inequalities, use the hypotheses (4.4)(b), (4.10)(c) and inequality (4.3)

to obtain that

(mA − αjν‖γ‖2) ‖u1 − u2‖2V ≤ 0.

Finally, we use the smallness condition (4.19) to deduce that u1 = u2, which concludes

the proof.

Note that Problem 4 is formulated in terms of the displacement field. The solution

of this problem is called a weak solution for the contact problem 3. The question of

finding the stress function σ and the interface functions ην and ξν is left open.

5 A first convergence result

In this section we illustrate the use of the abstract result in Theorem 2.8 in the study

of Problem 4. To this end we use arguments of monotonicity and the properties of

the projection operators in order to construct an appropriate penalty operator for

the set of admissible displacement fields (4.13). We start by considering a normal

compliance function pν which satisfies





pν : Γ3 × R → R+ is such that

(a) there exists Lpν > 0 such that

|pν(x, r1)− pν(x, r2)| ≤ Lpν |r1 − r2|
for all r1, r2 ∈ R, a.e. x ∈ Γ3,

(b) (pν(x, r1)− pν(x, r2)) (r1 − r2) ≥ 0

for all r1, r2 ∈ R, a.e. x ∈ Γ3,

(c) pν(·, r) is measurable on Γ3 for all r ∈ R,

(d) pν(x, r) = 0 if and only if r ≤ 0, a.e. x ∈ Γ3.

(5.1)

A typical example of function satisfying (5.1) is pν(x, r) = r+ for all r ∈ R, a.e.

x ∈ Γ3. Moreover, we use assumption (4.5) and denote by PB : Sd → B the projection

operator on the set B. Then, for every penalty parameter λ > 0, we consider the

following frictionless contact problem without unilateral constraint.
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Problem 5. Find a displacement field uλ : Ω → R
d, a stress field σλ : Ω → S

d and

two interface function ηλν : Γ3 → R, ξλν : Γ3 → R such that

σλ = Aε(uλ)+
1

λ
(ε(uλ)− PBε(uλ)) in Ω, (5.2)

Divσλ + f 0 = 0 in Ω, (5.3)

uλ = 0 on Γ1, (5.4)

−σλν = f 2 on Γ2, (5.5)

−σλν = 1
λ
pν(uλν − g) + ηλν + ξλν ,

0 ≤ ην(t) ≤ F,

ην(t) =





0 if uν(t) < 0,

F if uν(t) > 0,

ξν(t) ∈ ∂jν(uν(t))





on Γ3, (5.6)

στ = 0 on Γ3. (5.7)

Here and below uλν and σλν denote the normal components of the unknowns uλ

and σλ, and σλτ represents the tangential part of the tensor σλ, respectively.

The variational formulation of Problem 5, obtained by arguments similar to those

used in Section 4, is the following.

Problem 6. Find a displacement field uλ ∈ V such that
∫

Ω

Aε(uλ) · (ε(v)− ε(uλ)) dx

+
1

λ

∫

Ω

(ε(uλ)− PBε(uλ)) · (ε(v)− ε(uλ)) dx

+
1

λ

∫

Γ3

pν(uλν − g)(vλν − uλν) da+

∫

Γ3

Fv+ν da−
∫

Γ3

Fu+λν da

+

∫

Γ3

j0ν(uλν ; vν − uλν) da

≥
∫

Ω

f 0 · (v − u) dx+

∫

Γ2

f 2 · (v − u) da for all v ∈ V.

We now state and prove the following existence, uniqueness and convergence re-

sult.

Theorem 5.1. Assume that (4.4)–(4.9), (4.19), (4.22), (5.1) hold. Then:
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(i) For each λ > 0, there exists a unique solution uλ ∈ V to Problem 6.

(ii) The solution uλ of Problem 6 converges to the solution u of Problem 4, i.e.,

uλ → u in V , as λ→ 0.

In order to present the proof of the theorem we use the Riesz representation

theorem to define the operator P : V → V ∗ by

〈Pu,v〉 =
∫

Ω

(ε(u)− PBε(u)) · ε(v) dx (5.8)

+

∫

Γ3

pν(uν − g)vν da for all u, v ∈ V.

We have the following result.

Lemma 5.2. The operator P : V → V ∗ is a penalty operator, i.e., it satisfies the

conditions in Definition 2.2 with X = V and K given by (4.13).

Proof. We show that the operator P is bounded, demicontinuous, monotone and

K = {u ∈ V | Pu = 0V ∗ }. Let u ∈ V , v ∈ V and w ∈ V . Then, using the

nonexpansivity of the projection operator it is easy to see that

|
(
ε(u)− PBε(u))− (ε(v)− PBε(v))

)
· ε(w)|

≤ 2 ‖(ε(u)− ε(v)‖‖ε(w)‖ a.e. in Ω,

(
(ε(u)− PBε(u))− (ε(v)− PBε(v))

)
·
(
ε(u)− ε(v)

)
≥ 0 a.e. in Ω.

Therefore, we deduce that
∫

Ω

∣∣(ε(u)− PBε(u))− (ε(v)− PBε(v))
)
· ε(w)

∣∣ dx ≤ 2 ‖u− v‖V ‖w‖V , (5.9)

∫

Ω

(
(ε(u)− PBε(u)) · (ε(v)− PBε(v))

)
·
(
ε(u)− ε(v)

)
dx ≥ 0. (5.10)

Next, from (5.1) it is easy to see that

|(pν(uν − g)− pν(vν − g))wν | ≤ Lpν |uν − vν ||wν | a.e. on Γ3,

(pν(uν − g)− pν(vν − g))(uν − vν) ≥ 0 a.e. on Γ3.

Therefore, applying the trace inequality (4.3), we have
∫

Γ3

|(pν(uν − g)− pν(vν − g))wν | da ≤ Lpν‖γ‖2‖u− v‖V ‖w‖V , (5.11)

∫

Γ3

(pν(uν − g)− pν(vν − g))(uν − vν) da ≥ 0. (5.12)
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We now use the definition (5.8) of the operator P and inequalities (5.9)–(5.12) to

deduce that

|〈Pu− Pv,w〉| ≤ 2 ‖u− v‖V ‖w‖V + Lpν

∫

Γ3

|uν − vν | |wν | da

≤ (2 + Lpν‖γ‖2)‖u− v‖V ‖w‖V ,

〈Pu− Pv,u− v〉 ≥ 0.

These inequalities show that the operator P is Lipschitz continuous and monotone

and, therefore, it is bounded and demicontinuous.

Assume now that Pu = 0V ∗ . Then, 〈Pu,u〉V = 0 which implies that

∫

Ω

(
ε(u)− PBε(u))

)
· ε(u) dx+

∫

Γ3

pν(uν − g)uν da = 0. (5.13)

We use the inclusion 0 ∈ B and the nonexpansivity of the projection operator PB to

see that

(ε(u)− PBε(u))
)
· ε(u) ≥ 0 a.e. in Ω.

On the other hand, using (5.1)(b), (d) yields

pν(uν − g)uν ≥ pν(uν − g)g ≥ 0 a.e. on Γ3.

We deduce from above that
∫

Ω

(
ε(u)− PBε(u))

)
· ε(u) dx ≥ 0,

∫

Γ3

pν(uν − g)uν da ≥ 0

and, therefore, inequality (5.13) implies that

∫

Ω

(
ε(u)− PBε(u))

)
· ε(u) dx = 0,

∫

Γ3

pν(uν − g)uν da = 0.

Since the integrands in these integrals are positive, we deduce that

(ε(u)− PBε(u))
)
· ε(u) = 0 a.e. in Ω, (5.14)

pν(uν − g)uν = 0 a.e. on Γ3. (5.15)

Next, we use the properties of the projection to see that

(PBε(u)− ε(u)) · τ ≥ (PBε(u)− ε(u)) · PBε(u)

for all τ ∈ B, a.e. in Ω and, therefore, taking τ = 0 we find that

(ε(u)− PBε(u)) · PBε(u) ≥ 0 a.e. in Ω. (5.16)
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We now combine ineequality (5.16) with equality (5.14) to deduce that

(ε(u)− PBε(u)) · (PBε(u)− ε(u)) ≥ 0 a.e. in Ω.

This implies that ε(u) = PBε(u) a.e. in Ω and, therefore, definition (4.12) shows

that u ∈ W . On the other hand, equality (5.15) combined with assumption (5.1)(d)

implies that uν ≤ g a.e. on Γ3. This shows that u ∈ U . We conclude from above

that u ∈ U ∩W , i.e. u ∈ K.

Conversely, if u ∈ K it follows that ε(u) ∈ B a.e. in Ω and uν ≤ g a.e. on Γ3.

Using the properties of the projector we have ε(u) = PBε(u) a.e. in Ω and, using

assumption (5.1)(d), we deduce that p(uν − g) = 0 a.e. on Γ3. Therefore, from the

definition (5.8) of the operator P we deduce that 〈Pu,v〉 = 0 for all v ∈ V , which

implies that Pu = 0V ∗ and concludes the proof.

We now have all the ingredients to provide the proof of Theorem 5.1.

Proof. From Lemma 5.2 we see that P is a penalty operator of the set K and, there-

fore, (2.10) holds. On the other hand, Lemma 4.2 (iv) guarantees that the function

(4.20) satisfies condition (2.11) on the space V . We are now in a position to use

Theorem 2.8 in order to conclude the proof.

In addition to the mathematical interest in the convergence result in Theorem 5.1

(ii), it is important from the mechanical point of view, since it provides the link

between the weak solutions of two different models of contact. Indeed, note that

Problem 5 describes the frictionless contact of an elastic material, (5.2), with a de-

formable foundation covered by a crust. In contrast, Problem 3 describes the fric-

tionless contact of a locking material with a rigid-deformable foundation covered by

a crust.

6 A second convergence result

In this section we state and prove a second convergence result which shows the con-

tinuous dependence of the weak solution of Problem 3 with respect the constraints.

Our approach is the following: we assume that the convex B is defined by using a

bound k and, besides Problem 4 we consider a second problem, constructed by using

a perturbation of the data g and k. Then, we use arguments of monotonicity and

the properties of generalized directional derivative in order to estimate the difference

between the solution of Problem 4 and its perturbation. This estimate leads to a

convergence result, Theorem 6.1, which represents the main resut of this section.

We assume in what follows that (4.4), (4.6)–(4.9) and (4.19) hold. Moreover, we

assume that the locking constraint set B is defined by equality (3.7), where

F : Sd → R is a positively homogenous convex continuous function, (6.1)
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k > 0. (6.2)

Then, it is easy to see that condition (4.5) holds. Therefore, using Theorem 4.1 we

deduce that Problem 4 has a unique solution u ∈ K. The solution depends on the

bounds g and k and, therefore, sometimes we shall denote it by u = u(g, k). The proof

of Theorem 4.1 also shows that the solution satisfies the variational-hemivariational

inequality (4.28), i.e.,

u ∈ K, 〈Au,v − u〉+ ϕ(v)− ϕ(u) + j0(u;v − u) (6.3)

≥ 〈f ,v − u〉 for all v ∈ K.

Consider now a perturbation gn, kn of the bounds g and k, respectively, such that

gn > 0, kn > 0 for all n ∈ N. (6.4)

Let n ∈ N. We use (3.7), (4.11)–(4.13) to define the sets

Bn = { τ ∈ S
d : F(τ ) ≤ kn }, (6.5)

Un = {v ∈ V : vν ≤ gn a.e. on Γ3 }, (6.6)

Wn = {v ∈ V : ε(v) ∈ Bn a.e. in Ω }, (6.7)

Kn = Un ∩Wn, (6.8)

then we consider the problem of finding an element un such that

un ∈ Kn, 〈Aun,v − un〉+ ϕ(v)− ϕ(un) + j0(un;v − un) (6.9)

≥ 〈f ,v − un〉 for all v ∈ Kn.

It follows from Theorem 4.1 that, for each n ∈ N, inequality (6.9) has a unique

solution un = u(gn, kn). Our main result in this section is the following.

Theorem 6.1. Assume that (4.4), (4.6)–(4.9), (4.19), (6.1), (6.2) and (6.4) hold.

Moreover, assume that

gn → g and kn → k. (6.10)

Then, the solution un of inequality (6.9) converges to the solution u of inequality

(6.3), i.e.,

un → u in V. (6.11)

In order to provide the proof of Theorem 6.1 we recall that the function j satisfies

condition (2.7) on the space V with the constant c0, c1 and αj defined in Lemma 4.2

(ii). Moreover, we need the following preliminary result.
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Lemma 6.2. For all n ∈ N, the solution un of the variational-hemivariational in-

equality (6.9) satisfies the bound

‖un‖X ≤ 1

mA − αj

(
‖A0V ‖V ∗ + ‖f‖V ∗ + c0

)
. (6.12)

Proof. Let n ∈ N. Taking v = 0V ∈ K in (6.9), since ϕ(un) ≥ and ϕ(0V ) = 0, we

deduce that

〈Aun,un〉 ≤ 〈f ,un〉+ j0(un;−un).

We now write Aun = Aun − A0V + A0V and use the strong monotonicity of the

operator A, (4.26), to see that

mA‖un‖2V ≤ (‖A0V ‖V ∗ + ‖f‖V ∗)‖un‖V + j0(un;−un). (6.13)

On the other hand, taking v1 = un and v2 = 0V in (2.7)(c) we find that

j0(un;−un) ≤ αj‖un‖2V − j0(0V ;un). (6.14)

Moreover, using Proposition 2.6 (ii) we have

−j0(0V ;un) ≤ |j0(0V ;un)| = | max
ξ∈∂j(0V )

〈ξ,u〉|

≤ max
ξ∈∂j(0V )

|〈ξ,un〉| ≤ max
ξ∈∂j(0V )

‖ξ‖X∗‖un‖V

and, using condition (2.7)(b) with v = 0V yields

−j0(0V ;un) ≤ c0‖un‖V . (6.15)

We now combine inequalities (6.14) and (6.15) to see that

j0(un;−un) ≤ αj‖un‖2V + c0‖un‖V ,

then we use this inequality in (6.13) to deduce that

(mA − αj)‖un‖V ≤ (‖A0V ‖V ∗ + ‖f‖V ∗) + c0.

Inequality (6.12) is now a direct consequence of the smallness assumption (4.19) since,

recall, αj = αjν‖γ‖.

We now have all the ingredients to provide the proof of Therem 6.1.

Proof. Let n ∈ N and let αn > 0, βn > 0 be given by

αn = min
{gn
g
,
kn
k

}
, βn = min

{ g

gn
,
k

kn

}
. (6.16)
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Using the positive homogeneity of the function F , guaranteed by assumption (6.1),

it follows that that

F(ε(αnu)) = αnF(ε(u)) ≤ kn
k

F(ε(u))

and, since u ∈ W , we deduce that F(αnε(u)) ≤ kn a.e. in Ω, which implies that

αnu ∈ Wn. A similar argument shows that αnu ∈ Un. We conclude from here that

αnu ∈ Un ∩Wn. Therefore, using (4.13) yields

αnu ∈ Kn. (6.17)

Using similar arguments it follows that

βnun ∈ K. (6.18)

Next, the regularity (6.17) allows us to test in (6.9) with v = αnu to obtain

〈Aun, αnu− un〉+ ϕ(αnu)− ϕ(un) + j0(un;αnu− un) ≥ 〈f , αnu− un〉. (6.19)

Moreover, the regularity (6.18) allows us to test in (6.3) with v = βnun. As a result

we find that

〈Au, βnun − u〉+ ϕ(βnun)− ϕ(u) + j0(u; βnun − u) ≥ 〈f , βnun − u〉. (6.20)

We now add inequalities (6.19), (6.20) and, after some algebra, using the positive

homogeneity of the function ϕ, we find that

〈Aun − Au,un − u〉 ≤ 〈Aun, (αn − 1)u〉+ 〈Au, (βn − 1)un〉 (6.21)

+(αn − 1)ϕ(u) + (βn − 1)ϕ(un) + j0(un, αnu− un) + j0(u, βnun − u)

+〈f , (1− αn)u〉+ 〈f , (1− βn)un〉.

We now combine the bound (6.12) with the properties of the operator A and the

function ϕ to see that there exists a constant C > 0 which does not depend on n such

that

‖un‖V ≤ C, ‖Aun‖V ≤ C, ϕ(un) ≤ C. (6.22)

Using these inequalities in (6.21) yields

〈Aun − Au,un − u〉 ≤ C|αn − 1|‖u‖V + C|βn − 1|‖Au‖V ∗ (6.23)

+C|αn − 1|ϕ(u) + C(βn − 1) + j0(un, αnu− un) + j0(u, βnu− u)

+|αn − 1|‖f‖V ∗‖u‖V + C|βn − 1|‖f‖V ∗ .

On the other hand, using Proposition 2.6 (i) and condition (2.7)(c) we have

j0(un, αnu− un) + j0(u, βnu− u) (6.24)

= j0(un, αnu− u+ u− un) + j0(u, βnun − un + un − u)

≤ αj‖u− un‖2V + j0(un, (αn − 1)u) + j0(u, (βn − 1)un)
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Moreover, using Proposition 2.6 (ii) and condition (2.7)(b) we have

j0(un, (αn − 1)u) ≤ |j0(un, (αn − 1)u)| = | max
ξ∈∂j(un)

〈ξ, (αn − 1)u〉|

≤ |αn − 1| max
ξ∈∂j(un)

|〈ξ,u〉| ≤ |αn − 1|(c0 + c1‖un‖V )‖u‖V .

Therefore, the bound (6.22) implies that

j0(un, (αn − 1)u) ≤ |αn − 1|(c0 + c1C)‖u‖V . (6.25)

A similar argument shows that

j0(u, (βn − 1)un) ≤ C|βn − 1|(c0 + c1‖u‖V ). (6.26)

We now combine inequalities (6.23)–(6.26) to find that

〈Aun − Au,un − u〉 ≤ C|αn − 1|‖u‖V + C|βn − 1|‖Au‖V ∗

+C|αn − 1|ϕ(u) + C(βn − 1) + αj‖u− un‖2V + |αn − 1|(c0 + c1C)‖u‖V +

+C|βn − 1|(c0 + c1‖u‖V ) + |αn − 1|‖f‖V ∗‖u‖V + C|βn − 1|‖f‖V ∗ .

Next, we use inequality (4.26), equality αj = αjν‖γ‖2 and the smallness assumption

(4.19) to see that there exists a positive constant E(u), which depends on u but does

not depend on n, such that

‖un − u‖2V ≤ E(u)
(
|αn − 1|+ |βn − 1|

)
. (6.27)

On the other hand, it is easy to see that definition (6.16) and assumption (6.10) imply

that

αn → 1, βn → 1. (6.28)

We now combine inequality (6.27) with the convergence (6.28) to deduce that (6.11)

holds, which concludes the proof.

In addition to the mathematical interest in the convergence result (6.11) it is

important from mechanical point of view, since it shows that the weak solution of

the contact problem 3 depends continuously both on the thickness of the rigid-plastic

layer of the foundation and on the locking constraint.

Theorem 6.1 could be used in the study of some optimization problems associated

to inequality (4.18). To provide an example, let K ⊂ R
∗
+×R

∗
+ where, here and below,

R
∗
+ = (0,+∞), and let L : V → R. We consider the following problem.

Problem 7. Find (g∗, k∗) ∈ K such that

L
(
u(g∗, k∗)

)
= min

(g,k)∈K
L
(
u(g, k)

)
. (6.29)
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Here, for each (g, k) ∈ K, u(g, k) represents the solution of the variational-

hemivariational inequality (4.18) or, equivalently, the solution of (6.3). In the study

of this problem we assume that

K ⊂ R
∗
+ × R

∗
+ is a compact set of R2. (6.30)

L : V → R is a lower semicontinous function. (6.31)

We have the following result.

Corollary 6.3. Assume the hypothesis of Theorem 6.1 and, moreover, assume that

(6.30)–(6.31) hold. Then, Problem 7 hast at least one solution.

Proof. Note that Theorem 6.1 guarantees that the map (g, k) 7→ u(g, k) : R
∗
+ ×

R
∗
+ → V is continuous. Therefore, using assumption (6.31) we deduce that the map

(g, k) 7→ L
(
u(g, k)

)
: K → R is lower semicontinuous. Recall also that the set K is

a compact subset of R2, see (6.30). Corollary 6.3 follows now from the well known

Weierstrass theorem.

A first example of Problem 7 can be obtained by taking K = [g0, g1]× {k} where

g0, g1 and k are strictly positive constants such that g0 < g1 and

L(u) =
∫

Γ3

(uν − φ)2 da (6.32)

where φ ∈ L2(Γ3) is given. With this choice, the mechanical interpretation of Problem

7 is the following: given a contact process of the form (3.1)–(3.7) with the data F ,

f 0, f 2, F and k, we are looking for a thickness g ∈ [g0, g1] such that the normal

component of the corresponding solution is as close as possible, on Γ3, to the “desired

normal displacement” φ.

A second example of Problem 7 can be obtained by taking K = {g} × [k0, k1]

where g, k0, k1 are strictly positive constants such that k0 < k1 and

L(u) =
∫

Ω

‖ε(u)‖2 dx. (6.33)

With this choice, the mechanical interpretation of Problem 7 is the following: given

a contact process of the form (3.1)–(3.7), with the data F , f 0, f 2, F and g, we are

looking for a bound k ∈ [k0, k1] such that, the corresponding deformation in the body

is as small as possible.

Corollary 6.3 guarantees the existence of the solutions of all these optimization

problems.
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