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An Elastic Frictional Contact Problem with
Unilateral Constraint

Maxime Couderc and Mircea Sofonea

Abstract. We consider a mathematical model which describes the equi-
librium of an elastic body in contact with two obstacles. We derive its
weak formulation which is in a form of an elliptic quasi-variational in-
equality for the displacement field. Then, under a smallness assumption,
we establish the existence of a unique weak solution to the problem. We
also study the dependence of the solution with respect to the data and
prove a convergence result. Finally, we consider an optimization prob-
lem associated with the contact model for which we prove the existence
of a minimizer and a convergence result, as well.

Mathematics Subject Classification. 74M10, 74M15, 49J40, 49J45, 49J20.
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1. Introduction

Processes of contact between deformable bodies arise in industry and ev-
eryday life. They mathematical modeling leads to strongly elliptic or evo-
lutionary nonlinear boundary value problems, and therefore, their study is
carried out using arguments of nonsmooth analysis. Reference in the field
is the books [6–10,16,17] and, more recently, [5,14,18]. There, various mod-
els of contact with elastic, viscoelastic, and viscoplastic materials have been
considered, associated with a large number of contact boundary condition.
Existence and uniqueness results have been proved, using arguments of varia-
tional and hemivariational inequalities. In part of these references, the numer-
ical analysis of the models was also provided, together with error estimates
and convergence results. Moreover, numerical simulations which represent an
evidence of the theoretical results have been presented, together with their
mechanical interpretations. Results on optimal control for various contact
problems with elastic materials could be found in [1,5,11–13,20,21] and the
references therein.
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In [3], we considered a mathematical model which describes the fric-
tionless contact between an elastic body and a foundation made of a rigid
material, covered by a rigid-plastic layer of thickness g and yield limit F . The
variational formulation of the model led to an elliptic variational inequality
with unilateral constraints for the displacement field, governed by the pa-
rameter g. We provided the unique solvability of the model, the continuous
dependence of the solution with respect to the data, and we discussed related
optimal control problems.

The current paper represents a continuation of [3]. The first novelty
arises in the model we use, which is frictional. It describes the equilibrium
of an elastic body acted upon by body forces of density f0 and tractions
of density f2, in contact with two obstacles. The first obstacle is made of a
rigid material, covered by a rigid-plastic layer of thickness g and yield limit
F . The second one is made of a rigid material, covered by a deformable layer
of thickness k. The contact between the body and the first obstacle is fric-
tionless, while the contact with the second one is frictional and is modeled
with a version of Coulomb’s law of dry friction. Our aim is to provide a clear
and rigourous statement of the problem, to provide its variational analysis
and to study-related optimization problems, in which the control could be
f0, f2, F , g, and k. Note that, in contrast with the contact model in [3], the
model considered in this current paper leads to an elliptic quasi-variational
inequality for the displacement field in which the set of constraints is gov-
erned by two parameters, g and k. This gives rise to additional mathematical
difficulties in its analysis. The approach used to overcome these difficulties
represents the second trait of novelty of this paper.

This paper is structured as follows. In Sect. 2, we introduce the pre-
liminary material we need. It includes a survey of the basic properties on
the functional spaces we use as well as an existence and uniqueness result
for elliptic quasi-variational inequalities. In Sect. 3, we introduce the contact
model, and then, we list the assumptions on the data and derive its varia-
tional formulation. In Sect. 4, we state and prove the unique weak solvability
of the problem, Theorem 4.1. In Sect. 5, we study the dependence of the so-
lution with respect to the data and prove a convergence result, Theorem 5.1.
The proof is based on arguments of compactness, monotonicity, and lower
semicontinuity. Finally, in Sect. 6, we deal with an optimization problem re-
lated to the contact model. We start with an abstract result, Theorem 6.1;
then, we show its applicability in two relevant particular cases, for which we
provide the corresponding mechanical interpretations.

2. Preliminaries

Basic notation Everywhere in this paper, d ∈ {1, 2, 3} and S
d represent the

space of second-order symmetric tensors on R
d or, equivalently, the space of

symmetric matrices of order d. The zero element of the spaces R
d and S

d will
be denoted 0. The inner product and norm on R

d and S
d are defined by
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u · v = uivi, ‖v‖ = (v · v)
1

2 ∀u,v ∈ R
d,

σ · τ = σijτij , ‖τ‖ = (τ · τ )
1

2 ∀σ, τ ∈ S
d,

where the indices i, j run between 1 and d, and unless stated otherwise, the
summation convention over repeated indices is used.

Function spaces Let Ω be a bounded domain of R
d with a Lipschitz continuous

boundary Γ and let Γ1, Γ1, Γ3, Γ4 be a partition of Γ into four measurable
parts, such that meas (Γ1) > 0. We use x = (xi) for the generic point in
Ω ∪ Γ. An index that follows a comma will represent the partial derivative
with respect to the corresponding component of the spatial variable x ∈ Ω∪Γ,
i.e., fi = ∂f/∂xi. Moreover, ν = (νi) denotes the outward unit normal at Γ.

We use the standard notation for Sobolev and Lebesgue spaces associ-
ated with Ω and Γ. In particular, we use the spaces L2(Ω)d, L2(Γ2)

d, L2(Γ3),
and H1(Ω)d endowed with their canonical inner products and associated
norms. Moreover, we recall that for an element v ∈ H1(Ω)d, we sometimes
write v for the trace γv ∈ L2(Γ)d of v to Γ. In addition, we consider the
following spaces:

V = {v ∈ H1(Ω)d : v = 0 on Γ1}, Q = {σ = (σij) : σij = σji ∈ L2(Ω)}.

The spaces V and Q are real Hilbert spaces endowed with the canonical inner
products given by

(u,v)V =

∫

Ω

ε(u) · ε(v) dx, (σ, τ )Q =

∫

Ω

σ · τ dx. (2.1)

Here and below ε and Div will represent the deformation and the divergence
operators, respectively, i.e., ε(u) = (εij(u)), εij(u) = 1

2 (ui,j+uj,i), Div σ =
(σij,j). The associated norms on these spaces are denoted by ‖ ·‖V and ‖ ·‖Q,
respectively. In addition, recall that the completeness of the space V follows
from the assumption meas (Γ1) > 0 which allows the use of Korn’s inequality.

We denote by 0V the zero element of V , and for any element v ∈ V ,
we denote by vν and vτ its normal and tangential components on Γ given by
vν = v ·ν and vτ = v − vνν, respectively. For a regular function σ : Ω → S

d,
we denote by σν and στ its normal and tangential components on Γ, that is
σν = (σν) · ν and στ = σν − σνν, and we recall that the following Green’s
formula holds

∫

Ω

σ · ε(v) dx +

∫

Ω

Div σ · v dx =

∫

Γ

σν · v da ∀v ∈ H1(Ω)d. (2.2)

We also recall that there exists c0 > 0 which depends on Ω and Γ1, such that

‖v‖L2(Γ)d ≤ c0‖v‖V ∀v ∈ V. (2.3)

Inequality (2.3) represents a consequence of the Sobolev trace theorem.

Let Y = L2(Ω)d × L2(Γ2)
d be the product Hilbert space endowed with

the canonical inner product (·, ·)Y and the associated norm ‖ · ‖Y . We denote
by π : V → Y the operator defined by

πv = (v, γ2v) ∀v ∈ V, (2.4)
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where γ2v represents the trace of the function v ∈ V to the boundary Γ2.
Note that π is a linear continuous operator, and therefore, there exists a
constant d0 > 0, such that

‖πv‖Y ≤ d0‖v‖V ∀v ∈ V. (2.5)

Moreover, the compactness of the trace operator combined with the compact-
ness of the embedding H1(Ω)d ⊂ L2(Ω)d imply that π is a weakly–strongly
continuous operator, that is

vn ⇀ v in V =⇒ πvn → πv in Y. (2.6)

Here and below, we use notation “⇀” and “→” for the weak and strong
convergence in various Hilbert spaces. All the limits, upper and lower limits
below are considered as n → ∞, even if we do not mention it explicitly.

Quasi-variational inequalities Consider a real Hilbert space X endowed with
the inner product (·, ·)X and the associated norm ‖ · ‖X . Let K ⊂ X, A :
X → X, j : X × X → R, f ∈ X and consider the following problem.

Problem 1. Find an element u such that

u ∈ K, (Au, v − u)X + j(u, v) − j(u, u) ≥ (f, v − u)X ∀ v ∈ K. (2.7)

Note that the function j depends on the solution u, and for this reason,
we refer to (2.7) as a quasi-variational inequality. Quasi-variational inequali-
ties of the form (2.7) have been studied by many authors, using different func-
tional methods, including fixed point and topological degree arguments. Exis-
tence and uniqueness results for such inequalities could be found in [4,15,18],
for instance, under various assumption on the operator A and the function
j. Here, we consider the following assumptions:

K is a nonempty, closed and convex subset of X. (2.8)⎧
⎪⎪⎨
⎪⎪⎩

A is a strongly monotone Lipschitz continuous operator, i.e.,
there exists mA > 0 and LA > 0 such that

(a) (Au − Av, u − v)X ≥ mA‖u − v‖2
X ∀u, v ∈ X,

(b) ‖Au − Av‖X ≤ LA ‖u − v‖X ∀u, v ∈ X.

(2.9)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) For all η ∈ X, j(η, ·) : X → R is convex
and lower semicontinuous.

(b)There exists αj ≥ 0 such that
j(η1, v2) − j(η1, v1) + j(η2, v1) − j(η2, v2)
≤ αj ‖η1 − η2‖X‖v1 − v2‖X ∀ η1, η2, v1, v2 ∈ X.

(2.10)

mA > αj . (2.11)

Under these assumptions, we have the following existence and unique-
ness result.

Theorem 2.1. Assume (2.8)–(2.11). Then, Problem 1 has a unique solution.

A proof of Theorem 2.1 can be found in [18, p. 49], based on the Banach
fixed point argument.
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3. The Model

The physical setting is depicted in Fig. 1 and is described as follows. An elastic
body occupies, in its reference configuration, the domain Ω ⊂ R

d. Recall that
the boundary of Ω, denoted Γ, is divided into four measurable disjoint parts
Γ1, Γ2, Γ3, and Γ4, such that meas (Γ1) > 0. The body is fixed on Γ1, is acted
upon by given surface tractions on Γ2, and is in contact with two obstacles
on Γ3 and Γ4, respectively. The mathematical model which corresponds to
the equilibrium of the body in the physical setting above, based on specific
interface boundary condition that will be described below, is the following.

Problem 2. Find a displacement field u : Ω → R
d and a stress field σ : Ω → S

d

such that

σ = Fε(u) in Ω, (3.1)

Div σ + f0 = 0 in Ω, (3.2)

u = 0 on Γ1, (3.3)

σν = f2 on Γ2, (3.4)

uν ≤ g,
σν = 0 if uν < 0,
−F ≤ σν ≤ 0 if uν = 0,
σν = −F if 0 < uν < g,
σν ≤ −F if uν = g,
στ = 0

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

on Γ3, (3.5)

uν ≤ k,
σν + p(uν) ≤ 0,
(uν − k)(σν + p(uν)) = 0,
‖στ‖ ≤ μ p(uν),
−στ = μ p(uν) uτ

‖uτ ‖ if uτ �= 0

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

on Γ4. (3.6)

We now provide a description of the equations and boundary condi-
tions in Problem 2. First, Eq. (3.1) represents the elastic constitutive law
of the material in which F is assumed to be a nonlinear constitutive opera-
tor. Equation (3.2) is the equation of equilibrium. We use it here, since the
contact process is assumed to be static, and therefore, the inertial term in
the equation of motion is neglected. Conditions (3.3) and (3.4) represent the
displacement and traction boundary conditions, respectively.

Condition (3.5) describes the frictionless contact with an obstacle made
of a rigid body covered by a layer made of rigid-plastic material of thickness
g. This condition was already used in [3]. There, its detailed description was
provided, together with various mechanical interpretation. Here, we restrict
ourselves to mention that the function F could be interpreted as the yield
limit of the rigid-plastic layer. Indeed, this layer does not allow penetration
(and therefore, it behaves like a rigid body) as far as the inequality −F <
σν ≤ 0 holds. It could allow penetration only when σν = −F , and in this
case, it offers no additional resistance.

Condition (3.6) describes the frictional contact with an obstacle made
of a rigid body covered by a layer made of deformable material of thickness
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Figure 1. Physical setting

k. Here, μ represent the coefficient of friction and p is the normal compliance
function which will be described in the next section. This condition was
introduced in [2] and used in number of papers, see [19] and the references
therein. It describes a contact with normal compliance, as far as the normal
displacement satisfies the condition uν < k, associated with the classical
Coulomb’s law of dry friction. When uν = k, the contact is with a Signorini-
type condition and is associated with the Tresca friction law with the bound
μp(k). It follows from here that condition (3.6) describes a natural transition
from the Coulomb law of dry friction (which is valid as far as 0 ≤ uν < k) to
the Tresca law (which is valid when uν = k).

4. Existence and Uniqueness

In the study of the mechanical problem (3.1)–(3.6), we assume that the elas-
ticity operator F satisfies the following conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) F : Ω × S
d → S

d.
(b) There exists LF > 0 such that

‖F(x, ε1) − F(x, ε2)‖ ≤ LF‖ε1 − ε2‖
∀ ε1, ε2 ∈ S

d, a.e. x ∈ Ω.
(c)There exists mF > 0 such that

(F(x, ε1) − F(x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖
2

∀ ε1, ε2 ∈ S
d, a.e. x ∈ Ω.

(d) The mapping x 
→ F(x, ε) is measurable onΩ,
for any ε ∈ S

d.
(e) The mapping x 
→ F(x,0) belongs to Q.

(4.1)
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The normal compliance function satisfies
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a) p : Γ4 × R → R+.
(b) There exists Lp > 0such that

|p(x, r1) − p(x, r2)| ≤ Lp|r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ Γ4.
(c) The mapping x 
→ p(x, r) is measurable on Γ4, for any r ∈ R.
(d) (p(x, r1) − p(x, r2)) (r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ Γ4.
(e) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ4.

(4.2)

Finally, we assume that the densities of body forces and tractions, the yield
limit, the coefficient of friction and the given thicknesses are such that

f0 ∈ L2(Ω)d, (4.3)

f2 ∈ L2(Γ2)
d, (4.4)

F ∈ L2(Γ3), F (x) ≥ 0 a.e. x ∈ Γ3, (4.5)

μ ∈ L∞(Γ4), μ(x) ≥ 0 a.e. x ∈ Γ4, (4.6)

g > 0, k > 0. (4.7)

Under these assumptions we introduce the set K ⊂ V , the operator
A : V → V , the function j : V × V → IR, and the element f ∈ Y defined by

K = {v ∈ V : vν ≤ g a.e. on Γ3, vν ≤ k a.e. on Γ4}, (4.8)

(Au,v)V =

∫

Ω

Fε(u) · ε(v) dx +

∫

Γ4

p(uν)vν da ∀u, v ∈ V, (4.9)

j(u,v) =

∫

Γ3

Fv+
ν da +

∫

Γ4

μ p(uν)‖vτ‖da ∀u, v ∈ V, (4.10)

f = (f0,f2). (4.11)

Here and below, r+ denotes the positive part of r, i.e., r = max{0, r}. More-
over, note that the definition (2.4) implies that

(f , πv)Y =

∫

Ω

f0 · v dx +

∫

Γ2

f2 · v da ∀v ∈ V. (4.12)

We are now in a position to derive the variational formulation of Prob-
lem P, and to this end, we assume that (u,σ) are sufficiently regular functions
which satisfy (3.1)–(3.6). Then, using (3.3), (3.5), (3.6), and (4.8), it follows
that

u ∈ K. (4.13)

Let v ∈ K. We use Green’s formula (2.2) and equalities (3.2)–(3.4) to see
that∫

Ω

σ · (ε(v) − ε(u)) dx =

∫

Ω

f0 · (v − u) dx +

∫

Γ2

f2 · (v − u) da (4.14)

+

∫

Γ3

σν · (v − u) da +

∫

Γ4

σν · (v − u) da.

Moreover, using standard arguments, we see that the contact condition (3.5)
implies that ∫

Γ3

σν · (v − u) da ≥

∫

Γ3

F (u+
ν − v+

ν ) da. (4.15)
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In addition, the contact condition (3.6) yields
∫

Γ4

σν · (v − u) da

≥

∫

Γ4

p(uν)(uν − vν) da +

∫

Γ4

μ p(uν)(‖uτ‖ − ‖vτ‖) da. (4.16)

Next, we combine equality (4.14) with inequalities (4.15), (4.16), then we use
the constitutive law (3.1), the definitions (4.9), (4.10), equality (4.12) and the
regularity (4.13). As a result, we find the following variational formulation of
Problem P.

Problem 3. Find a displacement field u, such that

u ∈ K, (Au,v−u)V +j(u,v)−j(u,u) ≥ (f , πv−πu)Y ∀v ∈ K. (4.17)

Note that Problem 3 is formulated in terms of the displacement field.
Once the displacement field is known, the stress field can be easily obtained
using the constitutive law (3.1). A couple (u,σ) which satisfies (3.1) and
(4.17) is called a weak solution to the contact problem P.

The unique solvability of Problem 3 is provided by the following theo-
rem.

Theorem 4.1. Assume (4.1)–(4.7). Then, there exists a constant μ0, which

depends on Ω, Γ1 and F , such that Problem 3 has a unique solution, if

Lp‖μ‖L∞(Γ4) < μ0. (4.18)

Proof. We use Theorem 2.1 with the choice X = V . To this end, we note
that the set (4.8) is a nonempty closed convex subset of V and, moreover,
0V ∈ K. Therefore, condition (2.8) is satisfied. Next, we use the definition
(4.9) and the properties (4.1)(c) and (4.2)(d) to see that

(Au − Av,u − v)V ≥ mF ‖u − v‖2
V ∀u, v ∈ V. (4.19)

On the other hand, using (4.9), (4.1)(b), (4.2)(b) and the trace inequality
(2.3) yields

‖Au − Av‖V ≤ (LF + c2
0Lp) ‖u − v‖V ∀u, v ∈ V. (4.20)

We conclude by (4.19) and (4.20) that A is a strongly monotone Lipschitz
continuous operator on the space V which shows that (2.9) holds. Moreover,
it is easy to see that the functional j defined by (4.10) satisfies condition
(2.10)(a).

Assume now that η1, η2, v1, v2 ∈ V . Then, using the definition (2.10),
after some elementary computation, we find that

j(η1,v2) − j(η1,v1) + j(η2,v1) − j(η2,v2)

≤

∫

Γ4

μ
∣∣p(η1ν) − (p(η2ν)

∣∣∣∣‖v1τ‖ − ‖v2τ‖
∣∣ da

and using the properties (4.2), (4.6), of the function p and μ, together with
the trace inequality (2.3), we deduce that

j(η1,v2) − j(η1,v1) + j(η2,v1) − j(η2,v2)

≤ c2
0Lp‖μ‖L∞(Γ4)‖η1 − η2‖V ‖v1 − v2‖V . (4.21)
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It follows from here that j satisfies condition (2.10)(b) with αj = c2
0Lp‖

μ‖L∞(Γ4).

Let

μ0 =
mF

c2
0

. (4.22)

and note that, clearly, μ0 depends on Ω, Γ1 and F . Assume that (4.18) holds.
Then, since mA = mF , it follows that condition (2.11) holds, too. Finally,
using (2.5) and the Riesz representation theorem, we deduce that there exists

a unique element f̃ ∈ V , such that

(f̃ ,v)V = (f , πv)Y ∀v ∈ V. (4.23)

Theorem 4.1 now is a direct consequence of Theorem 2.1. �

5. A Continuous Dependence Result

The solution u of Problem 3 depends on the data f0, f2, F , μ, g, k and,
therefore, we sometimes denote it by u = u(f0,f2, F, μ, g, k). In what follows,
we study its dependence with respect to these data. To this end, in the rest
of this section, we assume that (4.1)–(4.7), (4.18) hold and, in addition, we
consider a perturbation f0n, f2n, Fn, μn, gn, and kn of f0, f2, F , μ, g, and
k, respectively, which satisfy conditions (4.3)–(4.7), (4.18). For each n ∈ N,
we consider the set Kn ⊂ V , the functional jn : V → R and the element
fn ∈ Y defined by

Kn = {v ∈ V : vν ≤ gn a.e. on Γ3, vν ≤ kn a.e. on Γ4}, (5.1)

jn(u,v) =

∫

Γ3

Fnv+
ν da +

∫

Γ4

μn p(uν)‖vτ‖da ∀u, v ∈ V, (5.2)

fn = (f0n,f2n). (5.3)

Moreover, we consider the following perturbation of Problem 3.

Problem 4. Find a displacement field un, such that

un ∈ Kn, (Aun,v − un)V + jn(un,v) − jn(un,un) (5.4)

≥ (fn, πv − πun)Y ∀v ∈ Kn.

It follows from Theorem 4.1 that, for each n ∈ N, Problem 4 has a unique
solution un = un(f0n,f2n, Fnμn, gn, kn). Our main result in this section is
the following.

Theorem 5.1. Assume that

f0n ⇀ f0 in L2(Ω)d, (5.5)

f2n ⇀ f2 in L2(Γ2)
d, (5.6)

Fn ⇀ F in L2(Γ3), (5.7)

μn → μ in L∞(Γ4), (5.8)

gn → g, kn → k. (5.9)

9



Then, the solution un of Problem 4 converges to the solution u of Problem 3,
that is

un → u in V. (5.10)

The proof of Theorem 5.1 will be carried out in several steps that we
present in what follows. We start by considering the following intermediate
problem.

Problem 5. Find a displacement field ũn, such that

ũn ∈ K, (Aũn,v − ũn)V + jn(ũn,v) − jn(ũn, ũn) (5.11)

≥ (fn, πv − πũn)Y ∀v ∈ K.

The unique solvability of this problem is a direct consequence of Theo-
rem 2.1. We now proceed with the following result.

Lemma 5.2. There exists a constant D > 0, such that

‖un‖V ≤ D, ‖ũn‖V ≤ D, for all n ∈ N. (5.12)

Proof. Let n ∈ N. We take v = 0V in (5.4) to obtain

(Aun,un)V + jn(un,un) ≤ (fn, πun)Y .

Next, using assumption (4.19), the positivity of the function jn and the con-
tinuity of the operator π, (2.5), it follows that

‖un‖V ≤
1

mF
max(1, d0) (‖fn‖Y + ‖A0V ‖V ). (5.13)

Similar arguments show that

‖ũn‖V ≤
1

mF
max(1, d0) (‖fn‖Y + ‖A0V ‖V ). (5.14)

Finally, assumptions (5.5) and (5.6) imply that

fn ⇀ f in Y (5.15)

and, therefore, the sequence {fn} ⊂ Y is bounded, i.e., there exists E > 0
which does not depend on n, such that

‖fn‖Y ≤ E. (5.16)

Lemma 5.2 is now a direct consequence of inequalities (5.13), (5.14) and
(5.16). �

Lemma 5.3. The sequence {ũn} converge weakly in V to u, that is

ũn ⇀ u in V. (5.17)

Proof. Lemma 5.2 combined with a standard compactness argument implies
that there exists ũ ∈ V , such that passing to a subsequence, still denoted
{ũn}, we have

ũn ⇀ ũ in V. (5.18)

We now prove that

ũ = u. (5.19)
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To this end, we first note that K is a closed convex subset of the space V
and {ũn} ⊂ K. Therefore, the convergence (5.18) implies that ũ ∈ K. Let
n ∈ N. We take v = ũ ∈ K in (5.11) to obtain that

(Aũn, ũn − ũ)V ≤ (fn, πũn − πũ)Y + jn(ũn, ũ) − jn(ũn, ũn). (5.20)

We now use the convergences (5.7), (5.8), (5.15), (5.18), (2.6) and the com-
pactness of the trace operator to see that

(fn, πũn − πũ)Y → 0, (5.21)

jn(ũn, ũ) − jn(ũn, ũn) → 0. (5.22)

We now pass to the upper limit in (5.20) and use (5.21), (5.22) to deduce
that

lim sup (Aũn, ũn − ũ)V ≤ 0.

Therefore, using (4.19) and (4.20), the convergence (5.18) and standard ar-
guments on pseudomonotone operators, we deduce that

lim inf (Aũn, ũn − v)V ≥ (Aũ, ũ − v)V ∀v ∈ K. (5.23)

On the other hand, using again inequality (5.11), the convergences (5.7),
(5.8), (5.15), (5.18), and (2.6), we obtain that

lim sup (Aũn, ũn − v)V ≤ (f , πũ − πv)Y + j(ũ,v) − j(ũ, ũ) ∀v ∈ K.

(5.24)

We combine now the inequalities (5.23) and (5.24) to see that

(Aũ,v − ũ)V + j(ũ,v) − j(ũ, ũ) ≥ (f , πv − πũ)Y ∀v ∈ K. (5.25)

Next, we take v = u in (5.25) and v = ũ in (4.17). Then, adding the resulting
inequalities and using the strong monotonicity of the operator A, (4.19), we
obtain that

mF‖ũ − u‖2
V ≤ j(ũ,u) − j(ũ, ũ) + j(u, ũ) − j(u,u).

Finally, we use inequality (4.21) to see that

(mF − c2
0Lp‖μ‖L∞(Γ4))‖ũ − u‖2

V ≤ 0.

Equality (5.19) is now a consequence of assumption (4.18) and definition
(4.22).

A carefully examination of the arguments used above shows that any
weakly convergent subsequence of the sequence {ũn} ⊂ V converges weakly
to u, where recall, u, is the unique solution of inequality (4.17). Therefore,
using the bound (5.13), we find that the whole sequence {ũn} converges
weakly in V to u, which concludes the proof. �

We proceed with the following strong convergence result.

Lemma 5.4. The sequence {ũn} converges strongly in V to u, that is

‖ũn − u‖V → 0. (5.26)
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Proof. Let n ∈ N. We take v = u ∈ K in (5.11) to obtain that

(Aũn, ũn − u)V ≤ (fn, πũn − πu)Y + jn(ũn,u) − jn(ũn, ũn). (5.27)

Next, we use (4.19) to find that

mF ‖ũn − u‖2
V ≤ (Aũn − Au, ũn − u)V

= (Aũn, ũn − u)V − (Au, ũn − u)V

and, therefore, (5.27) yields

mF ‖ũn − u‖2
V

≤ (fn, πũn − πu)Y + jn(ũn,u) − jn(ũn, ũn) − (Au, ũn − u)V .

(5.28)

We now use (5.7), (5.8), (5.15), (5.17), (2.6) and the compactness of the trace
operator to see that

(fn, πũn − πu)Y → 0, (5.29)

jn(ũn,u) − jn(ũn, ũn) → 0, (5.30)

(Au, ũn − u)V → 0. (5.31)

Finally, we combine the inequality (5.28) with the convergences (5.29)–(5.31)
to see that (5.26) holds. �

Lemma 5.5. The following convergence holds

‖ũn − un‖V → 0. (5.32)

Proof. Let n ∈ N and let αn > 0, βn > 0 be given by

αn = min

{
gn

g
,
kn

k

}
, βn = min

{
g

gn

,
k

kn

}
. (5.33)

Then, it is since ũn ∈ K and un ∈ Kn, it is easy to see that

αnũn ∈ Kn. (5.34)

and

βnun ∈ K. (5.35)

The regularity (5.34) allows to test in (5.4) with v = αnũn to obtain

(Aun, αnũn − un)V + jn(un, αnũn) − jn(un,un)

≥ (fn, π(αnũn) − πun)Y . (5.36)

Moreover, the regularity (5.35) allows to test in (5.11) with v = βnun. As a
result, we find that

(Aũn, βnun − ũn)V + jn(ũn, βnun) − jn(ũn, ũn)

≥ (fn, π(βnun) − πũn)Y . (5.37)

We now add inequalities (5.36), (5.37) to find that

(Aũn, ũn − βnun)V + (Aun,un − αnũn)V

≤ (1 − βn)(fn, πun)Y + (1 − αn)(fn, πũn)Y

+ jn(ũn, βnun) − jn(ũn, ũn) + jn(un, αnũn) − jn(un,un).
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Then, we use the positively homogeneity of the function j with respect to
the second argument, and after some algebra, we deduce that

(Aũn − Aun, ũn − un)V

≤ (αn − 1)(Aun, ũn)V + (βn − 1)(Aũn,un)V

≤ (1 − βn)(fn, πun)Y + (1 − αn)(fn, πũn)Y

+ (βn − 1)j(ũn,un) + (αn − 1)j(un, ũn)

+ jn(ũn,un) − jn(ũn, ũn) + jn(un, ũn) − jn(un,un). (5.38)

We now use inequalities (4.19), (4.20), (2.5) and the bounds (5.12),
(5.16) to see that

(Aũn − Aun, ũn − un)V ≥ mF ‖un − ũn‖2
V (5.39)

(αn − 1)(Aun, ũn)V ≤ |αn − 1|(LF + c2
0Lp + ‖A0V ‖V )D, (5.40)

(βn − 1)(Aũn,un)V ≤ |βn − 1|(LF + c2
0Lp + ‖A0V ‖V )D, (5.41)

(1 − βn)(fn, πun)Y ≤ |βn − 1|Ed0D, (5.42)

(1 − αn)(fn, πũn)Y ≤ |αn − 1|Ed0D. (5.43)

On the other hand, using inequality (4.21) with η1 = ũn, η2 = 0V ,
v1 = 0V , v2 = un combined with assumption (4.2)(e), it follows that

j(ũn,un) ≤ c2
0Lp‖μ‖L∞(Γ4)‖ũn‖V ‖un‖V .

Therefore, the bounds (5.12) imply that

(βn − 1)j(ũn,un) ≤ |βn − 1|c2
0LpD

2‖μ‖L∞(Γ4). (5.44)

A similar arguments yields

(αn − 1)j(un, ũn) ≤ |αn − 1|c2
0LpD

2‖μ‖L∞(Γ4). (5.45)

Finally, using again inequality (4.21), we deduce that

jn(ũn,un) − jn(ũn, ũn) + jn(un, ũn) − jn(un,un)

≤ c2
0Lp‖μn‖L∞(Γ4)‖un − ũn‖2

V . (5.46)

We now combine inequalities (5.38)–(5.46) to see that there exists a
positive constant G which does not depend on n, such that

(mF − c2
0Lp‖μn‖L∞(Γ4))‖un − ũn‖2

V ≤ G(|αn − 1| + |βn − 1|). (5.47)

On the other hand, the convergence (5.8) implies that

mF − c2
0Lp‖μn‖L∞(Γ4) → mF − c2

0Lp‖μ‖L∞(Γ4) (5.48)

and, in addition, the smallness assumption (4.18) and the definition (4.22)
yield mF − c2

0Lp‖μ‖L∞(Γ4) > 0. We combine this inequality with the conver-
gence (5.48) to deduce that for n large enough, we have

(mF − c2
0Lp‖μn‖L∞(Γ4)) ≥

1

2
(mF − c2

0Lp‖μ‖L∞(Γ4)). (5.49)

The inequalities (5.47) and (5.49) show that there exists a positive con-
stant C which does not depend on n, such that

‖un − ũn‖2
V ≤ C(|αn − 1| + |βn − 1|). (5.50)

13



Finally, note that the definition (5.33) and assumption (5.9) yield

αn → 1, βn → 1. (5.51)

The convergence (5.32) is now a consequence of (5.50) and (5.51). �

We now have all the ingredients to provide the proof of Theorem 5.1.

Proof. Let n ∈ N. We write

‖un − u‖V ≤ ‖un − ũn‖V + ‖ũn − u‖V

then we use Lemmas 5.4 and 5.5 to see that the convergence (5.10) holds,
which concludes the proof. �

In addition to the mathematical interest in the convergence result (5.10),
it is important from mechanical point of view, since it shows that the weak
solution of the contact Problem 2 depends continuously on the data.

6. An Optimization Problem

In this section, we study an optimization problem associated with Problem 3,
under the assumption that μ is fixed. As already mentioned, the solution
of this problem depends on the data f0, f2, F , g, and k, and therefore,
each of these quantities could play the role of a control for the variational
inequality (4.17). Various choices can be considered, and for this reason, to
avoid repetition, we shall consider a generic problem which can be constructed
as follows.

Denote by θ one or part of the data f0, f2, F , g, and k and let η be
the reminder ones. To guarantee the conditions of Theorem 4.1, we assume
that θ ∈ U and η ∈ S, where U and S are subsets of two appropriate Hilbert
spaces Z and W , respectively. For instance, if θ = f2, then η = (f0, F, g, k),
Z = L2(Γ2)

d and W = L2(Ω)d × L2(Γ3) × R
2. If θ = (g, k), then η =

(f0,f2, F ), Z = R
2 and W = L2(Ω)d × L2(Γ2)

d × L2(Γ3). The sets U and S
will be specified in Examples 6.3 and 6.4. For each (θ,η) ∈ U ×S, we denote
in what follows by u = u(θ,η) the solution of the variational inequality
(4.17) and we consider the following optimization problem.

Problem 6. Given η ∈ S, find θ∗ ∈ U such that

L
(
u(θ∗,η)

)
= min

θ∈U

L
(
u(θ,η)

)
. (6.1)

We also consider the following assumptions:
{

U is a bounded weakly closed subset of Z, i.e.,
{θn} ⊂ U, θ ∈ Z, θn ⇀ θ in Z =⇒ θ ∈ U.

(6.2)

{
L : V → R is a lower semicontinuous function, i.e.,
{un} ⊂ V, u ∈ V, un → u in V =⇒ lim inf L(un) ≥ L(u).

(6.3)

{
S is a weakly closed subset of W, i.e.,
{ηn} ⊂ S, η ∈ W, ηn ⇀ η in W =⇒ η ∈ S.

(6.4)

L : V → R is a continuous function. (6.5)
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We have the following existence result.

Theorem 6.1. Assume (6.2) and (6.3). Then, for each η ∈ S, there exists at

least one solution θ∗ ∈ U to Problem 6.

Proof. Let

ω = inf
θ∈U

L
(
u(θ,η)

)
(6.6)

and let {θn} ⊂ U be a minimizing sequence for the functional J , that is

lim L
(
u(θn,η)

)
= ω. (6.7)

Since U ⊂ Z is bounded, it follows that the sequence {θn} is bounded in Z,
and therefore, there exists θ∗ ∈ Z, such that passing to a subsequence still
denoted {θn}, we have

θn ⇀ θ∗ in Z. (6.8)

Moreover, since U ⊂ Z is weakly closed, we deduce that

θ∗ ∈ U. (6.9)

In addition, the convergence (6.8) and Theorem 5.1 yield

u(θn,η) → u(θ∗,η) in V (6.10)

and therefore, assumption (6.3) implies that

lim inf L(u(θn,η)) ≥ L(u(θ∗,η)). (6.11)

It follows now from (6.7) and (6.11) that

ω ≥ L(u(θ∗,η)). (6.12)

In addition, (6.9) and (6.6) yield

ω ≤ L(u(θ∗,η)). (6.13)

Finally, we combine (6.9), (6.12) and (6.13) to see that (6.1) holds, which
concludes the proof. �

The solution of the optimization Problem 6 depends on η. Its depen-
dence is provided by the following result.

Theorem 6.2. Assume (6.2), (6.4), (6.5). Let {ηn} ⊂ S, and for each n ∈ N,
let θ∗

n be a solution to Problem 6 for η = ηn. In addition, assume that

ηn ⇀ η in W. (6.14)

Then, there exists a subsequence of the sequence {θ∗
n}, again denoted {θ∗

n},
and an element θ∗ ∈ U, such that

θ∗
n ⇀ θ∗ in Z. (6.15)

Moreover, θ∗ is a solution to Problem 6.
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Proof. We start with the remark that assumption (6.5) implies (6.3), and
therefore, the existence of the solution θ∗

n of Problem 6 is guaranteed by
Theorem 6.1, for each n ∈ N. Next, we use assumption (6.2) to see that
the sequence {θn} is bounded, and therefore, there exists θ∗ ∈ Z, such that
passing to a subsequence still denoted {θn}, the convergence (6.15) holds.
Moreover, (6.2) implies that

θ∗ ∈ U (6.16)

and (6.4) implies that η ∈ S. In addition, the convergences (6.14), (6.15),
and Theorem 5.1 guarantee that

u(θ∗
n,ηn) → u(θ∗,η) in V. (6.17)

Assume now that θ∗
0 is a solution of Problem 6. Then

L
(
u(θ∗

0,η)
)

≤ L
(
u(θ∗,η)

)
. (6.18)

Moreover, (6.14) and Theorem 5.1 imply that

u(θ∗
0,ηn) → u(θ∗

0,η) in V. (6.19)

On the other hand, by the optimality of θ∗
n it follows that

L
(
u(θ∗

n,ηn)
)

≤ L
(
u(θ∗

0,ηn)
)

for all n ∈ N.

Therefore, the convergences (6.17), (6.19) and the continuity of L, (6.5),
imply that

L(u(θ∗,η)) ≤ L(u(θ∗
0,η)). (6.20)

We now combine inequalities (6.18) and (6.20) and use regularity (6.16) to
deduce that θ∗ is a solution to Problem 6, which concludes the proof. �

We end this section with two examples of optimization problems for
which the results provided by Theorems 6.1 and 6.2 hold.

Example 6.3. We chose θ = f2, and therefore, η = (f0, F, g, k), Z = L2(Γ2)
d,

W = L2(Ω)d × L2(Γ3) × R × R. Let

U = {θ ∈ Z : ‖θ‖Z ≤ E},

S = {η = (f0, F, g, k) ∈ S : F ≥ 0 a.e. on Γ3, g0 ≤ g ≤ g1, k0 ≤ k ≤ k1},

L(v) =

∫

Γ3

‖vν − φ‖2 da for all v ∈ V

where E, g0, g1, k0, and k1 are strictly positive constants, such that g0 ≤ g1

and k0 ≤ k1 and φ ∈ L2(Γ3) is given. With this choice, the mechanical in-
terpretation of Problem 6 is the following: given a contact process of the
form (3.1)–(3.6), with the data (f0, F, g, k) ∈ S, we are looking for a trac-
tion θ∗ = f∗

2 ∈ U , such that the corresponding normal displacement of the
solution on Γ3 is as close as possible to the “desired displacement” φ. It is
easy to see that in this case all the assumptions of Theorems 6.1 and 6.2 are
satisfied. Theorem 6.1 guarantees the existence of at least one solution of this
optimization problem.
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Example 6.4. A second example of Problem 6 can be obtained by taking
θ = (g, k), and therefore, η = (f0,f2, F ), Z = R × R, W = L2(Ω)d ×
L2(Γ2)

d × L2(Γ3). Let

U = {θ = (g, k) ∈ R × R : g0 ≤ g ≤ g1, k0 ≤ k ≤ k1},

S = {η = (f0,f2, F ) ∈ S : F ≥ 0 a.e. on Γ3},

L(v) =

∫

Ω

‖ε(v)‖2 dx for all v ∈ V,

where g0, g1, k0, and k1 are strictly positive constants, such that g0 ≤ g1

and k0 ≤ k1. With this choice, the mechanical interpretation of Problem 6
is the following: given a contact process of the form (3.1)–(3.6), with the
data (f0,f2, F ) ∈ S, we are looking for a thicknesses θ∗ = (g∗, k∗) ∈ U ,
such that the corresponding deformation in the body is as small as possi-
ble. Theorem 6.1 guarantees the existence of at least one solution of all this
optimization problem.
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