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HOMOGENISATION FOR ANISOTROPIC

KINETIC RANDOM MOTIONS

PIERRE PERRUCHAUD

Abstract. We introduce a class of kinetic and anisotropic random motions pxσt , v
σ
t qtě0

on the unit tangent bundle T 1M of a general Riemannian manifold pM, gq, where σ is
a positive parameter quantifying the amount of noise affecting the dynamics. As the
latter goes to infinity, we then show that the time rescaled process pxσσ2tqtě0 converges
in law to an explicit anisotropic Brownian motion on M. Our approach is essentially
based on the strong mixing properties of the underlying velocity process and on rough
paths techniques, allowing us to reduce the general case to its Euclidean analogue.
Using these methods, we are able to recover a range of classical results.

1. Introduction

We consider a class of anisotropic and kinetic random motions on the unit tangent
space of a general Riemannian manifold pM, gq of dimension d ě 2. In the simplest
case when the base manifold is the Euclidean space Rd, the typical process we have in
mind can be described as follows: let σ ą 0 be a positive parameter and let pBtqtě0 be a
Brownian motion in Rd with (non identity) covariance matrix Σ “ A˚A. We construct
an anisotropic diffusion process pvtqtě0 “ pv

σ
t qtě0 on the Euclidean sphere Sd´1 Ă Rd by

solving the Stratonovich differential equation

(1.1) dvt “ σΠvKt
˝ dBt,

where ΠvKt
denotes the projection on the orthogonal of vt. We then integrate the velocity

process pvtqtě0 to obtain a process pxtqtě0 “ px
σ
t qtě0 with values in Rd

(1.2) xt :“ x0 `

ż t

0
vsds.

The process pxt, vtqtě0 is thus a diffusion process with values in the unit tangent space
T 1Rd “ Rd ˆ Sd´1. The first projection pxtqtě0 is a C1 curve in Rd, which inherits the
anisotropy of the velocity process pvtqtě0, and the positive parameter σ allows one to
slow or speed up the clock of the latter. The next figure shows an approximation of a
sample path of the resulting process.

On a general Riemannian manifold pM, gq, an analogue process pxt, vtqtě0 with values
in the unit tangent bundle T 1M can be constructed starting from the above Euclidean
process and using the classical stochastic development/parallel transport machinery.
Namely, the process pxt, vtqtě0 in T 1M is characterised by the fact that the image of
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2 P. PERRUCHAUD

Figure 1. A sample path of the velocity process pvtq0ďtď10 on S2 (left)
and the corresponding pxtq0ďtď10 in R3 (right) for the choice of covariance
matrix Σ “ diagp1, 1.1, 1.2q.

vt P T
1
xtM in the fixed unit tangent space T 1

x0M » Sd´1 by the inverse stochastic parallel
transport along pxsq0ďsďt solves equation (1.1) above.

The isotropic analogue of the process, i.e. the process associated with Σ “ Id, was
introduced in [ABT15] under the name kinetic Brownian motion, where its was shown
that as the parameter σ goes from zero to infinity, then the sample paths of the process
pxσ2tqtě0 interpolates in a precise sense between geodesics and Brownian paths on the
based manifold M. For a fixed intensity parameter σ, the Poisson boundary of the
process was also fully determined if the base manifold is rotationally invariant.

The motivation to introduce anisotropy in this context is twofold. From an applied
point of view, the kinetic Brownian motion is a simple, yet very reasonable model for the
dynamics of a mesoscopic spherical particle with bounded velocity in an isotropic heat
bath. Compared to the standard Langevin dynamics where the velocities are Gaussian,
the fact that the velocities are here of unit norm is perfectly consistent with special
relativity theory. The homogenisation phenomena shown in [ABT15] illustrates the fact
that the scaling limit of the process, i.e. the macroscopic behaviour of the particle
is nevertheless diffusive, as awaited. Now, if the geometry of the mesoscopic particle
under consideration is not spherical, or if the heat bath is anisotropic, the dynamics
of the velocity process has to be anisotropic, see e.g. [HBR13, CP03, Kam88] and
the references therein. In that context, the velocity evolution given by the stochastic
differential equation (1.1) with Σ ‰ Id is very natural. As we will see below and with
this applied point of view, the main result of this article guarantees that the macroscopic
behaviour of the particle is still diffusive, with an explicit anisotropy matrix.

From a more theoretical point of view, the introduction of anisotropy is also unavoid-
able if one wants to generalise the results of [ABT15] to an infinite dimensional setting,
say to an infinite dimensional Hilbert space. Indeed, doing so, one quickly faces the
problem of defining spherical Brownian motion in this context. Looking at equation
(1.1), the orthogonal projection makes perfect sense in a Hilbert setting but we have to
give meaning to the driving Brownian motion B. This can naturally be done using the
notion of abstract Wiener space, see e.g. [Gro67, Gro70] or [Str93, Chapter 8]. Roughly
speaking, in that framework the driving process in (1.1) has to belong to the image of
a radonifying injection, hence introducing a Hilbert-Schmidt covariance operator. In a
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finite dimensional setting, the action of this Hilbert-Schmidt operator amounts to replac-
ing the standard Brownian motion B by a Brownian motion with covariance Σ ‰ Id, i.e.
to replace the isotropic noise driving kinetic Brownian motion by an anisotropic noise;
this justifies our choice of dynamics for the velocity process.

Our goal in this paper is to exhibit the asymptotics of the time rescaled process
pxσσ2t, v

σ
σ2tqtě0 as the intensity parameter σ goes to infinity. More precisely, we show

that in both Euclidean and Riemannian contexts, its first projection converges to an
anisotropic Brownian motion. The presence of anisotropy drastically complexifies the ap-
proach and computations compared to the isotropic framework. Namely, in the isotropic
Euclidean setting considered in Section 2.2 of [ABT15] and which is the core of the proof
when associated with rough paths techniques, the homogenisation of kinetic Brownian
motion was proved using Itô calculus and standard martingale techniques. As it will be
clear in Section 2 below, the Doob–Meyer decomposition of the velocity process given
by equation (1.1) gets more involved here, its invariant measure is not likely to be easy
to describe, and martingale techniques need explicit solutions of the Poisson equation
which seems hopeless in this context. In fact, guessing a formula for the invariant mea-
sure of the vσ on the sphere before reading the statement of Proposition 1.1 does not
seem obvious.

For this reason, we adopt a different approach and point of view here. Our proof
of homogenisation for the time rescaled version of the process pxσt , v

σ
t qtě0 is indeed es-

sentially based on quantitative mixing properties of the velocity process. We show in
particular that

Proposition 1.1 (Lemma 2.1 and Proposition 2.4 below). The process vσt solution of
(1.1) is ergodic in Sd´1 with an explicit invariant measure µ whose density with respect
to the uniform measure dθ on the sphere is given by

dµ

dθ
pθq “

}A´1θ}1´d
ş

Sd´1 }A´1θ}1´ddθ
.

In particular, the invariant measure µ are well as the trajectories are invariant under
all the coordinate reflections

(1.3) pθ1, ¨ ¨ ¨ , θi, ¨ ¨ ¨ , θdq ÞÑ pθ1, ¨ ¨ ¨ ,´θi, ¨ ¨ ¨ , θdq, 1 ď i ď d.

Moreover, there exists a positive constant τ such that, if Fra,bs denotes the σ-algebra
generated by the unit speed (σ “ 1) velocity process vt, for a ď t ă b, then for any
0 ď s ă t and any bounded measurable real-valued random variables P and F that are
Fr0,ss and Frt,8s´measurable, respectively, we have

(1.4)
ˇ

ˇEµrPF s ´ EµrP sEµrF s
ˇ

ˇ À |P |8|G|8 e´pt´sq{τ .

The above strong mixing and symmetry properties of the velocity process are the key
ingredients to establish the homogenisation of the anisotropic version of kinetic Brownian
motion in the Euclidean setting. Indeed, we have the following result.

Theorem 1.2 (Proposition 3.4 and Theorem 3.5 below). Let pxσt , v
σ
t qtě0 with values in

T 1Rd be the solution of equation (1.1) and (1.2), starting from px0, v0q where x0 is fixed
and v0 chosen at random according to µ. Then as σ goes to infinity, the time rescaled
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process pxσσ2tqtPr0,1s converges in law to a Brownian motion in the Euclidean space Rd,
with covariance matrix diagpγ1, ¨ ¨ ¨ , γdq where

γi :“ 2

ż `8

0
Eµrvi0vitsdt, 1 ď i ď d.

Our strategy of proof consists in establishing that the rough path lift of pxσσ2tqtě0

converges to the Stratonovich rough path lift of a Brownian motion with the above
covariance. To do so, we use again the strong mixing properties of the velocity process,
associated with a Lamperti-type criterion to ensure the tightness of the lift in rough
path topology — see Lemmas 3.1 and 3.2 below. We then identify the limit process by
showing that it has to be a stationary process with independent Gaussian increments on
the nilpotent group associated with the rough path structure, see Theorem 3.5.

Using the fact that the notion of stochastic development amounts to solving a stochas-
tic differential equation and that the Itô map is continuous with respect to the rough
paths topology, one can conclude that the previous Euclidean statement actually holds
on a general Riemannian manifold. Anisotropic Brownian motion on M is defined as
the stochastic development of an anisotropic Brownian motion in Tx0M.

Theorem 1.3. Let pM, gq be a complete and stochastically complete Riemannian man-
ifold and let pxσt , v

σ
t qtě0 be the process with values in T 1M characterised by the fact that

the image of vt P T
1
xtM in the fixed unit tangent space T 1

x0M » Sd´1 by the inverse

stochastic parallel transport along pxsq0ďsďt solves equation (1.1) in T 1
x0M. Then as σ

goes to infinity, the time rescaled process pxσσ2tqtPr0,1s converges in law to an anisotropic
Brownian motion on the base manifold M.

As it will be clear from the proof of Theorem 1.2, the homogenisation phenomenon
holds as soon as the mixing properties of the velocity process and the symmetry of the
trajectories described in Proposition 1.1 hold. In other words, the conclusion of Theorem
1.3 is valid as soon as the process pxσt , v

σ
t qtě0 we consider is the stochastic development

of a velocity process satisfying the conclusions of Proposition 1.1. In particular, our
proof actually applies even if pvtqtě0 “ pv

σ
t qtě0 is an ergodic Markov process with jumps

on Sd´1 as soon as the conditions (1.3) and (1.4) are fulfilled.

Theorem 1.4. Let pM, gq be a complete and stochastically complete Riemannian man-
ifold and let pxσt , v

σ
t qtě0 be the process with values in TM characterised by the fact that

the image of vt P TxtM in the fixed tangent space Tx0M » Rd by the inverse stochastic
parallel transport along pxsq0ďsďt satisfies the conditions (1.3) and (1.4). Then as σ
goes to infinity, the time rescaled process pxσσ2tqtPr0,1s converges in law to an anisotropic
Brownian motion on the base manifold M.

See Theorem 4.1 for a precise statement. In this level of generality, in Section 4.2 we re-
cover classical results, amongst which Pinsky’s so-called random flight [Pin76] and time-
dependent variations of it; the anisotropic Langevin diffusion, where v is an anisotropic
Ornstein-Uhlenbeck process; and linear interpolation of symmetric random walks as in
[BFH09]. It is unclear whether or not the methods of X.M. Li [Li16a, Li16b] or Herzog,
Hottovy and Volpe [HHV16] can get back such a result. In a somewhat independent
direction, the interesting work [CFK`17] of Chevyrev and coauthors studies this kind
of convergence in deterministic systems.
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The outline of the article is the following. In the next Section 2, we study the velocity
process solution of equation (1.1). We characterise its invariant measure and establish the
mixing properties which are the key ingredients in our approach of the homogenisation
phenomenon. Section 3 is then devoted to the proofs of our main Theorem 1.2 and 1.3.
More precisely, in Section 3.1, we show the tightness of the rough path lift of the process
in the Euclidean setting. In Section 3.2, we then identify the limit as a Brownian motion
on the underlying two-step nilpotent Lie group. This completes the proof of Theorem
1.2 in the Euclidean setting. Finally, in Section 3.3, we use the continuity of the Itô map
to extend the proof of homogenisation to an arbitrary complete stochastically complete
Riemannian manifold. The last section consists in developments, including Theorem 1.4
and comments in Section 4.1, and various examples in Section 4.2.

2. Mixing properties of the velocity process

Let pBtqtě0 be a Euclidean Brownian motion in Rd with non degenerate covariance
matrix Σ. Without loss of generality, up to an appropriate choice of coordinate system,
we can assume that the matrix Σ is diagonal, with square root A, namely

Σ “ diag
`

α2
1, ¨ ¨ ¨ , α

2
d

˘

, A “ diag pα1, ¨ ¨ ¨ , αdq .

Let us recall that, by definition, the anisotropic velocity process pvtq “ pv1
t , ¨ ¨ ¨ , v

d
t q

with values in Sd´1 Ă Rd and with intensity σ ą 0 is the solution of the Stratonovich
stochastic differential equation

dvt “ σΠvKt
˝ dBt,

where ΠvKt
denotes the projection on the orthogonal of vt. Equivalently, there exist a

standard Euclidean Brownian motion pWtqtě0 such that vt satisfies the Itô stochastic
differential equation

dvt “ σΠvKt
AdWt ´

σ2

2

`

Σ` trpΣqId´ 2xvt,ΣvtyId
˘

vtdt,

or even more explicitly in Euclidean coordinates, for 1 ď i ď d
(2.1)

dvit “ ´
σ2

2
vit

«

α2
i `

d
ÿ

j“1

α2
j ´ 2

d
ÿ

j“1

α2
j |v

j
t |

2

ff

dt`σ

˜

αidW
i
t ´ v

i
t

d
ÿ

j“1

αjv
j
tdW

j
t

¸

.

In the following, d and Σ are fixed, and we write f À g for some quantities f and g
whenever f ď Cg for a constant C ą 0 independent of any other parameter.

2.1. Invariant measure. The object of this section is to establish that the velocity
process pvtqtě0 is ergodic in Sd´1 and to write down its invariant measure explicitly.
From equation (2.1), it is not difficult to express the infinitesimal generator L of the
process and try to solve the equation L˚µ “ 0. Nevertheless, since we are working on
the sphere, integrations by parts and computations are quite unpleasant, and we prefer
to introduce a natural Euclidean lift of the velocity process. Namely, if } ¨ } denotes the
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standard Euclidean norm, consider the Rd-valued process putqtě0 starting from u0 ‰ 0
such that v0 “ u0{}u0}, and solution of the stochastic differential equation system

duit “
σ2

2

`

´uit}ut}
2 ` α2

i u
i
t

˘

dt` σαi}ut}dW
i
t , 1 ď i ď d.

Equivalently, it is the solution to the Stratonovich stochastic differential equation

dut “ ´
σ2

2
}ut}

2ut dt` σ}ut} ˝ dBt.

Then, a direct application of Itô’s formula shows that the projection ut{}ut} on Sd´1

satisfies equation (2.1). To show that ut is ergodic and find an explicit expression for its
invariant measure, let us now perform the simple linear change of variable yt :“ A´1ut “
Σ´1{2ut. By Itô’s formula we get

dyit “
σ2

2

`

´}Ayt}
2yit ` α

2
i y
i
t

˘

dt` σ}Ayt}dWt.

Setting VApyq :“ ´ log }Ay} ` 1
2}y}

2, the infinitesimal generator Ly of yt is given by

Ly “
σ2

2
}Ay}2L0, where L0 :“ p´∇VA ¨∇`∆q .

The diffusion process with generator L0 is naturally ergodic with invariant measure
proportional to e´VA so that pytqtě0 is also ergodic with invariant measure

νpdyq :“ CA }Ay}
´1e´

1
2
}y}2 dy,

where CA is a normalizing constant. In other words, the Euclidean lift putqtě0 of pvtqtě0

is ergodic in Rd and its invariant measure is proportional to } ¨ }´1 times the centred
Gaussian measure with covariance Σ. One can then compute the invariant measure of
the velocity process as the image measure of the latter with respect to the projection on
the sphere.

Lemma 2.1. The velocity process pvtqtě0 is ergodic in Sd´1 and its invariant measure
µ is absolutely continuous with respect to the uniform measure dθ on the sphere, with a
density given by

dµ

dθ
pθq “

}A´1θ}1´d
ş

Sd´1 }A´1θ}1´ddθ
.

In particular, the invariant measure µ of the velocity process is invariant under all the
coordinate reflections pθ1, ¨ ¨ ¨ , θi, ¨ ¨ ¨ , θdq ÞÑ pθ1, ¨ ¨ ¨ ,´θi, ¨ ¨ ¨ , θdq, for 1 ď i ď d.
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Proof. For any bounded measurable test function f on Sd´1, we have

ż

Sd´1

fpvqµpdvq “ CA

ż

Rd
f

ˆ

Ay

}Ay}

˙

e´
1
2
}y}2

}Ay}
dy

“ CA

ż

Rd
f

ˆ

u

}u}

˙

}u}´1e´
1
2
}A´1u}2 du

detA

“ C 1A

ż `8

0

ż

Sd´1

f pθq r´1e´
1
2
r2}A´1θ}2rd´1drdθ

“

ş

Sd´1 fpθq}A
´1θ}1´ddθ

ş

Sd´1 }A´1θ}1´ddθ
.

�

The next figures illustrate the relation between the covariance matrix Σ, the sample
paths of the velocity process pvtq and its invariant measure µ. The colour map on the
sphere is chosen according to the value of the density of the invariant measure: small
values of }A´1θ}1´d are represented in light grey whereas large values are represented in
dark grey.

Figure 2. From left to right, sample paths of the velocity process and
colour map of the invariant probability measure for Σ “ diagp1, 1.1, 1.2q,
Σ “ diagp1, 4, 9q, and Σ “ diagp1, 100, 100q.

Remark 2.2. Let us emphasise here that the invariant measure µ of the velocity process
actually differs from the projected Gaussian measure with covariance Σ, also known as
angular Gaussian distribution, which, at first sight, could seem like a natural candidate
for the velocity’s equilibrium measure. Namely, if f is a bounded measurable test function
on the sphere, and if X is a Gaussian variable in Rd with law N p0,Σq, we have indeed

E
”

f
´

X
}X}

¯ı

“

ş

Sd´1 fpθq}A
´1θ}´ddθ

ş

Sd´1 }A´1θ}´ddθ
.

In other words, the invariant measure µ admits a density proportional to }A´1θ} with
respect to the standard projected Gaussian measure of covariance Σ.
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Remark 2.3. Going back to the modelisation point of view mentioned in the introduc-
tion, where pvtqtě0 is thought as the velocity of a mesoscopic particle in an anisotropic
heat bath, the invariant measure µ also differs from the standard choices for equilibrium
measure in directional statistics, such as the Von Mises–Fisher distribution, Fisher–
Bingham distribution or wrapped Brownian distributions, see Sections 9.3 and 9.4 of
[MJ00] and the references therein. We emphasise here the fact that the dynamics gov-
erned by equation (1.1) is fully intrinsic so that the measure µ is a simple and natural
candidate to model anisotropic data; it also has natural interpretation in terms of pro-
jection of the invariant measure of the Euclidean lift putqtě0.

2.2. Mixing properties. Let us now establish the strong mixing properties of the
velocity process that will be our main tool in the proof of the homogenisation result,
Theorem 1.2. To avoid changes in the time scale, we fix σ “ 1, from here to the end of the
section. We also introduce a few additional notations. If λ is a probability distribution
on Sd´1, let Pλ be a probability measure under which the velocity pvtqtě0 solves equation
(1.1) with initial condition v0 „ λ, and Eλ its associated expectation. We denote by
pPtqtě0 the semigroup associated to v, acting on continuous functions f : Sd´1 Ñ R, and
by pP ˚t qtě0 its dual, acting on probability measures on Sd´1. In other words,

Ptfpxq :“ Eδxrfpvtqs and P ˚t λ :“ Lpvt|v0 „ λq,

for any such f and λ.

To get to the second part of Proposition 1.1, we use the well-known fact that since
the velocity process pvtqtě0 is an elliptic diffusion in a compact Riemannian manifold,
here the unit sphere, with invariant probability measure µ, we have the estimate

(2.2) }P ˚t λ´ µ}TV À expp´t{τq

for any probability λ on Sd´1, for some positive constant τ . Given an interval ra, bq of
r0,8q, define Fra,bq as the σ-algebra generated by the unit speed velocity process vt, for
a ď t ă b. We write A P Fra,bq to say that a random variable is Fra,bq-measurable.

Proposition 2.4. For any 0 ď s ă t and any bounded measurable real-valued random
variables P P Fr0,sq and F P Frt,8q, we have

ˇ

ˇEµrPF s ´ EµrP sEµrF s
ˇ

ˇ À |P |8|G|8 e´pt´sq{τ .

Proof. Since
ˇ

ˇEµrPF s ´ EµrP sEµrF s
ˇ

ˇ ď |P |8Eµ
”

ˇ

ˇEµrF |Fr0,sss ´ EµrF s
ˇ

ˇ

ı

,

by the Markov property, it suffices to prove that one has

(2.3)
ˇ

ˇEP˚u λrGs ´ EµrGs
ˇ

ˇ À |G|8e
´u{τ ,

for any probability measure λ on Sd´1 and any real-valued measurable functional G. By
a monotone class argument, it suffices to prove estimate (2.3) for elementary functionals
of the form G “ gpvt1 , . . . , vtkq, for some bounded continuous real-valued function g on
pRdqk and times t1 ď ¨ ¨ ¨ ď tk. But since the diffusion has the Feller property, the
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function gpv0q :“ Ev0
“

gpvt1 , . . . , vtkq
‰

is continuous on the sphere, so we get (2.3) in that
case by applying (2.2) to g. �

The remainder of the section is devoted to the proof of the technical Lemma 2.6,
that states an estimate about iterated integrals involving the covariances between the
coordinates of the unit speed velocity process. Given a collection of positive times
s1, . . . , sn, set ∆ :“ max1ďkănpsk ^ sk`1q. We denote by k0 P J1, n´ 1K an index where
this maximum is attained.

Proposition 2.5. Under P “ Pµ, and for any indices 1 ď j1, . . . , jn ď d and times
s1, ¨ ¨ ¨ , sn ě 0,

ˇ

ˇ

ˇ
E
“

vj1s1 ¨ ¨ ¨ v
jn
s1`¨¨¨`sn

‰

ˇ

ˇ

ˇ
À e´∆{τ .

Proof. For 1 ď i ď n, set ti :“ s1 ` ¨ ¨ ¨ ` si, and define the bounded quantities

V´ :“ vj1t1 ¨ ¨ ¨ v
jk0´1

tk0´1
, V0 :“ v

jk0
tk0
, V` :“ v

jk0`1

tk0`1
¨ ¨ ¨ vjntn .

Note that V0 is centred. Applying Proposition 2.4 twice, this decomposition gives
ˇ

ˇ

ˇ
E
“

vj1s1 ¨ ¨ ¨ v
jn
s1`¨¨¨`sn

‰

ˇ

ˇ

ˇ
“

ˇ

ˇErV´V0V`s ´ ErV´sErV0sErV`s
ˇ

ˇ

ď
ˇ

ˇErV´V0V`s ´ ErV´sErV0V`s
ˇ

ˇ` |V´|8 |ErV0V`s ´ ErV0sErV`s|

À |V´|8|V0V`|8e
´sk0{τ ` |V´|8|V0|8|V`|8e

´sk0`1{τ

À e´∆{τ . �

Lemma 2.6. Suppose P “ Pµ. Given a positive integer n, we have
ż

0ďt1ď¨¨¨ďt2nďT

ˇ

ˇ

ˇ
Eµ

“

vi1t1 ¨ ¨ ¨ v
i2n
t2n

‰

ˇ

ˇ

ˇ
dt1 . . . dt2n Àn T

n

for any indices 1 ď i1, ¨ ¨ ¨ , i2n ď d.

Proof. The idea is to apply Proposition 2.5 with the largest ∆ possible for each tuple
pt1, ¨ ¨ ¨ , t2nq. Write first
ż

0ďt1ď¨¨¨ďt2n´1

ˇ

ˇ

ˇ
E
“

vi1t1 ¨ ¨ ¨ v
i2n
t2n

‰

ˇ

ˇ

ˇ
dt1 . . . dt2n ď

ż

r0,T s2n

ˇ

ˇ

ˇ
E
“

vi1s1 ¨ ¨ ¨ v
i2n
s1`¨¨¨`s2n

‰

ˇ

ˇ

ˇ
ds1 . . . ds2n.

Fix now the tuple ps1, ¨ ¨ ¨ , s2nq, and set

∆psq :“ max
1ďkă2n

psk ^ sk`1q ,

so the integrand in the right hand side above is bounded above by a constant multiple
of e´∆psq{τ , from Proposition 2.5.

The rest is combinatorics. We first sort the indices k of the gaps sk according to the
value of sk with respect to ∆ “ ∆psq. Set a :“ mintk P J1, 2nK : sk “ ∆u. Then, note
that there are at most n gaps sk of size larger than ∆: otherwise, two of them would be
consecutive, and ∆ would not be optimal. This is the same as saying that there are at
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least n small gaps sk ď ∆, including sa. Define 1 ď b1 ă ¨ ¨ ¨ ă bn´1 ď 2n as the first
pn´ 1q indices different from a corresponding to gaps of size at most ∆. In other words,
if sk ď ∆, then either k “ bi for some 1 ď i ă n, k “ a, or k ą a, bn´1. Finally, denote
by 1 ď c1 ă ¨ ¨ ¨ ă cn ď 2n the other indices, so that we have a partition of t1, ¨ ¨ ¨ , 2nu
in three sets Apsq :“ tau, Bpsq :“ tb1, ¨ ¨ ¨ , bn´1u and Cpsq :“ tc1, ¨ ¨ ¨ , cnu of fixed sizes.
Now, given a fixed partition pα, β, γq of J1, 2nK with α “ tα0u of size 1, and the set
β “ tβ1, . . . , βn´1u of size n´ 1, we have

ˇ

ˇ

ˇ
E
“

vi1s1 ¨ ¨ ¨ v
i2n
s1`¨¨¨`s2n

‰

ˇ

ˇ

ˇ
1pApsq,Bpsq,Cpsqq“pα,β,γq À e´∆psq{τ1sβ1 ,...,sβn´1

ď∆psq

À e´sα0{τ1sβ1 ,...,sβn´1
ďsα0

,

from which we get
ż

r0,T s2n

ˇ

ˇ

ˇ
E
“

vi1s1 ¨ ¨ ¨ v
i2n
s1`¨¨¨`s2n

‰

ˇ

ˇ

ˇ
1pApsq,Bpsq,Cpsqq“pα,β,γq ds1 . . . ds2n

À Tn
ż T

0
e´s{τsn´1ds Àn Tn

and the result of the lemma, by summing over the set of all partitions pα, β, γq of J1, 2nK
with the above size. �

3. Proof of the main result

Let us now describe how the mixing properties of the velocity process derived in
Section 2.2 imply the homogenisation for the time rescaled position process pxσσ2tqtě0, as
σ goes to infinity, in both Euclidean and Riemannian framework. As mentioned in the
introduction, we will actually work with a rough path lift of the kinetic process. We refer
the reader to [FH14, Bai15] for gentle introductions to rough paths theory, and given
γ P p0, 1q, we denote by RPpγq “ RPγpr0, 1s,Rdq the set of weak geometric γ-Hölder
rough paths.

Notations. We are interested in the stationary case P :“ Pµ, where µ is the invariant
measure of the velocity, as described in Lemma 2.1. Define Xσ : t ÞÑ xσσ2t, so that we
are interested in the limiting behaviour of pXσ

t qtě0. To make good use of the mixing
properties of v such as Proposition 2.4 without having to change the time scale, from
now on pvtqtě0 will always stand for pvσt qtě0 with σ “ 1. With this convention, we can
express the increments of Xσ as

Xt ´Xs “
1

σ2

ż σ4t

σ4s
vudu.

The process Xσ being C1, it admits a canonical rough path lift Xσ “ pXσ,Xσq, where
Xσ is defined by

Xσts :“

ż t

s
pXσ

u ´X
σ
s q b dXσ

u “
1

σ4

ż σ4t

σ4s

ż u

σ4s
vz b vudz du.
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Our proof relies on the algebraic properties of rough paths. Namely, that in the 2-step
nilpotent group G Ă R‘ Rd ‘ pRdqb2, the process xσ : t ÞÑ p1, Xσ

t ,Xσt0q has increments

pxσs q
´1xσt “ p1, X

σ
t ´X

σ
s ,Xσtsq,

which, using the above expressions, are measurable with respect to σ
`

pvuqσ4sďuăσ4t

˘

.
Recall that we write f À g for some quantities f and g when there exists a positive

constant C ą 0 depending on Σ alone such that f ď Cg. If C is allowed to depend on a
parameter, say p, we write f Àp g.

3.1. Tightness in rough paths space. We first establish that the family of processes
pXσ

t q and their rough paths lifts are tight for the corresponding topology. To do so, we
use a standard Lamperti criterion, namely we have the following lemma.

Lemma 3.1. For every a ě 1,

sup
σą0

E
“

|Xσ
t ´X

σ
s |
a
‰

Àa |t´ s|
a{2.

Proof. Given any positive time T and any positive integer n, we show that one has

(3.1) E

«

ˇ

ˇ

ˇ

ˇ

ż T

0
vt dt

ˇ

ˇ

ˇ

ˇ

2n
ff

ď CnT
n

for some positive constant Cn depending only on n. The inequality of the lemma follows
as a consequence since for any positive integer n such that 2n ě a, we have

E
“

|Xσ
t ´X

σ
s |
a
‰

“ E
“

|Xσ
t´s|

a
‰

ď
1

σ2a
E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ż σ4pt´sq

0
vu du

ˇ

ˇ

ˇ

ˇ

ˇ

2n
fi

fl

a{2n

ď Ca{2nn pt´ sqa{2.

Given T ą 0 and n P N˚, we have

E

«

ˇ

ˇ

ˇ

ˇ

ż T

0
vt dt

ˇ

ˇ

ˇ

ˇ

2n
ff

“ E

«˜

ÿ

1ďiďd

ˆ
ż T

0
vit dt

˙2
¸nff

“
ÿ

1ďi1,¨¨¨ ,inďd

ż

r0,T s2n
E
”

vi1t1v
i1
t2
¨ ¨ ¨ vint2n´1

vint2n

ı

dt1 ¨ ¨ ¨ dt2n,

with the following estimate for each individual term on the right hand side. Fix 1 ď
jk ď d, for 1 ď k ď 2n. For any permutation φ P S2n, we have from Lemma 2.6
ż

r0,T s2n
E
”

vj1t1 ¨ ¨ ¨ v
j2n
t2n

ı

1tφp1qă¨¨¨ătφp2nq dt “

ż

0ďt1ď¨¨¨ďt2nďT
E
”

v
jφp1q
t1

¨ ¨ ¨ v
jφp2nq
t2n

ı

dt1 ¨ ¨ ¨ dt2n

Àn T
n,

from which the result of the Lemma follows by summation over φ and j. �

We use the Hilbert-Schmidt norm | ¨ | on Rd b Rd » LpRdq » Rd2 ; it coincides with

the Euclidean norm on Rd2 .
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Lemma 3.2. For every a ą 0,

sup
σą0

E
“

|Xσts|a
‰

Àa |t´ s|
a.

Proof. As above, the inequality of the statement follows from an inequality of the form

E

«

ˇ

ˇ

ˇ

ˇ

ż

0ďsďtďT
vs b vt dsdt

ˇ

ˇ

ˇ

ˇ

2n
ff

ď CnT
2n,

for some positive constant Cn depending only on n. Fix T ą 0 and n P N˚, and set for
` P J1, dK4n

I` :“

ż

0ďs1ďt1ďT
. . .

ż

0ďs2nďt2nďT
E
”

v`1t1 v
`2
s1 ¨ ¨ ¨ v

`4n´1

t2n
v`4ns2n

ı

ds1dt1 ¨ ¨ ¨ ds2ndt2n,

so we have

E

«

ˇ

ˇ

ˇ

ˇ

ż T

0

ż t

0
vs b vt dsdt

ˇ

ˇ

ˇ

ˇ

2n
ff

“ E

»

–

¨

˝

ÿ

1ďi,jďd

ˆ
ż T

0

ż t

0
visv

j
tdsdt

˙2
˛

‚

nfi

fl

“
ÿ

i,jPJ1,dKn
Ii˚j

with i ˚ j “ pi1, j1, i1, j1, ¨ ¨ ¨ , ik, jk, ik, jkq. As in Lemma 3.1, estimating each Ii˚j using
Lemma 2.6 does the job. �

One can then apply the Kolmogorov-Lamperti tightness criterion for rough paths
stated in Corollary A.12 of [FV10] to get the following result from Lemma 3.1 and
Lemma 3.2.

Corollary 3.3. Pick 1{3 ă γ ă 1{2. The family tLpXσquσą0 of distributions on RPpγq
is tight.

3.2. Brownian limit. The family of processes pXσ
t q and their lifts being tight for the

rough paths topology, in order to establish its convergence, we are left to identify the
possible limit process. Our strategy here is to prove that the latter is necessarily a
stationary process with independent Gaussian increments on the underlying nilpotent
group, and therefore is a Brownian motion. Let us set

γi :“ 2

ż 8

0
Ervi0vitsdt.

Proposition 3.4. For every γ ă 1{2, the processes Xσ converge in distribution in
Cγpr0; 1s,Rdq to the Brownian motion on Rd with covariance matrix diagpγ1, ¨ ¨ ¨ , γdq, as
σ goes to 8.
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Proof. Stationarity and independence. We first show that any Rd-valued process X

whose law pP is a limit point of pLpXσqqσą0 in Cγpr0; 1s,Rdq as σ tends to8 has stationary
independent increments.

Indeed, since v0 has distribution the invariant measure of the diffusion v, the incre-
ments of Xσ are stationary for every σ, so the increments of X are stationary as well. Fix
now 0 ď s1 ă t1 ď ¨ ¨ ¨ ď sn ă tn ď 1, and bounded continuous functions Fi : Rd Ñ R,
for 1 ď i ď n. Fix ε ą 0 small enough. From a repetitive use of Proposition 2.4, as used
in Proposition 2.5, we have
ˇ

ˇ

ˇ

ˇ

ˇ

E

«

ź

1ďiďn

FipX
σ
ti´ε ´X

σ
siq

ff

´
ź

1ďiďn

E
“

FipX
σ
ti´ε ´X

σ
siq

‰

ˇ

ˇ

ˇ

ˇ

ˇ

Àn |F1|L8 ¨ ¨ ¨ |Fn|L8 e´σ
4ε{τ

for some positive constant τ , and we see that

pE

«

ź

1ďiďn

FipXti´ε ´Xsiq

ff

“
ź

1ďiďn

pE
“

FipXti´ε ´Xsiq
‰

,

sending σ to 8 along a proper subsequence. Using the boundedness and continuity of
the functions Fi and the continuity of the process X, we can send ε to 0 and see that X
has independent increments. So X is a Brownian motion; it has null mean since every
Xσ

1 has null mean, and its covariance is given by the limit of the covariances of the Xσ
1 .

Covariance formula. First, it follows from the identity

Lpv1, ¨ ¨ ¨ , vi, ¨ ¨ ¨ , vnq “ Lpv1, ¨ ¨ ¨ ,´vi, ¨ ¨ ¨ , vnq

that different components of X1 have null covariance since this is the case for different
components of Xσ

1 . Now, for 1 ď i ď d, we have

E
“`

pXσ
1 q
i
˘2‰

“
1

σ4

ż σ4

0

ż σ4

0
Ervisvitsds dt “

2

σ4

ż σ4

0

ż σ4

t
Ervisvitsds dt

“
2

σ4

ż 8

0

ż 8

0
1t`uďσ4Ervit`uvitsdudt “ 2

ż 8

0

´

1´
u

σ4

¯

`
Erviuvi0sdu

with p¨q` the positive part. According to Proposition 2.4, the integrand is smaller than a
constant multiple of expp´u{τq, uniformly on σ. It is integrable, so we see from Lebesgue
dominated convergence theorem that the above variance tends to γi. �

Theorem 3.5. Pick 1{3 ă γ ă 1{2. The processes Xσ converge in law in RPpγq to the
Brownian rough path on Rd with covariance matrix diagpγ1, ¨ ¨ ¨ , γdq, as σ goes to 8.

Proof. G-valued Lévy process. As above, we first notice that any limit measure of the laws
of pXσqσą0 turns the canonical process on RPpγq into a random process with stationary
independent increments, in the free nilpotent Lie group of step 2, as a consequence of the
corresponding property for Xσ. The canonical process on the free nilpotent Lie group
of step 2 is thus a continuous Lévy process under any limit law, so, according to Hunt’s
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theorem, we can identify the former from its generator. More specifically, such a process
Y is characterised by the action

f ÞÑ lim
tÑ0

1

t
EerfpYtq ´ fpeqs P R

of its generator on smooth functions f : G Ñ R with compact support, where e is the
unit of G; see [App14, Theorems 5.3.3] or [Lia04, Theorem 1.1].

Generator. Let pP be any limit point of the laws of Xσ on RPpγq, and denote by
X “ pX,Xq its canonical variable. We know from Proposition 3.4 that X is a Brow-
nian motion W ; denote by W “ pW,Wq its canonical Stratonovich rough path lift,

also defined on the space pRPpγq, pPq. Since the velocity process v “ pv1, . . . , vdq and
pv1, . . . , vi´1,´vi, vi`1, . . . , vdq have the same law for every 1 ď i ď d, for v0 distributed
according to the invariant measure µ, the antisymmetric part AX

ts :“ 1
2pXts ´

tXtsq is
centred for any 0 ď s ď t ď 1. We also know from the uniform estimates proved in
Lemmas 3.1 and 3.2 that

(3.2) pE
“

|Xt|
2
‰

À t, pE
“

|AX
t0|

2
‰

À pE
“

|Xt0|2
‰

À t2,

uniformly in t P r0, 1s.
A last piece of notation. Since the set of antisymmetric matrices lies in the tangent

space to the free nilpotent Lie group G of step 2, at any point z P G, any smooth
real-valued function f defined on G, with compact support, has a well-defined partial
differential BAfpzq in the direction of antisymmetric matrices, defined by the identity

BAfpzqpAq “
d

dt |t“0
f
`

z` tp0, 0,Aq
˘

,

for any z “ p1, Z,Zq P G and any antisymmetric matrix A. Setting z :“
`

1, Z, 1
2pZ`

tZq
˘

,
we further have

ˇ

ˇfpzq ´ fpzq ´ pBAfqpzqpAzq
ˇ

ˇ Àf |Az|2,

since f has compact support. Denote by e the unit of the group G. Denote by AW the
antisymmetric part of W and set Xt :“

`

1, Xt,
1
2X

b2
t

˘

P G, so that Xt “ Xt ` p0, 0,AXq

and Wt “ Xt ` p0, 0,AWq. We have, for some fixed f smooth with compact support,
ˇ

ˇ

ˇ

ˇ

1

t
pE
“

fpXtq ´fpeq
‰

´
1

t
pE
“

fpWtq ´ fpeq
‰

ˇ

ˇ

ˇ

ˇ

“
1

t

ˇ

ˇ

ˇ

pE
”

f
`

Xt ` p0, 0,AX
t q
˘

´ f
`

Xt ` p0, 0,AW
t q

˘

ıˇ

ˇ

ˇ

Àf
1

t

ˇ

ˇ

ˇ

pE
”´

pBAfqpXtq ´ pBAfqpeq
¯

pAX
t ´ AW

t q

ı
ˇ

ˇ

ˇ
`

1

t

ˇ

ˇ

ˇ

pE
“

pBAfqpeqpAX
t ´ AW

t q
‰

ˇ

ˇ

ˇ

`
1

t

´

pE
“

|AX
t |

2
‰

` pE
“

|AW
t |

2
‰

¯

Àf p1q ` p2q ` p3q.

We show that each term vanishes as t goes to 0, which implies that the two Markov
processes X and W have the same generator, hence the same distribution. We have first
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from estimates (3.2) the upper bound

p1q ď
1

2t
pE
”?

t
›

›pBAfqpXtq ´ pBAfqpeq
›

›

2
ı

`
1

2t
pE
” 1
?
t

ˇ

ˇAX
t ´ AW

t

ˇ

ˇ

2
ı

Àf
1
?
t
pE
“

|Xt ´ e|
2
‰

`
1

t
?
t
pE
”

ˇ

ˇAX
t

ˇ

ˇ

2
ı

`
1

t
?
t
pE
”

ˇ

ˇAW
t

ˇ

ˇ

2
ı

Àf
?
t.

We also have p2q “ 0, since AX
t and AW

t are centred and BAfpeq is linear. Finally, we
have p3q À t from the upper bounds (3.2). We thus have the upper bound

ˇ

ˇ

ˇ

ˇ

1

t
pE
“

fpXtq ´ fpeq
‰

´
1

t
pE
“

fpWtq ´ fpeq
‰

ˇ

ˇ

ˇ

ˇ

Àf
?
t,

from which the result follows. �

3.3. From Euclidean space to Riemannian manifolds. Let pM, gq be a Riemann-
ian manifold of dimension d, without boundary. We emphasised in the introduction that
anisotropic Brownian motion describes the random motion of a non-point-like object,
with its own notion of local orientation. Such an object is represented by a point in the
orthonormal frame bundle OM of M, where its dynamics is described by a stochas-
tic differential equation. We refer to Hsu’s book [Hsu02] for a reference textbook on
stochastic differential geometry.

In this subsection, we use Einstein summation convention: indices appearing twice
are implicitely summed.

3.3.1. The orthonormal frame bundle OM of M. Denote by z “ pq, eq a generic point
of the orthonormal frame bundle OM of M, with q P M and e : Rd Ñ TqM, an
orthonormal frame of TqM; we write π : OM Ñ M for the canonical projection map.
The Levi-Civita connection on TM induces a notion of horizontal vectors on TM or
OM. Let H stand for the horizontal lift operator, meaning the map OMˆRd Ñ TOM
uniquely characterised by the property that Hzpuq P TzOM is horizontal and

dπz
`

Hzpuq
˘

“ epuq,

for any u P Rd and z “ pq, eq P OM. Letting
`

ε1, . . . , εd
˘

be the canonical basis of Rd,
local coordinates qi on M induce canonical coordinates on OM by writing

ei :“ epεiq “ eji
B

Bqj
.

Denoting by Γkij the Christoffel symbols of the Levi-Civita connection associated with

the above coordinates, the vector fields Hpuq have the following expression.

Hzpεαq “ eiα
B

Bqi
´ Γkijpqqe

i
αe
j
l

B

Bekl
.
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3.3.2. Cartan’s development map and anisotropic kinetic Brownian motion. Roughly
speaking, Cartan’s development map associates in its simplest form a C1 path in M,
started from q0 P M, to any C1 path in the Euclidean space Rd. Technically, given
a C1 path pxtqtě0 in Rd, and z0 “ pq0, e0q P OM, the Cartan development of pxtqtě0

on M is defined as the projection pqtq0ďtăT on M of the horizontal OM-valued path
pztq “: pqt, etq0ďtăT solution of the ordinary differential equation

(3.3) dzt “ Hztpdxtq, i.e. 9zt “ Hzp 9xtq

started from q0, possibly up to some explosion time T . Note that the choice of x : t ÞÑ tu
for some u P Rd leads to q being a geodesic with initial condition 9q0 “ e0puq; in particular,
the development of Xσ tends to a geodesic with random initial condition as σ Ñ 0.

Classical stochastic analysis (in the Stratonovich sense) can be used to make sense of
the preceding equation for x a semimartingale, defining Cartan’s stochastic development
— refer to Hsu’s book [Hsu02] for a pedagogical account of the theory. For example, one
of the many equivalent constructions of Brownian motion on M started at q0 consists in
developing a standard Euclidean Brownian motion. Accordingly, we define anisotropic
Brownian motion on M as the development of the Euclidean Brownian motion with
covariance diagpγ1, ¨ ¨ ¨ , γdq.

Anisotropic kinetic Brownian motion pqσt q0ďtăT on M is the stochastic development
of the anisotropic kinetic Brownian motion pXσ

t qtě0 on Rd; it is indexed by the speed
parameter σ of its flat counterpart. This is a C1 random path which depends on the
entire frame e0 — its isotropic counterpart only depends in law on e0, from symmetry
properties of Wiener measure on Rd. Although Xσ converges weakly to an anisotropic
Brownian motion B on Rd, the poor regularity properties of the Itô solution map does
not allow to conclude that anisotropic Brownian motion xσ on M converges to projection
on M of the solution of the equation

dzt “ Hpztq ˝ dBt.

This is exactly the kind of conclusion that rough paths theory provides.

3.3.3. Rough paths and rough differential equations with values in manifolds. We discuss
a few results of rough paths theory with values in manifolds. These results are all
classical, and their Euclidean counterparts can be found e.g. in [FH14] or [FV10]. Let
N be a manifold, and, for a collection A “ pA1, ¨ ¨ ¨ , Anq of smooth vector fields on
N and an initial condition p P N , consider the (deterministic) controlled differential
equation

dzt “ Apztqdxt, z0 “ p

on N , where x is a driving curve with values in Rn. The equation makes sense whenever
x is of class C1 (dividing each side by dt, one might say), and if moreover x is of class C2,
its solution is characterised by the fact that for any fixed t ě 0 and f : N Ñ R smooth
with compact support,

fpztq “ fpzsq ` pAifqpztqpx
i
t ´ x

i
sq `Op|t´ s|

2q

as s Ñ t. Now if X “ pX,Xq is a rough path of Hölder regularity 1{3 ă γ ď 1{2, we
consider the following notion of solution: a continuous path z : r0, T q Ñ N is a solution
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of the rough differential equation

(3.4) dzt “ ApztqXdt , z0 “ p

if one can find some a ą 1 such that any choice of t ě 0 and f : N Ñ R smooth with
compact support yields

fpztq “ fpzsq ` pAifqpztqpX
i
t ´X

i
sq ` pAiAjfqpztqX

ij
ts `Op|t´ s|

aq

as sÑ t. This point of view is taken from [Bai10, Bai15], in the mindset of [Dav08]. We
say that z explodes as tÑ T if z leaves any compact set.

In a probabilistic mindset, the fundamental remark is that, for X the Stratonovich
rough path lift of some standard Brownian motion W , such a solution coincides almost
surely with the solution of the Stratonovich equation

dzt “ Apztq ˝ dWt, z0 “ p.

It is a striking feature of rough paths theory that not only does (3.4) admit a unique
solution z for any (deterministic) rough path X, in the above sense and up to some
explosion time T ą 0, but also the Itô-Lyons map X ÞÑ z is continuous in the following
sense. Fix d a Riemannian distance on N . If T 1 ă T and ε ą 0, there exists some δ ą 0
such that for any X1 at rough path distance at most δ from X, the solution z1 of

dz1t “ Apz1tqX
1
dt , z10 “ p

is defined on r0, T 1s and satisfies dpzt, z
1
tq ă ε for all 0 ď t ď T 1.

This kind of continuity in enough to ensure convergence in distribution: namely, if
pXnqně0 is a family of random rough paths converging weakly to X with respect to the
rough path topology, then in a sense, the (random) solution zn of (3.4) driven by Xn

converges to the solution of that driven by X. Let us make that point precise. Denote

by pN the one point compactification of N ( pN “ N if N is compact) and set Cp the

space of continuous paths z : r0, 1s Ñ pN starting at p such that zt`¨ ” 8 whenever
zt “ 8. Fix d a Riemannian metric on N such that dpp, p1q Ñ 8 as p1 Ñ8, and define
on Cp the smallest topology containing, for any γ P Cp and R, ε ą 0, the set of paths
z P Cp satisfying

max
tě0

dpp,γtqďR

dpzt, γtq ă ε.

The topology does not depend on d, and a sequence zn of curves in Cp converges to z8 if
and only if for all R, the curves zn¨^τR stopped when they get at distance R of p converge
uniformly to z8¨^τR . We can now state what one might call a theorem of continuity in
distribution, in the following form.

Theorem 3.6. For some fixed 1{3 ă γ ď 1{2, let pXnqně0 be a sequence of random
γ-rough paths with values in Rd, whose distributions converge weakly to that X8. These
processes might be defined on different probability spaces.

Then, for any 0 ď n ď 8, there exists a unique random variable zn with values in Cp
such that it solves the rough differential equation

dznt “ Apznt qX
n
dt , zn0 “ p

almost surely up to explosion, and the distributions of zn converge to that of z8 with
respect to the topology of Cp described above.
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3.3.4. The interpolation result. The proof of Theorem 1.3 then follows from the rough
path convergence of the rough path lift Xσ of anisotropic kinetic Brownian motion
Xσ in Rd, Theorem 3.5, and the continuity properties of the Itô-Lyons solution map to
rough differential equations. As in [ABT15], one needs to use the stochastic and geodesic
completeness of pM, gq to conclude that the convergence of the OM-valued development
of anisotropic kinetic Brownian in Rd in not only local, but that weak convergence holds
true; see Proposition 2.4.3 and Lemma 2.4.4 in [ABT15]. Stochastic completeness refers
here to the isotropic Brownian motion on M. We implicitly use here the fact that for
a complete and stochastically complete Riemannian manifold, the anisotropic Brownian
motion on M is also stochastically complete.

4. Going a bit farther

In this section, we take a step back, and see what remains of Theorem 1.3 in a higher
level of generality. Suppose that pvσt qtě0 is of the form vσt “ Ipvσ2tq, with pvtqtě0 a càdlàg
Markov process with values in some manifold W and I : W Ñ Rd bounded continuous
— Theorem 1.3 deals with the case I : W “ Sd´1 ãÑ Rd and v the anisotropic Brownian
motion with time scale 1. Because the path pxσt qtě0 integrating the velocity is Lipschitz,
its development on a Riemannian manifold is well-defined, and the objects described in
Theorem 1.4 make sense. We first restate and prove it, in the form of Theorem 4.1, then
discuss some examples in Section 4.2.

4.1. A more general theorem. This subsection is devoted to the proof of the following
rewriting of Theorem 1.4.

Theorem 4.1. Let pM, gq be a Riemannian manifold of dimension d, and pqσt qtě0 a
process on M whose velocity 9qσt P TqtM has image vσt P Tq0M » Rd under the inverse
stochastic parallel transport along q. Suppose that, for some càdlàg Markov process v
on a manifold W, pvσt qtě0 is the continuous image of pvσ2tqtě0, i.e. vσt “ Ipvσ2tq with
I : W Ñ Tq0M bounded continuous. Suppose that v admits an invariant measure µ such
that under P “ Pµ,

(a) equation (1.4) holds with Fra,bs the σ-algebra generated by tIpvtquaďtăb;

(b) for all 1 ď i ď d, the flippings pv1, ¨ ¨ ¨ , vi´1,´vi, vi`1, ¨ ¨ ¨ , vdq have the same
distribution as v “ vσ “ pv1, ¨ ¨ ¨ , vdq for some, hence all, σ ą 0.

Then as σ Ñ8, the time rescaled process pqσσ2tqtPr0,1s converges in law to an anisotropic
Brownian motion on M with covariance diagpγ1, ¨ ¨ ¨ , γdq,

γi :“

ż 8

0
E
“

Ipv0q
iIpvtq

i
‰

dt.

Remark 4.2. Condition (b) above is indeed necessary. Assuming only that Ipvq is
centred, the tightness result stated in Corollary 3.3 still holds, as well as the Brownian
behaviour of the Euclidean path as shown in Proposition 3.4; however, the limit rough
path needs not be Brownian — see example 4.2.1 below. In particular, there is no reason
for the manifold-valued result to hold. In the common ‘rolling without slipping’ analogy
used to described stochastic development of Brownian motion, one might think of the
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resulting non-Brownian effect as a force rotating the paper around the contact point, so
that the path on the manifold may have a tendency to lean to one side.

Remark 4.3. Throughout our study, we have worked at equilibrium, with P “ Pµ.
Although it simplifies the proofs, it is merely a cosmetic concern in the case of kinetic
Brownian motion. In fact, under the assumption (2.2), Theorem 4.1 holds for any Pλ:
see Proposition 4.4 below. For instance, it will be the case in examples 4.2.2 and, to some
extent, 4.2.6 below. It is not clear whether the result should hold without this additional
property.

To establish Theorem 4.1, let us review the ingredients of the proof of Theorem 1.3.
The tightness results, more specifically Corollary 3.3, are essentially a consequence of
Lemma 2.6. It holds whenever (1.4) is satisfied (condition (a)), Ipv0q is centred (condition
(b)) and I is bounded. On the other hand, the convergence towards Brownian motion
relies, in addition, on the symmetry property (condition (b)) and independence of the
increments. Equation (1.4) ensures the latter, so that the proof of Theorem 4.1 is
essentially that of Theorem 1.3.

Proposition 4.4. Replace condition (a) in Theorem 4.1 by the following variant of
(2.2). There exists some mixing time τ ą 0 such that for all x PW and t ą 0,

(4.1) }P ˚t δx ´ µ}TV ď fpxq expp´t{τq

for some function f : W Ñ R` integrable with respect to µ.
Then the conclusion also holds under Pλ, for any probability measure λ on W such

that λpfq :“
ş

fdλ ă 8.

Proof. It is enough to show the convergence of the Euclidean rough paths pXσqσą0.

Tightness. We claim that Proposition 2.4 holds for Eλ. Indeed, by the same argu-
ments, we see that

(4.2) |EP˚u δxrGs ´ EµrGs| ď |G|8 fpxq e´u{τ

holds in lieu of (2.3). From this we deduce

|EP˚t´sδxrGs ´ EP˚t λrGs| ď |EP˚t´sδxrGs ´ EµrGs| ` |EµrGs ´ EP˚t λrGs|

ď pfpxq ` λpfq e´s{τ q|G|8 e´pt´sq{τ ,

which is enough for rest of the proof to hold. It is then an easy exercise to adapt the
proof of Corollary 2.5, and from this point every idea leading to tightness is the same,
even if some care must be given to non-stationarity in the actual computations, e.g.
regarding equation (3.1).

Brownian limit. Let pPµ be the law of the Brownian rough path on RPpγq, and pPλ a

limit point of the laws of Xσ under Pλ. We only need to show that pPλ “ pPµ.
Define the translation operator Th on RPpγq as

ThpY,Yq :“ pYh`¨ ´ Yh,Yh`¨,h`¨q.
Now, for any continuous bounded map F : Cpr0, 1s, Gq Ñ R and ε ą 0, equation (4.2)
gives

|EλrF pTεXσqs ´ EµrF pTεXσqs| ď λpfq|F |8 e´σ
4ε{τ ,
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which, taking limits along a proper subsequence, implies that

pEλrF pTεXqs “ pEµrF pTεXqs.

But TεXÑ X in C0pr0, 1s, Gq, so the above equation holds for ε “ 0, and pPλ is the law of
the announced anisotropic Brownian motion. Note that TεX has no reason to converge
to X in the rough path topology, so tightness had to be proved beforehand. �

4.2. Examples. In this last section, we finally discuss some examples and counterex-
amples to the statement of Theorem 4.1.

4.2.1. Spinning motion. The first example illustrates what happens when the motion
does not satisfy the symmetry condition (b) in Theorem 4.1 above. Set I : W “

R{2πZÑ C » R2 the exponential v ÞÑ eiv, and define v as the spinning motion

dvt “ dt` dWt, i.e. vt “ v0 ` t`Wt pmod 2πq,

where W is a standard Brownian motion on R. Its dynamics is of course very simple:
it admits a unique invariant measure µpdvq “ 1

2πdv and satisfies equation (2.2), so all
hypotheses but condition (b) in Theorem 4.1 above are satisfied.

As mentioned in Remark 4.2 above, the laws of pXσqσą0 do converge to that of a
Brownian process. As of those of the lifts pXσqσą0, however, some drift appears in the
limit. Indeed, setting Aσ the antisymmetric part of Xσ,

pAσt0q12 “
1

2σ4

ż σ4t

0

ż s

0
sinpvs ´ vuqdsdu “

ż 8

0

ż 8

0

1

2σ4
1u`τďσ4t sinpvu`τ ´ vuqdudτ ,

so we get

E
“

pAσt0q12
‰

“

ż 8

0

ż 8

0

1

2σ4
1u`τďσ4t sinpτq e´τ{2dudτ “

1

2

ż 8

0

´

t´
τ

σ4

¯

`
sinpτq e´τ{2dτ

with p¨q` the positive part. The limit is a non-zero linear function of t, so the limit of
the lifts cannot be Brownian.

Such drift phenomena in the Lévy area have arisen and been studied in different works
recently, particularly in the context of random walks. See e.g. the articles [LS18, LS17] of
Lopusanschi and Simon, and those of Ishiwata, Kawabi and Namba, [IKN18a, IKN18b].

4.2.2. Random flight. The case where I : W “ Sd´1 ãÑ Rd and v is a pure jump
process, with rate 1 and uniform measure, is the so-called random flight studied by
Pinsky in [Pin76], where it is called the isotropic transport process. In this case, the
mixing property (1.4) is a consequence of the stronger statement (2.2) that the dynamics
converges exponentially fast to equilibrium in total variation, in the same way we treated
anisotropic Brownian motion. There are no complications in dealing with jumps.

Because the velocity is isotropic, the limit covariance diagpγ1, ¨ ¨ ¨ , γdq is proportional
to Id. Setting T the first jump time,

γi “
2

d

ż 8

0
Erv0 ¨ vtsdt “

2

d

ż 8

0
PpT ď tqdt “

2

d
,

and we recover the result of [Pin76].
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4.2.3. Donsker invariance principle for random walks. Another example, studied in
[BFH09] by Breuillard, Friz and Huesmann, is that of random walks. If pYkqkě0 is a
sequence of independent bounded random variables with values in Rd, symmetric in the
sense that their common law is invariant with respect to the flippings as described in
condition (b) in Theorem 4.1 above, we can consider the piecewise linear processes W σ

defined by

W σ : t “
n` u

σ4
ÞÑ

1
?
n

ÿ

kăn

Yk ` uYn, n P N, u P r0, 1q.

Let us translate this dynamics in our framework. Set W “ R{Z ˆ Rd, I : pα, yq ÞÑ y,
and define the dynamics of pvtqtě0 “ pαt, ytqtě0 as follows. Given initial conditions
pα0, y0q P r0, 1q ˆ Rd, α grows continuously with rate 1, i.e. αt “ α0 ` t pmod 1q,
whereas y stays constant on time intervals of length 1, then jumps independently of the
past according to the law of Yk, i.e. yt “ Ytt´α0u with the convention Y´1 “ y0. With
initial condition δ0 b LpY0q, we see that the law of xσ is exactly that of W σ.

The process v is Markovian, although not Feller, and admits an invariant measure
UnifpR{Zq b LpY0q. Because it is not ergodic, there is no hope for equation (2.2) to
hold. Maybe surprinsingly, even if I kills the non-mixing coordinate, it is also false that
condition (a) of Theorem 4.1 holds: in the case where Y has no atoms, take P to be the
first jump time in r0, 1s, and F the first jump time in rn, n` 1s. However, it is true for
any µα :“ δα b LpY0q, with constants independent of α — indeed, it is obvious that for
t ą 1 and any probability law λ on Rd,

P ˚t pδα b λq “ µα`t “ P ˚t µα

holds in lieu of (2.2). Remarkably, nothing more than this is needed throughout the
proof. It should be clear that Proposition 2.5 holds for any µα, and that tightness
follows in the same fashion. Independence of increments, as stated in Propositions 3.4
and Theorem 3.5, hides no difficulty either. It is true that one has to be careful about
the limit variance in Proposition 3.4, because the Markov property is used in a crucial
way. In our case, for any α P r0, 1q and σ ą 1, we end up with

Eµα
“`

pXσ
1 q
i
˘2‰

“
1

σ4

ż σ4

0

ż σ4

0
Eµαryisyitsds dt

“
ÿ

ně´1

1

σ4

ż σ4

0

ż σ4

0
1n`αďs,tăn`1`αEµαryisyitsds dt

“ Er|Y i
0 |

2s ¨
p1´ αq2 ` tσ4 ` α´ 1u` tσ4 ` α´ 1u2

σ4

with t¨u the fractional part. In the limit, the variance converges to Er|Y i
0 |

2s, and the
result of Theorem 1.3 holds with covariance ErY0Y

˚
0 s, in accordance with [BFH09].

Surprisingly enough, the symmetry condition (b) is not mandatory here: see [BFH09].
In particular, drift in the antisymmetric part of Xσ that does not vanish in the limit,
as mentioned in example 4.2.1 above, comes from additional structure: in [LS18], the
hidden Markov chain; in [LS17], the underlying directed graph; etc.

Note that in the case of random walks, as a consequence of the work of Chevyrev,
see [Che18, Example 5.8], convergence of Xσ as stated in Proposition 3.4 in enough to
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ensure convergence of Xσ to some random rough path. It is not clear from this approach,
however, that this limit is indeed Brownian.

4.2.4. Donsker invariance principle for Markov chains. The reader may have noticed
that in the above example 4.2.3, independence of the variables pYkqkě0 is a bit much, and
one could work with covariances vanishing exponentially fast. Suppose for instance that
pYkqkě0 is a time-homogeneous Markov chain with invariant measure µ with compact

support, whose correlations decrease as e´k{τ , τ ą 0; namely, letting Q be the transition
kernel of Y ,

}δy Q
k ´ µ}TV À e´k{τ

for all y in the support of µ. Then, setting µ0 :“ δ0 b µ, we get, for any probability
measure λ with Supp λ Ă Supp µ,

}P ˚t pδ0 b λq ´ P
˚
t µα}TV “

›

›

›

›

ż

pδy Q
ttu ´ µqλpdyq

›

›

›

›

TV

À e´t{τ .

Again, this inequality can be substituted for equation (2.2) in the proof of Proposition
2.4, and under the same symmetry condition as above, the convergence result still holds
true.

Examples of such Markov chains are any aperiodic irreducible finite state Markov
chain; or any Markov chain with transition kernel Qpy,dy1q absolutely continuous with

respect to some measure ν, and such that dQpy,¨q
dν is bounded below by a positive constant

m ą 0, uniformly in y, y1. Note however that the symmetry condition (b) of Theorem
4.1 is a bit stronger than in the independent case, since we need the flippings to leave
the law of the whole sequence invariant.

4.2.5. Time-dependent Brownian motion. The way we wrote our convergence theorems
is ill-suited to treat time-dependent randomness. However, there are cases where ran-
domness can be somewhat dissociated from the time dependence, and our methods do
in fact yield interesting convergence results. In the present example, we set to recover,
in the limit, the Brownian motion on a manifold M endowed with a time-dependent
metric gt, as introduced in [ACT08] by Arnaudon, Coulibaly and Thalmaier.

Such an approach has already been set up in [Kuw12], in a similar fashion as the
random flight described in example 4.2.2 above. The idea is to freeze the metric in small
time intervals rti, tt`1s, say of size 1{σ4, over which the movement q is purely geodesic
with respect to the metric gti , the initial condition being chosen uniformly at ti on the
unit gti-sphere of the tangent space of M at qti . Suitably renormalised, this process
converges to the time-dependent Brownian motion described above. We introduce a
similar random flight which lets the metric vary continuously, and may be considered
more natural in this respect, then prove its convergence to time-dependent Brownian
motion.

We begin by describing time-dependent Brownian motion and its surroundings. Sup-
pose gt is smooth, as a function on R`ˆTMbTM. Let FM be the frame bundle over
M, and choose a point q0 PM together with a g0-orthonormal frame e0 of Tg0M. For
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a C1 path pxtqtě0 in Rd, we define the time-dependent development of x as the solution
pztqtě0 “ pqt, etqtě0 of the following equation, whose terms we describe below.

(4.3) dzt “ Ht,ztpdXtq ´
1

2

Bgt
Bt
putεi, utεjqV

ij
ztdt, z0 “ pq0, e0q.

We use Einstein notation. As in Section 3.3.1, pε1, ¨ ¨ ¨ , εq is the canonical basis of Rd,
and the Ht,zεi, resp. Vij

z , are the canonical horizontal vector fields, resp. vertical vector
fields. Note that because the metric g is time-dependent, the associated horizontal vector
fields H must depend on t as well. In coordinates,

Ht,zpεαq “ eiα
B

Bqi
´
`

Γtpqq
˘k

ij
eiαe

j
l

B

Bekl
, Vij

z “ ekj
B

Beki
.

If we compare (4.3) to (3.3), the added vertical fields are there to ensure that et is at all
times orthonormal for gt. We refer to [CP11] for an insight about why this definition is
a sensible choice.

In particular, the time-dependent geodesics are the solutions of the equation associated
to xt “ tu for some fixed u P Rd, and the time-dependent Brownian motion is the solution
driven by some standard Brownian motion W in the Stratonovich sense, or, equivalently,
by the standard Stratonovich rough path W in the rough sense.

Note that we did not discuss time-dependent rough differential equations in Section
3.3.3. In the case of an equation driven by a C1 control x, the standard technique is of
course to consider t ÞÑ pt, xtq as the control. The same trick works with rough paths:

associated to any rough path Y “ pY,Yq is a canonical lift pY of t ÞÑ pt, Ytq compatible
with Y. The solution of time-dependent rough differential equations is then well-defined.

In what follows, we will also use the fact that Y ÞÑ pY is continuous in the rough path

topology, so pXσ Ñ pX weakly whenever Xσ Ñ X weakly.

We define a kind of interpolated random walk on M whose limit will be the Brownian
motion described above. Fix σ ą 0, and define W σ successively on the intervals rs, ts “
r n
σ4 ,

n`1
σ4 s as follows: ξσn is chosen independently of all the rest according to the uniform

measure on the unit gs-sphere of TWσ
s
M, and W σ on rs, ts is a time-dependent geodesic

in the above sense, with initial condition 9W σ
s “

?
d ξσn .

As in the previous example, there is a direct equivalent of this dynamics in our frame-
work. Set W “ R{Z ˆ Sd´1 and I : pα, yq ãÑ

?
dy, following the same dynamics as

in 4.2.3, with Y0 uniformly distributed on Sd´1. We choose the initial condition to be
δ0 b UnifpSd´1q; for the same reasons as in example 4.2.3 above, pXσqσą0 converges to
the Brownian rough path X with covariance dErY0Y

˚
0 s “ Id.

Everything described so far is essentially time-invariant — the time-dependence ap-
pears when we use this family of rough paths to describe a motion on M. Fix q0 PM,
and e0 a g0-orthonormal frame of Tq0M. Define the solution pztqtě0 “ pqt, etqtě0 (up to
explosion) on the frame bundle FM of equation (4.3) driven by X, in the rough sense.

By definition, qt defined as above is the Brownian motion associated to the time-
dependent metric gt, as described in [ACT08]. If we set zσ “ pqσ, uσq the solution of the
equation driven by Xσ, we get instead qσ “W σ in law. The convergence of Xσ, together
with the general theory of rough paths (see Theorem 3.6), ensures that qσ, hence W σ,
converges weakly to the time-dependent Brownian motion q.
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4.2.6. Langevin Process. We conclude with an example where the velocity v has un-
bounded support. We consider the process with anisotropic Ornstein-Uhlenbeck velocity,
i.e. satisfying

dvt “ ´vtdt` dBt

for B an anisotropic Brownian motion of covariance Σ. In the isotropic case, it is a simple
scalar example of the hypoelliptic Laplacian of Bismut; see [Bis15]. The anisotropic case
is also treated in [BHVW17].

Here, I : W “ Rd Ñ Rd is simply the identity, and hence does quite fit the hypotheses
of Theorem 1.4. However, it is well known that v admits as an invariant measure µ “
N p0, 1

2Σq the Gaussian distribution with covariance 1
2Σ. Using the coupling B1t “ ´Bt,

it is known, and not difficult to see, that

}P ˚t δx ´ µ}TV À p1_ |x|q e
´t,

from whence, because 1_ |x| is in L1pµq, we derive Proposition 2.4; see Proposition 4.4.
In our proof, boundedness of the velocity is essentially used twice: for proving the

decorrelation of coordinates in Proposition 2.5, and to show that the variance of the
limit must be the limit of the variances in 3.4. Because µ has moments of all order, the
latter will add no difficulty — in fact, any moment of order ą 2 would suffice. As for
the former, it is a bit trickier. We use the following variation of Proposition 2.5.

Proposition 4.5. Fix some ε ą 0 and some positive integer n P N˚. There exists
τ 1 “ τ 1pτ, n, εq ą 0 such that under P “ Pµ, and for any indices 1 ď j1, ¨ ¨ ¨ , jn ď d and
times s1, ¨ ¨ ¨ , sn ě 0,

ˇ

ˇ

ˇ
E
“

vj1s1 ¨ ¨ ¨ v
jn
s1`¨¨¨`sn

‰

ˇ

ˇ

ˇ
À |vj10 |Ln`ε ¨ ¨ ¨ |v

jn
0 |Ln`ε e

´∆{τ 1 .

We give only hints of the proof. In the spirit of the proof of Proposition 2.5, set

V´ :“
ź

1ďkăk0

´

vjktk {|v
jk
0 |Ln`ε

¯

and similarly for V0 and V`. Write V˚ “ W˚ ` R˚ with W˚ :“ V˚1|V˚|ěM ; for M “

exppη∆q with η ą 0 small enough, the proof of Proposition 2.5 applied to W˚, together
with a careful handling of the remainder R˚, are enough to get to the above result. It
automatically implies Lemma 2.6, since µ has moments of all order, hence the conclusion
of Theorem 1.3.

Note that the treatment of unboundedness is not specifically designed for the Langevin
process, so it can be applied to the study of the random walk as well. Moreover, it is
not necessary for all moments to exist: moments of order α ą 2{p1´ 2γq are enough to
ensure tightness in RPpγq. Indeed, our proof, enhanced by the above corollary, will hold
with moments of order 2n ą 2{p1 ´ 2γq for any positive integer n; but adding an easy
truncation argument at the beginning of the proofs of Lemma 3.1 and 3.2 will strengthen
the result to non even integral moments. In this respect, our moment assumption is a
bit weaker than that of [BFH09] in the symmetrical case.
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[HBR13] Mario Heidernätsch, Michael S. Bauer, and G. Radons. Characterizing n-dimensional
anisotropic brownian motion by the distribution of diffusivities. The Journal of Chemical
Physics, 139 18:184105, 2013.

[HHV16] David P. Herzog, Scott Hottovy, and Giovanni Volpe. The small-mass limit for Langevin
dynamics with unbounded coefficients and positive friction. J. Stat. Phys., 163(3):659–673,
2016.

[Hsu02] Elton P. Hsu. Stochastic analysis on manifolds, volume 38 of Graduate Studies in Mathe-
matics. American Mathematical Society, Providence, RI, 2002.

[IKN18a] S. Ishiwata, H. Kawabi, and R. Namba. Central limit theorems for non-symmetric random
walks on nilpotent covering graphs: Part I. ArXiv e-prints, June 2018.

[IKN18b] S. Ishiwata, H. Kawabi, and R. Namba. Central limit theorems for non-symmetric random
walks on nilpotent covering graphs: Part II. ArXiv e-prints, August 2018.

[Kam88] N. van Kampen. Diffusion in inhomogeneous media. Journal of Physics and Chemistry of
Solids, 49:673–677, 1988.



26 P. PERRUCHAUD

[Kuw12] Kazumasa Kuwada. Convergence of time-inhomogeneous geodesic random walks and its
application to coupling methods. Ann. Probab., 40(5):1945–1979, 2012.

[Li16a] Xue-Mei Li. Limits of random differential equations on manifolds. Probab. Theory Related
Fields, 166(3-4):659–712, 2016.

[Li16b] Xue-Mei Li. Random perturbation to the geodesic equation. Ann. Probab., 44(1):544–566,
2016.
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