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Abstract: This paper presents an overview of coding methods used to encode a set of covariance1

matrices. Starting from a Gaussian mixture model (GMM) adapted to the Log-Euclidean (LE) or2

affine invariant Riemannian metric, we propose a Fisher Vector (FV) descriptor adapted to each of3

these metrics: the Log-Euclidean Fisher Vectors (LE FV) and the Riemannian Fisher Vectors (RFV).4

Some experiments on texture and head pose image classification are conducted to compare these two5

metrics and to illustrate the potential of these FV based descriptors compared to state-of-the-art BoW6

and VLAD based descriptors. A focus is also done to illustrate the advantage of using the Fisher7

information matrix during the derivation of the FV. And finally, some experiments are conducted8

in order to provide fairer comparison between the different coding strategies. This includes some9

comparisons between anisotropic and isotropic models, and a estimation performance analysis of the10

GMM dispersion parameter for covariance matrices of large dimension.11

Keywords: Bag of words; vector of locally aggregated descriptors; Fisher vector; log-Euclidean12

metric; affine invariant Riemannian metric; covariance matrix13

1. Introduction14

In supervised classification, the goal is to tag an image with one class name based on its content.15

In the beginning of the 2000s, the leading approaches were based on feature coding. Among the16

most employed coding based methods, there are the bag of words model (BoW) [1], the vector of17

locally aggregated descriptors (VLAD) [2,3], the Fisher score (FS) [4] and the Fisher vectors (FV) [5–7].18

The success of these methods is based on their main advantages. First, the information obtained by19

feature coding can be used in a wide variety of applications, including image classification [5,8,9], text20

retrieval [10], action and face recognition [11], etc. Second, combined with powerful local handcrafted21

features, such as SIFT, they are robust to transformations like scaling, translation, or occlusion [11].22

Nevertheless, in 2012, the ImageNet Large Scale Visual Recognition Challenge has shown that23

Convolutional Neural Networks [12,13] (CNNs) can outperform FV descriptors. Since then, in order24

to take advantage of both worlds, some hybrid classification architectures have been proposed to25

combine FV and CNN [14]. For example, Perronnin et al. have proposed to train a network of fully26

connected layers on the FV descriptors [15]. Another hybrid architecture is the deep Fisher network27

composed by stacking several FV layers [16]. Some authors have proposed to extract convolutional28

features from different layers of the network, and then to use VLAD or FV encoding to encode features29

into a single vector for each image [17–19]. These latter features can also be combined with features30

issued from the fully connected layers in order to improve the classification accuracy [20].31
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At the same time, many authors have proposed to extend the formalism of encoding to features32

lying in a non-Euclidean space. This is the case of covariance matrices that have already demonstrated33

their importance as descriptors related to array processing [21], radar detection [22–25], image34

segmentation [26,27], face detection [28], vehicle detection [29], or classification [11,30–32], etc. As35

mentioned in [33], the use of covariance matrices has several advantages. First, they are able to36

merge the information provided by different features. Second, they are low dimensional descriptors,37

independent of the dataset size. Third, in the context of image and video processing, efficient methods38

for fast computation are available [34].39

Nevertheless, since covariance matrices are positive definite matrices, conventional tools40

developed in the Euclidean space are not well adapted to model the underlying scatter of the data41

points which are covariance matrices. The characteristics of the Riemannian geometry of the space42

Pm of m×m symmetric and positive definite (SPD) matrices should be considered in order to obtain43

appropriate algorithms. The aim of this paper is to introduce a unified framework for BoW, VLAD, FS44

and FV approaches, for features being covariance matrices. In the recent literature, some authors have45

proposed to extend the BoW and VLAD descriptors to the LE and affine invariant Riemannian metrics.46

This yields to the so-called Log-Euclidean bag of words (LE BoW) [33,35], bag of Riemannian words47

(BoRW) [36], Log-Euclidean vector of locally aggregated descriptors (LE VLAD) [11], extrinsic vector48

of locally aggregated descriptors (E-VLAD) [37] and intrinsic Riemannian vector of locally aggregated49

descriptors (RVLAD) [11]. All these approaches have been proposed by a direct analogy between the50

Euclidean and the Riemannian case. For that, the codebook used to encode the covariance matrix set is51

the standard k-means algorithm adapted to the LE and affine invariant Riemannian metrics.52

Contrary to the BoW and VLAD based coding methods, a soft codebook issued from a Gaussian53

mixture model (GMM) should be learned for FS or FV encoding. This paper aims to present how FS54

and FV can be used to encode a set of covariance matrices [38]. Since these elements do not lie on an55

Euclidean space but on a Riemannian manifold, a Riemannian metric should be considered. Here, two56

Riemannian metrics are used: the LE and the affine invariant Riemannian metrics. To summarize, we57

provide four main contributions:58

• First, based on the conventional multivariate GMM, we introduce the log-Euclidean Fisher score59

(LE FS). This descriptor can be interpreted as the FS computed on the log-Euclidean vector60

representation of the covariance matrices set.61

• Second, we have recently introduced a Gaussian distribution on the space Pm: the Riemannian62

Gaussian distribution [39]. This latter allows the definition of a GMM on the space of covariance63

matrices and an Expectation Maximization (EM) algorithm can hence be considered to learn the64

codebook [32]. Starting from this observation, we define the Riemannian Fisher score (RFS) [40]65

which can be interpreted as an extension of the RVLAD descriptor proposed in [11].66

• The third main contribution is to highlight the impact of the Fisher information matrix (FIM) in67

the derivation of the FV. For that, the Log-Euclidean Fisher Vectors (LE FV) and the Riemannian68

Fisher Vectors (RFV) are introduced as an extension of the LE FS and the RFS.69

• And fourth, all these coding methods will be compared on two image processing applications70

consisting in texture and head pose image classification. Some experiments will also be conducted71

in order to provide fairer comparison between the different coding strategies. It includes some72

comparisons between anisotropic and isotropic models. An estimation performance analysis of73

the dispersion parameter for covariance matrices of large dimension will also be studied.74

As previously mentioned, hybrid architectures can be employed to combine FV with CNN. The75

adaptation of the proposed FV descriptors to these architecture is outside the scope of this paper but76

will remain one of the perspective of this work.77

The paper is structured as follows. Section 2 introduces the workflow presenting the general idea78

of feature coding based classification methods. Section 3 presents the codebook generation on the79

manifold of SPD covariance matrices. Section 4 introduces a theoretical study of the feature encoding80

methods (BoW, VLAD, FS and FV) based on the LE and affine invariant Riemannian metrics. Section 581
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Figure 1. Workflow presenting the general idea of feature coding based classification methods.

shows two applications of these descriptors to texture and head pose image classification. And finally,82

Section 6 synthesizes the main conclusions and perspectives of this work.83

2. General framework84

The general workflow is presented in Fig. 1 and it consists in the following steps:85

1. Patch extraction is the starting step of the classification algorithm. At the beginning, the images86

are divided in patches, either in a dense way, by means of fixed grids, or in a non-dense way,87

based on representative points such as SIFT for example.88

2. A low level feature extraction step is then applied in order to extract some characteristics (such89

as spatial gradient components). These low-level handcrafted features capture the information90

contained in each patch.91

3. The covariance matrix of these features are then computed. As a result, each image is represented92

as a set of covariance matrices which compose the signature of an image.93

4. The codebook generation starts from the previously extracted covariance matrices. The purpose of94

this step is to identify the features containing the significant information. Usually, this procedure95

is performed by means of clustering algorithms, such as the k-means or expectation-maximization96

(EM) algorithm. Knowing that the features are covariance matrices, one of the following97

approaches can be chosen. The first one considers the LE metric. It consits in projecting98

the covariance matrices in the LE space [33,35] and then standard clustering algorithms for99

multivariate Gaussian distributions are used. The second approach considers the affine invariant100

Riemannian metric to measure the similarity between two covariance matrices. In this context,101

the conventional k-means or EM algorithm should be readapted to this metric [11,36,40]. For102

both approaches, the dataset is partitioned into a predefined number of clusters, each of them103

being described by parameters, such as the cluster’s centroid, the dispersion and the associated104

weight. The obtained features are called codewords and they are grouped in a codebook, also105

called a dictionary.106
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5. Feature encoding is based on the created codebook and it consists in projecting the extracted107

covariance matrices onto the codebook space. For this purpose, approaches like BoW, VLAD108

and FV can be employed, for both the LE and affine invariant Riemannian metrics. According109

to [41], these are global coding strategies, that describe the entire set of features, and not the110

individual ones. Essentially, this is accomplished using probability density distributions to model111

the feature space. More precisely, they can be viewed either as voting-based methods depending112

on histograms, or as Fisher coding-based methods by using Gaussian mixture models adapted to113

the considered metric [39,42].114

6. Post-processing is often applied after the feature encoding step, in order to minimize the115

influence of background information on the image signature [6] and to correct the independence116

assumption made on the patches [7]. Therefore, two types of normalization are used, namely the117

power [7] and `2 [6] normalizations.118

7. Classification is the final step, achieved by associating the test images to the class of the most119

similar training observations. In practice, algorithms such as k-nearest neighbors, support vector120

machine or random forest can be used.121

As shown in Fig. 1, the codebook generation along with the feature encoding are the two central122

steps in this framework. The next two sections present a detailed analysis of how these steps are123

adapted to covariance matrix features.124

3. Codebook generation in Pm125

This section focuses on the codebook generation. At this point, the set of extracted low-level126

features, i.e. the set of covariance matrices, is used in order to identify the ones embedding the set’s127

significant characteristics. In this paper, two metrics are considered to compute the codebook which128

are respectively the LE and the affine invariant Riemannian metric. The next two subsections describe129

these two strategies.130

3.1. Log-Euclidean codebook131

Let M = {Mn}n=1:N , with Mn ∈ Pm, be a sample of N training SPD matrices of size m×m. The
LE codebook is obtained by considering the LE metric as similarity measure between two covariance
matrices. For such a purpose, each training covariance matrix Mn is first mapped on the LE space by
applying the matrix logarithm MLE

n = log Mn [33,43,44]. Next, a vectorization operator is applied to
obtain the LE vector representation. To sum up, for a given SPD matrix M, its LE vector representation,

m ∈ R
m(m+1)

2 , is defined as m = Vec(log(M)) where Vec is the vectorization operator defined as:

Vec(X) =
[

X11,
√

2X12, . . . ,
√

2X1m, X22,
√

2X23, . . . , Xmm

]
, (1)

with Xij the elements of X.132

Once the SPD matrices are mapped on the LE metric space, all the conventional algorithms
developed on the Euclidean space can be considered. In particular, the LE vector representation of M,
i.e. {mn}n=1:N , can be assumed to be independent and identically distributed (i.i.d.) samples from a
mixture of K multivariate Gaussian distributions, whose probability density function is

p(mn|θ) =
K

∑
k=1

vk p(mn|m̄k, Σk) (2)

where θ = {(vk, m̄k, Σk)1≤k≤K} is the parameter vector. For each cluster k, vk represent the mixture
weight, m̄k the mean vector and Mk the covariance matrices. It yields:

p(m|θk) =
1

(2π)
m
2 |Σk |

1
2

exp
{
− 1

2 (m− m̄k)
TΣ−1

k (m− m̄k)
}

, (3)
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where (·)T is the transpose operator, | · | is the determinant, m̄k ∈ R
m(m+1)

2 , Σk ∈ Pm(m+1)/2 and vk ∈ R.133

In addition, the covariance matrix is assumed to be diagonal, i.e. σ2
k = diag(Σk) ∈ R

m(m+1)
2 is the134

variance vector. For such a model, the classical k-means or EM algorithm can be applied to estimate the135

mixture parameters. The estimated parameters of each mixture component (m̄k, σ2
k and vk) represent136

the codewords and the set composed by the K codewords gives the LE codebook.137

3.2. New Riemannian codebook138

In this section, we present the construction of the Riemannian codebook which is based on the139

affine invariant Riemannian metric. We recall some properties of the manifold of SPD matrices and140

introduce the Riemannian Gaussian mixture model.141

3.2.1. Riemannian geometry of the space of SPD matrices142

The space Pm of m×m real SPD matrices M satisfies the following conditions:

M−MT = 0 (4)

and
xTMx > 0, (5)

∀x ∈ Rm and x 6= 0.143

In this space, the Rao-Fisher metric defines a distance, called the Rao’s geodesic distance [45,46],
given by the length of the shortest curve connecting two points in Pm. Mathematically, this definition
can be stated as follows [32]. Let M1, M2 be two points in Pm and c : [0, 1] −→ Pm a differentiable
curve, with c(0) = M1 and c(1) = M2. Thus, the length of curve c, denoted by L(c) is defined as:

L(c) =
∫ 1

0

∥∥∥dc
dt

∥∥∥dt. (6)

The geodesic distance d : Pm ×Pm −→ R+ between M1 and M2 is the infimum of L(c) with respect to
all differentiable curves c. Based on the properties of Rao-Fisher metric, it has been shown that the
unique curve γ fulfilling this condition is [45,46]:

γ(t) = M
1
2
1

(
M−

1
2

1 M2M−
1
2

1

)t
M

1
2
1 , (7)

called the geodesic connecting M1 and M2. Moreover, the distance between two points in Pm can be
expressed as [47]:

d2(M1, M2) = tr
([

log
(

M−
1
2

1 M2M−
1
2

1

)]2
)
=

m

∑
i=1

(ln λi)
2, (8)

with λi, i = 1, . . . , m being the eigenvalues of M−1
1 M2.144

The affine invariant Riemannian (Rao-Fisher) metric can be also used to define the Riemannian
volume element [45]:

dv(M) = |M|−
m+1

2 ∏
i≤j

dMij. (9)

For each point on the manifold M1 ∈ Pm, the tangent space at M1, denoted by TM1 can be defined.145

This space contains the vectors VT that are tangent to all possible curves passing through M1. The146

correspondence between a point on the manifold and its tangent space can be achieved by using two147

operators: the Riemannian exponential mapping and the Riemannian logarithm mapping [48,49].148
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More precisely, the Riemannian exponential mapping for a point M1 ∈ Pm and the tangent vector
VT is given by [48,49]:

M2 = ExpM1
(VT) = M

1
2
1 exp

(
M−

1
2

1 VTM−
1
2

1

)
M

1
2
1 , (10)

where exp(·) is the matrix exponential. By this transformation, the tangent vector VT can be mapped149

on the manifold.150

Further on, the inverse of the Riemannian exponential mapping is the Riemannian logarithm
mapping. For two points M1, M2 ∈ Pm, this operator is given by [48,49]:

VT = LogM1
(M2) = M

1
2
1 log

(
M−

1
2

1 M2M−
1
2

1

)
M

1
2
1 , (11)

where log(·) is the matrix logarithm. In practice, this operation gives the tangent vector VT , by151

transforming the geodesic γ in a straight line in the tangent space. In addition, the geodesic’s length152

between M1 and M2 is equal to the norm of the tangent vector VT .153

3.2.2. Mixture of Riemannian Gaussian distribution154

Riemannian Gaussian model155

In order to model the space Pm of SPD covariance matrices, a generative model has been
introduced in [39,42]: the Riemannian Gaussian distribution (RGD). For this model, the probability
density function with respect to the Riemannian volume element given in (9) is defined as
follow [39,42]:

p(Mn|M̄, σ) =
1

Z(σ)
exp

{
− d2(Mn, M̄)

2σ2

}
, (12)

where M̄ and σ are the distribution parameters, representing respectively the central value (centroid)
and the dispersion. d(·) is the Riemannian distance given in (8) and Z(σ) is a normalization factor
independent of M̄ [39,50].

Z(σ) = 8
m(m−1)

4 πm2/2

m! Γm(m/2)

∫
Rm e−

‖r‖2
2σ2 ∏i<j sinh

( |ri−rj |
2

)
∏m

i=1 dri (13)

with Γm the multivariate Gamma function [51]. In practice, for m = 2, the normalization factor admits156

a closed-form expression [32], while for m > 2 the normalization factor can be computed numerically157

as the expectation of the product of sinh functions with respect to the multivariate normal distribution158

N (0, σ2 Im) [39]. Afterwards, a cubic spline interpolation can be used to smooth this function [52].159

Mixture model for RGDs160

As for the LE codebook, a generative model is considered for the construction of the Riemannian
codebook. For the former, a mixture of multivariate Gaussian distribution was considered since the
SPD matrices were projected on the LE space. For the construction of the Riemannian codebook, we
follow a similar approach by considering that M = {Mn}n=1:N , are i.i.d. samples from a mixture of K
RGDs. In this case, the likelihood of M is given by:

p(M|θ) =
N

∏
n=1

p(Mn|θ) =
N

∏
n=1

K

∑
k=1

vk p(Mn|M̄k, σk), (14)

where p(Mn|M̄k, σk) is the RGD defined in (12) and θ = {(vk, M̄k, σk)1≤k≤K} is the parameter vector161

containing the mixture weight vk, the central value M̄k and the dispersion parameter σk.162

Once estimated, the parameters of each mixture component represent the codewords, and the set163

of all K codewords gives the Riemannian codebook. Regarding the estimation, the conventional164
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intrinsic k-means clustering algorithm can be considered [36,53]. Nevertheless, it implies the165

homoscedasticity assumption, for which the clusters have the same dispersion. To relax this166

assumption, we consider in the following the maximum likelihood estimation with the expectation167

maximization algorithm defined in [32].168

Maximum likelihood estimation169

First, let’s consider the following two quantities that are defined for each mixture component k,
k = 1, . . . , K:

γk(Mn, θ) =
vk × p(Mn|M̄k, σk)

∑K
j=1 vj × p(Mn|M̄j, σj)

(15)

and

nk(θ) =
N

∑
n=1

γk(Mn, θ). (16)

Then, the estimated parameters θ̂ = {(v̂k, ̂̄Mk, σ̂k)1≤k≤K} are iteratively updated based on the170

current value of θ̂:171

• The estimated mixture weight v̂k is given by:

v̂k =
nk(θ̂)

∑K
k=1 nk(θ̂)

; (17)

• The estimated central value ̂̄Mk is computed as:

̂̄Mk = arg min
M

N

∑
n=1

γk(Mn, θ̂)d2(M, Mn); (18)

In practice, (18) is solved by means of a gradient descent algorithm [54].172

• The estimated dispersion σ̂k is obtained as:

σ̂k = Φ

(
n−1

k (θ)×
N

∑
n=1

ωk(Mn, θ̂)d2( ̂̄Mk, Mn)

)
, (19)

where Φ is the inverse function of σ 7→ σ3 × d
dσ log Z(σ).173

Practically, the estimation procedure is repeated for a fixed number of iterations, or until174

convergence, that is until the estimated parameters remain almost stable for successive iterations.175

Moreover, as the estimation with the EM algorithm depends on the initial parameter setting, the EM176

algorithm is run several times (10 in practice) and the best result is kept (i.e. the one maximizing the177

log-likelihood criterion).178

Based on the extracted (LE or Riemannian) codebook, the next section presents various strategies179

to encode a set of SPD matrices. These approaches are based whether on the LE metric or on the180

affine invariant Riemannian metric. In the next section, three kinds of coding approaches are reviewed,181

namely the bag of words (BoW) model, the vector of locally agregated descriptors (VLAD) [2,3] and182

the Fisher vectors (FV) [5–7]. Here, the main contribution is the proposition of coding approaches183

based on the FV model: the Log-Euclidean Fisher vectors (LE FV) and the Riemannian Fisher vectors184

(RFV) [40].185

4. Feature encoding methods186

Given the extracted codebook, the purpose of this part is to project the feature set of SPD matrices187

onto the codebook elements. In other words, the initial feature set is expressed using the codewords188

contained in the codebook. Fig. 2 draws an overview of the relation between the different approaches189
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(a)

(b)

Figure 2. Workflow explaining (a) the codebook creation step and (b) the coding step. The LE based
approaches appear in red while the Riemannian based ones are displayed in blue. The E-VLAD
descriptor is displayed in purple since it considers simultaneously a Riemannian codebook and LE
vector representation of the covariance matrices.

based on the BoW, VLAD and FV models. The LE-based metric approaches appear in red while the190

affine invariant ones are displayed in blue. The E-VLAD descriptor is displayed in purple since it191

considers the Riemannian codebook combined with LE representation of the features.192

4.1. Bag of words descriptor193

One of the most common encoding methods is represented by the BoW model. With this model, a194

set of features is encoded in an histogram descriptor obtained by counting the number of features which195

are closest to each codeword of the codebook. In the beginning, this descriptor has been employed for196

text retrieval and categorization [10,55], by modeling a text with an histogram containing the number197

of occurrences of each word. Later on, the BoW model has been extended to visual categorization [56],198

where images are described by a set of descriptors, such as SIFT features. In such case, the “words" of199

the codebook are obtained by considering a clustering algorithm with the standard Euclidean metric.200

Recently, the BoW model has been extended to features lying in a non-Euclidean space, such as SPD201

matrices. In this context, two approaches have been proposed based respectively on the LE and affine202

invariant Riemannian metrics:203

• the log-Euclidean bag of words (LE BoW) [33,35].204

• the bag of Riemannian words (BoRW) [36].205

These two descriptors have been employed successfully for different applications, including texture206

and human epithelial type 2 cells classification [36], action recognition [33,35].207
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4.1.1. Log-Euclidean bag of words (LE BoW)208

The LE BoW model has been considered in [33,35]. First, the space of covariance matrices is209

embedded into a vector space by considering the LE vector representation m given in (1). With this210

embedding, the LE BoW model can be interpreted as the BoW model in the LE space. This means that211

codewords are elements of the log-Euclidean codebook detailed in Section 3.1. Next, each observed212

SPD matrix Mn is assigned to cluster k of closest codeword m̄k to compute the histogram descriptor.213

The vicinity is evaluated here as the Euclidean distance between the LE vector representation mn and214

the codeword m̄k.215

The LE BoW descriptor can also be interpreted by considering the Gaussian mixture model
recalled in (2). In such case, each feature mn is assigned to the cluster k, for k = 1, . . . , K according to:

arg max
k

vk p(mn|m̄k, Σk), (20)

where p(mn|m̄k, Σk) is the multivariate Gaussian distribution given in (3). In addition, two constraints216

are assumed ∀k = 1, . . . , K:217

• the homoscedasticity assumption:
Σk = Σ. (21)

• the same weight is given to all mixture components:

vk =
1
K

. (22)

4.1.2. Bag of Riemannian words (BoRW)218

This descriptor has been introduced in [36]. Contrary to the LE BoW model, the BoRW model219

exploits the affine invariant Riemannian metric. For that, it considers the Riemannian codebook220

detailed in Section 3.2. Then, the histogram descriptor is computed by assigning each SPD matrix to221

the cluster k of the closest codebook element M̄k, the proximity being measured with the geodesic222

distance recalled in (8).223

As for the LE BoW descriptor, the definition of the BoRW descriptor can be obtained by the
Gaussian mixture model, except that the RGD model defined in (12) is considered instead of the
multivariate Gaussian distribution. Each feature Mn is assigned to the cluster k, for k = 1, . . . , K
according to:

arg max
k

vk p(Mn|M̄k, σk). (23)

In addition, the two previously cited assumptions are made, that are the same dispersion and weight224

are given to all mixture components.225

226

It has been shown in the literature that the performance of BoW descriptors depends on the227

codebook size, best results being generally obtained for large dictionaries [5]. Moreover, BoW228

descriptors are based only on the number of occurrences of each codeword from the dataset. In229

order to increase the classification performances, second order statistics can be considered. This is the230

case of VLAD and FV that are presented next.231

4.2. Vectors of locally aggregated descriptors232

VLAD descriptors have been introduced in [2] and represent a method of encoding the difference
between the codewords and the features. For features lying in a Euclidean space, the codebook is
composed by cluster centroids {(x̄k)1≤k≤K} obtained by clustering algorithm on the training set. Next,
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to encode a feature set {(xn)1≤n≤N}, vectors vk containing the sum of differences between codeword
and feature samples assigned to it are computed for each cluster:

vk = ∑
xn∈ck

xn − x̄k. (24)

The final VLAD descriptor is obtained as the concatenation of all vectors vk:

VLAD = [vT
1 , . . . , vT

K]. (25)

In order to generalize this formalism to features lying in a Riemannian manifold, two theoretical233

aspects should be addressed carefully, which are the definition of a metric to describe how features are234

assigned to the codewords, and the definition of subtraction operator for these kind of features. By235

addressing these aspects, three approaches have been proposed in the literature:236

• the log-Euclidean vector of locally aggregated descriptors (LE VLAD) [11].237

• the extrinsic vector of locally aggregated descriptors (E-VLAD) [37].238

• the intrinsic Riemannian vector of locally aggregated descriptors (RVLAD) [11].239

4.2.1. Log-Euclidean vector of locally aggregated descriptors (LE VLAD)240

this descriptor has been introduced in [11] to encode a set of SPD matrices with VLAD descriptors.
In this approach, VLAD descriptors are computed in the LE space. For this purpose, (24) is rewritten
as:

vk = ∑
mn∈ck

mn − m̄k, (26)

where the LE representation mn of Mn belongs to the cluster ck if it is closer to m̄k than any other241

element of the LE codebook. The proximity is measured here according to the Euclidean distance242

between the LE vectors.243

4.2.2. Extrinsic vector of locally aggregated descriptors (E-VLAD)244

the E-VLAD descriptor is based on the LE vector representation of SPD matrices. However,
contrary to the LE VLAD model, this descriptor uses the Riemannian codebook to define the Voronoï
regions. It yields that:

vk = ∑
Mn∈ck

mn − m̄k, (27)

where Mn belongs to the cluster ck if it is closer to M̄k according to the affine invariant Riemannian245

metric. Note also that here m̄k is the LE vector representation of the Riemannian codebook element246

M̄k.247

In order to speed-up the processing time, Faraki et al. have proposed in [37] to replace the affine248

invariant Riemannian metric by the Stein metric [57]. For this latter, computational cost to estimate the249

centroid of a set of covariance matrices is less demanding than with the affine invariant Riemannian250

metric since a recursive computation of the Stein center from a set of covariance matrices has been251

proposed in [58].252

Since this approach exploits two metrics, one for the codebook creation (with the affine invariant253

Riemannian or Stein metric) and another for the coding step (with the LE metric), we referred it as an254

extrinsic method.255

4.2.3. Riemannian vector of locally aggregated descriptors (RVLAD)256

this descriptor has been introduced in [11] to propose a solution for the affine invariant
Riemannian metric. More precisely, the geodesic distance [47] recalled in (8) is considered to measure
similarity between SPD matrices. The affine invariant Riemannian metric is used to define the Voronoï
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regions) and the Riemannian logarithm mapping [48] is used to perform the subtraction on the
manifold. It yields that for the RVLAD model, the vectors vk are obtained as:

vk = Vec

(
∑

Mn∈ck

LogM̄k
(Mn)

)
, (28)

where LogM̄k
(·) is the Riemannian logarithm mapping defined in (11). Note that the vectorization257

operator Vec(·) is used to represent vk as a vector.258

As explained in [2], the VLAD descriptor can be interpreted as a simplified non probabilistic259

version of the FV. In the next section, we give an explicit relationship between these two descriptors260

which is one of the main contribution of the paper.261

4.3. Fisher vector descriptor262

Fisher vectors (FV) are descriptors based on Fisher kernels [59]. FV measures how samples are263

correctly fitted by a given generative model p(X|θ). Let X = {xn}n=1:N , be a sample of N observations.264

The FV descriptor associated to X is the gradient of the sample log-likelihood with respect to the265

parameters θ of the generative model distribution, scaled by the inverse square root of the Fisher266

information matrix (FIM).267

First, the gradient of the log-likelihood with respect to the model parameter vector θ, also known
as the Fisher score (FS) UX [59], should be computed:

UX = ∇θ log p(X |θ) = ∇θ

N

∑
n=1

log p(Xn|θ). (29)

As mentioned in [5], the gradient describes the direction in which parameters should be modified268

to best fit the data. In other words, the gradient of the log-likelihood with respect to a parameter269

describes the contribution of that parameter to the generation of a particular feature [59]. A large value270

of this derivative is equivalent to a large deviation from the model, suggesting that the model does not271

correctly fit the data.272

Second, the gradient of the log-likelihood can be normalized by using the FIM Iθ [59]:

Iθ = EX [UX UT
X ], (30)

where EX [·] denotes the expectation over p(X |θ). It yields that the FV representation of X is given by
the normalized gradient vector [5]:

GX
θ = I−1/2

θ ∇θ log p(X |θ). (31)

As reported in previous works, exploiting the FIM Iθ in the derivation of FV yields to excellent273

results with linear classifiers [6,7,9]. However, the computation of the FIM might be quite difficult.274

It does not admit a close-form expression for many generative models. In such case, it can be275

approximated empirically by carrying out a Monte Carlo integration, but this latter can be costly276

especially for high dimensional data. To solve this issue, some analytical approximations can be277

considered [5,9].278

The next part explains how the FV model can be used to encode a set of SPD matrices. Once279

again, two approaches are considered by using respectively the LE and the affine invariant Riemannian280

metrics:281

• the Log-Euclidean Fisher vectors (LE FV).282

• the Riemannian Fisher vectors (RFV) [40].283
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4.3.1. Log-Euclidean Fisher vectors (LE FV)284

The LE FV model consists in an approach where the FV descriptors are computed in the LE space.285

In such case, the multivariate Gaussian mixture model recalled in (2) is considered.286

Let MLE = {mn}n=1:N be the LE representation of the set M. To compute the LE FV descriptor
of M, the derivatives of the log-likelihood function with respect to θ should first be computed. Let
γk(mn) be the soft assignment of mn to the kth Gaussian component

γk(mn) =
vk p(mn|θk)

∑K
j=1 vj p(mn|θj)

. (32)

It yields that, the elements of the LE Fisher score (LE FS) are obtained as:

∂ log p(MLE|θ)
∂m̄d

k
=

N

∑
n=1

γk(mn)

(
md

n − m̄d
k(

σd
k
)2

)
, (33)

∂ log p(MLE|θ)
∂σd

k
=

N

∑
n=1

γk(mn)

([
md

n − m̄d
k

]2

(
σd

k
)3 − 1

σd
k

)
, (34)

∂ log p(MLE|θ)
∂αk

=
N

∑
n=1

(
γk(mn)−vk

)
, (35)

where m̄d
k (resp. σd

k ) is the dth element of vector m̄k (resp. σk). Note that, to ensure the constraints
of positivity and sum-to-one for the weights vk, the derivative of the log-likelihood with respect to
this parameter is computed by taking into consideration the soft-max parametrization as proposed
in [9,60]:

vk =
exp(αk)

∑K
j=1 exp(αj)

. (36)

Under the assumption of nearly hard assignment, that is the soft assignment distribution γk(mn) is
sharply peaked on a single value of k for any observation mn, the FIM Iθ is diagonal and admits a
close-form expression [9]. It yields that the LE FV ofM is obtained as:

GMLE
m̄d

k
=

1√
vk

N

∑
n=1

γk(mn)

(
md

n − m̄d
k

σd
k

)
, (37)

GMLE
σd

k
=

1√
2vk

N

∑
n=1

γk(mn)

([
md

n − m̄d
k

]2

(
σd

k
)2 − 1

)
, (38)

GMLE
αk =

1√
vk

N

∑
n=1

(
γk(mn)−vk

)
. (39)

4.3.2. Riemannian Fisher vectors (RFV)287

Ilea et al. have proposed in [40] an approach to encode a set of SPD matrices with FS based on the
affine invariant Riemannian metric: the Riemannian Fisher score (RFS). In this method, the generative
model is a mixture of RGDs [39] as presented in Section 3.2.2. By following the same procedure as
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before, the RFS is obtained by computing the derivatives of the log-likelihood function with respect to
the distribution parameters θ = {(vk, M̄k, σk)1≤k≤K}. It yields that [40]:

∂ log p(M|θ)
∂M̄k

=
N

∑
n=1

γk(Mn)
LogM̄k

(Mn)

σ2
k

, (40)

∂ log p(M|θ)
∂σk

=
N

∑
n=1

γk(Mn)

{
d2(Mn, M̄k)

σ3
k

− Z′(σk)

Z(σk)

}
, (41)

∂ log p(M|θ)
∂αk

=
N

∑
n=1

[γk(Mn)−vk] , (42)

where LogM̄k
(·) is the Riemannian logarithm mapping in (11) and Z′(σk) is the derivative of Z(σk)288

with respect to σk. The function Z′(σ) can be computed numerically by a Monte Carlo integration, in a289

similar way to the one for the normalization factor Z(σ) (see Section 3.2.2).290

In these expressions, γk(Mn) represents the probability that the feature Mn is generated by the
kth mixture component, computed as:

γk(Mn) =
vk p(Mn|M̄k, σk)

∑K
j=1 vj p(Mn|M̄j, σj)

. (43)

By comparing (33), (34), (35) with (40), (41), (42), one can directly notice the similarity between the LE291

FS and the RFS. In these equations, vector difference in the LE FS is replaced by log map function in292

the RFS. Similarly, Euclidean distance in the LE FS is replaced by geodesic distance in the RFS.293

In [40], Ilea et al. have not exploited the FIM. In this paper, we propose to add this term in order294

to define the Riemannian Fisher vectors (RFV). To derive the FIM, the same assumption as the one295

given in Section 4.3.1 should be made, i.e. the assumption of nearly hard assignment, that is the soft296

assignment distribution γk(Mn) is sharply peaked on a single value of k for any observation Mn. In297

that case, the FIM is block diagonal and admits a close-form expression detailed in [61]. In this paper,298

Zanini et al. have used the FIM to propose an online algorithm for estimating the parameters of a299

Riemannian Gaussian mixture model. Here, we propose to add this matrix in another context which is300

the derivation of a descriptor : the Riemannian FV.301

First, let’s recall some elements regarding the derivation of the FIM. This block diagonal matrix is302

composed of three terms, one for the weight, one for the centroid and one for the dispersion.303

• For the weight term, the same procedure as the one used in the conventional Euclidean framework304

can employed [9]. In [61], they proposed another way to derive this term by using the notation305

s = [
√

v1, . . . ,
√

vK] and observing that s belongs to a Riemannian manifold (more precisely306

the (K− 1)-sphere SK−1). These two approaches yield exactly to the same final result.307

• For the centroid term, it should be noted that each centroid M̄k is a covariance matrix which308

lives in the manifold Pm of m × m symmetric positive definite matrices. To derive the FIM309

associated to this term, the space Pm should be decomposed as the product of two irreducible310

manifolds, i.e. Pm = R×SPm where SPm is the manifold of symmetric positive definite matrices311

with unitary determinant. Hence, each observed covariance matrix M can be decomposed as312

φ(M) = {(M)1 , (M)2} where313

– (M)1 = log det M is a scalar element lying in R.314

– (M)2 = e−
(M)1

m M is a covariance matrix of unit determinant.315

• For the dispersion parameter, the notation η = − 1
2σ2 is considered to ease the mathematical316

derivation. Since this parameter is real, the conventional Euclidean framework is employed to317

derive the FIM. The only difference is that the Euclidean distance is replaced by the geodesic one.318
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For more information on the derivation of the FIM for the Riemannian Gaussian mixture model, the
interested reader is referred to [61]. To summarize, the elements of the block-diagonal FIM for the
Riemannian Gaussian mixture model are defined by:

Is = 4IK, (44)

I(M̄k)1
=

vk

σ3
k

, (45)

I(M̄k)2
=

vk ψ
′
2(ηk)

σ4
k

(
m(m+1)

2 − 1
) I m(m+1)

2 −1
, (46)

Iηk = vk ψ
′′
(ηk), (47)

where IK is the K× K identity matrix, ψ(η) = log (Z(σ)) and ψ
′
(·) (resp. ψ

′′
(·)) are the first (resp. the319

second) order derivatives of the ψ(·) function with respect to η. ψ
′
2(η) = ψ

′
(η) + 1

2η .320

Now that the FIM and the FS score are obtained for the Riemannian Gaussian mixture model, we
can define the RFV by combining (40) to (42) and (44) to (47) in (31). It yields that:

GM
(M̄k)1

=
1√
vk

N

∑
n=1

γk(Mn)

(
(M̄k)1 − (Mn)1

σk

)
, (48)

GM
(M̄k)2

=
1√
vk

N

∑
n=1

γk(Mn)

√
m(m+1)

2 − 1

ψ
′
2 (ηk)

Log(M̄k)2

(
(Mn)2

)
, (49)

GM
σk

=
1√
vk

N

∑
n=1

γk(Mn)

(
d2(Mn, M̄k)− ψ

′
(ηk)√

ψ
′′(ηk)

)
, (50)

GM
vk

=
1√
vk

N

∑
n=1

(
γk(Mn)−vk

)
. (51)

Unsurprisingly, this definition of the RFV can be interpreted as a direct extension of the FV computed321

in the Euclidean case to the Riemannian case. In particular (37), (38) and (39) are retrieved when the322

normalization factor Z(σ) is set to σ
√

2π in (48), (50) and (51).323

In the end, the RFVs are obtained by concatenating some, or all of the derivatives in (48), (49), (50)324

and (51). Note also that since (49) is a matrix, the vectorization operator Vec(·) is used to represent it325

as a vector.326

4.3.3. Relation with VLAD327

As stated before, the VLAD descriptor can be retrieved from the FV model. In this case, only the328

derivatives with respect to the central element (m̄d
k or M̄k) are considered. Two assumptions are also329

made:330

• the hard assignment scheme, that is:

γk(M) =

{
1, if M ∈ ck

0, otherwise,
(52)

where M ∈ ck are the elements assigned to cluster ck and k = 1, . . . , K,331

• the homoscedasticity assumption, that is σk = σ , ∀k = 1, . . . , K.332

By taking into account these hypotheses, it can be noticed that (33) reduces to (26), confirming that333

LE FV are a generalization of LE VLAD descriptors. The same remark can be done for the approach334

exploiting the affine invariant Riemannian metric where the RFV model can be viewed as an extension335

of the RVLAD model. The proposed RFV gives a mathematical explanation of the RVLAD descriptor336
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which has been introduced in [11] by an analogy between the Euclidean space (for the VLAD descriptor)337

and the Riemannian manifold (for the RVLAD descriptor).338

4.4. Post-processing339

Once the set of SPD matrices is encoded by one of the previously exposed coding methods (BoW,340

VLAD, FS or FV), a post-processing step is classically employed. In the framework of feature coding,341

the post-processing step consists in two possible normalization steps: the power and `2 normalization.342

These operations are detailed next.343

4.4.1. Power normalization344

The purpose of this normalization method is to correct the independence assumption that is
usually made on the image patches [7]. For the same vector v, its power-normalized version vpower is
obtained as:

vpower = sign(v)|v|ρ, (53)

where 0 < ρ ≤ 1, and sign(·) is the signum function and | · | is the absolute value. In practice, ρ is set345

to 1
2 , as suggested in [9].346

4.4.2. `2 normalization347

This normalization method has been proposed in [6] to minimize the influence of the background
information on the image signature. For a vector v, its normalized version vL2 is computed as:

vL2 =
v
‖v‖2

, (54)

where ‖ · ‖2 is the L2 norm.348

Depending on the considered coding method, one or both normalization steps are applied. For349

instance, for VLAD, FS and FV based methods, both normalizations are used [36,40], while for BoW350

based methods only the `2 normalization is considered [33].351

4.5. Synthesis352

Table 1 draws an overview of the different coding methods. As seen before, two metrics can be353

considered, namely the LE and the affine invariant Riemannian metrics. This yields to two Gaussian354

mixture models: a mixture of multivariate Gaussian distributions and a mixture of Riemannian355

Gaussian distributions. These mixture models are the central point in the computation of the codebook356

which are further used to encode the features. In this table and in the following ones, the proposed357

coding methods are displayed in gray.358

As observed, a direct parallel can be drawn between the different coding methods (BoW, VLAD,359

FS and FV). More precisely, it is interesting to note how the conventional coding methods used for360

descriptors lying in R
m(m+1)

2 are adapted to covariance matrix descriptors.361

5. Application to image classification362

This section introduces some applications to image classification. Two experiments are conducted,363

one for texture image classification and one for head pose image classification. The aim of these364

experiments is three-fold. The first objective is to compare two Riemannian metrics: the log-Euclidean365

and the affine invariant Riemmannian metrics. The second objective is to analyze the potential of the366

proposed FV based methods compared to the recently proposed BoW and VLAD based models. And367

finally, the third objective is to evaluate the advantage of including the FIM in the derivation of the368

FVs, i.e. comparing the performance between FS and FV.369
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Table 1. Overview of the coding descriptors.

Log-Euclidean Affine invariant
metric Riemannian metric

Mixture model

Gaussian
mixture
model

Mixture of multivariate Gaussian distributions Mixture of Riemannian Gaussian distributions [39,42]
p(mn|θ) = ∑K

k=1 vk p(mn|m̄k, Σk) p(Mn|θ) = ∑K
k=1 vk p(Mn|M̄k, σk)

with m̄k ∈ R
m(m+1)

2 , σ2
k = diag(Σk) ∈ R

m(m+1)
2 with M̄k ∈ Pm, σk ∈ R

and vk ∈ R. and vk ∈ R.

Coding method

Bag of Words
(BoW)

Log-Euclidean BoW (LE BoW) [33,35] Bag of Riemannian Words (BoRW) [36]

Histogram based on the decision rule Histogram based on the decision rule
arg maxk vk p(mn|m̄k, Σk) arg maxk vk p(Mn|M̄k, σk)

Vector of
Locally

Aggregated
Descriptors

(VLAD)

Log-Euclidean VLAD (LE VLAD) [11] Riemannian VLAD (RVLAD) [11]

vk = ∑mn∈ck
mn − m̄k vk = Vec

(
∑Mn∈ck

LogM̄k
(Mn)

)

Extrinsic VLAD (E-VLAD) [37]

vk = ∑Mn∈ck
mn − m̄k

Fisher Score
(FS)

Log-Euclidean Fisher Score (LE FS) Riemannian Fisher Score (RFS) [40]

∂ log p(MLE |θ)
∂m̄d

k
= ∑N

n=1 γk(mn)

(
md

n−m̄d
k

(σd
k )

2

)
∂ log p(M|θ)

∂M̄k
= ∑N

n=1 γk(Mn)
LogM̄k

(Mn)

σ2
k

∂ log p(MLE |θ)
∂σd

k
= ∑N

n=1 γk(mn)

(
[md

n−m̄d
k ]

2

(σd
k )

3 − 1
σd

k

)
∂ log p(M|θ)

∂σk
= ∑N

n=1 γk(Mn)
{

d2(Mn ,M̄k)
σ3

k
− Z′(σk)

Z(σk)

}
∂ log p(MLE |θ)

∂αk
= ∑N

n=1

(
γk(mn)−vk

)
∂ log p(M|θ)

∂αk
= ∑N

n=1 [γk(Mn)−vk]

Fisher Vector
(FV)

Log-Euclidean Fisher Vectors (LE FV) Riemannian Fisher Vectors (RFV)

GM
(M̄k)1

= 1√
vk

∑N
n=1 γk(Mn)

(
(M̄k)1−(Mn)1

σk

)
GMLE

m̄d
k

= 1√
vk

∑N
n=1 γk(mn)

(
md

n−m̄d
k

σd
k

)
GM
(M̄k)2

= 1√
vk

∑N
n=1 γk(Mn)

√
m(m+1)

2 −1

ψ
′
2(ηk)

Log(M̄k)2

(
(Mn)2

)
GMLE

σd
k

= 1√
2vk

∑N
n=1 γk(mn)

(
[md

n−m̄d
k ]

2

(σd
k )

2 − 1

)
GM

σk
= 1√

vk
∑N

n=1 γk(Mn)

(
d2(Mn ,M̄k)−ψ

′
(ηk)√

ψ′′ (ηk)

)
GMLE

αk = 1√
vk

∑N
n=1

(
γk(mn)−vk

)
GM

vk
= 1√

vk
∑N

n=1

(
γk(Mn)−vk

)

5.1. Texture image classification370

5.1.1. Image databases371

To answer these questions, a first experiment is conducted on four conventional texture databases,372

namely the VisTex [62], Brodatz [63], Outex-TC-00013 [64] and USPtex [65] databases. Some examples373

of texture images issued from these four texture databases are displayed in Fig. 3374

The VisTex database is composed of 40 texture images of size 512× 512 pixels. In the following,375

each texture image is divided into 64 non-overlapping images of size 64× 64 pixels, yielding to a376

database of 2560 images. The grayscale Brodatz database contains 112 textures images of size 640× 640377

pixels which represent a large variety of natural textures. Each one is divided into 25 non-overlapping378

images of size 128× 128 pixels, thus creating 2800 images in total (i.e., 112 classes with 25 images/class).379
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(a) (b)

(c) (d)

Figure 3. Examples of texture images used in the experimental study issued from the (a) VisTex, (b)
Brodatz, (c) Outex and (d) USPtex texture databases.

Table 2. Description of the texture databases used in this experiment.

Database Number of classes Number of images per class Total number of images Dimension

VisTex 40 64 2560 64× 64 pixels
Brodatz 112 25 2800 128× 128 pixels
Outex 68 20 1380 128× 128 pixels

USPtex 191 12 2292 128× 128 pixels

The Outex database consists of a dataset of 68 texture classes (canvas, stone, wood, . . . ) with 20 image380

samples per class of size 128× 128 pixels. And finally, The USPtex database is composed of 191 texture381

classes with 12 image samples of size 128× 128 pixels. Table. 2 summarizes the main characteristics of382

each of these four databases.383

5.1.2. Context384

As shown in Fig. 1, the first stage is the feature extraction step which consists in representing each
texture image by a set of covariance matrices. Since the experiment purpose is not to find the best
classification accuracies on these databases, but rather to compare the different strategies (choice of the
metric, influence of the coding model) on the same features, we have adopted the simple but effective
region covariance descriptors (RcovD) used in [34]. The extracted RCovD are the estimated covariance
matrices of vectors v(x, y) computed on sliding patches of size 15× 15 pixels where:

v(x, y) =
[

I(x, y),
∣∣∣ ∂I(x,y)

∂x

∣∣∣ ,
∣∣∣ ∂I(x,y)

∂y

∣∣∣ ,
∣∣∣ ∂2 I(x,y)

∂x2

∣∣∣ ,
∣∣∣ ∂2 I(x,y)

∂y2

∣∣∣]T
. (55)

In this experiment, the patches are overlapped by 50%. The fast covariance matrix computation385

algorithm based on integral images presented in [34] is adopted to speed-up the computation time of386
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Table 3. Classification results on the VisTex database (40 classes).

Coding method Log-Euclidean Affine invariant
metric Riemannian metric

LE BoW [35] / BoRW [36] 86.4 ± 0.01 85.9 ± 0.01
LE VLAD [11] / RVLAD [11] 91.3 ± 0.1 82.8 ± 0.02

E-VLAD [37] 91.6 ± 0.01
LE FS / RFS [40]: M̄ 95.3 ± 0.01 88.9 ± 0.01

LE FS / RFS [40]: M̄, v 95.1 ± 0.01 90.0 ± 0.01
LE FS / RFS [40]: M̄, σ 95.2 ± 0.01 91.2 ± 0.01

LE FS / RFS [40]: M̄, σ, v 95.1 ± 0.01 91.2 ± 0.01
LE FV / RFV: M̄ 95.5 ± 0.01 91.3 ± 0.01

LE FV / RFV: M̄, v 95.7 ± 0.01 92.6 ± 0.01
LE FV / RFV: M̄, σ 95.6 ± 0.01 92.7 ± 0.01

LE FV / RFV: M̄, σ, v 95.4 ± 0.01 93.2 ± 0.01

this feature extraction step. It yields that each texture class is composed by a set {M1, . . . , MN} of N387

covariance matrices, that are elements in P5.388

For each class, codewords are represented by the estimated parameters of the mixture of K389

Gaussian distributions. For this experiment, the number of modes K is set to 3. In the end, the codebook390

is obtained by concatenating the previously extracted codewords (for each texture class). Note that391

the same number of modes K has been considered for each class and has been set experimentally to 3392

which represents a good trade-off between the model complexity and the within-class diversity. This393

parameter has been fixed for all these experiments since the aim is to fairly compare the different394

coding strategies for the same codebook.395

Once the codebook is created, the covariance matrices of each image are encoded by one of the396

previously described method (namely BoW, VLAD, FS or FV) adapted to the LE or affine invariant397

Riemannian metric. Then after some post-processing (power and/or `2 normalization), the obtained398

feature vectors are classified. Here, the SVM classifier with Gaussian kernel is used. The parameter of399

the Gaussian kernel is optimized by using a cross validation procedure on the training set.400

The whole procedure is repeated 10 times for different training and testing sets. Each time, half401

of the database is used for training while the remaining half is used for testing. Tables 3 to 6 show402

the classification performance in term of overall accuracy (mean ± standard deviation) on the VisTex,403

Brodatz, Outex and USPtex databases.404

As the FS and FV descriptors are obtained by deriving the log-likelihood function with respect405

to the weight, dispersion and centroid parameters, the contribution of each term to the classification406

accuracy can be analyzed. Therefore, different versions of the FS and FV descriptors can be considered407

to analyze separately the contribution of each term or by combining these different terms. For example,408

the row “LE FS / RFS: M̄” indicates the classification results when only the derivatives with respect409

to the centroid are considered to derive the FS (see (33) and (40)). In the following, only the results410

employing the mean are presented since the state-of-the-art have already proved that the mean411

provides the most significant information [6,7].412

Note that the use of the FIM in the derivation of the FV allows to improve the classification413

accuracy. As observed for the four considered databases, a gain of about 1 to 3% is obtained when414

comparing “LE FV / RFV: M̄" with “LE FS / RFS: M̄".415

For these four experiments on texture image classification, the proposed FV descriptors416

outperform the state-of-the-art BoW and VLAD based descriptors. Classifying with the best FV417

descriptor yields to a gain of about 1 to 4% compared to the best BoW and VLAD based descriptors.418

5.1.3. Comparison between anisotropic and isotropic models419

As observed in Tables 3 to 6, the performance for the LE metric are generally better than that420

with the affine invariant Riemannian metric. But, both approaches are not directly comparable since421
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Table 4. Classification results on the Brodatz database (112 classes).

Coding method Log-Euclidean Affine invariant
metric Riemannian metric

LE BoW [35] / BoRW [36] 92.0 ± 0.01 92.1 ± 0.01
LE VLAD [11] / RVLAD [11] 92.5 ± 0.01 88.3 ± 0.01

E-VLAD [37] 92.4 ± 0.01
LE FS / RFS [40]: M̄ 92.5 ± 0.01 90.1 ± 0.01

LE FS / RFS [40]: M̄, v 92.7 ± 0.01 91.1 ± 0.01
LE FS / RFS [40]: M̄, σ 90.3 ± 0.01 91.7 ± 0.01

LE FS / RFS [40]: M̄, σ, v 90.8 ± 0.03 91.6 ± 0.01
LE FV / RFV: M̄ 93.5 ± 0.01 92.9 ± 0.01

LE FV / RFV: M̄, v 93.7 ± 0.01 93.2 ± 0.01
LE FV / RFV: M̄, σ 93.1 ± 0.01 93.1 ± 0.01

LE FV / RFV: M̄, σ, v 92.9 ± 0.01 93.2 ± 0.01

Table 5. Classification results on the Outex database (68 classes).

Coding method Log-Euclidean Affine invariant
metric Riemannian metric

LE BoW [35] / BoRW [36] 83.5 ± 0.01 83.7 ± 0.01
LE VLAD [11] / RVLAD [11] 85.9 ± 0.01 82.0 ± 0.01

E-VLAD [37] 85.1 ± 0.01
LE FS / RFS [40]: M̄ 87.2 ± 0.01 83.8 ± 0.01

LE FS / RFS [40]: M̄, v 88.0 ± 0.01 84.2 ± 0.01
LE FS / RFS [40]: M̄, σ 86.7 ± 0.01 84.9 ± 0.01

LE FS / RFS [40]: M̄, σ, v 87.6 ± 0.01 85.2 ± 0.01
LE FV / RFV: M̄ 87.3 ± 0.01 85.4 ± 0.01

LE FV / RFV: M̄, v 87.9 ± 0.01 86.0 ± 0.01
LE FV / RFV: M̄, σ 87.1 ± 0.01 86.0 ± 0.01

LE FV / RFV: M̄, σ, v 87.2 ± 0.01 86.3 ± 0.01

Table 6. Classification results on the USPtex database (191 classes).

Coding method Log-Euclidean Affine invariant
metric Riemannian metric

LE BoW [35] / BoRW [36] 79.9 ± 0.01 80.2 ± 0.01
LE VLAD [11] / RVLAD [11] 86.5 ± 0.01 78.9 ± 0.01

E-VLAD [37] 86.7 ± 0.01
LE FS / RFS [40]: M̄ 84.8 ± 0.03 84.7 ± 0.01

LE FS / RFS [40]: M̄, v 85.1 ± 0.02 85.2 ± 0.01
LE FS / RFS [40]: M̄, σ 76.8 ± 0.03 84.0 ± 0.01

LE FS / RFS [40]: M̄, σ, v 77.9 ± 0.03 84.0 ± 0.01
LE FV / RFV: M̄ 88.3 ± 0.01 87.0 ± 0.01

LE FV / RFV: M̄, v 88.0 ± 0.01 87.0 ± 0.01
LE FV / RFV: M̄, σ 87.7 ± 0.01 87.3 ± 0.01

LE FV / RFV: M̄, σ, v 88.4 ± 0.01 87.2 ± 0.01

an anisotropic model is considered for the LE metric while an isotropic model is used for the affine422

invariant Riemannian metric. Indeed, for the former the dispersion for the Gaussian mixture model423

is a diagonal matrix Σk while for the latter the dispersion σk is a scalar. In order to provide a fairer424

comparison between these two approaches, an experiment is conducted to illustrate if the observed425

gain with the LE metric comes from the metric or from the fact that the Gaussian model is anisotropic.426

For the LE metric, an isotropic model can be built by considering that Σk = σ2
k I m(m+1)

2
. For the427

affine invariant Riemannian metric, the Riemannian Gaussian distribution recalled in Section 3.2.2428

is isotropic. Pennec has introduced in [66] an anisotropic Gaussian model, but for this latter the429
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Table 7. Comparison between anisotropic and isotropic models, classification results based on FV : M̄.

Database
Anisotropic model, Isotropic model,

Log-Euclidean Log-Euclidean Affine invariant
metric metric Riemannian metric

VisTex 95.5 ± 0.01 88.7 ± 0.01 91.3 ± 0.01
Brodatz 93.5 ± 0.01 87.1 ± 0.01 92.9 ± 0.01
Outex 87.3 ± 0.01 83.2 ± 0.01 85.4 ± 0.01

USPtex 88.3 ± 0.01 81.5 ± 0.01 87.0 ± 0.01

normalization factor depends on both the centroid M̄k and the concentration matrix. It yields that the430

computation of the FS score and the derivation of the FIM for this model are still an open problem.431

This model will not be considered in the following.432

Table 7 shows the classification results obtained on the four considered texture databases. Here,433

the performances are displayed for the FV descriptor computed by using the derivative with respect to434

the centroid (i.e. LE FV / RFV: M̄). It can be noticed that for the LE metric, an anisotropic model yields435

to a significant gain of about 4 to 7% compared to an isotropic model. More interestingly, for an istropic436

model, descriptors based on the affine invariant Riemannian metric yield to better performances than437

that obtained with the LE metric. A gain of about 2 to 6% is observed. These experiments clearly438

illustrate that the gain observed in Tables 3 to 6 for the LE metric comes better from the anistropicty of439

the Gaussian mixture model than from the metric definition. According to these observations, it is440

expected that classifying with FV issued from anistropic Riemannian Gaussian mixture model will441

improve the performance. This point will be subject of future research works including the derivation442

of normalization factor of the anistropic Riemannian Gaussian model and the computation of the FIM.443

5.2. Head pose classification444

5.2.1. Context445

The aim of this second experiment is to illustrate how the proposed framework can be used for
classifying a set of covariance matrices of larger dimension. Here, the head pose classification problem
is investigated on the HOCoffee dataset [67]. This dataset contains 18 117 head images of size 50×50
pixels with six head pose classes (front left, front, front right, left, rear and right). Some examples of
images of each class (one class per row) are displayed in Fig. 4. It has a predefined experiment protocol
where 9 522 images are used for training and the remaining 8 595 images are used for testing. We
follow the same experiment protocol as in [11]. The extracted RCovD are the estimated covariance
matrices of vectors v(x, y) computed on sliding patches of size 15× 15 pixels where:

v(x, y) =
[

IL(x, y), Ia(x, y), Ib(x, y),
√

I2
x(x, y) + I2

y(x, y), arctan
(

Ix(x, y)
Iy(x, y)

)
, G1(x, y), . . . , G8(x, y)

]T

(56)

with Ic(x, y), c ∈ {L, a, b} are the CIELab color information for the pixel at coordinate (x, y),446

Ix(x, y) and Iy(x, y) are the first order luminance derivatives, and Gi(x, y) denotes the response of the447

i-th Difference Of Offset Gaussian (DOOG) filter-bank centered at position (x, y) of IL. An overlap448

of 50% is considered to compute the covariance matrices. Hence, each image in the database is449

represented by a set of 25 covariance matrices of size 13× 13. As for the previous experiment, 3 atoms450

per class are considered to compute the codebook.451

Table 8 shows the classification accuracy on the HOCoffee dataset. Similar conclusions can452

be drawn with the previous experiment on texture image classification. The use of the FIM in the453

derivation of the FV still allows to improve the classification accuracy. The best performances are454

obtained for the LE metric compared to the affine invariant Riemannian metric. Nevertheless, for this455
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Figure 4. Examples of images from the HOCoffee dataset. It contains six head pose classes, from the
first row to the last one (front left, front, front right, left, rear and right).

Table 8. Classification results on the HOCoffee database (6 classes).

Coding method Log-Euclidean Affine invariant
metric Riemannian metric

LE BoW [35] / BoRW [36] 53.5 56.2
LE VLAD [11] / RVLAD [11] 79.1 70.6

E-VLAD [37] 79.3
LE FS / RFS [40]: M̄ 79.8 64.6

LE FS / RFS [40]: M̄, v 79.8 65.0
LE FS / RFS [40]: M̄, σ 79.5 64.9

LE FS / RFS [40]: M̄, σ, v 79.7 64.6
LE FV / RFV: M̄ 80.0 67.7

LE FV / RFV: M̄, v 79.9 67.5
LE FV / RFV: M̄, σ 79.7 67.9

LE FV / RFV: M̄, σ, v 79.8 67.8

latter, the performance are quite low, especially for the FV obtained by deriving with respect to the456

dispersion parameter. Note that for this experiment the RVLAD descriptor allows to obtain better457

classification accuracy than the best RFV (70.6% vs. 67.9%).458

In order to understand why the performance with RFV are relatively low for the HOCoffee dataset,459

an experiment is conducted to see if the dispersion parameter can be considered with confidence.460

5.2.2. Estimation performance461

This section presents simulation results to evaluate the performance of the estimator of the
dispersion parameter for Gaussian models based on the LE and affine invariant Riemannian metrics.
For all these experiments,

M̄ij = ρ|i−j| for i, j ∈ J0, m− 1K. (57)
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(a) (b)

Figure 5. Root mean square error of the dispersion parameter for Gaussian models based on (a) the LE
and (b) affine invariant Riemannian metrics.

ρ is set to 0.7 in the following. For the LE metric, N i.i.d. vector samples (x1, . . . , xN) are generated462

according to a multivariate Gaussian distributionN (m̄, Σ), with Σ = σ2 I m(m+1)
2

. For the affine invariant463

Riemannian metric, N i.i.d. covariance matrix samples are generated according the Riemannian464

Gaussian distribution defined in Section 3.2.2. In the following, 1 000 Monte Carlo runs have been465

used to evaluate the performance of the estimation algorithm.466

Fig. 5 draws the evolution of the root mean square error (RMSE) of the dispersion parameter σ for467

Gaussian models based on the LE and affine invariant Riemannian metrics as a function of σ. The red468

curve corresponds to an experiment with covariance matrices of dimension 5× 5, while the blue one is469

for 13× 13 covariance matrices. In this figure, 1 000 (resp. 10 000) covariance matrices samples issued470

from the Gaussian model are generated to plot the solid (resp. the dashed) curve. This yields that the471

texture classification experiment of Section 5 is mimicked with the solid red curve while the head pose472

classification experiment is mimicked with the dashed blue one. As observed in Fig. 5.(a) for the LE m473

etric, the RMSE of the dispersion parameter is mainly influenced by the number of generated samples474

N. For this LE metric, the dimension of the covariance matrices has less importance, since the red and475

blue curves are superposed. Nevertheless, for the affine invariant Riemannian metric in Fig. 5(b), the476

RMSE of the dispersion parameter is greatly influenced by the dimension of the covariance matrices,477

especially for large values of σ.478

For the five databases, Fig. 6 shows the boxplots of the dispersion parameter for the LE (Fig. 6.(a))479

and Riemannian (Fig. 6.(b)) codebooks. Note that since two different metrics are considered, the480

amplitude value of the dispersion parameter are not directly comparable between Fig. 6.(a) and481

Fig. 6.(b). But for a given metric, it is possible to analyze the variability of the dispersion parameter482

for the five experiments. As observed in Fig. 6.(b), the estimated dispersion parameter σk for the483

Riemannian codebook takes larger values for the HOCoffee dataset than that for the four texture484

datasets. For the former, the estimated dispersion parameters of the Riemannian codebook are larger485

than 0.4 which corresponds to the area in Fig. 5.(b) where the RMSE of σ increases greatly. This explains486

why the performance with the RFV (especially when the dispersion is considered) are relatively low487

compared to the LE FV. Indeed, as observed in Fig. 5.(a) for the LE codebook, the dispersion parameters488

are much more comparable for the five datasets and the dimension m of the observed covariance489

matrix has less impact on the RMSE of σ for the LE metric.490

5.3. Computation time491

The computation time can be separated in two parts:492

• The first one concerns the time used in learning stage to generate the codebook.493

• The second one concerns the time used to encode an image.494
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(a) (b)

Figure 6. Boxplots of the dispersion parameter for the codebook computed with (a) the LE and (b) the
affine invariant Riemannian metrics.

Obviously the codebook generation step requires much more time than the coding step. But this495

codebook generation step can be done offline. This is similar to a deep learning approach where the496

estimation of the model takes much more time than the classification itself. Table 9 summarizes these497

computation times for the experiment on the VisTex database. For the coding method, the LE FV and498

RFV descriptors with only the derivative with respect to the centroid m̄ or M̄ are considered. All the499

implementations are carried out using MATLAB 2017 on a PC machine Core i7-4790 3.6GHz, 16GB500

RAM.501

Table 9. Computation time in seconds on the VisTex database.

Descriptor Codebook creation Coding time (per image)

LE FV 9s 0.077s
RFV 270s 0.476s

As expected, the LE metric allows to faster the computation time compared to the affine invariant502

Riemannian metric. A gain of a factor of 6 is observed for the coding time with the log-Euclidean503

metric for 5× 5 covariance matrices.504

6. Conclusion505

Starting from the Gaussian mixture model (for the LE metric) and the Riemannian Gaussian506

mixture model (for the affine invariant Riemannian metric), we have proposed a unified view of coding507

methods. The proposed LE FV and RFV can be interpreted as a generalization of the BoW and VLAD508

based approaches. The experimental results have shown that: (i) the use of the FIM in the derivation509

of the FV allows to improve the classification accuracy, (ii) the proposed FV descriptors outperform510

the state-of-the-art BoW and VLAD based descriptors, and (iii) the descriptors based on the LE metric511

lead to better classification results than those based on the affine invariant Riemannian metric. For512

this latter observation, the gain observed with the LE metric comes better from the anistropicty of the513

Gaussian mixture model than on the metric itself. For isotropic models, FV described issued from the514

affine invariant Riemannian metric leads to better results than those obtained with the LE metric. It is515

hence expected that the definition of a FV issued from an anistropic Riemannian Gaussian mixture516

model will improve the performance. This point represents one of the main perspective of this research517

work.518

For larger covariance matrices, the last experiment on head pose classification has illustrated the519

limits of the RFV issued from the Riemannian Gaussian mixture model. It has been shown that the520
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root mean square error of the dispersion parameter σ can be large for high value of σ (σ > 0.4). In that521

case, the LE FV are a good alternative to the RFV.522

Future works will include the use of the proposed FV coding for covariance matrices descriptors523

in a hybrid classification architecture which will combine them with convolutional neural networks [17–524

19].525
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