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METHODS OF REFLECTIONS: RELATIONS WITH SCHWARZ

METHODS AND CLASSICAL STATIONARY ITERATIONS,

SCALABILITY AND PRECONDITIONING.

GABRIELE CIARAMELLA, MARTIN J. GANDER, LAURENCE HALPERN,

AND JULIEN SALOMON

Abstract. The basic idea of the method of reflections appeared almost two

hundred years ago; it is a method of successive approximations for the interac-

tion of particles within a fluid, and it seems intuitively related to the Schwarz
domain decomposition methods, the subdomains being the complements of the

particle domains. We show in this paper that indeed there is a direct corre-

spondence between the methods of reflections and Schwarz methods in the two
particle/subdomain case. This allows us to give a new convergence analysis

based on maximum principle techniques with precise convergence estimates

that one could not obtain otherwise. We then show however also that in the
case of more than two particles/subdomains, the methods of reflections and

the Schwarz methods are really different methods, with different convergence
properties. Using substructuring techniques from domain decomposition, we

then show that the methods of reflections are classical block Jacobi and block

Gauss-Seidel methods for the interface traces, and we derive new, relaxed ver-
sions of the methods of reflections with better convergence properties. We

finally also introduce for the first time coarse corrections for the methods of

reflections to make them scalable in the case when the number of particles
becomes large. The substructured formulations permit the easy use of the

methods of reflections as preconditioners for Krylov methods, and we illus-

trate scalability and preconditioning properties with numerical experiments.

1. Introduction

We start by briefly tracing the invention of the method of reflections and its
historical development, for a more detailed treatment, see [10]. The fundamen-
tal idea for the method of reflections can already be found in the book of Mur-
phy [39, page 93] from 1833 under the name “principle of successive influences”,
which clearly indicates that the method of reflections is a method of successive
approximations. Lamb used in 1906 a similar approach for Laplace’s equation [33,
page 122]. A related method in the work of Lorentz [37, page 29] was later called
“Spiegelungsmethode” (method of reflections) in [25, page 928]. The method of
reflections itself was then presented in concrete mathematical notation by Smolu-
chowski in 1911 with the goal to understand how the motion of a sphere in a viscous
fluid is influenced by the presence or motion of another sphere [42]. In the case of
the Stokes equation, the analytical solution for one sphere is already a series expan-
sion, and thus Smoluchowski assumes that the radii of the two spheres are small
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compared to their distance, and then uses the method of reflections to compute a
series expansion of the coupled solution up to some order in the inverse distance
of the spheres. The method is thus a direct method to obtain a series solution in
the inverse of the distance, up to some order. Smoluchowski then generalizes the
method of reflections to the case of more than two spheres, leading to similar series
approximations. In 1934, Golusin introduced a parallel method of reflections for
Laplace’s equation for J objects [22, 21], and derived a condition for its conver-
gence, which indicates that the parallel method of reflections in the case of more
than two objects converges only under certain additional conditions. Golusin con-
jectured that these conditions depend on the distance between the objects and their
radius. In 1942, Burgers [3, 4] investigated the influence of the concentration of
spherical particles on the sedimentation velocity for the Stokes equation, mention-
ing the work of Smoluchowski, but without describing precisely an algorithm, and
using to a large extend physical intuition. In 1959, Kynch presented for the Stokes
equation the idea of simply summing two solutions corresponding to two particles
alone in [32, page 197], under the assumption that the distance between their cen-
ters is again large. This could be interpreted as a parallel method of reflections,
where the separate contributions are also summed, but again, no general algorithm
is given. Happel and Brenner explained in 1983 a different parallel version of the
method of reflections which alternates between one fixed object and the group of
all the others treated in parallel, see [24], with the goal to increase the order of
approximation of the expansion of the solution in a neighborhood of a given object.
Their method has to be applied (independently) for each particle.

Luke gave then in 1989 a first convergence analysis for the alternating method of
reflections applied to the Stokes equation [38], using a variational characterization of
the method based on projections, similar in style of one of the classical convergence
analyses of the Schwarz method given by Lions in the first of his three seminal
papers [35]. Kim and Karrila dedicated an entire chapter in their book from 1991
to the parallel method of reflections for the Stokes problem [30]. The method is
first motivated like in [32] by just summing two one-particle solutions, and only
the first terms in the series expansion are obtained. Dhont also dedicated a special
section to the alternating method of reflections for the Stokes equation in 1996
[12, Section 5.12]. The case of two objects is first treated, and then an extension
to three objects is given, where Dhont goes cyclically through the three object in
the algorithm. Balabane proved in 1997 convergence of the alternating method of
reflections for the Helmholtz equation in unbounded domains in [2], and generalized
his results to the parallel method of reflections in [1]. These convergence results are
valid however only in low frequency regimes. In 2001, Ichiki and Brady presented
the parallel method of reflections [27] for Stokes type problems. They started with
the two particle case, and then gave a generalization just summing all contributions
that were computed in parallel. They presented this iterative approach also in
matrix form, relating it to a stationary iteration based on a matrix splitting. By
numerical experiments, they showed that the method does not converge for three
particles, if the separation distance of the particles is not large enough. They thus
proposed to use the method as a preconditioner for a Krylov method. Traytak posed
in 2006 in a short note directly the parallel method of reflections for N objects,
written in PDE form for Laplace’s equation [44, Section 2], and then used a theorem
proved by Golusin [21] to derive sufficient conditions for the convergence based on
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the distances between the objects. More recently, Höfer and Velázquez used the
parallel method of reflections also as an analytic tool to prove homogenization
results [26] (see also [28]), and they modified the usual parallel method by adding
different weighting coefficients. Since they were interested in the theoretical case of
an infinite number of objects, they could not use an alternating method. Laurent,
Legendre and Salomon studied the alternating and parallel methods of reflections in
[34] for various types of boundary conditions, introducing also an averaged version of
the parallel method. They proved convergence based on the alternating projection
method in Hilbert spaces, see for example [40], and also using techniques like in
[2, 1].

So there are two main variants of the method of reflections: the alternating
one and the parallel one. There are also two different approaches to analyze the
convergence of the method of reflections: first, people worked on direct estimates
performed on the single/double layer formulation of the boundary value problems
involved in the iterations, see [21, 44, 2, 1]. There is however also the interpretation
of the method as alternating projections in Hilbert spaces, see [38, 34]. In the case
of orthogonal projections this interpretation leads to convergence estimates.

When we started studying methods of reflections more than three years ago, we
thought immediately that the methods must be intimately related to the Schwarz
domain decomposition methods. This intuition was confirmed when we studied
the literature and found that analysis techniques based on projections were already
used to study methods of reflections like for Schwarz methods, and such a possible
relation was even mentioned in the literature (“This paper considers a reflection
method in the spirit of Schwarz’s alternating procedure” [38]). We will show here
that the methods of reflections can be indeed identified with Schwarz domain de-
composition methods in the case of two particles/subdomains, which leads to a
new convergence proof with sharp convergence estimates using maximum principle
techniques. In the case of many particles/subdomains however the methods of re-
flections are fundamentally different from Schwarz domain decomposition methods.
The main difference is that in domain decomposition, the interface data is to be
determined by the subdomain iteration, whereas in the method of reflections, the
interface data is given on the boundary of the particles by the problem. Substruc-
turing techniques from domain decomposition allow us however to reformulate the
methods of reflections in the form of standard block Gauss-Seidel and block Jacobi
iterations in the traces for integral formulations. This reformulation leads to a
new understanding of the method of reflections also for many particles, and reveals
shortcomings, especially in the parallel variant. It also allows us to develop new
coarse space corrections, again using domain decomposition techniques, in order to
obtain scalable methods of reflections when the number of particles grows.

Our paper is structured as follows: we start by presenting in Section 2 the class
of Laplace problems on perforated domains we will use to understand the methods
of reflections. We then present the different forms of the methods of reflections: in
Section 3 the alternating method of reflections, in Section 4 the parallel method of
reflections, in Section 5 some other variants of the method of reflections. We give in
each case reformulations of the methods using domain decomposition techniques,
which allows us to study their convergence properties and give new convergence
proofs and convergence estimates. In Section 6, we then give a scalability analysis,
and also propose for the first time for the methods of reflections a coarse space
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Figure 1. Left: example of a domain Ω (a disk) with three objects
Oj (holes). Right: example of the functions ϕaj and ϕbj for J = 3.

correction to make them scalable in the case when the number of particles becomes
large. We show numerical experiments in Section 7, followed by a brief conclusion
in Section 8.

2. The Laplace problem in perforated domains

We consider a Laplace problem where J objects Oj (holes) are present in a simply
connected domain Ω ⊂ Rn; for an example, see Figure 1 on the left. We assume
that Ω and Oj are simply connected with sufficiently smooth boundaries ∂Ω and
∂Oj , e.g., of class C1, and that

(1) Oj ∩Ok = ∅ for any j 6= k.

Our goal is finding the (weak) solution u ∈ H1
0 (Ω) to the problem

∆u = 0 in Ω \ ∪jOj ,
u = 0 on ∂Ω,

u = gj on ∂Oj for j = 1, . . . , J ,

(2)

where we assume that the functions gj are bounded on ∂Oj and in H1/2(∂Oj)
for j = 1, . . . , J . This problem is well-posed and uniquely solved by u ∈ H1

0 (Ω \
∪jOj) ∩ C2(Ω); see, e.g., [20, 31]. In order to introduce the method of reflections,
we modify (2) by extending harmonically the solution u into the objects Oj . We

define Ω̃ := Ω \ ∪Jj=1∂Oj and then (2) becomes

∆u = 0 in Ω̃,

u = 0 on ∂Ω,

u = gj on ∂Oj for j = 1, . . . , J.

(3)

The solution u to (3) belongs to the Hilbert space

(4) H :=
{
v ∈ H1

0 (Ω) : ∆v = 0 in Ω̃
}
,

endowed with the H1
0 scalar product 〈·, ·〉H1

0
:= 〈∇(·),∇(·)〉L2 , and by Weyl’s the-

orem [20], we have that H ⊂ C∞(Ω̃).
We introduce the subspaces Hj of H defined by

(5) Hj :=
{
v ∈ H : ∆v = 0 in Ω \ ∂Oj

}
.

If Ω is unbounded, one needs to consider the completion of H1
0 for the semi-norm

induced by 〈·, ·〉H1
0
, for instance weighted Sobolev spaces, see [11, 23], but similar

results could be obtained.
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It has been proved in [34] that H =
∑J
j=1Hj . For our purposes, we need to

refine this result. We have the following lemma.

Lemma 1. Under the Assumption (1), we have that H =
⊕J

j=1Hj, which means

that the subspaces Hj are linearly independent, that is (H1 + · · ·+Hj−1)∩Hj = {0}
for any j ≥ 2.

Proof. Consider any function v in Hj ∩ Hk for any j 6= k. Then v is harmonic
everywhere and zero on ∂Ω, thus v = 0.

This and the fact that H =
∑J
j=1Hj proved in [34] imply the claim. �

To explain Lemma 1 we consider a one-dimensional example, and then show that
if Assumption (1) is not satisfied, then the result does not hold in general. The
domain Ω is the interval (0, 1) and the objects are subintervals Oj = (aj , bj) for
1 ≤ j ≤ J such that 0 < a1 < b1 < a2 < · · · < aJ < bJ < 1. In this case, the space
Hj is spanned by the hat-functions

ϕaj (x) :=


x
aj

if x ∈ [0, aj ],
bj−x
bj−aj if x ∈ [aj , bj ],

0 if x ∈ [bj , 1],

ϕbj(x) :=


0 if x ∈ [0, aj ],
x−aj
bj−aj if x ∈ [aj , bj ],
1−x
1−bj if x ∈ [bj , 1],

that have value 1 at aj and bj and are supported in [0, bj ] and [aj , 1], for an example,
see Figure 1 (right). Notice that dimHj = 2. Therefore, since all the points aj and
bj are distinct, we have that all the functions ϕaj and ϕbj are linearly independent,

H = span{ϕa1 , ϕb1, . . . , ϕaJ , ϕbJ}, and dimH = 2J . The hypothesis aj < bj < aj+1 <
bj+1 then clearly implies that (H1 + · · ·+Hk−1) ∩Hk = {0} for 2 ≤ k ≤ J , which
is the result of Lemma 1. On the other hand, if we assume that two objects are not
distinct, that is, e.g., bj = aj+1, then one can verify that c0ϕ

a
j+1 + c1ϕ

b
j+1 + c2ϕ

a
j +

c3ϕ
b
j = 0, with c0 = 1, c1 =

1−bj+1

1−bj , c2 = − aj
aj+1

, and c3 = −1. Hence the functions

ϕaj , ϕbj , ϕ
a
j+1, and ϕbj+1 are not linearly independent and dimH = 2J − 1 < 2J =∑J

j=1 dimHj . Hence H cannot be written as the direct sum of the subspaces Hj .

Iterative methods suitable for solving problem (2)-(3) sequentially or in parallel
are the methods of reflections (MR), which we will present and study in the following
sections.

3. The alternating method of reflections

In this section, we study the alternating method of reflections (AltMR). We first
recall in Section 3.1 the classical AltMR formulation present in the literature. In
Section 3.2, we introduce a new, equivalent (volume) formulation of the AltMR.
This is then used in Section 3.3 where we present the AltMR in substructured
form, and study its relations with the classical block Gauss-Seidel iterative method.
Finally, in Section 3.4 we study the relations between the AltMR and the alternating
Schwarz method.

3.1. The classical AltMR formulations. The alternating method of reflections
was invented for two objects by Smoluchowski in 1911 [42], and then extended to
the general case of J objects by Luke [38]. To understand this method, we begin
by quoting a sentence from Luke to apply it to our problem: “The strategy of the
method of reflections is to repeatedly correct the boundary values on the various
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objects. The reflection procedure is formalized as follows”: it starts with u0 ∈ H,
that is

(6) ∆u0 = 0 in Ω \ ∪j∂Oj , u0 = 0 on ∂Ω.

Note that u0 does not satisfy the boundary conditions of (2) on the holes, which
would require

u0 = gj on ∂Oj for j = 1, . . . , J.

The sequence of approximate solutions {uk}k∈N is defined as follows: given u0,
one computes for iteration index k = 1, 2, . . . from uk−1

uk−1+ 1
J = uk−1 + dk1 ,

uk−1+ 2
J = uk−1 + dk1 + dk2 ,

uk−1+ 3
J = uk−1 + dk1 + dk2 + dk3 ,

...

and then obtains the new approximation

(7) uk = uk−1 +

J∑
j=1

dkj ,

where dkj ∈ Hj is computed in such a way that, when added to uk−1+ j−1
J , the value

on the boundary ∂Oj is corrected to its given boundary value gj , that is

uk−1+ j
J = uk−1+ j−1

J + dkj = gj on ∂Oj .

This means that dkj , for j = 1, . . . , J , must be the solution to

∆dkj = 0 in Ω \ ∂Oj , dkj = 0 on ∂Ω,

dkj = gj − uk−1+ j−1
J = gj − uk−1 −

j−1∑
`=1

dk` on ∂Oj .
(8)

A simple and intuitive explanation of the iteration described in (7)-(8) can be found
in [10].

In [34, 2, 10] an equivalent form of (8) is presented, which we derive now for
completeness: we consider the boundary condition of (8) on ∂Oj , for j = 1, . . . , J ,
and manipulate it as follows:

dkj = gj − uk−1 −
j−1∑
`=1

dk` = gj − uk−2 −
J∑
`=1

dk−1
` −

j−1∑
`=1

dk`

= gj − uk−2 −
j∑
`=1

dk−1
` −

J∑
`=j+1

dk−1
` −

j−1∑
`=1

dk` .

Now, we notice that gj−uk−2−
∑j
`=1 d

k−1
` = 0, since dk−1

j solves at iteration k−1

problem (8), that is

∆dk−1
j = 0 in Ω \ ∂Oj , dk−1

j = 0 on ∂Ω,

dk−1
j = gj − uk−2 −

j−1∑
`=1

dk−1
` on ∂Oj .
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Therefore, we have obtained that dkj can be expressed on ∂Oj as combinations of
other differences only,

(9) dkj = −
J∑

`=j+1

dk−1
` −

j−1∑
`=1

dk` ,

and the explicit dependence on gj and uk−1 disappeared. Hence, iteration (8)
becomes

∆dkj = 0 in Ω \ ∂Oj , dkj = 0 on ∂Ω,

dkj = −
j−1∑
`=1

dk` −
J∑

`=j+1

dk−1
` on ∂Oj ,

(10)

for j = 1, . . . , J , that is the form of the sequential method of reflections presented
in [34, 2]. Now the sequences {dkj }k∈N+ have to be initialized for all j. To this end,
it is sufficient, for example, to consider (8) for k = 1:

∆d1
j = 0 in Ω \ ∂Oj , d1

j = 0 on ∂Ω,

d1
j = gj −

j−1∑
`=1

d1
` − u0 on ∂Oj ,

(11)

for j = 1, . . . , J .
Notice that the AltMR iteration in the form (8) cannot be initialized with an

arbitrary function: the initial guess u0 must be in H (recall (6)). A choice of a
function u0 /∈ H will produce a sequence {uk}k that does not necessarily converge
to the solution u to (2). In fact, (8) produces corrections dkj which are harmonic

in Ω \ ∪Jj=1∂Oj . Hence, if u0 can be decomposed into the sum of harmonic and

non-harmonic components, namely u0 = u0
harm + u0

non−harm, then only u0
harm is

corrected by the MR procedure. The AltMR as a program is given in Algorithm 1.

Algorithm 1 Alternating Method of Reflections (AltMR)

Input: K (maximum number of iterations), tol (tolerance).
1: Set u0 ∈ H and k = 1.
2: for j = 1:J do
3: Initialize d1j solving problem (11).
4: end for
5: Compute u1 = u0 +

∑J
j=1 d

1
j .

6: while k < K and ‖uk − uk−1‖ > tol do
7: Update k = k + 1.
8: for j = 1:J do
9: Compute dkj solving problem (10).

10: end for
11: Compute the approximation uk = uk−1 +

∑J
j=1 d

k
j .

12: end while
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3.2. A new formulation of the AltMR. In this section, we formulate the AltMR
in a third equivalent way. To do so, we recall the dkj that solve (8), define J sequences

{vkj }k∈N for any j ∈ {1, . . . , J} as

(12) vkj := vk−1
j + dkj with v0

j ∈ Hj ,

and u0 :=
∑J
j=1 v

0
j (recall Lemma 1). Notice that since dkj ∈ Hj , v

k
j ∈ Hj as well.

Now, we notice that (7) implies that uk = u0 +
∑J
j=1

∑k
n=0 d

n
j , which allows us to

compute

uk = u0 +

J∑
j=1

k∑
n=1

dnj = u0 +

J∑
j=1

k∑
n=0

(
vnj − vn−1

j

)
= u0 +

J∑
j=1

(
vkj − v0

j

)
,

and recalling that
∑J
j=1 v

0
j = u0 we obtain

(13) uk =

J∑
j=1

vkj .

Notice that equation (13) allows us to express the approximate solution at the kth
iteration as a decomposition (unique according to Lemma 1) into J components,
each of them being associated with an object and belonging to one of the spaces
Hj . Starting from (12), using (13) and the boundary condition in (8), that is

dkj = gj − uk−1 −
j−1∑
`=1

dk` on ∂Oj ,

we have on ∂Oj that

vkj = vk−1
j + dkj = vk−1

j + gj − uk−1 −
j−1∑
`=1

(
vk` − vk−1

`

)
= gj + vk−1

j −
J∑
`=1

vk−1
` −

j−1∑
`=1

vk` +

j−1∑
`=1

vk−1
`

= gj −
J∑

`=j+1

vk−1
` −

j−1∑
`=1

vk` .

Recalling that vkj ∈ Hj , we obtain that vkj is solution to

∆vkj = 0 in Ω \ ∂Oj , vkj = 0 on ∂Ω,

vkj = gj −
J∑

`=j+1

vk−1
` −

j−1∑
`=1

vk` on ∂Oj .
(14)

The equivalence between (14) and (10)-(11) is proved in the following theorem.

Theorem 1. Consider the sequences {uk}k∈N ⊂ H, {dkj }k∈N+ with dkj ∈ Hj, and

{vkj }k∈N with vkj ∈ Hj for j = 1, . . . , J , and assume that vkj = vk−1
j + dkj for k ≥ 1

and j = 1, . . . , J . Then the following statements are equivalent:

(a) the dkj solve (10)-(11) and uk = uk−1 +
∑J
j=1 d

n
j =

∑k
n=1

∑J
j=1 d

n
j .

(b) the vkj solve (14) and uk =
∑J
j=1 v

k
j .
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Proof. The implication (a) ⇒ (b) is proved in the discussion before the theorem.

Hence, we need to show that (b) ⇒ (a). First, using vkj = vk−1
j + dkj we get

(15) uk =

J∑
j=1

vkj = u0 +

k∑
n=1

J∑
j=1

(
vnj − vn−1

j

)
= u0 +

k∑
n=1

J∑
j=1

dnj = uk−1 +

J∑
j=1

dkj .

Notice that dkj = vkj − v
k−1
j . Clearly, dkj ∈ Hj because vkj , v

k−1
j ∈ Hj . Hence we

have to prove that dkj satisfies the transmission condition of (10). For k = 1, we

use that d1
j = v1

j − v0
j and the boundary condition in (14) for k = 1 to write

d1
j = v1

j − v0
j = gj −

j−1∑
`=1

v1
j −

J∑
`=j

v0
j = gj −

j−1∑
`=1

d1
j − u0.

In the case k > 1, we write the transmission condition on ∂Oj of (14) for k and
k − 1:

vkj = gj −
j−1∑
`=1

vk` −
J∑

`=j+1

vk−1
` , vk−1

j = gj −
j−1∑
`=1

vk−1
` −

J∑
`=j+1

vk−2
` .

Subtracting term by term these equations, we get the transmission condition of
(10). �

Using (14), we now rewrite Algorithm 1 in terms of vkj to obtain Algorithm 2.

Algorithm 2 Alternating Method of Reflections (AltMR)

Input: K (maximum number of iterations), tol (tolerance).
1: Set v0j ∈ Hj for j = 1, . . . , J , and k = 1.
2: for j = 1:J do
3: Compute v1j solving problem (14).
4: end for
5: Compute the approximation u1 =

∑J
j=1 v

1
j .

6: while k < K and ‖uk − uk−1‖ > tol do
7: Update k = k + 1.
8: for j = 1:J do
9: Compute vkj solving problem (14).

10: end for
11: Compute the approximation uk =

∑J
j=1 v

k
j .

12: end while

We next show that this new formulation of the AltMR in terms of the decom-
position functions vkj allows us to easily obtain a substructured formulation of the
AltMR procedure.

3.3. Substructured AltMR as block Gauss-Seidel method. In this section,
we first write the AltMR in substructured form and then show that it can be
interpreted as a block Gauss-Seidel method. To do so, we recall Lemma 1, which
plays a very important role in our interpretation of the method of reflections, since
it ensures that the unique solution u ∈ H to (3) can be uniquely decomposed as
v1 + v2 + · · · + vJ with vj ∈ Hj . For each of these vj , let us denote by g̃j the
corresponding Dirichlet trace on ∂Oj so that, because of Definition (5), we have

∆vj = 0 in Ω \ ∂Oj , vj = 0 on ∂Ω, vj = g̃j on ∂Oj .(16)



10 G. CIARAMELLA, M. GANDER, L. HALPERN, AND J. SALOMON

Now, we introduce the operator Gj that maps Dirichlet boundary data into
functions that are harmonic in Ω \ ∂Oj , and such that the solution to (16) can
be written as vj = Gj(g̃j). The operator Gj can be explicitly expressed in terms
of Green’s representation formulas, and, in particular, as the composition of a
single-layer potential integral operator and Dirichlet-to-Neumann operators: for
ḡ ∈ H1/2(∂Oj), we have

Gj(ḡ)(x) :=

∫
∂Oj

G(x,y)
(
DtNj,e(ḡ) + DtNj,i(ḡ)

)
(y)ds(y),

whereG(x,y) is the Green’s function associated to the problem, DtNj,i : H1/2(∂Oj)→
H−1/2(∂Oj) and DtNj,e : H1/2(∂Oj)→ H−1/2(∂Oj). These Dirichlet-to-Neumann
operators are obtained by first solving the interior and exterior problems for Oj ,

∆ve = 0 in Ω \Oj ,
ve = ḡ on ∂Oj ,

ve = 0 on ∂Ω,

∆vi = 0 in Oj ,

vi = ḡ on ∂Oj ,

and then extracting the Neumann trace on ∂Oj of their solutions, that is DtNj,e(ḡ) :=
∂nve(ḡ)|∂Oj

and DtNj,i(ḡ) := −∂nvi(ḡ)|∂Oj
, with ∂n = n · ∇ the unit outward nor-

mal derivative with respect to Ω \ Oj . In addition, we also need the trace oper-

ator τj : H1(Ω) → H1/2(∂Oj) such that τjv is the Dirichlet trace of v on ∂Oj ,
τjv := v|∂Oj

.
With this framework, we can rewrite problem (2) in integral form: we look

for boundary data g̃j , for j = 1, . . . , J , such that the function u :=
∑J
j=1Gj(g̃j)

satisfies

(17) τju = τj

 J∑
j=1

Gj(g̃j)

 = gj , on ∂Oj for j = 1, . . . , J.

Equation (17) is equivalent to the linear system

(18) Ag̃ = g,

where

(19) A :=


I1 τ1G2 τ1G3 · · · τ1GJ
τ2G1 I2 τ2G3 · · · τ2GJ
τ3G1 τ3G2 I3 · · · τ3GJ

...
...

...
. . .

...
τJG1 τJG2 τJG3 · · · IJ

 , g̃ :=


g̃1

g̃2

g̃3

...
g̃J

 , and g :=


g1

g2

g3

...
gJ

 ,
and Ij are identity operators, and we used the fact that τjGj = Ij .

The following proposition shows that the linear system (18) is an equivalent
formulation of the problem (3).

Proposition 1. The system (18) is equivalent to (3). Moreover, the solution u

to (3) is uniquely decomposed as u =
∑J
j=1Gj(g̃j), where g̃ :=

[
g̃1 · · · g̃J

]>
is the

solution to (18).

Proof. The equivalence between (3) and (18) follows by Lemma 1 and the fact
that each component vj of u is uniquely determined by the Dirichlet boundary
data g̃j on ∂Oj . The second statement is obtained by Lemma 1 and the following
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argument: from (17) we have that τju = gj on ∂Oj for j = 1, . . . , J , and we have

that ∆u = ∆
∑J
j=1Gj(g̃j) = 0 on Ω \ ∪j∂Oj . �

Remark 1. The variables g̃j are not necessarily of Dirichlet type: one could for-
mulate the problem with, e.g., Neumann data. In this case the definition of Gj
would not require Dirichlet-to-Neumann operators, and τjGj would be a Neumann-
to-Dirichlet operator.

The linear system (18) can be solved by classical iterative methods as discussed
in the next subsections. For this purpose, we consider the splitting A = D+L+U ,
where D := diag(A) = I,

L :=


0 0 0 · · · 0

τ2G1 0 0 · · · 0
τ3G1 τ3G2 0 · · · 0

...
...

...
. . .

...
τJG1 τJG2 τJG3 · · · 0

 , U :=


0 τ1G2 τ1G3 · · · τ1GJ
0 0 τ2G3 · · · τ2GJ
0 0 0 · · · τ3GJ
...

...
...

. . .
...

0 0 0 · · · 0

 .
This decomposition leads to the classical iterative methods based on the splitting
A = M−N , and we can write the iterative methods in the standard form M g̃k+1 =

N g̃k + g and in the difference form Mδδδk+1 = Nδδδk, with δδδk := g̃k − g̃k−1. The
convergence of this class of methods is related to the iteration operatorG := M−1N .

Let us now consider the block Gauss-Seidel method for the solution of system
(18), which is obtained via the splitting A = M−N with M := D+L and N := −U ,

(20) (D + L)g̃k+1 = −U g̃k + g,

and the difference form is given by

(21) (D + L)δδδk+1 = −Uδδδk.

More explicitly, the standard form is

(22)


I1 0 0 ··· 0
τ2G1 I2 0 ··· 0
τ3G1 τ3G2 I3 ··· 0

...
...

...
. . .

...
τJG1 τJG2 τJG3 ··· IJ




g̃k+1

1

g̃k+1
2

g̃k+1
3
...

g̃k+1
J

=


g1

g2

g3

...
gJ

−


0 τ1G2 τ1G3 ··· τ1GJ
0 0 τ2G3 ··· τ2GJ
0 0 0 ··· τ3GJ
...

...
...

. . .
...

0 0 0 ··· 0




g̃k1
g̃k2
g̃k3
...
g̃kJ

.

Denoting the components of the difference δδδk by δkj := g̃kj − g̃
k−1
j , we can write the

difference relation (21) in the explicit form

(23)


I1 0 0 ··· 0
τ2G1 I2 0 ··· 0
τ3G1 τ3G2 I3 ··· 0

...
...

...
. . .

...
τJG1 τJG2 τJG3 ··· IJ




δk+1
1

δk+1
2

δk+1
3
...

δk+1
J

=−


0 τ1G2 τ1G3 ··· τ1GJ
0 0 τ2G3 ··· τ2GJ
0 0 0 ··· τ3GJ
...

...
...

. . .
...

0 0 0 ··· 0




δk1
δk2
δk3
...
δkJ

.

Now we show that (20) and (21) are equivalent to (14) and (10).

Theorem 2. Assume that v0 ∈ H and g̃0
j = τjv

0. Then the AltMR methods (14)
and (10) are equivalent to (20) and (21).
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Proof. Consider the transmission condition of (14), that is

(24) τjv
k
j = gj −

J∑
`=j+1

τjv
k−1
` −

j−1∑
`=1

τjv
k
` ,

for j = 1, . . . , J . We denote by ĝkj = τjv
k
j and, recalling that vk−1

j solves (14), we

can use the operator Gj defined above to write vk−1
j = Gj(τjv

k−1
j ) = Gj(ĝ

k−1
j ).

Therefore, (24) can be equivalently written as

(25) ĝkj = gj −
j−1∑
`=1

τjGj(ĝ
k
` )−

J∑
`=j+1

τjGj(ĝ
k−1
` ).

If ĝ0
j = g̃0

j , then equation (25) is the equivalent pointwise form of (20)-(22) with

ĝkj = g̃kj . In a similar way, using the last equation in (10), we obtain the formula

δkj = −
j−1∑
`=1

τjGj(δ
k
` )−

J∑
`=j+1

τjGj(δ
k−1
` ),

which is equivalent to (21)-(23). �

3.4. Analogy with the alternating Schwarz method. In this section, we study
the relations between the AltMR and the alternating Schwarz method (AltSM). In
particular, we prove that if J = 2, the AltMR is equivalent to the AltSM in the
sense of Theorem 3. This identification does not hold in general for J > 2.

To do so, consider problem (2), and define for j = 1, . . . , J , Ωj := Ω \Oj , and a
smooth enough function g : Ω→ R such that g|∂Oj

= gj , g|∂Ω = 0, and we assume
that there exists a smooth extension of u inside the objects that we denote by Eju.
Then, we set

ũ :=

{
u− g in Ωj ,

Eju− g in Oj .

Notice that the extension Eju must be smooth enough, e.g. twice differentiable,
such that its Laplacian is well defined. Next, we define f : Ω→ R as

f :=

{
∆g in Ωj ,

∆Eju+ ∆g in Oj .

Therefore, ũ solves the problem

(26) ∆ũ = f in Ω with ũ = 0 on ∂Ω,

and by construction it satisfies ũ = 0 on
⋃J
j=1 ∂Oj . We can now apply the AltSM

to solve (26). To do so, we consider the domain decomposition Ω = ∪Jj=1Ωj , and

denote by ũkj the approximate solution at the kth iteration on the subdomain Ωj .

Starting with some initial approximation ũ0
j for all j, the AltSM is defined as

∆ũkj = f in Ωj , ũ
k
j = 0 on ∂Ω,

ũkj =

j−1∑
`=1

αj,`ũ
k
` +

J∑
`=j+1

αj,`ũ
k−1
` on ∂Oj ,
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where the coefficients αj,` are non-negative and such that
∑J
`=1 αj,` = 1; see,

e.g., [15, 43, 13]. This definition implies that the corresponding differences d̃kj :=

ũkj − ũ
k−1
j solve

∆d̃kj = 0 in Ωj , d̃
k
j = 0 on ∂Ω,

d̃kj =

j−1∑
`=1

αj,`d̃
k
` +

J∑
`=j+1

αj,`d̃
k−1
` on ∂Oj .

(27)

Next, we prove in Theorem 3 the analogy between the AltMR and the AltSM
for J = 2, and afterwards we provide a counterexample to show that this analogy
does not hold in general for J > 2.

Theorem 3. Consider J = 2 and assume that d̃0
2 = d0

2. Then for any k ≥ 1 we

have that d̃k2 = dk2 on Ω1 and d̃k1 = −dk1 on Ω2, where d̃kj and dkj solve (27) and
(10).

Proof. Since J = 2, we have that α1,2 = α2,1 = 1. We first prove the relation

d̃k2 = dk2 by induction. The result is true for k = 0 by assumption. Now, we assume
that the relation holds for k and prove that it is true for k + 1 as well. Recalling
the transmission conditions of (27) and (10) (for J = 2 and α1,2 = α2,1 = 1), it
holds that

(28) d̃k+1
1 = d̃k2 = dk2 = −dk+1

1 on ∂O1,

where we used the induction hypothesis. Equation (28), together with the existence

of unique solutions to (27) and (10), implies that d̃k+1
1 = −dk+1

1 on Ω1. Using this
equality and the transmission conditions of (27) and (10), we have that

d̃k+1
2 = d̃k+1

1 = −dk+1
1 = dk+1

2 on ∂O2.

Hence the well-posedness of (27) and (10) implies that d̃k2 = dk2 on Ω2, which is
our first claim. The second relation follows directly by the first one together with
(28). �

The equivalence proved in Theorem 3 does not hold in general for J > 2. In fact,
we now show that classical choices of Schwarz methods (like the classical AltSM)
does not lead to the result proved in Theorem 3. This negative result is suggested by
the transmission conditions of (27) and (10). In fact, if we set α`,j = −1 for all j, `,
the transmission condition of (27) coincides with the ones of (10). However, this is

not possible in a Schwarz method framework, where the hypothesis
∑J
`=1 αj,` = 1,

with αj,` non-negative, is required. Nevertheless, we provide the following example

to show that the iterates d̃kj and dkj are unrelated for J > 2. To do so, consider a

domain Ω = (0, 1) and three holes Oj = (aj , bj) for j = 1, 2, 3 with aj = 2j−1
7 and

bj = 2j
7 . The alternating Schwarz method (27) becomes{

∆d̃k1 = 0 in Ω1, d̃k1(0) = d̃k1(1) = 0,

d̃k1(x̃) = α1,2d̃
k−1
2 (x̃) + α1,3d̃

k−1
3 (x̃) for x̃ = a1, b1,{

∆d̃k2 = 0 in Ω2, d̃k2(0) = d̃k2(1) = 0,

d̃k2(x̃) = α2,1d̃
k
1(x̃) + α2,3d̃

k−1
3 (x̃) for x̃ = a2, b2,
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∆d̃k3 = 0 in Ω3, d̃k3(0) = d̃k3(1) = 0,

d̃k3(x̃) = α3,1d̃
k
1(x̃) + α3,2d̃

k−1
2 (x̃) for x̃ = a3, b3.

Notice that by setting α`,j = −1, the above problems coincide with the AltMR
(10). The general solutions to these three problems are

d̃k1(x) =

{
Ak

1x
a1

x ∈ [0, a1],
Bk

1 (1−x)
1−b1 x ∈ [b1, 1],

d̃k2(x) =

{
Ak

2x
a2

x ∈ [0, a2],
Bk

2 (1−x)
1−b2 x ∈ [b2, 1],

d̃k3(x) =

{
Ak

3x
a3

x ∈ [0, a3],
Bk

3 (1−x)
1−b3 x ∈ [b3, 1],

where Akj and Bkj are constants depending on the transmission conditions. Defining

vk := [Ak1 , B
k
1 , A

k
2 , B

k
2 , A

k
3 , B

k
3 ]> and using the transmission conditions, we obtain

the iteration relation

(I + L̃)vk = −Ũvk−1,

where

L̃ = −



0 0 0 0 0 0
0 0 0 0 0 0

0
α2,1(1−a2)

(1−b1) 0 0 0 0

0
α2,1(1−b2)

(1−b1) 0 0 0 0

0
α3,1(1−a3)

(1−b1) 0
α3,2(1−a3)

(1−b2) 0 0

0
α3,1(1−b3)

(1−b1) 0
α3,2(1−b3)

(1−b2) 0 0


and Ũ = −



0 0
α1,2a1
a2

0
α1,3a1
a3

0

0 0
α1,2b1
a2

0
α1,3b1
a3

0

0 0 0 0
α2,3a2
a3

0

0 0 0 0
α2,3b2
a3

0

0 0 0 0 0 0
0 0 0 0 0 0


.

Let us define the matrix G = −(I6+L̃)−1Ũ , with I6 the 6×6 identity. The iteration
relation above then reads

vk = Gvk−1,

where the matrixG depends on the weights αj,k. Notice that the same relation (with
appropriately chosen weights in G) can be obtained for the AltMR. We consider
three different cases. The first case is α1,2 = α2,3 = α3,1 = 0 and α1,3 = α2,1 =
α3,2 = 1, which corresponds to the classical AltSM, the second case is αj,k = 1

2 for
any j, k, which leads to a weighted AltSM, and the third case αj,k = −1 for any
j, k, which corresponds to the AltMR. Computing explicitly the iteration matrix G
is these cases, we get

G1 =


0 0 0 0 1

5 0
0 0 0 0 2

5 0
0 0 0 0 8

25 0
0 0 0 0 6

25 0
0 0 0 0 4

25 0
0 0 0 0 2

25 0

 , G2 =


0 0 1

6 0 1
10 0

0 0 1
3 0 1

5 0
0 0 2

15 0 19
50 0

0 0 1
10 0 23

50 0
0 0 1

10 0 29
150 0

0 0 1
20 0 29

300 0

 , G3 =


0 0 − 1

3 0 − 1
5 0

0 0 − 2
3 0 − 2

5 0
0 0 8

15 0 − 7
25 0

0 0 2
5 0 − 14

25 0
0 0 0 0 8

15 0
0 0 0 0 4

15 0

 .

Their spectra are

σ(G1) =
{ 4

25
, 0
}
, σ(G2) =

{−(3
√

389− 49)

300
,

49 + 3
√

389

300
, 0
}
, σ(G3) =

{ 8

15
, 0
}
,

and we thus obtain for the spectral radii

ρ(G1) =
4

25
= 0.16, ρ(G2) =

49 + 3
√

389

300
≈ 0.36, ρ(G3) =

8

15
≈ 0.53.
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This shows that the iterations generated by G1 and G2 corresponding to alter-
nating Schwarz methods must be different from the iterations generated by G3

corresponding to the AltMR, and we have thus shown that there is in general no
relation between the AltMR and the AltSM for J > 2.

The reader may ask himself how the iteration matrices look like for J = 2. To
illustrate this, we consider a domain Ω = (0, 1) with two holes Oj = (aj , bj) for

j = 1, 2 with aj = 2j−1
5 and bj = 2j

5 , and recall that α1,2 = α2,1 = 1. The same
arguments as above allow us to obtain the iteration matrices

GAltSM =


0 0 0 0 1

3 0
0 0 0 0 2

3 0
0 0 0 0 4

9 0
0 0 0 0 2

9 0

 , GAltMR =


0 0 0 0 − 1

3 0
0 0 0 0 − 2

3 0
0 0 0 0 4

9 0
0 0 0 0 2

9 0

 ,
whose spectra coincide and are given by

σ(GAltMR) = σ(GPSM) =
{4

9
, 0
}
.

It is clear that the two matrices generate similar iterates. Notice also the nega-

tive signs in GAltMR that produce dk1 with opposite sign to d̃k1 , in agreement with
Theorem 3.

3.5. Convergence analysis for J = 2 objects. Consider problem (2) for J = 2:

∆u = 0 in Ω \
(
∂O1 ∪ ∂O2

)
,

u = 0 on ∂Ω,

u = g1 on ∂O1,

u = g2 on ∂O2.

(29)

The AltMR (14) for the solution of (29) is

∆vk1 = 0 in Ω \ ∂O1, v
k
1 = 0 on ∂Ω,

vk1 = g1 − vk−1
2 on ∂O1,

∆vk2 = 0 in Ω \ ∂O2, v
k
2 = 0 on ∂Ω,

vk2 = g2 − vk1 on ∂O2.
(30)

Let us define the error at the kth iteration by ekj := vj − vkj for j = 1, . . . , J . In
terms of the errors, the AltMR (30) reads

∆ek1 = 0 in Ω \ ∂O1, e
k
1 = 0 on ∂Ω,

ek1 = −ek−1
2 on ∂O1,

∆ek2 = 0 in Ω \ ∂O2, e
k
2 = 0 on ∂Ω,

ek2 = −ek1 on ∂O2.
(31)

We can now prove the following theorem using similar techniques considered in [8].

Theorem 4. The AltMR for the solution to problem (29) converges geometrically,
in the sense that

max
Ω
|ekj | ≤ ρkAltMR max

Ω
|e0
j |,

for j = 1, 2, where ρAltMR =
(
max∂O1

w2

)(
max∂O2

w1

)
< 1, and wj solves

(32) ∆wj = 0 in Ω \ ∂Oj , wj = 0 on ∂Ω, wj = 1 on ∂Oj .

Proof. The functions wj , for j = 1, 2 which are solutions to (32), satisfy because
of the maximum principle that wj ≥ 0 and |ekj | ≤ wj max∂Oj

|ekj |. Now, since ek1
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δδ

r r

Figure 2. A unit disc Ω with two objects O1 and O2, which
are two discs having the same radius denoted by r. The distance
between the centers of O1 and O2 and the center of Ω is denoted
by δ.

and ek2 are harmonic functions and solve (31), the maximum principle allows us to
write

max
Ω
|ek1 | = max

∂O1

|ek1 | = max
∂O1

|ek−1
2 | ≤ max

∂O1

w2 max
∂O2

|ek−1
2 | = max

∂O1

w2 max
Ω
|ek−1

2 |,

max
Ω
|ek−1

2 | = max
∂O2

|ek−1
2 | = max

∂O2

|ek−1
1 | ≤ max

∂O2

w1 max
∂O1

|ek−1
1 | = max

∂O2

w1 max
Ω
|ek−1

1 |.

By combining these two estimates we get

max
Ω
|ek1 | ≤ max

∂O1

w2 max
Ω
|ek−1

2 | ≤ max
∂O1

w2 max
∂O2

w1 max
Ω
|ek−1

1 | = ρAltMR max
Ω
|ek−1

1 |.

Since w1 and w2 are harmonic functions in Ω \ ∂O1 and Ω \ ∂O2, Assumption (1)
and the maximum principle imply that max∂O1 w2 < 1 and max∂O2 w1 < 1. Hence
ρAltMR < 1 and our proof is complete. �

This theorem allows us to compute explicitly the contraction factor ρAltMR as
a function of the geometry of the domain. For example, consider a domain whose
geometry is shown in Figure 2, where Ω ⊂ R2 is the unit disc, the objects O1 and
O2 are two discs whose centers are aligned on a straight line passing trough the
center of Ω ⊂ R2. The two discs have the same radius r and the distance between
the center of each of them and the center of Ω is denoted by δ. We can prove the
following result.

Corollary 1. Consider the problem (29) defined on a domain whose geometry is
depicted in Figure 2. We have that

ρAltMR(r, δ) =

(
log
(

(−a−δ+r)2

(a(r−δ)−1)2

)
log
(

(−a+δ−r)2
(a(δ−r)−1)2

))2

,

where

(33) a =
1 + δ2 − r2 −

√
r4 + (−2− 2δ2) r2 + δ4 − 2δ2 + 1

2δ
.
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δ

1

r Re(z)

Im(z)

h

1

R
Re(ζ)

Im(ζ)

Figure 3. Möbius transformation of the unit disc Ω (dashed line)
with a hole O1 (solid line) into an annulus.

Proof. To prove the result, we first need to solve problems (32) and compute the
wj . To do so, we recall the Möbius transformation h : C→ C:

(34) h(z) :=
z − a
āz − 1

,

which maps the unit circle into itself and circles into circles. In particular, by
imposing the conditions h(δ − r) = R and h(δ + r) = −R, one obtains a (real)
coefficient a, as in (33), such that h maps Ω \Oj into an annulus; see Figure 3. We
consider now the problem

(35) ∆w̃1 = 0 in h(Ω) \ h(∂O1), w̃1 = 0 on h(∂Ω), w̃1 = 1 on h(∂O1).

Since (35) is radially symmetric, a separation of variables argument allows us to
compute its solution,

w̃1(ζ) =
log
(√

Re(ζ)2 + Im(ζ)2
)

log(R)
.

By transforming back from ζ to z, we obtain

w1(Re(z), Im(z)) = w̃1(h(z)) =
log(|h(z)|)

log(R)
=

log(|h(z)|2)

log(|R|2)
=

log
(∣∣ z−a
az−1

∣∣2)
log
(∣∣ δ−r−a
a(δ−r)−1

∣∣2) ,
which solves (32) for j = 1 since h is a conformal mapping. A further simplification
leads to

w1(x, y) =
log
( (x−a)2+y2

(ax−1)2+(ay)2

)
log
( (δ−r−a)2

(a(δ−r)−1)2

) .

Now, since w̃1 is symmetric with respect to the Re(ζ)-axis and decays monotonically
in any radial direction, the same holds for w1. Hence, the maximum of w1 along
∂O2 is attained at (x, y) = (−δ + r, 0) and has the value

max
∂O2

w1 = w1(−δ + r, 0) =
log
( (−δ+r−a)2

(a(−δ+r)−1)2

)
log
( (δ−r−a)2

(a(δ−r)−1)2

) .
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Since the solution w2 to problem (32) for j = 2 can be obtained by rotating w1 by
π around the origin, it holds that

max
∂O1

w2 = w2(δ − r, 0) = w1(−δ + r, 0) = max
∂O2

w1.

Recalling from Theorem 4 that ρAltMR =
(
max∂O1

w2

)(
max∂O2

w1

)
, the claim fol-

lows. �

4. The parallel method of reflections

The parallel method of reflections (PMR) was introduced by Golusin in 1934 [21]
and formally recalled by Traytak [44] for the Laplace equation. Ichiki and Brady
[27] present exactly the parallel method of Golusin, and they state: “It is easy to
extend this procedure to the N body problem by superposing distances by other
particles”. In practice, the parallel version is obtained by replacing in the right-
hand side of the boundary condition (9) the differences at the iteration k with the
corresponding ones at the iteration k − 1. Hence, problem (10) becomes

∆dkj = 0 in Ω \ ∂Oj , dkj = 0 on ∂Ω,

dkj = −
J∑

`=1, 6̀=j

dk−1
` on ∂Oj .

(36)

The sequences {dkj }k∈N+ are initialized by solving for each j = 1, . . . , J the problem

∆d1
j = 0 in Ω \ ∂Oj , d1

j = 0 on ∂Ω, d1
j = gj − u0 on ∂Oj ,(37)

for some u0 ∈ H, and the approximate solution at the kth iteration is defined by

(38) uk = uk−1 +

J∑
j=1

dkj .

The PMR (36)-(37), as presented in [34], leads to Algorithm 3.

Algorithm 3 Parallel Method of Reflection (PMR)

Input: K (maximum number of iterations), tol (tolerance).
1: Set u0 ∈ H and k = 1.
2: for j = 1:J (this loop is executed in parallel) do
3: Compute d1j solving problem (37).
4: end for
5: Compute the approximation u1 =

∑J
j=1 d

1
j .

6: while k < K and ‖uk − uk−1‖ > tol do
7: Update k = k + 1.
8: for j = 2:J (this loop is executed in parallel) do
9: Compute dkj solving problem (36).

10: end for
11: Compute the approximation uk = uk−1 +

∑J
j=1 d

k
j .

12: end while

Now, as in Section 3, we introduce the variable vkj defined in (12), and we write

the PMR in terms of vkj . To do so, we first use the transmission condition of (36)
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and (38) to compute on ∂Oj that

dkj = −
J∑

`=1, 6̀=j

dk−1
` = dk−1

j −
J∑
`=1

dk−1
` = dk−1

j − (uk−1 − uk−2),

which implies that

dkj + uk−1 = dk−1
j + uk−2 = · · · = d1

j + u0.

Recalling that d1
j = gj − u0 on ∂Oj , we obtain

(39) dkj = gj − uk−1 on ∂Oj .

Therefore, we have that (36) is equivalent to

∆dkj = 0 in Ω \ ∂Oj , dkj = 0 on ∂Ω,

dkj = gj − uk−1 on ∂Oj ,
(40)

which is the parallel version of (8). Now, starting with the definition (12) and using
(39) and (13), we compute on ∂Oj that

vkj = vk−1
j + dkj = vk−1

j + gj − uk−1 = vk−1
j + gj −

J∑
`=1

vk−1
` = gj −

J∑
`=1, 6̀=j

vk−1
` .

Recalling that vkj ∈ Hj , we conclude that vkj solves

∆vkj = 0 in Ω \ ∂Oj , vkj = 0 on ∂Ω,

vkj = gj −
J∑

`=j+1

vk−1
` −

j−1∑
`=1

vk−1
` on ∂Oj .

(41)

The equivalence between (41) and (36)-(37) is proved in the following theorem.

Theorem 5. Consider the sequences {uk}k∈N ⊂ H, {dkj }k∈N+ with dkj ∈ Hj, and

{vkj }k∈N with vkj ∈ Hj for j = 1, . . . , J , and assume that vkj = vk−1
j + dkj for k ≥ 1

and j = 1, . . . , J . Then the following statements are equivalent:

(a) the dkj solve (36)-(37) with uk = uk−1 +
∑J
j=1 d

n
j =

∑k
n=1

∑J
j=1 d

n
j .

(b) the vkj solve (41) with uk =
∑J
j=1 v

k
j .

Proof. The implication (a) ⇒ (b) is proved in the discussion before the theorem,
whereas (b) ⇒ (a) follows by similar arguments as in Theorem 1. �

The PMR algorithm in terms of vkj is given in Algorithm 4.

4.1. Substructured PMR as a block Jacobi method. In this section, we prove
that the PMR is equivalent to the block Jacobi method. We recall that Ichiki and
Brady [27, page 351] mention, without motivation or any rigorous argument, that
“this iterative method (the PMR) is equivalent to the block Jacobi method”. This
sentence suggests a block Jacobi substructured interpretation of the PMR, as the
block Gauss-Seidel one for the AltMR proved in Section 3.3. To see it, consider the
operator A defined in Section 3.3 and the decomposition A = M −N with M := D
and N := −(L+ U). The block Jacobi method in the standard form is given by

(42) Dg̃k+1 = −(L+ U)g̃k + g,
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Algorithm 4 Parallel Method of Reflection (PMR)

Input: K (maximum number of iteration), tol (tolerance).
1: Set v0j ∈ Hj for j = 1, . . . , J , and k = 1.
2: for j = 1:J (this loop is executed in parallel) do
3: Compute v1j solving problem (41).
4: end for
5: Compute the approximation u1 =

∑J
j=1 v

1
j .

6: while k < K and ‖uk − uk−1‖ > tol do
7: Update k = k + 1.
8: for j = 1:J (this loop is executed in parallel) do
9: Compute vkj solving problem (41).

10: end for
11: Compute the approximation uk =

∑J
j=1 v

k
j .

12: end while

and in the difference form it is

(43) Dδδδk+1 = −(L+ U)δδδk,

where δδδk := g̃k − g̃k−1, see also (23). More explicitly, the standard form is

(44)


g̃k+1

1

g̃k+1
2

g̃k+1
3
...

g̃k+1
J

 =


g1

g2

g3

...
gJ

−


0 τ1G2 τ1G3 · · · τ1GJ
τ2G1 0 τ2G3 · · · τ2GJ
τ3G1 τ3G2 0 · · · τ3GJ

...
...

...
. . .

...
τJG1 τJG2 τJG3 · · · 0




g̃k1
g̃k2
g̃k3
...
g̃kJ

 ,
whereas the difference form (43) is

(45)


δk+1
1

δk+1
2

δk+1
3
...

δk+1
J

 = −


0 τ1G2 τ1G3 · · · τ1GJ

τ2G1 0 τ2G3 · · · τ2GJ
τ3G1 τ3G2 0 · · · τ3GJ

...
...

...
. . .

...
τJG1 τJG2 τJG3 · · · 0




δk1
δk2
δk3
...
δkJ

 .
The next theorem shows that (42)-(44) and (43)-(45) are equivalent to the PMR.

Theorem 6. Assume that v0 ∈ H and g̃0
j = τjv

0. Then the PMR forms (41) and
(40) are equivalent to (42) and (43).

Proof. We proceed as in Section 3.3 and consider the transmission condition of
(41), that is

(46) τjv
k
j = gj −

J∑
`=j+1

τjv
k−1
` −

j−1∑
`=1

τjv
k−1
` .

We define ĝkj := τjv
k
j and recall that vk−1

j can be written as vk−1
j = Gj(τjv

k−1
j ) =

Gj(ĝ
k−1
j ). Hence, (46) becomes

ĝkj = gj −
J∑

`=j+1

τjGj(ĝ
k−1
` )−

j−1∑
`=1

τjGj(ĝ
k−1
` ),
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which is equivalent to (42)-(44) if ĝ0
j = g̃0

j . The same arguments can be used to
show that (36) is equivalent to (43)-(45). �

4.2. Analogies with Schwarz methods. Similar to Section 3.4, we show now
that if J = 2, then the PMR is the analog of the classical parallel Schwarz method
(PSM), and if J > 2, the PMR and the PSM define different iterates. To do so, we
recall (26) and apply the PSM,

∆ũkj = f in Ωj , ũ
k
j = 0 on ∂Ω,

ũkj =

J∑
`=1, 6̀=j

αj,`ũ
k−1
` on ∂Oj ,

(47)

where the coefficients αj,` are non-negative and such that
∑
` αj,` = 1. This defini-

tion implies that the corresponding differences d̃kj := ukj − u
k−1
j solve

∆d̃kj = 0 in Ωj , d̃
k
j = 0 on ∂Ω,

d̃kj =

J∑
`=1, 6̀=j

αj,`d̃
k−1
` on ∂Oj .

(48)

Theorem 7. Consider J = 2 and assume that d̃0
2 = d0

2. Then, for any k ≥ 0 we

have that d̃k1 = (−1)kdk1 on Ω1 and d̃k2 = (−1)kdk2 on Ω2, where d̃kj and dkj solve
(48) and (41).

Proof. Since J = 2, we have that α1,2 = α2,1 = 1. We only prove the first relation

d̃k1 = (−1)kdk1 , since the second follows by the same arguments. We proceed by
induction. The statement is true for k = 0 by assumption. Now, we assume that

d̃k1 = (−1)kdk1 holds and we show that it remains true for k + 1. Recalling the
transmission condition of (48) and (41), we have

dk+1
1 = −dk2 = −(−1)kd̃k2 = (−1)k+1d̃k2 = (−1)kd̃k+1

1 on ∂O1,

where we used the induction hypothesis. Since (48) and (41) admits unique solu-

tions, we have that dk+1
1 = (−1)kd̃k+1

1 in Ω1, which is our claim. �

Now, to show that for J > 2 the analogy proved in Theorem 7 is not in general
true, we consider the same example provided in Section 3.4 and use the same
notation. In this case, the PSM is{

∆d̃k1 = 0 in Ω1, d̃k1(0) = d̃k1(1) = 0,

d̃k1(x̃) = α1,2d̃
k−1
2 (x̃) + α1,3d̃

k−1
3 (x̃) for x̃ = a1, b1,{

∆d̃k2 = 0 in Ω2, d̃k2(0) = d̃k2(1) = 0,

d̃k2(x̃) = α2,1d̃
k−1
1 (x̃) + α2,3d̃

k−1
2 (x̃) for x̃ = a2, b2,{

∆d̃k3 = 0 in Ω3, d̃k3(0) = d̃k3(1) = 0,

d̃k3(x̃) = α3,1d̃
k−1
1 (x̃) + α3,2d̃

k−1
3 (x̃) for x̃ = a3, b3.

The corresponding iteration in terms of the constants Akj and Bkj is given by vk =

Gvk−1, where G := −(L̃+ Ũ), with G depending on the weights α`,j . Notice that
the same relation (with appropriately chosen weights in G) can be obtained for the
PMR. We consider three different cases. The first case is α1,2 = α2,3 = α3,1 = 0
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and α1,3 = α2,1 = α3,2 = 1, which corresponds to the classical PSM, the second
case is αj,k = 1

2 for any j, k, which leads to a weighted PSM, and the third case
αj,k = −1 for any j, k, which corresponds to the PMR. Computing explicitly the
iteration matrix G is these cases, we get

G1 =


0 0 0 0 1

5 0
0 0 0 0 2

5 0
0 4

5 0 0 0 0
0 3

5 0 0 0 0
0 0 0 2

3 0 0
0 0 0 1

3 0 0

 , G2 =


0 0 1

6 0 1
10 0

0 0 1
3 0 1

5 0
0 2

5 0 0 3
10 0

0 3
10 0 0 2

5 0
0 1

5 0 1
3 0 0

0 1
10 0 1

6 0 0

 , G3 = −


0 0 1

3 0 1
5 0

0 0 2
3 0 2

5 0
0 4

5 0 0 3
5 0

0 3
5 0 0 4

5 0
0 2

5 0 2
3 0 0

0 1
5 0 1

3 0 0

 ,

where G1, G2, and G3 correspond to the three cases. Their spectra are

σ(G1) =
{ i√3 41/3 − 41/3

2 251/3
,−41/3 + i

√
3 41/3

2 251/3
,

41/3

251/3
, 0
}
,

σ(G2) =
{
−3 +

√
39

30
,

√
39− 3

30
,−
√

219− 3

30
,

√
219 + 3

30
, 0
}
,

σ(G3) =
{3 +

√
39

15
,−
√

39− 3

15
,

√
219− 3

15
,−
√

219 + 3

15
, 0
}
,

and the corresponding spectral radii are

ρ(G1) =
41/3

251/3
≈ 0.54, ρ(G2) =

√
219 + 3

30
≈ 0.59, ρ(G3) =

√
219 + 3

15
≈ 1.18.

We see again that the iterations generated by G1 and G2 corresponding to parallel
Schwarz methods are different from the iterations generated by G3 corresponding to
the PMR, and we have therefore shown that there is no relation in general between
PMR and PSM for J > 2.

4.3. Convergence analysis for J = 2 objects. Next, we prove for the PSM the
same convergence result obtained for the AltMR in Theorem 4. The PMR for the
errors ek1 and ek2 is

∆ek1 = 0 in Ω \ ∂O1, e
k
1 = 0 on ∂Ω,

ek1 = −ek−1
2 on ∂O1,

∆ek2 = 0 in Ω \ ∂O2, e
k
2 = 0 on ∂Ω,

ek2 = −ek−1
1 on ∂O2.

(49)

Theorem 8. The PMR for the solution to problem (29) converges geometrically, in
the sense that maxΩ |e2k

j | ≤ ρ2k
PMR maxΩ |e0

j |, for j = 1, 2, where ρPMR =
√
ρAltMR

and ρAltMR is given in Corollary 1.

Proof. As in Corollary 1, the functions wj solving (32) satisfy by the maximum
principle that wj ≥ 0 and |ekj | ≤ wj max∂Oj |ekj |. Now, since ek1 and ek2 are harmonic
functions and solve (31), the maximum principle allows us to write

max
Ω
|ek1 | = max

∂O1

|ek1 | = max
∂O1

|ek−1
2 | ≤ max

∂O1

w2 max
∂O2

|ek−1
2 | = max

∂O1

w2 max
Ω
|ek−1

2 |,

max
Ω
|ek−1

2 | = max
∂O2

|ek−1
2 | = max

∂O2

|ek−2
1 | ≤ max

∂O2

w1 max
∂O1

|ek−2
1 | = max

∂O2

w1 max
Ω
|ek−2

1 |.

By combining these two estimates we get

max
Ω
|ek1 | ≤ max

∂O1

w2 max
Ω
|ek−1

2 | ≤ max
∂O1

w2 max
∂O2

w1 max
Ω
|ek−2

1 | = ρAltMR max
Ω
|ek−2

1 |.
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Using this inequality recursively leads to maxΩ |e2k
1 | ≤ ρkAltMR maxΩ |e0

1|, which is
the claim for j = 1. The same arguments allow us to prove this result also for
j = 2. �

Notice that Theorem 4 and Theorem 8 are proved using maximum principle
arguments that are classical techniques for proving convergence of classical Schwarz
methods; see, e.g., [36, 8]. Notice also that the estimated contraction factors for
AltMR and PMR are one the square of the other. This resembles classical results
for Schwarz methods; see, e.g., [14, 15] and references therein.

5. Methods of reflections with relaxation

In the following subsections, we present further forms of MR, and prove that
they are equivalent to classical stationary iterative methods with relaxation. In
particular, in Section 5.1, we present an averaged version of the parallel method
introduced in [34] and show its equivalence with the damped block Jacobi iterations.
In Section 5.2, we introduce a new MR that corresponds to a block variant of the
well-known method of successive over relaxation (SOR).

5.1. The averaged parallel method of reflection. Golusin already said in [21]
that the parallel method of reflections always converges for J = 2 objects, but not
for J > 2, “but by modifying (17) (or (42)-(43)) appropriately one could increase
the area of applicability of the preceding result”. This fact has been mentioned in
several publications; see, e.g., [21, 27]. In order to improve the convergence behavior
of the PMR, Laurent et al. have recently proposed in [34] a modified version that
is obtained (as mentioned by the authors) by averaging the different components
dkj . To do so, the problem (36) is modified by adding a weight,

∆dkj = 0 in Ω \ ∂Oj , dkj = 0 on ∂Ω,

dkj =
(

1− 1

J

)
dk−1
j − 1

J

J∑
`=1, 6̀=j

dk−1
` on ∂Oj ,

(50)

for j = 1, . . . , J , with the initialization problems

∆d1
j = 0 in Ω \ ∂Oj , d1

j = 0 on ∂Ω, d1
j = gj − u0 on ∂Oj ,(51)

for j = 1, . . . , J and u0 ∈ H. The approximate solution uk can be obtained from
uk−1 by

(52) uk = uk−1 +
1

J

J∑
j=1

dkj ,

assuming that u0 = 0. This new formulation of the method, that we call averaged
parallel method of reflections (APMR), is proved to be always convergent in [34].
Now, we want to formulate this new version in terms of vkj . To do so, starting with
the last boundary condition in (50) and using (52), we obtain on ∂Oj that

dkj =
(

1− 1

J

)
dk−1
j − 1

J

J∑
`=1, 6̀=j

dk−1
` = dk−1

j − 1

J

J∑
`=1

dk−1
` = dk−1

j − (uk−1 − uk−2),

which implies that

dkj + uk−1 = dk−1
j + uk−2 = · · · = d1

j + u0 = gj ,
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where we used that d1
j = gj − u0 on ∂Oj . Hence, on ∂Oj it holds that

(53) dkj = gj − uk−1.

Now, we need to define the variable vkj in a slightly different way than (12), namely

(54) vkj := vk−1
j +

1

J
dkj with v0

j ∈ Hj ,

where
∑J
j=1 v

0
j = u0. Then, we can use (52) to obtain, like for (13), the relation

(55) uk = uk−1+
1

J

J∑
j=1

dkj = u0+
1

J

k∑
n=1

J∑
j=1

dnj = u0+

k∑
n=1

J∑
j=1

(
vnj −vn−1

j

)
=

J∑
j=1

vkj .

Now, using (53), (54), and (55), we get

vkj = vk−1
j +

1

J
dkj = vk−1

j +
1

J
gj −

1

J
uk−1 = vk−1

j +
1

J
gj −

1

J

J∑
`=1

vk−1
`

=
(

1− 1

J

)
vk−1
j +

1

J
gj −

1

J

J∑
`=1, 6̀=j

vk−1
` ,

which holds on ∂Oj . Recalling that vkj ∈ Hj , it solves the problem

∆vkj = 0 in Ω \ ∂Oj , vkj = 0 on ∂Ω,

vkj =
(

1− 1

J

)
vk−1
j +

1

J
gj −

1

J

J∑
`=1, 6̀=j

vk−1
` on ∂Oj .

(56)

The equivalence between (56) and (50)-(51) is proved in the following theorem.

Theorem 9. Consider the sequences {uk}k∈N ⊂ H, {dkj }k∈N+ with dkj ∈ Hj, and

{vkj }k∈N with vkj ∈ Hj for j = 1, . . . , J , and assume that vkj = vk−1
j + dkj for k ≥ 1

and j = 1, . . . , J . Then the following statements are equivalent:

(a) the dkj solve (50)-(51) with uk = uk−1 +
∑J
j=1 d

n
j =

∑k
n=1

∑J
j=1 d

n
j .

(b) the vkj solve (56) with uk =
∑J
j=1 v

k
j .

Proof. The implication (a) ⇒ (b) is proved in the discussion before the theorem,
whereas (b) ⇒ (a) follows by similar arguments as in Theorem 1. �

The block Jacobi method (42) we have presented earlier might not converge if the
off-diagonal blocks are too heavy, i.e. the objects are too close (in agreement with
the results of Golusin [21] and Traytak [44]); see also [10, Section 3] for detailed
one-dimensional examples. However, one can consider a relaxation,

(57) g̃k = (1− ω)g̃k−1 + ωD−1
[
−(L+ U)g̃k−1 + g

]
,

where the parameter ω has to be chosen in a proper way. This is the relaxed block
Jacobi method, and we have the following result.

Theorem 10. We have the following equivalences:

• The relaxed block Jacobi method (57) is equivalent to the damped block
Jacobi method, that is

(58) g̃k = g̃k−1 + ωD−1
[
g −Ag̃k−1

]
.
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• If one considers a sequence of relaxation parameters {ωk}k, then the damped
block Jacobi method is equivalent to Richardson’s method [41], namely

g̃k = g̃k−1 + ωk

[
g −Ag̃k−1

]
.

• Assume that v0 ∈ H and g̃0
j = τjv

0 and ω = 1
J . Then the APMR (56) is

equivalent to (58).

Proof. To show the first statement, we compute

g̃k = (1− ω)g̃k−1 + ωD−1
[
−(L+ U)g̃k−1 + g

]
= g̃k−1 − ωg̃k−1 + ωD−1g − ωD−1(L+ U)g̃k−1

= g̃k−1 − ωg̃k−1 + ωD−1g − ωD−1(A−D)g̃k−1

= g̃k−1 + ωD−1
[
g −Ag̃k−1

]
,

which is the damped block Jacobi iteration (58). The second statement follows
easily by recalling that D = I and considering the parameter ω depending on the
iteration k. Setting ω = 1

J and recalling the operators D, L, and U given in Section
3.3, we can write (57) in the pointwise form

g̃kj =
(

1− 1

J

)
g̃k−1
j +

1

J

[
gj −

J∑
`=1, 6̀=j

τjG`(g̃
k−1
` )

]
.

Then similar arguments as in Theorem 2 imply that this is equivalent to the APMR
in (56). �

We have seen that the APMR can be regarded as a relaxed (or damped) block
Jacobi method or as Richardson’s method with the specific choice ωk = ω = 1

J .
This choice, motivated in [34] by a Hilbert projection analysis, is not guaranteed
to be optimal. In what follows we derive under suitable conditions, an explicit
formula for the optimal parameter ω? in discrete settings. Denoting by GJ(ω)
the damped-block Jacobi iteration matrix obtained, for example, by a boundary-
element discretization of (18) and (57), the optimal parameter ω? is then given
by

ω? = arg min
ω∈[0,1]

ρ(GJ(ω)),

where ρ(GJ(ω)) is the spectral radius of GJ(ω). We have the following results.

Theorem 11. Let λk(GJ(1)), for k = 1, 2, . . . , be the eigenvalues of the block Jacobi
iteration matrix. Assume that λk(GJ(1)) ∈ R for any k and that ρ(GJ(1)) < 1, that
is the block Jacobi method converges. Then

ω? =
2

2− (λmax + λmin)
,

where λmax and λmin are the maximum and minimum eigenvalues of GJ(1).

Proof. Recalling (57), we observe that the damped block Jacobi iteration matrix
has the form GJ(ω) = (1− ω)I + ωGJ(1). Hence its eigenvalues are

λk(ω) = 1− ω(1− λk(GJ(1)))

for k = 1, 2, . . . . Now, the optimal parameter ω? solves the problem

min
ω∈[0,1]

max
k
|1− ω(1− λk(GJ(1)))|.
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Since ρ(GJ(1)) < 1, then λk(GJ(1))) ∈ (0, 1). Therefore, the spectral radius
ρ(GJ(ω)) has the form

ρ(GJ(ω)) = max
{
|1− ω(1− λmax)| , |1− ω(1− λmin)|

}
,

and the optimal parameter ω? is the point where the two straight functions |1 −
ω(1 − λmax)| and |1 − ω(1 − λmin)| intersect, that is ω = 2

2−(λmax+λmin) , which is

our claim. �

Theorem 11 provides the optimal parameter under the assumption that the block
Jacobi method converges. If block Jacobi does however not converge, can ω be
used to make it convergent? In other words, if an eigenvalue of GJ(1) is such that
|λk(GJ(1))| ≥ 1, is there a choice of ω capable to correct this behavior? To study
this unfavorable case, we have to distinguish different cases:

• if λk(GJ(1)) = 1, then λk(ω) = 1−ω(1−λk(GJ(1))) = 1 for any ω. Hence,
there exists no ω ∈ R such that |λk(ω)| < 1.
• if λk(GJ(1)) = −1, then λk(ω) = 1− 2ω, which implies that |λk(ω)| < 1 if

and only if 0 < ω < 1.
• if λk(GJ(1)) < −1, then

|λk(ω)| = |1− ω(1− λk(GJ(1)))| < 1⇔ 0 < ω <
2

1− λk(GJ(1))
.

• if λk(GJ(1)) > 1, then

|λk(ω)| = |1− ω(1− λk(GJ(1)))| < 1⇔ 2

1− λk(GJ(1))
< ω < 0.

We can summarize these facts in the following result.

Theorem 12. Let GJ(1) and GJ(ω) be the block Jacobi and damped block Jacobi
iteration matrices and assume that |λk(GJ(1))| ≥ 1 for a given k. We have that

• if λk(GJ(1)) = −1, then |λk(ω)| < 1 for any ω ∈ (0, 1).
• if λk(GJ(1)) = 1, then |λk(ω)| = 1 for any ω ∈ R.
• if λk(GJ(1)) < 0, then |λk(ω)| < 1 if and only if 0 < ω < 2

1−λk(GJ(1)) .

• if λk(GJ(1)) > 1, then |λk(ω)| < 1 if and only if 2
1−λk(GJ(1)) < ω < 0.

Theorem 12 shows that if block Jacobi does not converge, it is not always possible
to find a parameter ω ∈ (0, 1] that makes the method convergent. If the eigenvalues
λk(GJ(1)) are such that λk(GJ(1)) < 1, i.e. there can be arbitrarily large negative
eigenvalues, a case that we have observed numerically, then a similar proof as for
Theorem 11 allows us to obtain the following result.

Theorem 13. Let GJ(1) and GJ(ω) be the block Jacobi and damped-block Jacobi
iteration matrices and assume that the eigenvalues λk(GJ(1)) are real and such that
λk(GJ(1)) < 1, then the optimal parameter is ω? = 2

2−(λmax+λmin) , where λmax and

λmin are the maximum and minimum eigenvalues of GJ(1).

5.2. Successive-Over-Relaxation method (SOR). In the previous sections,
we have seen that the different forms of the method of reflections are equivalent to
block Gauss-Seidel, block Jacobi, damped block Jacobi, and Richardson’s method.
This suggests that a possible improvement of the method of reflections would be to
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rewrite the AltMR as an SOR method, which converges in general much faster for
a well chosen relaxation parameter [45]. SOR for the system (18) is

(59) g̃k = (D + ωL)−1
[
ωg +

(
−ωU + (1− ω)D

)
g̃k−1

]
.

Recalling the form of D, L, and U given in Section 3.3, (59) written component-wise
is

(60) g̃kj = (1− ω)g̃k−1
j + ω

[
gj −

j−1∑
`=1

τjG`(g̃
k
` )−

J∑
`=j+1

τjG`(g̃
k−1
` )

]
.

Defining vkj := Gj(g̃
k
j ), this iteration can be rewritten in the volume form,

∆vkj = 0 in Ω \ ∂Oj , vkj = 0 on ∂Ω,

vkj =
(
1− ω

)
vk−1
j + ω

[
gj −

j−1∑
`=1

vk` −
J∑

`=j+1

vk−1
`

]
on ∂Oj ,

(61)

with uk =
∑J
j=1 v

k
j . This is a new formulation of the method of reflections that

can be also written in terms of the (more usual) dkj , that is

∆dkj = 0 in Ω \ ∂Oj , dkj = 0 on ∂Ω,

dkj =
(
1− ω

)
dk−1
j − ω

[
j−1∑
`=1

dk` +

J∑
`=j+1

dk−1
`

]
on ∂Oj ,

(62)

with

∆d1
j = 0 in Ω \ ∂Oj , d1

j = 0 on ∂Ω,

d1
j = gj − u0 − ω

j−1∑
`=1

d1
` on ∂Oj ,

(63)

and uk = uk−1 + ω
∑J
j=1 d

k
j = u0 + ω

∑k
n=1

∑J
j=1 d

n
j . Notice that (62)-(63) and

(60) are equivalent, because (60) is the equivalent substructured form of (61) and
the equivalence between (61) and (62)-(63) is proved in the following theorem.

Theorem 14. Consider the sequences {uk}k ⊂ H with u0 ∈ H, {dkj }k with dkj ∈
Hj, and {vkj }k with vkj ∈ Hj for j = 1, . . . , J , and assume that vkj = vk−1

j + ωdkj
for k ≥ 1 and ω > 0 and v0

j ∈ Hj for j = 1, . . . , J . Then the following statements
are equivalent:

(a) the dkj , j = 1, . . . , J , solve (62)-(63) and uk = uk−1+ω
∑J
j=1 d

n
j = ω

∑k
n=1

∑J
j=1 d

n
j .

(b) the vkj , j = 1, . . . , J , solve (61) and uk =
∑J
j=1 v

k
j .

Proof. (a) ⇒ (b): first, using vkj = vk−1
j + ωdkj , we write that

(64) uk = uk−1 +ω

J∑
j=1

dkj = u0 +ω

k∑
n=1

J∑
j=1

dnj = u0 +

k∑
n=1

J∑
j=1

(
vnj −vn−1

j

)
=

J∑
j=1

vkj .

Notice that vkj ∈ Hj , hence it is sufficient to prove that the boundary condition on

∂Oj in (61) holds. Using the transmission condition of (62) and uk−1 = uk−2 +
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ω
∑J
`=1 d

k−1
` , we obtain

dkj = dk−1
j − ω

j−1∑
`=1

dk` − ω
J∑
`=j

dk−1
` = dk−1

j − ω
j−1∑
`=1

dk` − ω
J∑
`=1

dk−1
` + ω

j−1∑
`=1

dk−1
`

= dk−1
j − ω

j−1∑
`=1

dk` −
(
uk−1 − uk−2

)
+ ω

j−1∑
`=1

dk−1
` ,

which implies that

dkj + uk−1 + ω

j−1∑
`=1

dk` = dk−1
j + uk−2 + ω

j−1∑
`=1

dk−1
` = · · · = d1

j + u0 + ω

j−1∑
`=1

d1
` = gj ,

where we used the transmission condition of (63). Hence, we have obtained that

dkj = gj −uk−1−ω
∑j−1
`=1 d

k
` . Replacing this into the transmission condition of (62)

and using vkj = vk−1
j + ωdkj and (64), we obtain

1

ω

(
vkj − vk−1

j

)
= dkj = dk−1

j − ω
j−1∑
`=1

dk` − ω
J∑
`=j

dk−1
`

= gj − uk−2 − ω
J∑
`=1

dk−1
` − ω

j−1∑
`=1

dk` = gj − uk−1 − ω
j−1∑
`=1

dk`

= gj − uk−1 −
j−1∑
`=1

(
vk` − vk−1

`

)
= gj −

j−1∑
`=1

vk` −
J∑
`=j

vk−1
` ,

which implies that

vkj = vk−1
j +ωgj−ω

j−1∑
`=1

vk` −ω
J∑
`=j

vk−1
` = (1−ω)vk−1

j +ω

[
gj−

j−1∑
`=1

vk` −
J∑

`=j+1

vk−1
`

]
,

which is our claim.
(b) ⇒ (a): using dkj = 1

ω

(
vkj − v

k−1
j

)
, we obtain

uk =

J∑
j=1

vkj = u0 +

J∑
j=1

(
vkj − v0

j

)
= u0 +

k∑
n=1

J∑
j=1

(
vnj − vn−1

j

)
= u0 + ω

k∑
n=1

J∑
j=1

dnj ,

which implies that uk = uk−1 +ω
∑J
j=1 d

k
j . Now, since dkj = 1

ω

(
vkj − v

k−1
j

)
we have

that dkj ∈ Hj . It remains to show that the transmission conditions of (62)-(63)
hold. For k = 1 we have

d1
j =

1

ω
(v1
j − v0

j ) = gj −
j−1∑
`=1

v1
` −

J∑
`=j

v0
`

= gj − ω
j−1∑
`=1

d1
` −

j−1∑
`=1

v0
` −

J∑
`=j

v0
` = gj − ω

j−1∑
`=1

d1
` − u0.

In the case k > 1, we write the transmission condition of (61) on ∂Oj for k and
k − 1:

vkj =
(
1− ω

)
vk−1
j + ω

[
gj −

j−1∑
`=1

vk` −
J∑

`=j+1

vk−1
`

]
,
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vk−1
j =

(
1− ω

)
vk−2
j + ω

[
gj −

j−1∑
`=1

vk−1
` −

J∑
`=j+1

vk−2
`

]
.

Subtracting term by term these equations, dividing by ω, and recalling that dkj =
1
ω

(
vkj − v

k−1
j

)
we obtain the transmission condition of (62). �

A good choice of the parameter ω is not trivial. In general one would consider the
optimal parameter ω?, that is the parameter that minimizes the contraction rate
of the SOR method. From a discrete point of view, namely when one is interested
in solving a linear system Ag̃ = g using a stationary iterative method of the form
g̃k+1 = M−1N g̃k + M−1g, there are several results in the literature for point
relaxation (in contrast to block relaxation here). A famous result proved by Kahan
[29] says that for the SOR method one has ρ(M−1N) ≥ |1−ω|, which implies that
a necessary condition for convergence is ω ∈ (0, 2). In the case the matrix A has the
so called Property A, David Young proved in [45] that the optimal parameter, that
is the parameter that minimizes the spectral radius ρ(GSOR(ω)) with respect to ω ,
where GSOR(ω) is the SOR-iteration matrix, is given by ω? = 2

1+
√

1−ρ(GJ)2
, where

GJ is the iteration matrix of the corresponding point-Jacobi method applied to the
same linear system. A discrete form of our problem (18) for J = 2 is characterized
by a matrix A of the form

A =

[
I1 G2

G1 I2

]
,

where I1 and I2 are identity matrices. This shows that A is exactly in the form
required to have the Property A. Therefore, we can apply the theory developed by
David Young to get an explicit formula for the optimal parameter. This observation
is not in general true for J > 2. Moreover, to compute ω? one would need the
spectral radius of the block Jacobi method (the PMR). This is not an easy task,
even for J = 2. However, we can estimate ρ(GJ) at a continuous level using
maximum principle arguments, as we show in Section 3.5. Numerical experiments
in Section 7 show that this leads to a very good estimate of ω? for J = 2. In
the case that J > 2 the optimal parameter depends strongly on the geometry and
we observed that when the distance between the objects is sufficiently large the
optimal choice is ω? ≈ 1.

6. Scalability analysis and coarse correction

An iterative method is said to be scalable, if its contraction factor does not
deteriorate when the number of unknowns grows; see, e.g., [43] and references
therein. In the field of domain-decomposition methods for the solution of partial
differential equations, we distinguish different scalability problems depending on
the way the number of unknowns increases:

(a) the number of discretization points increases, but number and size of sub-
domains is unchanged.

(b) the subdomains have fixed size and their number increases making also the
size of the overall domain increase.

The first property is widely studied in the literature, see, e.g., [43] and references
therein. The case (b) has been only recently observed in [5] and theoretically
investigated in [7, 8, 9] for classical Schwarz methods and for classical one-level
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x = 0 1 2 3 J − 2 J − 1 J x = J δ

δ δ δ δ δ δ

Figure 4. Geometry of the one-dimensional example used to
study scalability of the AltMR. In this figure, δ is the distance
between the centers of the J equidistant objects that are repre-
sented by the thick segments.
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Figure 5. Left: Spectral radius of the AltMR as a function of the
number of objects. Right: Example of the spectrum of the (one-
dimensional) operator GGS = −(D + L)−1U . Notice that many
eigenvalues are clustered around 1.

domain-decomposition methods, like Neumann-Neumann, Dirichlet-Neumann and
optimized-Schwarz methods in [6].

Studying methods of reflections, we observed numerically that scalability in the
case (a) holds, that is the convergence of the method is not affected by the number
of discretization points of the boundaries of the objects ∂Oj , for j = 1, . . . , J . On
the other hand, scalability in the sense (b) does not hold, as we will show below.
Moreover, if the domain Ω is fixed and one increases the number of objects, then
obviously the distance between them reduces, and we have seen in Section 9 for
J = 2 that the contraction factor deteriorates in this case. The same behavior
has been observed, e.g., in [34, 10]. This implies the need of a coarse-correction to
address these unfavorable behaviors.

We consider a one-dimensional problem characterized by J equidistant objects
(subintervals); see Figure 4. This is a finite-dimensional problem because the un-
knowns are the Dirichlet data g̃ ∈ R2J on the 2J extrema of the objects. The
problem can then be written in a form Ag̃ = g, where g ∈ R2J and A ∈ R2J×2J .
Using the equivalence result proved in Theorem 2, one can easily construct the
block Gauss-Seidel (AltMR) iteration matrix, that is GGS = −(D+L)−1U and nu-
merically compute its spectral radius for increasing number of objects J . The result
is given in Figure 5, which clearly shows that the AltMR does not scale because
ρ(GGS) deteriorates for growing J . The heuristic reason for this behavior is that,
once the approximate solution is corrected on one object, say the jth one, then the
procedure continues to correct it sequentially on all the other objects. Every cor-
rection induces an additional error in the approximate solution on the jth object.
Therefore, when J increases, more and more objects have to be corrected, which
adds more and more error induced by the alternating correction procedure on the
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Figure 6. Example of an eigenvector of the one-dimensional iter-
ation matrix GGS corresponding to an eigenvalue λ ≈ 1. The right
plot shows a zoom into the highly oscillating area of the eigenvector
depicted in the left plot.

jth object. Similar arguments apply also for the other methods of reflections. We
thus need a coarse correction to obtain a scalable method.

A spectral analysis of the one-dimensional iteration matrix GGS reveals that
many of its eigenvalues are clustered around 1, see Figure 5 (right), and that the
corresponding eigenvectors have a special structure: they globally oscillate with
(local) maxima and minima attained on the objects, and many of them have con-
stant value on the objects; see Figure 6. This suggests that a coarse-correction
has mainly to deal with errors on the boundaries of the objects. Therefore, to
design our coarse-space we denote by ψj,n for n = 0, 1, . . . the eigenfunction of the
Laplace-Beltrami operator on the jth object ∂Oj , for j = 1, . . . , J , and introduce
functions ϕj,n as solution to the Dirichlet problem

∆ϕj,n = 0 in Ω \ ∪J`=1∂O`,

ϕj,n = ψj,n on ∂Oj ,

ϕj,n = 0 on ∂Ω ∪
(
∪J`=1, 6̀=j∂O`

)
,

(65)

for j = 1, . . . , J and n = 0, 1, . . . . Notice that ϕj,n ∈ H for any j and n, and the
functions ψj,n are classical Fourier-basis functions in two dimensions and spherical
harmonics in three dimensions. Our coarse-space is then defined as

V Nc := span
j=1,...,J, n=0,1,...,N

{ϕj,n},

where N is the number of eigenfunctions considered. Notice that the dimension
of V Nc is proportional to N . It is clear that the coarse space V Nc has mainly
information condensed on the boundaries of the objects, similar to the Spectral
Harmonically Enriched Multiscale coarse space SHEM in domain decomposition
[19, 18], which contains mainly information on the interfaces between subdomains,
see also [17, 16]. It is important to remark that the construction of each function
ϕj,n would require the solution of problem (65), which requires the same computa-
tional effort of the original problem (3). However, this is not needed because the
substructured formulation introduced in Section 3.3 allows us to work directly on
the boundary of the objects: our coarse space contains thus spectral approxima-
tions of the substructured problem. For this reason, we introduce the restriction
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operator and its corresponding adjoint (prolongation or extension) operator as

R :=


FN1

FN2
. . .

FNJ

 and R∗ =


(FN1 )∗

(FN2 )∗

. . .

(FNJ )∗

 ,
where FNj : L2(∂Oj)→ RN is given by

FKj (w) =
[
c1,j . . . cN,j

]>
=: cj ,

with ck,j =
∫
∂Oj

wfk,j for any w ∈ L2(∂Oj) and j = 1, . . . , J , and (FNj )∗ : RK →
L2(∂Oj) is

(FNj )∗(cj) =

K∑
k=1

ck,jψk,j ,

for cj ∈ RK . These operators allow us to restrict the operator A introduced in (18)
and (19) on the coarse space V Nc as Ac = RAR∗ ∈ RJN×JN .

We are now ready to state our two-level method of reflection: given an approxi-
mation g̃k to g̃ at the iteration k, a coarse-corrected method of reflections step is
defined as

g̃k+1/2 := GMR g̃k +M−1
MRg (one-level MR step),

r̃k+1/2 := g −A g̃k+1/2 (compute the residual),

g̃k+1/2
c := A−1

c R r̃k+1/2 (compute the correction),

g̃k+1 := g̃k+1/2 +R∗ g̃k+1/2
c (correct g̃k+1/2),

where GMR is the one-level method of reflection operator and MMR the correspond-
ing preconditioning matrix, which can be, e.g., GGS (with MMR = (D+L)) for the
AltMR or GJ (with MMR = D) for the PMR. A direct calculation reveals that the
two-level method of reflections iteration operator is

GMR−c.c. =
[
I −R∗A−1

c RA
]
GMR.

A coarse corrected method of reflection is given in Algorithm 5.

Algorithm 5 Method of Reflections with Coarse Correction

Input: K (maximum number of iterations), tol (tolerance), g̃0 (initial guess).
Input: fMR(v,w) := GMR v + M−1

MRw (function that performs one step of a method of
reflection MR),

Input: g (data of the problem).
1: Compute r̃0 = g −Ag̃0 and set k = 0.
2: while k < K and ‖r̃k‖ > tol do
3: Set k = k + 1.
4: g̃k = fMR(g̃k−1,g).
5: r̃k = g −A g̃k.
6: g̃c = A−1

c R r̃k.
7: g̃k+1 = g̃k +R> g̃c.

8: end while
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Figure 7. Geometry of the problem under consideration, domain
with some normal unit vectors. Left: objects relatively far from
each other, right: objects relatively close to each other.

Notice that like in domain decomposition, Algorithm 5 requires the solution of
the problem projected onto the coarse space. If the dimension of the coarse space
is proportional to J , then this solution requires in principle O(J3) flops. Therefore,
for very large J the cost of the coarse correction becomes comparable to the cost of
solving the full problem by a direct method. In this case, our two-level framework
would need to be extended to a multi-level setting, which is however beyond the
scope of this paper.

7. Numerical experiments

We now present some numerical tests to illustrate the results we obtained, and
to explore cases not covered by the theory we developed. We start with the case
of two objects, and then investigate the case of three objects. We then study
the scalability of the method with respect to the number of objects and finally
consider the method as a preconditioner for the GMRES algorithm. We used a
publicly available package1 of Matlab functions to solve the integral equations of
the problem at collocation points by the Nyström method.

7.1. Two objects. We first consider the case of two objects of radius r = 0.2, in
the unit disc, for which we have theoretical results. The theoretical value of the
optimal ω? for the SOR variant of the method of reflections is given by

(66) ω?(r, δ) =
2

1 +
√

1− ρPMR(r, δ)2
.

With this choice of ω, the theoretical convergence factor is

(67) ρSOR(r, δ)ω=ω? = ω?(r, δ)− 1

In a first experiment, we consider two cases where the distance between the objects
is either relatively large, that is δ = 0.5, or relatively small that is δ = 0.25, see
Figure 7. We consider both SOR and damped PMR. In the case of SOR, ω? is
given by Equation (66), where, in our 2 object case, ρPMR(r, δ) can be computed
numerically and estimated theoretically. Alternatively the latter quantity can be
estimated using formulas provided in Theorem 8 and Corollary 1. Results are
presented in Figure 8. We see that the agreement between the theoretical and

1Integral Equation Solver (http://www.mathworks.com/matlabcentral/fileexchange/34241)
by Alexandre Munnier and Bruno Pinçon, MATLAB Central File Exchange. Retrieved February

15, 2016.
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Figure 8. Contraction factor of the SOR variant of the method of
reflections with respect to ω (stars), theoretical values of ω? given
by (66) where ρPMR(r, δ) is obtained either using Theorem 8 and
Corollary 1 (dashed line), or computed numerically (dotted line).
In the latter case, the optimal contraction factor is computed by
Equation (67) (solid line). Left: the objects are far away from each
other. Right: the objects are close to each other.

Figure 9. Contraction factor of the damped PMR with respect
to ω (stars), theoretical estimate of the contraction factor (solid
line) given by Theorem 8 and Corollary 1. Left: the objects are
far from each other. Right: the objects are close to each other.

numerical values of ω? is good when the objects are far from each other, and less
accurate when the objects are close to each other. We also see that the relaxation
parameter ω? is only close to 1 in the first case, which means that the SOR variant
provides a real improvement with respect to the standard AltMR when the objects
are relatively close to each other. In the case of PMR, we observe that the damping
does not improve the contraction factor, see Figure 9.

The theoretical estimate of the contraction factor is rather accurate and does not
seem to depend on the distance between the objects. Note also that the eigenvalues
of the PMR iteration matrix form a symmetric set with respect to zero. Indeed,
one has

GJ = −D−1(L+ U) = −

[
0 G̃

G̃ 0

]
,

so that

det(GJ − λI) = det

[
−λI −G̃
−G̃ −λI

]
= det (−λI) det

(
−λI +

1

λ
G̃2

)
= det

(
−λ2I + G̃2

)
.
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Figure 10. Contraction factors of AltMR (left) and PMR (right)
with respect to δ and theoretical contraction factors (solid lines)
given by Theorems 4 and 8 and Corollary 1, compared with nu-
merical contraction factors (stars).

Figure 11. Left: geometry of the problem, domain with some
normal unit vectors. Right: Contraction factor of the SOR variant
with respect to ω (stars), theoretical values of ω? given by (66)
where ρPMR(r, δ) is obtained either from Theorem 8 and Corollary
1 (dashed line) or computed numerically (dot line). In the latter
case, the optimal contraction factor is computed by Equation (67)
(solid line).

As a consequence, if λ is an eigenvalue, then also −λ is an eigenvalue. Because of
Theorem 11, we find that in this case ω? = 1, as observed in Figure 9.

Finally, we compare theoretical and numerical values of the contraction factors
both for AltMR and PMR when the distance δ between the objects varies; the
results are shown in Figure 10, and we see a good agreement between theory and
numerics.

7.2. Three objects. We now consider the case of three objects of radius r = 0.2 in
the unit disc, for which we do not have theoretical results. For the sake of simplicity,
we restrict ourselves to SOR, and repeat the experiments done to obtain Figure 8.
The results are presented in Figure 11. We observe again that SOR provides a
real improvement compared to the standard AltMR, in the sense that the observed
optimal ω differs from 1. We however also see that the estimates obtained with
Equation (66) are not accurate now.

7.3. Scalability with respect to the number of objects. In this test, we study
the scalability of the AltMR and PMR when the number of objects varies, and the
effect of the coarse correction on both methods. We consider for a given L ∈ N+
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Figure 12. Geometry of the problem under consideration for L =
3 (left) and L = 4 (right).

Figure 13. Contraction factors of the AltMR (left) and PMR
(right) with respect to the number of objects. Contraction factor
without (crosses) and with (circles) coarse correction.

a square of size L × L with rounded corners containing J = L2 objects of radius
r = 0.1, see Figure 12. We then evaluate numerically the contraction factor for
both methods, with and without coarse correction, see Figure 13. We consider
here the coarse space V 0

c = span
j=1,...,J

{ϕj,0} of dimension J , where we use only the

first (constant) Fourier mode ψj,0 for each object, see (65). We observe that the
coarse correction significantly reduces the contraction factor, by approximately one
order of magnitude for the AltMR and even more for the PMR, where the coarse
correction leads to a convergence factor below 1, so that the PMR with coarse
correction remains convergent even in cases where the standard PMR diverges.

We next repeat these two tests with the method of reflection variants with re-
laxation, namely, with the SOR variant and the APMR, see Figure 14. We see that
the coarse correction significantly improves the performance of the SOR variant,
but not the APMR. It even seems that the convergence rate remains unchanged in
the case of APMR. This is due to the relaxation parameter ω = 1

J that decays as
J grows.

Next, we solve the problem using GMRES and employing the methods of reflec-
tions as preconditioners, both with and without coarse correction. For reference,
we compare the performance of these methods with the coarse-corrected methods
of reflections used as stationary iterative methods; the required iteration numbers
are summarized in Table 1. We observe that with GMRES now the PMR precondi-
tioner leads to a convergent method, even though as a stationary iterative method
it was not convergent. This is very similar to the additive Schwarz method which is
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Figure 14. Contraction factors of the SOR variant with ω = 1.3
(left) and APMR (right) with respect to the number of objects.
Contraction factor without (crosses) and with (circles) coarse cor-
rection.

# Objects (r = 0.1) 4 9 16 25 36 49 64 81 100 121 144

GMRES-PMR 6 9 11 14 16 18 19 20 21 23 24

GMRES-AltMR 5 8 11 14 16 19 22 24 27 30 32

GMRES-PMR c.c. 3 3 3 3 3 3 3 3 3 3 3

GMRES-AltMR c.c. 3 3 3 3 3 4 4 4 4 4 4

AltMR c.c. 8 8 9 9 9 9 9 9 9 9 9

PMR c.c. 6 7 8 8 9 9 9 9 9 9 9

Table 1. Number of GMRES iterations necessary to get a residual
smaller than 10−10. The different columns correspond to different
numbers of objects and show the number of iterations performed
by GMRES and various preconditioners: AltMR, PMR with coarse
correction, and AltMR with coarse correction. In the two last
lines, we show the number of iterations required by coarse corrected
AltMR and PMR used as stationary iterations.

# Objects (r = 0.3) 4 9 16 25 36 49 64 81 100 121 144

GMRES-PMR 10 15 19 22 25 28 30 33 34 37 39

GMRES-AltMR 7 11 15 19 23 27 32 36 40 44 49

GMRES-PMR c.c. 5 6 6 6 6 6 7 6 7 7 7

GMRES-AltMR c.c. 5 6 6 7 7 8 8 8 8 8 8

AltMR c.c. 18 17 21 19 22 20 22 22 22 23 23

PMR c.c. 12 15 18 20 22 23 23 23 24 25 26

Table 2. Same experiment setting as in Table 1, but for a larger
object radius r = 0.3.

also not converging as a stationary iterative method [13, 15]. We also see that with
our coarse correction one obtains scalability with respect to the number of objects.
This scalability also holds for the stationary iterative variants. We next repeat the
experiment using the same geometry but increasing the radius of the objects to
r = 0.3, which implies that the distance between the objects is smaller, and thus
a slower convergence rate of the methods of reflections. The number of iterations
are summarized in Table 2. We see that indeed iteration numbers are now larger,
but the methods of reflections with our coarse correction are still scalable.
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Step size 0.1000 0.0500 0.0250 0.0125 0.0063 0.0031 0.0016 0.0008 0.0004

GMRES-PMR 9 9 9 9 8 9 9 8 8

GMRES-AltMR 8 8 8 8 8 8 8 8 8

GMRES-PMR c.c. 3 3 3 3 3 3 3 3 3

GMRES-AltMR c.c. 3 3 3 3 3 3 3 3 3

AltMR c.c. 8 8 8 8 8 8 8 8 8

PMR c.c. 7 7 7 7 7 7 7 7 8

Table 3. Same experiment setting as in Table 1, but for a fixed
number of objects when the mesh is refined.

We finally repeat this test with a fixed number of J = L3 = 9 objects of radius
r = 0.1, but using various step sizes for the boundary discretization. The results
are shown in Table 3. We observe scalability with respect to the mesh size in all
cases.

8. Conclusions

We presented an extensive analysis of the alternating and parallel methods of
reflections using domain decomposition techniques. We proved that for two objects,
the methods of reflections can be identified with Schwarz domain decomposition
methods, which led to new, sharp convergence estimates in this case. We also
showed that for more than two objects, the methods of reflections are different from
Schwarz domain decomposition methods. We then used substructuring techniques
from domain decomposition to rewrite the methods of reflections only iterating on
traces, which allowed us to identify these methods with block Gauss-Seidel and
block Jacobi methods. Using this insight, we derived new, relaxed variants of the
methods of reflections, which converge faster that the classical variants, and also
introduced for the first time a coarse correction for the methods of reflections to
make them scalable when the number of objects becomes large. The substructured
formulation allowed us also naturally to use these methods as preconditioners for
Krylov methods. All our results were obtained for the case of the Laplacian, but
other operators could be used as well in the relations we found.

References

[1] M. Balabane. Boundary decomposition for Helmholtz and Maxwell equations 1: disjoint sub-

scatterers. Asymptotic Anal., 38(1):1–10, 2004.
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