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Abstract

In this paper, we focus on a problem that requires location of recharging stations and routing
of electric vehicles in a goods distribution system. The goods are disseminated from a depot
and distributed to the customers via electric vehicles with limited capacity. Differently from
the classical vehicle routing problem, the vehicles have battery restrictions that need to be
recharged at some stations if a trip is longer than their range. The problem reduces to finding
the optimal location of the recharging stations and their number to minimize the total cost,
which includes the routing cost, the recharging cost, and the fixed costs of opening stations
and operating vehicles. We propose a novel mathematical formulation and an efficient Benders
decomposition algorithm to solve this environmental logistics problem. Our methods solve the
problem in a general setting with non-identical stations and vehicles by allowing multiple visits
to the stations and partial recharging.

Keywords: Environmental Logistics, Electric Vehicle Routing, Recharging Station Location,
Integer Programming, Benders Decomposition

1 Introduction

The transport sector is responsible, to a large extent, for energy consumption and greenhouse
gas emissions. According to the European Environment Agency (2018), the energy consumption
of road transport increases by 32% from 1990 to 2016 in the EEA-33. To tackle environmental
and energy challenges, several countries are considering the prospect of carbon neutrality over the
next 30 years, with the objective of discouraging the sale of vehicles emitting greenhouse gases.
The implementation of such a strategy has already begun with the introduction of low-emission
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zones (LEZ), where vehicles with higher emissions either cannot enter the area or have to pay a
high penalty. For instance, the traffic pollution charge in London LEZ is £100 per day for larger
vans and minibuses and rises to double this amount for lorries, buses, and coaches. Vehicles with
alternative fuels, such as electric vehicles and hydrogen vehicles, provide credible solutions for
achieving the carbon neutrality target.

Unlike the hydrogen vehicle, which is currently at the experimental stage, and consequently
having an exorbitant cost, the electric vehicle has reached an industrial maturity that makes it
competitive compared to the combustion vehicle. However, as indicated by Davis and Figliozzi
(2013) and Sassi and Oulamara (2017), electric vehicle (EV) is still facing weaknesses related to
their availability, purchase price, and battery management. From a logistics point of view, there
are still weaknesses that are worth pointing at. These include

(i) The limited choice of light duty electric vehicles offered by the car industry. These vehicles
are mainly needed in the last mile logistics.

(ii) The limited electric vehicle driving range. For instance, for light duty electric vehicles, the
range is between 120km and 180km. Note that the range can depend on topology of the road as
well as weather and driving conditions.

(iii) The long charging time. The time to fully charge a vehicle can take up to 8 hours depending
on the capacity of the battery pack and chargers level.

(iv) The lack of availability of charging infrastructures in existing road networks.
Although all these weaknesses are manageable in practice, the cost of electric vehicle presents a

barrier to their extensive use. An opportunity to reduce vehicle price is focusing on the developments
on those markets that are ready to adopt such a green based strategy. Such markets allow a large-
scale production of electric vehicles which can consequently lead to the reduction of vehicle costs.
Last miles logistic transportation provides this opportunity to speed up the market penetration of
electric vehicles. In such markets, an electric vehicle has the advantage meeting the requirement
of low-emission zones that are mainly located in city centers. Here, the distances covered in last
mile logistic are either within its limit range or requires one charging session along the route
only. Furthermore, even though the acquisition cost for electric vehicles is usually higher than
the combustion engine vehicles, this difference can be offset at the operational cost of usage of
electric vehicle. This is because a high utilization of electric vehicle favors their TCO (Total Cost
Ownership) since their operating costs (maintenance, tax, fuel, and depreciation) are low compared
to those of their counterparts.

In this paper, we consider a goods distribution system that utilizes electric vehicles. This is
a system where the operating companies have access to their own recharging stations (private) or
subscribing a contract to access without accessibility constraints (no queue or waiting times) to
some recharging stations that have to be selected. Similar business models are considered by Yang
and Sun (2015) for battery swap stations and by Schiffer and Walther (2017a,b) for recharging
stations. In these types of business models, the operators need to decide on both location and
routing aspects. As location and routing decisions are interdependent, they need to be handled
simultaneously to operate an overall system in the most profitable way (Salhi and Rand, 1989). It
may be argued that it is difficult to integrate operational decision such as routing into strategic
decision like locating facilities. Though this is a critical issue, studies dealing with this dilemma
showed that an intelligent way of incorporating the results of the integration can be very useful.
For instance, Salhi and Nagy (1999) conduct a robustness analysis leading to a conclusion that
integrated models constantly provide higher quality solutions and they are as reliable as ‘locate
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first - route second’ methods. Very recently, Schiffer and Walther (2018) present a methodology to
produce a robust location-routing solution.

In our study, we consider the vehicles to depart from a single depot. We also assume there
is a sufficient number of charging stations and electrical grid capacity. This is to ensure that all
vehicles are fully charged before their departure from the depot. However, we may need to recharge
them during their trips if the total energy consumption to visit certain customers is larger than the
battery capacity. Once a station is open, it might be visited multiple times by any vehicle. As we
allow partial recharging, the vehicles do not need to be fully recharged. Besides, we do not impose
any restrictions on the types of stations or vehicles. In other words, we allow the utilization of slow
or fast charging stations as well as the use of heterogeneous vehicles.

The problem is to decide on the number and location of stations, the number of vehicles needed,
the amount of recharging needed for each vehicle, and the route(s) for visiting all the customers.
The objective is to minimize the total cost which includes the variable cost of routing and recharging
as well as the fixed costs of opening stations and operating vehicles.

In this study, we develop exact methods by formulating the problem as a constrained multi-
commodity flow problem. There are several applications in the literature where multi-commodity
flow based formulations with capacity constraints are successfully solved using a Benders decom-
position approach. These include the hub location-routing problem studied by de Camargo et al.
(2013) and network design problems by Fortz and Poss (2009), Botton et al. (2013), and Calik et al.
(2017). See also other relevant Benders decomposition applications for location of EV recharging
stations in car sharing systems (Çalık and Fortz, 2019), under probabilistic travel range (Lee and
Han, 2017), and with plug-in hybrid EVs (Arslan and Karaşan, 2016); in the survey by Costa
(2005) for fixed-charge network design problems; and in the book by Birge and Louveaux (2011)
for stochastic programming problems. This motivates us to apply a Benders decomposition algo-
rithm leading to very successful results for solving the small size instances which are shown to be
challenging by the preceding study of Schiffer and Walther (2017b).

Our contributions are twofold:

- to propose a new mixed integer programming formulation for this strategic electric location-
routing problem and

- to develop a Benders decomposition algorithm to solve the problem to proven optimality.

The rest of the paper is organized as follows: Section 2 gives an informative review on the
related works. In Section 3, we provide the notation used throughout the paper and present our
mathematical formulation. In Section 4, we propose our Benders decomposition algorithm followed
by Sections 5 and 6 describing the implementation and the intermediate processing, respectively. In
Section 7, we provide the setting and present the results of our computational study. We conclude
in Section 8 with a summary of our findings and a highlight of some future research directions.

2 Related work

Location of recharging stations can be seen as a facility location problem. The purpose is then to
decide on the optimal number and location of facilities given the position of customers to serve.
In this vein, He et al. (2016) present a case study in Beijing, China. Their objectives are to
incorporate the local constraints of supply and demand on public electric vehicle charging stations
into facility location models, and to compare the optimal locations from three different location
models: the set covering model, the maximal covering location model, and the p-median model.
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Liu and Wang (2017) address the optimal location of multiple types of charging facilities, including
dynamic wireless charging facilities and different levels of plug-in charging stations. Their tri-
level programming first treats the model as a black-box optimization, which is then solved by an
efficient surface response approximation model based solution algorithm. He et al. (2019) investigate
strategies for locating fast charging stations to maximize long-distance trip completions in the
United States. The mixed integer programming based analysis conducted on the nation’s long
distance data provides interesting policy implications.

However, as raised in Salhi and Rand (1989), facility location and routing decisions are interde-
pendent and should be tackled simultaneously. In the general case where both vehicles and depots
are capacitated, the problem is known as the capacitated location routing problem (CLRP). The
aim here is to i) define which depots must be opened, ii) assign each serviced node (customer) to
one and only one depot and, iii) route the vehicle to serve the nodes, in such a way that the sum of
the depot cost and the total routing cost is minimized. Many papers appeared in the subject and
more particularly during the last decade, as shown in surveys by Nagy and Salhi (2007); Prodhon
and Prins (2014), and Schneider and Drexl (2017). To solve this NP-hard problem, exact methods
such as branch-and-cut algorithm (Belenguer et al., 2011) and set partitioning based exact methods
(Akca et al., 2009; Contardo et al., 2013), are limited to medium-scale instances. To solve larger in-
stances, new efficient metaheuristics have been proposed. These include a cooperative Lagrangean
relaxation-granular tabu search heuristic by Prins et al. (2007), an adaptive large-neighborhood
search (ALNS) by Hemmelmayr et al. (2012), and a three-phase matheuristic by Contardo et al.
(2014). Other studies cover a multiple ant colony optimization algorithm (Ting and Chen, 2013)
and a two-phase hybrid heuristic (Escobar et al., 2013). Very recently, a tree-based search algorithm
by Schneider and Löffler (2017) and a Genetic Algorithm by Lopes et al. (2016) are proposed.

Despite the interest of LRP, integrating issues from electric vehicles is scarce and worth explor-
ing. One reason may come from the fact that in LRP, a route should end at the same depot as its
departure. However, this assumption is no longer valid for recharging stations as these now act as
intermediate stops in the route. Similar models that use such satellite depots can be found in the
Truck and Trailer problem (Villegas et al., 2013; Parragh and Cordeau, 2017). In this particular
problem, when a vehicle leaves a satellite, it should go back to the same place before continuing
its route, leading to a long trip including sub-tours. A closer model is the vehicle routing problem
(VRP) with intermediate depots as described by Schneider et al. (2015) but the location aspect is
not considered as part of the decisions.

The integration of the location of recharging stations with the routing decision, also called
electric location-routing problem (ELRP), is relatively recent though it can lead to a massive
environmental benefit. To the best of our knowledge, the first study of simultaneous vehicle routing
and charging station siting for commercial electric vehicles is presented in a conference paper in 2012
by Worley et al. (2012). Then, Yang and Sun (2015) introduce the interesting battery swap station
location-routing problem, where the charge is completely fulfilled at each stop. The authors develop
two heuristic approaches. The problem is revisited by Hof et al. (2017) who adapt an interesting
and powerful adaptive variable neighborhood search (AVNS) heuristic originally dedicated to the
VRP with intermediate depots. Recently, Zhang et al. (2019) introduce a battery swap station
location-routing problem with stochastic demand and solve this problem by developing a hybrid
algorithm combining binary particle swarm optimization and variable neighborhood search.

The first paper dealing with partial recharge may come from Felipe et al. (2014), and is dedicated
to a Green Vehicle Routing Problem (G-VRP). In G-VRP the fleet is composed of Alternative Fuel
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Vehicles (AFV) where, in addition to the routing of each electric vehicle, the amount of energy
recharged and the technology used must also be determined. However, the location aspect is
not considered. Constructive and improving heuristics are embedded in a Simulated Annealing
framework. The partial recharging policies are then reused showing that they may considerably
improve the routing decisions as noted by Keskin and Çatay (2016). Thus, Schiffer and Walther
(2017b) extend the problem by including siting charging stations which leads to the electric location
routing problem with time windows and partial recharging (ELRP-TWPR). The authors focus
on a problem with a single type of vehicle and multiple visits to the stations. They propose
a mathematical formulation based on Miller-Tucker-Zemlin type constraints, supported by several
preprocessing steps to eliminate the arcs that violate time windows, capacity, and battery restriction
constraints. Later, the authors extend their work to consider a robust location-routing problem
with strategic planning of electric logistics (Schiffer and Walther, 2018). The Location Routing
Problem with Intraroute Facilities which is a generalization of the ELRP-TWPR is explored by
Schiffer and Walther (2017a) where large instances are solved using an ALNS which is enhanced
by local search and dynamic programing components.

Our problem can be considered as an electric vehicle routing problem with location decisions
or an electric location-routing problem (ELRP) with a heterogeneous fleet, multi-type stations,
multi-visit, and partial recharging. In the next section we provide the notation and a mathematical
formulation of the problem.

3 Notation and Problem Formulation (PF)

Consider a network G = (N,A) with arc set A and node set N = I ∪ J ∪ {0} where I is the set
of customer locations, J is the set of potential locations for charging stations, and ‘0′ is a depot
node. We are required to select a subset of J to locate recharging stations. Each customer should
be served by a vehicle originating from the depot and each vehicle can perform a single trip. The
vehicles have a battery restriction and they have to visit charging stations before the battery is
depleted if a trip longer than their range is to be traversed. In addition, we consider the vehicles
to have restricted capacities.

Below we list the following parameters:

K: the set of vehicles

di > 0: the demand of client i ∈ I
cij : the routing cost of traversing arc (i, j) ∈ A
eij : the energy consumption on arc (i, j) ∈ A expressed in kWh

fj : the fixed cost of opening a charging station at node j ∈ J
rk: the unit cost of recharging for vehicle k ∈ K
vk: the fixed cost of operating vehicle k ∈ K
Qk: the load capacity of vehicle k ∈ K
βk: the battery capacity of vehicle k ∈ K expressed in kWh.

We further define the following decision variables:

yj = 1 if station j ∈ J is open, 0 otherwise

xkij = 1 if arc (i, j) is traversed by vehicle k ∈ K, 0 otherwise
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zkj is the amount of energy recharged at station j ∈ J for vehicle k ∈ K
bkij is the battery level of vehicle k ∈ K at node i ∈ N before leaving for node j ∈ N expressed
in kWh

lkij is the load of vehicle k ∈ K at node i ∈ N before leaving for node j ∈ N .

In the remaining of this paper, we assume I ⊂ J but all the methods can be easily adapted to
the case where I \ J 6= ∅ by simply defining yj and zkj variables for all j ∈ I ∪ J, k ∈ K and setting

yj = zkj = 0,∀j ∈ I \ J .

3.1 Catering for multiple visits

In order to allow multiple visits to a station, we perform the following modification on our input
network:

Step 1: Let |I| be the number of demand nodes.

Step 2: Create |I| copies of each station.

Step 3: Form set JA
j = {j1, j2, . . . , j|I|} for each j ∈ J and JA =

⋃
j∈J J

A
j .

Step 4: For each j ∈ J , set fj1 = fj ; dj1 = dj and fji = dji = 0, i = 2, . . . , |I| where j1, . . . , j|I| ∈ JA
j .

Step 5: Let NE = JA ∪ {0} and AE = A ∪ {(i, j) : i, j ∈ NE ; i 6= j;¬(i, j ∈ JA
l for some l ∈ J)}.

Step 6: Define Ak = {(i, j) ∈ AE : eij ≤ βk; di + dj ≤ Qk} for k ∈ K.

3.2 Mathematical formulation PF

min
∑
k∈K

∑
(i,j)∈Ak

cijx
k
ij +

∑
k∈K

∑
j∈JA

rkz
k
j +

∑
j∈JA

fjyj +
∑
k∈K

∑
(0,i)∈Ak

vkx
k
0i (1)

s.t. yi ≤ yj , i ∈ JA
j : i 6= j (2)∑

i∈JA

xk0i ≤ 1, k ∈ K (3)

∑
k∈K

∑
(j,i)∈Ak

xkji = 1, i ∈ JA : di > 0 (4)

∑
(j,i)∈Ak

xkji ≤ yi, i ∈ JA : di = 0, k ∈ K (5)

∑
(i,j)∈Ak

xkij −
∑

(j,i)∈Ak

xkji = 0, i ∈ JA, k ∈ K (6)

∑
(i,j)∈Ak

(lkij − dixkij) =
∑

(j,i)∈Ak

lkji, i ∈ JA,∀k ∈ K (7)

∑
j∈JA

lk0j = 0, k ∈ K (8)

lkij ≤ Qkxkij , k ∈ K, (i, j) ∈ Ak (9)∑
(i,j)∈Ak

eijx
k
ij −

∑
j∈JA

zkj ≤ βk, k ∈ K (10)
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∑
(i,j)∈Ak

bkij =
∑

(j,i)∈Ak

(bkji − ejixkji) + zki , i ∈ I ∪ JA, k ∈ K (11)

zkj ≤ βkyj , j ∈ JA, k ∈ K (12)

zkj ≤ βk
∑

(i,j)∈Ak

xkij , j ∈ JA, k ∈ K (13)

bk0j = βkxk0j , k ∈ K, (0, j) ∈ Ak (14)

bkij ≤ βkxkij , k ∈ K, (i, j) ∈ Ak (15)

bkij ≥ eijxkij , k ∈ K, (i, j) ∈ Ak (16)

yj ∈ {0, 1}, j ∈ JA (17)

xkij ∈ {0, 1}, k ∈ K, (i, j) ∈ Ak (18)

lkij ≥ 0, k ∈ K, (i, j) ∈ Ak (19)

bkij ≥ 0, k ∈ K, (i, j) ∈ Ak (20)

zkj ≥ 0, j ∈ JA, k ∈ K. (21)

The objective function (1) minimizes the total sum of routing costs, charging costs, fixed costs of
opening stations, and fixed cost of using vehicles. If a zero-demand copy of a station is opened,
Constraints (2) force the original copy of this node to be opened and therefore, ensure that the
costs of the stations are counted in the objective function. By Constraints (3), we restrict the
number of trips by each vehicle to at most one. Constraints (3)-(6) together ensure that each
client is served by a unique vehicle trip that starts at the depot and the capacities of vehicles are
respected. Constraints (5) ensure that a zero-demand copy of any station is visited only if that
station is open. We ensure the elimination of sub-tours for each vehicle trip via the load balance
constraints (7)-(9). Battery restriction on the vehicles are imposed by Constraints (10) and (11).
Constraints (12) and (13) avoid recharging of a vehicle at a node that has no station and that is
not visited by that vehicle, respectively.

We initialize the battery level for each vehicle to 100% by Constraints (14). For each arc-
vehicle pair, Constraints (15) restrict the amount of battery level with full battery level if the arc
is traversed by the vehicle and set it to zero otherwise; Constraints (16) make sure that the battery
level is larger than the energy consumption on the arc that will be traversed by the vehicle. Finally,
Constraints (17)-(21) represent the binary and non-negativity restrictions on the decision variables.

4 Benders Decomposition Algorithm (BDA)

Our mathematical formulation can be solved by using a Benders decomposition (Benders, 1962)
framework that we briefly describe here before presenting the details of our algorithm. The classical
Benders decomposition method aims to solve a mixed integer program (MIP) with a group of integer
variables and a group of continuous variables by decomposing the MIP into a master problem (MP)
with all integer variables and a series of subproblems of continuous variables. For each feasible
solution of MP, a subproblem (SP) is constructed by fixing the values of all the integer variables
in the MIP to the value obtained from the master problem. Each extreme ray and extreme point
of the dual of this SP provides a so called feasibility and an optimality cut, respectively, for the
MP. Since enumeration of the extreme points and extreme rays is impractical, the cutting plane
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procedures are usually employed for the generation and the addition of these cuts.
The classical Benders decomposition method might suffer from slow convergence especially if

the subproblem is large in size. On the other hand, the method might perform relatively efficiently
if the subproblem can be decomposed further into smaller and easy-to-solve problems as in multi-
commodity, multi-period, or multi-scenario problems (Birge and Louveaux, 2011). Motivated by
this fact, we aim to further decompose our subproblem into |K| smaller problems, each one corre-
sponding to a single vehicle trip. For this purpose, we decide to keep y, x, l variables in the master
problem and z, b variables in the subproblems. To speed up our implementation, we remove the
optimality cuts since they slow down the convergence. In order to achieve this, we introduce an
additional non-negative decision variable wk, ∀k ∈ K and make a slight modification to our model
to ensure that wk takes value

∑
j∈JA

zkj , ∀k ∈ K. The modified formulation (PF2), as given below, is

defined by Constraints (2)-(21) and (22)-(24):

(PF2) min
∑
k∈K

∑
i∈NE

∑
j∈NE :i 6=j

cijx
k
ij +

∑
k∈K

rkw
k +

∑
j∈JA

fjyj +
∑
k∈K

∑
i∈JA

vkx
k
0i (22)

s.t. wk =
∑
j∈JA

zkj , ∀k ∈ K (23)

wk ≥ 0, ∀k ∈ K (24)

(2)− (21).

When solving PF2 in a Benders fashion, we employ a branch-and-cut framework which keeps
y, x, l, w variables in the master problem (MP) and z, b variables in the subproblems.

(MP ) min (22)

s.t. (2)− (9), (17)− (19), (24)

wk ≥
∑
i∈NE

∑
j∈NE :j 6=i

eijx
k
ij − βk, ∀k ∈ K. (25)

Let (y,x, l,w) be the vector of variable values in the solution obtained from the master problem.
One can easily observe that if wk = 0, then, no recharging is needed for the corresponding vehicle
trip and (y,x, l,w) is feasible for PF2. On the other hand, if wk > 0, we construct and solve the
dual of the subproblem SPk(y,x, l,w) for every k ∈ K.

SPk(y,x, l,w) min 0 (26)

s.t.
∑
j∈JA

zkj = wk, (27)

zkj ≤ βkyj , ∀j ∈ JA (28)

zkj ≤ βk
∑

i∈NE :i 6=j

xkij , ∀j ∈ JA (29)

∑
j∈NE :j 6=i

bkij =
∑

j∈NE :j 6=i

(bkji − ejixkji) + zki , ∀i ∈ JA (30)

bk0j = βkxk0j , (31)
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bkj0 = ejox
k
j0, (32)

bkij ≤ βkxkij , i, j ∈ NE : i 6= j (33)

bkij ≥ eijxkij , i, j ∈ NE : i 6= j (34)

bkij ≥ 0, i, j ∈ NE : i 6= j (35)

zkj ≥ 0, ∀j ∈ J (36)

Note that Constraints (10) of PF is ensured by Constraints (25) and (27) as
∑

j∈JA

zkj = wk ≥∑
i∈NE

∑
j∈NE :j 6=i

eijx
k
ij−βk,∀k ∈ K. Moreover, we can replace equality (27) with inequality

∑
j∈JA

zkj ≥

wk due to Lemma 4.1.

Lemma 4.1. If (28)-(36) is non-empty and wk > 0, then
∑

j∈JA

zkj =
∑

i∈NE

∑
j∈NE :j 6=i

eijx
k
ij − βk.

Proof. zki =
∑

j∈NE :j 6=i

bkij −
∑

j∈NE :j 6=i

(bkji − ejixkji),∀i ∈ JA by (30). Moreover,
∑

i∈JA

βkxk0i = βk since

wk > 0. ∑
i∈JA

zki =
∑
i∈JA

∑
j∈NE :j 6=i

bkij −
∑
i∈JA

∑
j∈NE :j 6=i

(bkji − ejixkji)

=
∑
i∈JA

bki0 −
∑
i∈JA

bk0i +
∑
i∈JA

∑
j∈JA:i 6=j

(bkij − bkji) +
∑
i∈JA

∑
j∈NE :j 6=i

ejix
k
ji

=
∑
i∈JA

eki0x
k
i0 −

∑
i∈JA

βkxk0i +
∑
i∈JA

∑
j∈NE :j 6=i

ejix
k
ji

=
∑
i∈NE

∑
j∈NE :j 6=i

ejix
k
ji − βk

After elimination of equality constraints and necessary rearrangements on the remaining sub-
problem, we obtain the following SPk in canonical maximization form for each k ∈ K:

max 0 (37)

s.t. −
∑
j∈J

zkj ≤ −wk, (38)

zkj ≤ βkyj , ∀j ∈ JA (39)

zkj ≤ βk
∑

i∈JA:i 6=j

xkij , ∀j ∈ JA (40)

zkj +
∑

i∈JA:i 6=j

bkij −
∑

i∈JA:i 6=j

bkji ≤ ekj0xkj0 − βkxk0j +
∑

i∈NE :i 6=j

eijx
k
ij , ∀j ∈ JA (41)

− zkj −
∑

i∈JA:i 6=j

bkij +
∑

i∈JA:i 6=j

bkji ≤ βkxk0j − ej0xkj0 −
∑

i∈NE :i 6=j

eijx
k
ij , ∀j ∈ JA (42)

bkij ≤ βkxkij , ∀i, j ∈ JA : i 6= j (43)
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− bkij ≤ −eijxkij , ∀i, j ∈ JA : i 6= j (44)

bkij ≥ 0, ∀i, j ∈ JA : i 6= j (45)

zkj ≥ 0, ∀j ∈ JA (46)

Let α, δj , γj , πj , ρj , φij , εij be the dual variables associated with constraints (38)-(44), respec-
tively. Then, we can write the equivalent dual problem Dk(y,x, l,w) for each k ∈ K as follows:

Dk(y,x, l,w) min − wkα+
∑
j∈JA

βkyjδj +
∑
i∈NE

∑
j∈JA:i 6=j

βkxkijπj

+
∑
j∈JA

ej0x
k
j0γj −

∑
j∈JA

βkxk0jγj +
∑
i∈NE

∑
j∈JA:i 6=j

eijx
k
ijγj

+
∑
j∈JA

βkxk0jρj −
∑
j∈JA

ej0x
k
j0ρj −

∑
i∈NE

∑
j∈JA:i 6=j

eijx
k
ijρj

+
∑
i∈JA

∑
j∈JA:i 6=j

βkxkijφij −
∑
i∈JA

∑
j∈JA:i 6=j

eijx
k
ijεij (47)

s.t. − α+ δj + πj + γj − ρj ≥ 0, ∀j ∈ JA (48)

− γi + γj + ρi − ρj + φij − εij ≥ 0, ∀i, j ∈ JA : i 6= j
(49)

α ≥ 0, (50)

δj , γj , πj , ρj ≥ 0, ∀j ∈ JA (51)

φij , εij ≥ 0, ∀i, j ∈ JA : i 6= j
(52)

In order to ensure that the dual problem is bounded, we further bound variables α, γj , ρj ,∀j ∈
JA, and εij ,∀i, j ∈ JA : i 6= j by 1 from above. If the optimal value of Dk(y,x, l,w) is negative
valued, we add the feasibility cut (53) to MP to cut the current solution (y,x, l,w).

− αw +
∑
j∈JA

βkδjyj +
∑
i∈NE

∑
j∈JA:i 6=j

βkπjx
k
ij +

∑
j∈JA

ej0γjx
k
j0 −

∑
j∈JA

βkγjx
k
0j +

∑
i∈NE

∑
j∈JA:i 6=j

eijγjx
k
ij

+
∑
j∈JA

βkρjx
k
0j −

∑
j∈JA

ej0ρjx
k
j0 −

∑
i∈NE

∑
j∈JA:i 6=j

eijρjx
k
ij

+
∑
i∈JA

∑
j∈JA:i 6=j

βkφijx
k
ij −

∑
i∈JA

∑
j∈JA:i 6=j

eijεijx
k
ij ≥ 0 (53)

5 Implementation Details - General Framework

Our decomposition algorithm mainly consists of two phases. In Phase I, we solve the problem
with at most one visit to each station (BDA1) and in the second phase, we focus on the general
problem that allows multiple visits to stations. Between the two phases, we perform an intermediate
reduction procedure (See Section 6) to decrease the size of the problem in Phase II. The aim is to
cut as much as possible without eliminating any potential solution that is better than the one in
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Phase I. We provide a brief summary of the general framework at the end of this section. For clarity
of presentation, we use the notation ‘BDA’ throughout the paper to refer to both the algorithm
and the formulation.

Through our preliminary experiments, we observe that our algorithm has a better convergence
behavior if we introduce a high quality initial feasible solution to our master problem. In order to
achieve this, we first perform a ‘Step 0’ process where we solve our BDA formulation via a CPLEX
option that allows stopping after finding the first integer feasible solution. We also introduce
a partial warm start solution to CPLEX by opening all potential stations. In our experiments,
CPLEX usually finds a solution with all stations opened. We then improve this solution by closing
some of the stations. This removal process is a greedy approach based on checking the energy
consumption between three consecutive stations and then closing the intermediate one if the battery
level is sufficient to go from the first one to the third one. Finally, we introduce the set of open
stations of this improved solution as a partial warm start solution for our Phase I problem and
solve BDA1 with the valid inequalities given next in Section 5.1.

5.1 Valid Inequalities for Phase I

Let NV
min be a lower bound on the number of vehicles needed for any feasible solution. We can

obtain such a lower bound by solving a bin packing problem (BPP) as follows. Define vk = 1 if
vehicle k is used, 0 otherwise and aik = 1 if the request of customer i is provided by vehicle k,
otherwise. Constraints (55) assign each customer to a vehicle while Constraints (56) ensure that
these assignments respect the capacities of vehicles.

(BPP ) NV
min = min

∑
k∈K

vk (54)

s.t.
∑
k∈K

aik = 1, ∀i ∈ I (55)∑
i∈I

diaik ≤ Qkvk, ∀k ∈ K (56)

vk ∈ {0, 1}, ∀k ∈ K (57)

aik ∈ {0, 1}, ∀i ∈ N, k ∈ K. (58)

We can detect the infeasibility due to insufficient freight capacity by solving BPP. Our preliminary
experiments revealed that introducing Constraint (59), which enforces using at least NV

min vehicles,
usually reduces the solving time. This observation has led us to include this constraint in our
computations for every model of Phase I and Phase II.

∑
k∈K

∑
j∈JA

xk0j ≥ NV
min (59)

When we solve BDA to optimality with at most one visit to each station (BDA1), we include
the following sets of valid inequalities to our master problem:

∑
k∈K

∑
j:(i,j)∈Ak

xkij ≤ 1, i ∈ JA : di > 0 (60)
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∑
j:(i,j)∈Ak

xkij −
∑

j:(0,j)∈Ak

xk0j ≤ 0, i ∈ NE , ∀k ∈ K (61)

∑
i∈JA

xki0 ≤ 1, ∀k ∈ K (62)

∑
j:(j,i)∈Ak

xkij ≤ yi, i ∈ JA : di = 0, ∀k ∈ K (63)

yi ≤
∑
k∈K

∑
j∈NE

xij , ∀i ∈ JA : di = 0 (64)

yj ≤
∑
k∈K

∑
i∈NE

xij , ∀j ∈ JA : dj = 0 (65)

wk ≤
∑
j∈JA

βkyj ∀k ∈ K. (66)

Constraints (60) restrict the number of arcs entering a demand node to one. Constraints (61) ensure
that an arc is visited by a vehicle only if that vehicle leaves the depot. Constraints (62) make sure
that each vehicle enters the depot at most once. Constraints (63) forbid leaving a zero-demand
copy of a station if it is not open while Constraints (64) and (65) forbid opening these type of
stations if they are not visited by any vehicle. Constraints (66) limit the total recharging for each
vehicle by full battery charging times the number of open stations.

Even though most of these constraints are implied by the original constraints, their inclusion
improves the time performance of our algorithm considerably.

Let (y1,x1, l
1
,w1) be the solution with value Z1 that we obtain from Phase I. After the

intermediate process which will be explained in Section 6, we proceed to Phase II to solve a reduced
problem via BDA with valid inequalities of Section 5.2 below. We introduce y1 as a partial warm
start solution to the Phase II problem.

5.2 Valid Inequalities for Phase II

When we apply BDA for the last time with all possible copies of potential stations, in addition
to the valid inequalities (59),(61)-(66), we also introduce the following set of valid inequalities to
break the symmetry between the copies of stations:

∑
i:(i,j)∈Ak

xkij ≤
∑

i:((j−1),i)∈Ak

xk(j−1)i, ∀k ∈ K, j is the mth copy of some j1 : dj1 > 0,m ≥ 3 (67)

∑
i:(i,j)∈Ak

xkij ≤
∑

i:((j−1),i)∈Ak

xk(j−1)i, ∀k ∈ K, j is the mth copy of some j1 : dj1 = 0,m ≥ 2. (68)

Constraints (67) and (68) make sure that an additional copy of any station is visited by a vehicle
only if the preceding copy is visited by the same vehicle. Exceptionally, the second copy (the first
non-original copy), might be visited by a vehicle not serving the original copy if it is a demand
node.

Below we give a brief summary of the general framework of our algorithm:

Step 0: Solve BDA1 to obtain a feasible solution (y0,x0, l
0
,w0) (not necessarily optimal).

Close the redundant stations of (y0,x0, l
0
,w0) in a greedy manner and obtain (y,x, l,w).
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Step 1: Phase I: Solve BDA1∪(59)-(66) with partial warm start y to obtain the optimal solution

(y1,x1, l
1
,w1).

Step 3: Apply the intermediate process (see Section 6) to reduce the size of BDA∪(59)-(68).

Step 4: Phase II: Solve the reduced BDA∪(59)-(68) with partial warm start y1 to obtain the optimal
solution.

6 Intermediate Reduction Process

Creating multiple copies of stations leads to a large-size formulation and excessive solving times. We
develop a two phase method that solves our Benders formulation initially for a single copy of each
station. Based on the value Z1 of the solution obtained at this stage, we apply an intermediate
processing that checks the availability of a solution with multiple copies of stations that has a
smaller objective value than Z1. This is an iterative procedure that proceeds by increasing the
number of copies considered, say m, one by one and applies lower bound checking steps.

The aim of this procedure is to check whether there exists a solution of BDA with exactly m
copies for some station j whose cost is lower than Z1.

Lemma 6.1. Let ZLB
(m,j,k) be a lower bound on the cost when exactly m copies of station j is visited

by vehicle k. If ZLB
(m,j,k) ≥ Z1,∀j, k, then, there exists no solution with m copies of any station

whose value is less than Z1.

Proof. Any feasible solution to a minimization problem provides an upper bound. Therefore,
the value of any feasible solution as described in Lemma 6.1 has to be greater than or equal to
ZLB
(m,j,k) ≥ Z

1.

Lemma 6.2. If there exists some lower bound ZLB
(m,j,k) such that ZLB

(m′,j,k) ≥ Z
LB
(m,j,k),∀m

′ ≥ m and

if Lemma 6.1 holds for such ZLB
(m,j,k) of m for all j, k, then, there exist no solution with more than

or equal m copies of any stations whose value is less than Z1.

Proof. ZLB
(m′,j,k) ≥ ZLB

(m,j,k) ≥ Z1,∀j, k,m′ such that m′ ≥ m by Lemma 6.1. Then, there exists no

solution with m′ copies of any station whose value is less than Z1.

Below we give the details on how we obtain a lower bound that satisfies Lemma 6.2.
Let us consider a potential station j. If we use exactly m copies of this station, it means that

we visit at least m − 1 different customers with some vehicle k. This leads to a partial network
structure as 0 . . . j . . . i1 . . . j . . . i2 . . . . . . im−1 . . . j . . . 0.

Let Em and Rm be the amount of energy consumption and the amount of recharging needed,
respectively, when we visit station j exactly m times by some vehicle k1. Now, we consider two
cases:

Case 1: all customers are visited by k1.

Case 2: some customers are visited by other vehicle(s).

For any of Case 1 or Case 2, the following observation holds:
Observation:

(i) Em > Ebase
m = (m− 1)βk1 + ej0 and Rm > Rbase

m = (m− 2)βk1 + ej0 if m is even.
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(ii) Em > Ebase
m = (m− 1)βk1 and Rm > Rbase

m = (m− 2)βk1 if m is odd.

In Figure 1, we illustrate this observation for m = 2 and m = 3. In this figure, if E2 ≤ βk1 + ej0,
we would not need to visit j twice. Similarly, if E3 ≤ 2βk1 , it would be redundant to visit j three
times.

(a) m = 2

(b) m = 3

Figure 1: Illustration of minimal energy consumption and recharging need for visiting m copies of
j with vehicle k for m = 2, 3.

We further check whether Em and Rm values are much larger than Ebase and Rbase, respectively.
This is performed as follows:

Figure 2: Calculation of minimal energy consumption E1 on the partial network for visiting m = 3
copies of j with vehicle k.

In Case 1, we calculate the minimal possible energy consumption on such a partial network.
More explicitly, we define E1 = e0j + eji1 + ei1j + eji2 + ei2j + . . .+ ejim−1 + ej0 where i1, . . . , im−1
are m− 1 closest customers to j (e.g. see Figure 2). For this particular case, we can further obtain
a lower bound on the total energy consumption by constructing a 1-tree obtained via a minimum
spanning tree which spans the union set of all customers and m copies of j and that is connected
to the depot node with two minimal edges. Let the energy consumption on this 1-tree be ET and
E = max{E1, ET , Em}. We obtain a lower bound C on the total routing cost similarly. Then,
R = max{E − βk1 , 0, Rm} gives us the amount of recharging needed for this partial network and
ZLB = R× rk1 +C+ fj + vk1 gives us a lower bound on the cost of routing all customers by vehicle
k via visiting j m times or more.

When we look at Case 2, we investigate all possible vehicle combinations that need to be
considered by iteratively increasing the number of additional vehicles. If we find a combination
with k vehicles whose lower bound is less than Z1, we do not check the combinations with more
than k vehicles. Let us assume that in addition to k1, we use K∗ = {k2, . . . , kl}. This means that
we are visiting a different customer by each additional vehicle. Therefore, we add 0 . . . ikh . . . 0 as
a connected component to our partial network for each vehicle kh ∈ K∗ where ikh is the closest
customer to depot which is not served by preceding vehicles. In a similar fashion to that of
Case 1, we calculate the total energy consumption Eh, the amount of recharging needed Rh, the
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total routing cost and hence a lower bound ZLB1
K∗ on the total cost with the corresponding vehicle

combination.
In order to obtain another lower bound ZLB2

K∗ from the 1-tree constructed, this time, we use
β =

∑
k∈K∗∪k1 β

k as the total battery available in our calculation for the amount of recharging

needed, that is, R2 = max{max{E2, ET } − β, 0} and r = mink∈K∗∪k1 rk as the unit recharging
cost. Our bound ZLB

K∗ for the corresponding combination is defined as ZLB
K∗ = max{ZLB1

K∗ , Z
LB2
K∗ }.

See Figure 3 for sample Hamiltonian cycles to construct 1-tree for visiting two copies of j with 1,2,
or 3 vehicles.

Figure 3: Illustrative Hamiltonian cycles for calculating the 1-tree lower bound LB2 on the cost of
visiting m = 2 copies of j with 1,2, or 3 vehicles.

If min{ZLB, ZLB
K∗ } ≥ Zm−1 for every (k1,K

∗) combination, then, the value of any solution
visiting j no less than m times will be no better than Zm−1. So, in further iterations, we do not
need more than m − 1 copies of j. If this holds for all stations, we can terminate the iterative
checking procedure and solve our algorithm BDA with at most m− 1 copies for each station.

Additional speed-up mechanism:
When solving BDA for this last time, we further apply variable fixing by using the information

we obtained from this iterative procedure. More explicitly, if it is decided that we do not need more
than l copies at a given station j, we fix all y values to zero for all those copies of j. Similarly, if
we decided that visiting more than l copies of station j with vehicle k1 is not optimal, then we set
all x variables of those copies to zero for vehicle k1.

7 Computational Study

In order to test our methods, we generated problem instances based on the data set provided by
Schneider et al. (2014). This data set has 36 different instances with 5, 10, and 15 customers (12
instances for each customer size). From these instances, we retrieved the demand and network
information (node coordinates). The vehicle freight capacities are equal to 200 in the original
data. We introduced additional levels of capacities (80, 100), especially, to test relatively smaller
instances. Similarly, for the battery capacities, we conducted tests for low, medium, and high
capacities (10, 16, 22 kWh) to avoid extremely loose values on the tests of small problems (Sassi
and Oulamara, 2017).

In our experiments, we use IBM ILOG CPLEX 12.8.1 in a Java environment. We run our tests
on a PC with Intel(R) Core(TM) i7-7920HQ CPU at 3.10 GHz processor and 32 GB RAM. For
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each experiment, we set a memory limit of 16 GB and a time limit of 3600, 5400, and 10800 seconds
for instances with 5, 10, and 15 customers, respectively.

We assume that the system will be equipped with fast charging facilities. The lifetime of a
charging facility is estimated to be 3 years and it is 5 years for the vehicles. When we calculate
the fixed costs of opening stations and purchasing/leasing vehicles, we divide their costs by the
number of days within their lifetime. We approximately obtain fj = 8 e as the fixed cost of
opening stations and vk =16, 26, and 36 e as the fixed cost of low, medium, and high capacity
vehicles, respectively. Let lij be the distance between nodes i, j ∈ N ; then, we set cij = lij × 0.03
(cents/km), rk = r = 0.07 (cents/km) for k ∈ K, eij = lij × 135 (Wh/km). In order to better
tackle the precision issues of CPLEX, we multiplied all the cost values by 100.

Table 1: Freight capacity, battery capacity, and cost values for the three vehicle types considered.

Vehicle type 1 2 3

Qk 80 100 200
βk 10 16 22
vk 16 26 36

We conduct experiments on instances with 2, 3, and 4 vehicles of three different types, see Ta-
ble 1. For each instance of Schneider et al. (2014), we test the problem with the vehicle combinations
shown in Table 2.

Table 2: Vehicle combinations tested for each problem instance of Schneider et al. (2014).

Combination code K Vehicle types available

he1 2 1,2
he2 2 1,3
he3 2 2,3

he4 3 1,2,3
he5 3 1,1,2
he6 3 2,2,3

he7 4 1,1,2,3
he8 4 1,2,2,3
he9 4 1,2,3,3

We provide average results for each group of instances in Tables 3 and 4. The detailed results
are presented in Appendix A. For illustration, we also display the results in Figures 4-9.

In these figures and tables, NS and NV show the number of stations opened and the number
of vehicles used, respectively. The value ‘g1’ represents the gap provided by CPLEX at the end
of the time limit (0.00 if the problem is solved to proven optimality) for the corresponding model
solved. Similarly, ‘t(s)’ represents the total time spent in seconds for the corresponding model or
algorithm if it includes additional processes. Let ‘Obj’ be the value of the best solution obtained
from a model. Then, the ‘g2’ values are the gap values between the objective value of the best
solution found and the best dual bound (DObj) of the second phase model of BDA, more explicitly,
g2 = (Obj −DObj)/Obj. Finally, t2(s) is the total time (including t(s) of Phase I) spent by BDA.
We use ‘NA’ to refer to the fact that no primal or dual bound is obtained within the time limit.
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Our formulation PF can solve all but one instance of |I| = 5 to optimality within one hour. The
average time spent by PF on these instances is 178.68 seconds, which is much larger compared to
that of BDA. On the other hand, we observe that our algorithm BDA can solve all the instances
with |I| = 5, 10 to optimality. In Figures 4 and 5, we show the optimal values of the instances of
|I| = 5 and |I| = 10, respectively. The average time spent by BDA for solving the instances with

Figure 4: The optimal values (in thousands) for |I| = 5. The horizontal axis indicates the instance
code given in Schneider et al. (2014).

Figure 5: The optimal values for |I| = 10. The horizontal axis indicates the instance code given in
Schneider et al. (2014).

|I| = 5 is 2.25 seconds and it is 146.39 seconds for the ones with |I| = 10. In Figure 6, we compare
the average solving time of PF and BDA over 12 instances of Schneider et al. (2014) with |I| = 5.
We can easily see that the performance of BDA is much better compared to PF. In fact, BDA is
faster than PF in every single instance.

For larger problems (|I| = 10, 15), optimality could not be guaranteed with PF within the
time limit. In fact, PF could not even find a feasible solution for many instances. Based on these
observations, for larger problems, we present the results for BDA only. In Figure 7, we record the
average amount of time spent for Phase I (t(s)) and the total time of BDA (t2(s)) for |I| = 10
instances. These average values are calculated over 12 instances of Schneider et al. (2014). Phase
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Figure 6: Average results (solving time, number of stations opened, and number of vehicles used)
for PF and BDA on instances with |I| = 5 for each vehicle combination.

I consumes 48.85 seconds on average only with the longest time being 767.48 seconds.

Figure 7: Average results (solving time, number of stations opened, and number of vehicles used)
for BDA on instances with |I| = 10 for each vehicle combination.

Moreover, BDA can solve 80% of the instances with |I| = 15 and the average time spent for
all instances with |I| = 15 is just below 6500 seconds. In Figure 8, we show the values of the best
solutions found for these instances. We further present the average values of t(s), t2(s), g1, g2, N

S ,
and NV over the 12 instances of Schneider et al. (2014) with |I| = 15 in Figure 9. For these
instances, we observe that BDA requires more time to reach optimality when K is larger.

It is interesting to note that small vehicles result in higher costs, an observation which is not
that obvious. We can also note that the instances of ‘he1’ combination are frequently infeasible due
to insufficient freight capacity. Here, the total capacity of the small and medium size vehicles is less
than the total demand of those instances provided by Schneider et al. (2014). The ‘he5’ combination
is also infeasible for some instances and for some others, the algorithm hits the memory limit in
the second phase.
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Figure 8: Best values for |I| = 15. The horizontal axis indicates the instance code given in Schneider
et al. (2014).

Figure 9: Average results (solving time, gaps, number of stations opened, and number of vehicles
used) for BDA on instances with |I| = 15 for each vehicle combination.
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Table 3: Average results for c, r, and rc instances.

BDA Phase I BDA Phase II PF
g1 t(s) g2 t2(s) NS NV g1 t(s)

c5 0.00 0.65 0.00 1.95 0.25 1.67 0.00 90.95
r5 0.00 0.77 0.00 2.17 0.03 1.47 0.00 96.10

rc5 0.00 1.06 0.00 2.64 0.22 1.86 0.01 348.98

c10 0.00 67.29 0.00 162.84 0.62 2.35
r10 0.00 47.84 0.00 90.88 0.14 1.89

rc10 0.00 32.12 0.00 181.85 0.89 2.52

c15 0.03 3260.53 0.01 5802.79 0.54 2.51
r15 0.04 1150.72 0.00 3100.75 0.50 2.17

rc15 0.10 5091.34 0.14 11609.90 0.84 2.80

*Avg. 0.02 1072.48 0.02 2328.42 0.45 2.14 0.00 178.68

*Infeasible instances are excluded when calculating these average values.

8 Conclusion and Future Research Directions

In this paper, we introduce an electric location-routing problem with heterogeneous fleet and partial
recharging. We initially propose a new mixed integer programming formulation for this problem.
This is a flow-based formulation with three-index binary routing variables. The sub-tour elimination
is enhanced via a group of load balancing constraints using these decision variables. We further
utilize additional non-negative continuous variables to satisfy battery restrictions and energy-related
constraints.

We test our formulation on small problem instances from the literature. Although the formu-
lation is able to solve instances with 5 customers to optimality, we observe that its performance is
limited when it comes to solving larger problems.

As we aim to solve this problem to optimality, we further develop a two-phase algorithm based
on the Benders decomposition of our formulation. The first phase solves a restricted version of
the problem that allows at most one visit to each station. By using the information obtained, the
second phase problem, which is the generalized problem allowing multiple visits to any station, is
reduced in size, making it relatively easier compared to the case with no a priori processing. This
enhancement step allows us to solve all instances of 5 and 10 customers, and 80% of the instances
with 15 customers to optimality. The average optimality gap over all other instances is negligible,
just 0.02. In summary, our approach obtains very high quality solutions within the time limit.

We observe through our experimental study that the problem is usually harder to solve when
the vehicle capacities are smaller. We also found that using small vehicles results in higher costs.

Though the main focus of this study is to present an exact method with proven optimality, this
approach can be easily combined with additional procedures leading to powerful matheuristics to
obtain near optimal solutions for larger instances, see Salhi (2017). This problem can also be tackled
by powerful metaheuristics whose performance can be evaluated using lower bounds obtained from
the proposed method.

The current problem can be extended to cater for several deterministic and stochastic variants
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Table 4: Average results for each group of instances.

BDA Phase I BDA Phase II PF
|I| |J | g1 t(s) g2 t2(s) NS NV g1 t(s)

c101c5

5

7 0.00 0.46 0.00 1.51 0.33 2.11 0.00 62.03
c103c5 7 0.00 0.45 0.00 1.82 0.00 1.22 0.00 25.59
c206c5 8 0.00 1.45 0.00 3.45 0.44 2.11 0.00 255.39
c208c5 7 0.00 0.26 0.00 1.02 0.22 1.22 0.00 20.80
r104c5 7 0.00 0.83 0.00 1.85 0.00 1.22 0.00 53.56
r105c5 7 0.00 0.33 0.00 1.17 0.00 1.22 0.00 22.66
r202c5 7 0.00 0.47 0.00 1.51 0.00 1.33 0.00 9.49
r203c5 8 0.00 1.45 0.00 4.15 0.11 2.11 0.00 298.69

rc105c5 8 0.00 1.42 0.00 3.33 0.11 2.11 0.00 337.14
rc108c5 8 0.00 1.13 0.00 2.98 0.56 2.11 0.00 52.25
rc204c5 8 0.00 1.49 0.00 3.26 0.00 2.00 0.00 553.52
rc208c5 7 0.00 0.21 0.00 0.98 0.22 1.22 0.05 453.00

Avg. 0.00 0.83 0.00 2.25 0.17 1.67 0.00 178.68

c101c10

10

14 0.00 59.06 0.00 148.43 0.75 2.63
c104c10 13 0.00 161.25 0.00 360.62 0.67 2.56
c202c10 14 0.00 28.45 0.00 60.51 0.50 2.13
c205c10 12 0.00 20.38 0.00 81.81 0.56 2.11
r102c10 13 0.00 14.74 0.00 26.78 0.11 2.11
r103c10 12 0.00 2.74 0.00 7.77 0.00 1.22
r201c10 13 0.00 122.25 0.00 223.78 0.00 2.13
r203c10 14 0.00 51.61 0.00 105.20 0.44 2.11

rc102c10 13 0.00 10.25 0.00 23.50 0.88 2.75
rc108c10 13 0.00 44.17 0.00 510.58 0.89 2.67
rc201c10 13 0.00 8.38 0.00 28.41 0.56 2.11
rc205c10 13 0.00 65.68 0.00 164.90 1.22 2.56

*Avg. 0.00 48.85 0.00 146.39 0.55 2.25

c103c15

15

19 0.07 4799.07 0.03 6617.91 0.43 2.57
c106c15 17 0.00 588.14 0.00 794.39 0.11 2.11
c202c15 19 0.00 3479.35 0.00 6960.44 1.00 2.75
c208c15 18 0.03 4175.56 0.02 8838.40 0.63 2.63
r102c15 22 0.12 1454.12 0.00 692.95 0.29 2.00
r105c15 20 0.00 521.89 0.00 1288.70 0.38 2.13
r202c15 20 0.02 3639.25 0.02 10248.68 0.86 2.43
r209c15 19 0.00 83.91 0.00 172.68 0.50 2.13

rc103c15 19 0.16 4925.85 0.30 11494.95 1.00 2.75
rc108c15 19 0.02 2109.19 0.00 6722.72 1.00 2.71
rc202c15 19 0.13 6395.64 0.14 13771.28 0.86 3.00
rc204c15 21 0.08 6934.69 0.10 14450.66 0.50 2.75

*Avg. 0.05 3040.80 0.05 6469.88 0.63 2.48

*Infeasible instances are excluded when calculating these average values.
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that are worth exploring. These include consideration of time windows, multiple depots and/or
additional location decisions for the selection of depots, as well as periodicity or uncertainty in the
customer demand.
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Çalık, H., Fortz, B., 2019. A Benders decomposition method for locating stations in a one-way
electric car sharing system under demand uncertainty. Transportation Research Part B: Method-
ological 125, 121–150.

Calik, H., Leitner, M., Luipersbeck, M., 2017. A Benders decomposition based framework for
solving cable trench problems. Computers & Operations Research 81, 128–140.

de Camargo, R.S., de Miranda, G., Løkketangen, A., 2013. A new formulation and an exact
approach for the many-to-many hub location-routing problem. Applied Mathematical Modelling
37, 7465–7480.

Contardo, C., Cordeau, J.F., Gendron, B., 2013. A branch-and-cut-and-price algorithm for the
capacitated location-routing problem. INFORMS Journal on Computing 26, 88–102.

Contardo, C., Cordeau, J.F., Gendron, B., 2014. A grasp+ilp-based metaheuristic for the capaci-
tated location-routing problem. Journal of Heuristics 20(1), 1–38.

Costa, A.M., 2005. A survey on Benders decomposition applied to fixed-charge network design
problems. Computers & operations research 32, 1429–1450.

22



Davis, B.A., Figliozzi, M.A., 2013. A methodology to evaluate the competitiveness of electric
delivery trucks. Transportation Research Part E: Logistics and Transportation Review 49, 8–23.

Escobar, J.W., Linfati, R., Toth, P., 2013. A two-phase hybrid heuristic algorithm for the capaci-
tated location-routing problem. Computers & Operations Research 40(1), 70–79.

European Environment Agency, 2018. Final energy consumption by mode
of transport. URL: http://www.eea.europa.eu/data-and-maps/indicators/

transport-final-energy-consumption-by-mode/assessment-9. Accessed: 18/12/2018.
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Appendix A: Detailed computational results

Table 5: Results obtained from the instances in c101c5, c103c5, c206c5, and c208c5

BDA Phase 1 BDA Phase II PF
Obj g1 t(s) Obj g2 t2(s) NS NV Obj g1 t(s)

c101c5
he1 18786.39 0.00 0.50 18786.39 0.00 1.33 2 2 18786.39 0.00 21.13
he2 5746.06 0.00 0.09 5746.06 0.00 0.98 0 2 5746.06 0.00 5.19
he3 6746.06 0.00 0.14 6746.06 0.00 0.66 0 2 6746.06 0.00 35.83
he4 5746.06 0.00 0.62 5746.06 0.00 1.30 0 2 5746.06 0.00 12.52
he5 7822.22 0.00 0.63 7822.22 0.00 1.96 1 3 7822.22 0.00 87.70
he6 6746.06 0.00 0.81 6746.06 0.00 2.89 0 2 6746.06 0.00 306.48
he7 5746.06 0.00 0.38 5746.06 0.00 1.25 0 2 5746.06 0.00 22.63
he8 5746.06 0.00 0.41 5746.06 0.00 1.55 0 2 5746.06 0.00 18.45
he9 5746.06 0.00 0.53 5746.06 0.00 1.64 0 2 5746.06 0.00 48.38
Avg. 0.00 0.46 0.00 1.51 0.33 2.11 0.00 62.03

c103c5
he1 4661.24 0.00 0.16 4661.24 0.00 0.81 0 2 4661.24 0.00 29.67
he2 4039.60 0.00 0.05 4039.60 0.00 0.38 0 1 4039.60 0.00 4.80
he3 4039.60 0.00 0.03 4039.60 0.00 0.42 0 1 4039.60 0.00 4.64
he4 4039.60 0.00 0.56 4039.60 0.00 1.78 0 1 4039.60 0.00 22.78
he5 4661.24 0.00 0.83 4661.24 0.00 2.22 0 2 4661.24 0.00 86.23
he6 4039.60 0.00 0.09 4039.60 0.00 0.91 0 1 4039.60 0.00 16.61
he7 4039.60 0.00 0.47 4039.60 0.00 3.06 0 1 4039.60 0.00 22.63
he8 4039.60 0.00 1.30 4039.60 0.00 3.59 0 1 4039.60 0.00 22.64
he9 4039.60 0.00 0.52 4039.60 0.00 3.20 0 1 4039.60 0.00 20.30
Avg. 0.00 0.45 0.00 1.82 0.00 1.22 4177.74 0.00 25.59

c206c5
he1 27764.86 0.00 0.69 27764.86 0.00 1.83 2 2 27764.86 0.00 33.48
he2 5877.58 0.00 0.30 5877.58 0.00 1.43 0 2 5877.58 0.00 58.53
he3 6845.46 0.00 0.44 6845.46 0.00 1.31 0 2 6845.46 0.00 134.61
he4 5877.58 0.00 1.93 5877.58 0.00 3.92 0 2 5877.58 0.00 219.89
he5 17313.27 0.00 2.89 17313.27 0.00 6.66 2 3 17313.27 0.00 481.19
he6 6845.46 0.00 2.41 6845.46 0.00 5.83 0 2 6845.46 0.00 499.47
he7 5877.58 0.00 1.58 5877.58 0.00 3.56 0 2 5877.58 0.00 158.25
he8 5877.58 0.00 0.84 5877.58 0.00 2.31 0 2 5877.58 0.00 568.69
he9 5877.58 0.00 2.00 5877.58 0.00 4.21 0 2 5877.58 0.00 144.42
Avg. 0.00 1.45 0.00 3.45 0.44 2.11 9795.22 0.00 255.39

c208c5
he1 11746.53 0.00 0.19 11746.53 0.00 0.91 1 2 11746.53 0.00 24.42
he2 4056.05 0.00 0.05 4056.05 0.00 0.38 0 1 4056.05 0.00 5.23
he3 4056.05 0.00 0.05 4056.05 0.00 0.42 0 1 4056.05 0.00 5.72
he4 4056.05 0.00 0.11 4056.05 0.00 0.98 0 1 4056.05 0.00 13.56
he5 11746.53 0.00 0.61 11746.53 0.00 1.86 1 2 11746.53 0.00 77.89
he6 4056.05 0.00 0.12 4056.05 0.00 0.58 0 1 4056.05 0.00 11.58
he7 4056.05 0.00 0.23 4056.05 0.00 0.84 0 1 4056.05 0.00 14.61
he8 4056.05 0.00 0.53 4056.05 0.00 1.89 0 1 4056.05 0.00 16.72
he9 4056.05 0.00 0.44 4056.05 0.00 1.36 0 1 4056.05 0.00 17.48
Avg. 0.00 0.26 0.00 1.02 0.22 1.22 5765.05 0.00 20.80
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Table 6: Results obtained from the instances in r104c5, r105c5, r202c5, and r203c5

BDA Phase 1 BDA Phase II PF
Obj g1 t(s) Obj g2 t2(s) NS NV Obj g1 t(s)

r104c5
he1 4609.35 0.00 0.25 4609.35 0.00 0.88 0 2 4609.35 0.00 46.30
he2 3998.41 0.00 0.05 3998.41 0.00 0.41 0 1 3998.41 0.00 10.89
he3 3998.41 0.00 0.08 3998.41 0.00 0.54 0 1 3998.41 0.00 11.53
he4 3998.41 0.00 0.77 3998.41 0.00 2.00 0 1 3998.41 0.00 25.67
he5 4609.35 0.00 0.36 4609.35 0.00 1.48 0 2 4609.35 0.00 107.16
he6 3998.41 0.00 0.42 3998.41 0.00 1.40 0 1 3998.41 0.00 30.00
he7 3998.41 0.00 3.20 3998.41 0.00 4.40 0 1 3998.41 0.00 121.13
he8 3998.41 0.00 1.60 3998.41 0.00 3.66 0 1 3998.41 0.00 66.47
he9 3998.41 0.00 0.70 3998.41 0.00 1.84 0 1 3998.41 0.00 62.89
Avg. 0.00 0.83 0.00 1.85 0.00 1.22 4134.17 0.00 53.56

r105c5
he1 4653.45 0.00 0.23 4653.45 0.00 0.91 0 2 4653.45 0.00 21.44
he2 4005.06 0.00 0.05 4005.06 0.00 0.58 0 1 4005.06 0.00 4.75
he3 4005.06 0.00 0.09 4005.06 0.00 0.64 0 1 4005.06 0.00 5.89
he4 4005.06 0.00 0.09 4005.06 0.00 0.53 0 1 4005.06 0.00 8.84
he5 4653.45 0.00 0.59 4653.45 0.00 2.31 0 2 4653.45 0.00 98.47
he6 4005.06 0.00 0.12 4005.06 0.00 0.77 0 1 4005.06 0.00 11.58
he7 4005.06 0.00 1.42 4005.06 0.00 3.25 0 1 4005.06 0.00 16.89
he8 4005.06 0.00 0.14 4005.06 0.00 0.75 0 1 4005.06 0.00 17.44
he9 4005.06 0.00 0.16 4005.06 0.00 0.83 0 1 4005.06 0.00 18.63
Avg. 0.00 0.33 0.00 1.17 0.00 1.22 4149.15 0.00 22.66

r202c5
he1 4623.09 0.00 0.26 4623.09 0.00 0.86 0 2 4623.09 0.00 12.97
he2 3979.55 0.00 0.05 3979.55 0.00 0.56 0 1 3979.55 0.00 2.52
he3 3979.55 0.00 0.08 3979.55 0.00 0.42 0 1 3979.55 0.00 3.56
he4 3979.55 0.00 0.22 3979.55 0.00 0.87 0 1 3979.55 0.00 8.97
he5 3628.73 0.00 0.66 3628.73 0.00 1.55 0 2 3628.73 0.00 16.47
he6 3979.55 0.00 0.31 3979.55 0.00 1.22 0 1 3979.55 0.00 6.58
he7 3628.73 0.00 1.76 3628.73 0.00 4.68 0 2 3628.73 0.00 7.70
he8 3979.55 0.00 0.45 3979.55 0.00 1.38 0 1 3979.55 0.00 13.13
he9 3979.55 0.00 1.10 3979.55 0.00 2.07 0 1 3979.55 0.00 13.52
Avg. 0.00 0.47 0.00 1.51 0.00 1.33 3973.09 0.00 9.49

r203c5
he1 18639.54 0.00 0.66 18639.54 0.00 1.75 1 2 18639.54 0.00 115.75
he2 5779.71 0.00 0.34 5779.71 0.00 1.03 0 2 5779.71 0.00 44.64
he3 6778.67 0.00 0.47 6778.67 0.00 1.70 0 2 6778.67 0.00 756.47
he4 5779.71 0.00 1.86 5779.71 0.00 4.64 0 2 5779.71 0.00 79.66
he5 6468.59 0.00 1.39 6468.59 0.00 4.86 0 3 6468.59 0.00 123.73
he6 5778.67 0.00 2.09 5778.67 0.00 4.83 0 2 5778.67 0.00 230.63
he7 5779.71 0.00 2.14 5779.71 0.00 6.01 0 2 5779.71 0.00 332.19
he8 5778.67 0.00 1.59 5778.67 0.00 6.33 0 2 5778.67 0.00 422.89
he9 5779.71 0.00 2.49 5779.71 0.00 6.18 0 2 5779.71 0.00 582.22
Avg. 0.00 1.45 0.00 4.15 0.11 2.11 7395.89 0.00 298.69
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Table 7: Results obtained from BDA on the instances in rc105c5, rc108c5, rc204c5, and rc208c5

BDA Phase 1 BDA Phase II PF
Obj g1 t(s) Obj g2 t2(s) NS NV Obj g1 t(s)

rc105c5
he1 30285.61 0.00 0.52 30285.61 0.00 1.92 1 2 30285.61 0.00 281.55
he2 5859.27 0.00 0.20 5859.27 0.00 0.78 0 2 5859.27 0.00 116.05
he3 6829.32 0.00 0.41 6829.32 0.00 1.98 0 2 6829.32 0.00 304.55
he4 5859.27 0.00 1.36 5859.27 0.00 2.91 0 2 5859.27 0.00 412.72
he5 6513.08 0.00 0.97 6513.08 0.00 3.03 0 3 6513.08 0.00 128.28
he6 5829.32 0.00 2.89 5829.32 0.00 5.28 0 2 5829.32 0.00 355.00
he7 5859.27 0.00 1.19 5859.27 0.00 3.37 0 2 5859.27 0.00 452.09
he8 5829.32 0.00 1.96 5829.32 0.00 5.32 0 2 5829.32 0.00 564.47
he9 5859.27 0.00 2.35 5859.27 0.00 5.38 0 2 5859.27 0.00 419.58
Avg. 0.00 1.42 0.00 3.33 0.11 2.11 8747.08 0.00 337.14

rc108c5
he1 56887.93 0.00 0.36 56887.93 0.00 1.74 2 2 56887.93 0.00 27.30
he2 32384.41 0.00 0.27 32384.41 0.00 0.90 1 2 32384.41 0.00 109.75
he3 6937.62 0.00 0.38 6937.62 0.00 1.39 0 2 6937.62 0.00 15.55
he4 6937.62 0.00 0.76 6937.62 0.00 1.96 0 2 6937.62 0.00 30.13
he5 48999.08 0.00 1.42 48999.08 0.00 4.12 2 3 48999.08 0.00 42.97
he6 6937.62 0.00 0.62 6937.62 0.00 2.45 0 2 6937.62 0.00 31.52
he7 6937.62 0.00 1.34 6937.62 0.00 2.98 0 2 6937.62 0.00 45.28
he8 6937.62 0.00 2.44 6937.62 0.00 5.39 0 2 6937.62 0.00 48.78
he9 6937.62 0.00 2.58 6937.62 0.00 5.90 0 2 6937.62 0.00 118.97
Avg. 0.00 1.13 0.00 2.98 0.56 2.11 19988.57 0.00 52.25

rc204c5
he1 4752.39 0.00 0.34 4752.39 0.00 0.89 0 2 4752.39 0.00 7.48
he2 5751.17 0.00 0.25 5751.17 0.00 0.84 0 2 5751.17 0.00 359.70
he3 6727.99 0.00 0.50 6727.99 0.00 1.61 0 2 6727.99 0.00 2393.78
he4 4752.39 0.00 1.95 4752.39 0.00 3.21 0 2 4752.39 0.00 287.72
he5 4752.39 0.00 2.13 4752.39 0.00 4.73 0 2 4752.39 0.00 22.08
he6 5727.99 0.00 2.83 5727.99 0.00 5.56 0 2 5727.99 0.00 719.70
he7 4752.39 0.00 1.92 4752.39 0.00 4.27 0 2 4752.39 0.00 536.75
he8 4752.39 0.00 1.77 4752.39 0.00 3.92 0 2 4752.39 0.00 325.55
he9 4752.39 0.00 1.75 4752.39 0.00 4.34 0 2 4752.39 0.00 328.89
Avg. 0.00 1.49 0.00 3.26 0.00 2.00 0.00 553.52

rc208c5
he1 12430.21 0.00 0.28 12430.21 0.00 1.05 1 2 12430.21 0.00 102.72
he2 4088.00 0.00 0.05 4088.00 0.00 0.38 0 1 4088.00 0.00 5.83
he3 4088.00 0.00 0.08 4088.00 0.00 0.58 0 1 4088.00 0.00 8.28
he4 4088.00 0.00 0.08 4088.00 0.00 0.73 0 1 4088.00 0.00 61.75
he5 12430.21 0.00 0.80 12430.21 0.00 2.30 1 2 12430.21 0.45 3600.00
he6 4088.00 0.00 0.22 4088.00 0.00 1.03 0 1 4088.00 0.00 41.13
he7 4088.00 0.00 0.16 4088.00 0.00 0.80 0 1 4088.00 0.00 143.44
he8 4088.00 0.00 0.12 4088.00 0.00 1.03 0 1 4088.00 0.00 71.19
he9 4088.00 0.00 0.12 4088.00 0.00 0.89 0 1 4088.00 0.00 42.69
Avg. 0.00 0.21 0.00 0.98 0.22 1.22 0.05 453.00
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Table 8: Results obtained from BDA on the instances in c101c10, c104c10, c202c10, and c205c10

BDA Phase 1 BDA Phase II
Obj g1 t(s) Obj g2 t2(s) NS NV

c101c10
he1 INFEASIBLE
he2 40941.67 0.00 2.67 40941.67 0.00 8.23 1 2
he3 26734.90 0.00 54.56 26734.90 0.00 119.38 2 2
he4 8722.39 0.00 35.20 8722.39 0.00 81.23 0 3
he5 54369.66 0.00 44.41 54369.66 0.00 82.00 3 3
he6 9722.39 0.00 149.34 9722.39 0.00 362.69 0 3
he7 8722.39 0.00 74.21 8722.39 0.00 167.81 0 3
he8 8722.39 0.00 80.41 8722.39 0.00 235.86 0 3
he9 8029.19 0.00 31.71 8029.19 0.00 130.22 0 2
Avg. 0.00 59.06 0.00 148.43 0.75 2.63

c104c10
he1 97436.74 0.00 10.68 97436.74 0.00 236.67 2 2
he2 38005.50 0.00 6.43 38005.50 0.00 10.16 1 2
he3 16067.65 0.00 19.44 16067.65 0.00 45.50 1 2
he4 8684.17 0.00 54.07 8684.17 0.00 92.60 0 3
he5 46212.79 0.00 9.78 46212.79 0.00 30.99 2 3
he6 9684.17 0.00 767.48 9684.17 0.00 1380.00 0 3
he7 8684.17 0.00 137.41 8684.17 0.00 258.47 0 3
he8 8684.17 0.00 368.60 8684.17 0.00 973.49 0 3
he9 8014.08 0.00 77.37 8014.08 0.00 217.72 0 2
Avg. 0.00 161.25 0.00 360.62 0.67 2.56

c202c10
he1 INFEASIBLE
he2 7500.43 0.00 3.61 7500.43 0.00 9.84 1 2
he3 6908.44 0.00 0.59 6908.44 0.00 3.19 0 2
he4 6908.44 0.00 28.12 6908.44 0.00 48.98 0 2
he5 19412.86 0.00 87.14 19412.86 0.00 193.21 3 3
he6 6908.44 0.00 1.31 6908.44 0.00 6.18 0 2
he7 6908.44 0.00 36.91 6908.44 0.00 94.29 0 2
he8 6908.44 0.00 31.25 6908.44 0.00 64.41 0 2
he9 6908.44 0.00 38.63 6908.44 0.00 64.00 0 2
Avg. 0.00 28.45 0.00 60.51 0.50 2.13

c205c10
he1 74514.96 0.00 8.65 74514.96 0.00 334.92 2 2
he2 19463.88 0.00 9.43 19463.88 0.00 21.18 2 2
he3 6872.57 0.00 5.57 6872.57 0.00 13.28 0 2
he4 6872.57 0.00 8.92 6872.57 0.00 23.75 0 2
he5 17362.48 0.00 9.18 17362.48 0.00 73.07 1 3
he6 6872.57 0.00 21.55 6872.57 0.00 50.01 0 2
he7 6872.57 0.00 15.95 6872.57 0.00 37.25 0 2
he8 6872.57 0.00 65.64 6872.57 0.00 114.23 0 2
he9 6872.57 0.00 38.54 6872.57 0.00 68.58 0 2
Avg. 0.00 20.38 0.00 81.81 0.56 2.11
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Table 9: Results obtained from BDA on the instances in r102c10, r103c10, r203c10, and r203c10

BDA Phase 1 BDA Phase II
Obj g1 t(s) Obj g2 t2(s) NS NV

r102c10
he1 22490.81 0.00 9.62 22490.81 0.00 13.40 1 2
he2 5805.69 0.00 4.28 5805.69 0.00 10.70 0 2
he3 6805.69 0.00 21.03 6805.69 0.00 29.08 0 2
he4 5805.69 0.00 5.93 5805.69 0.00 14.73 0 2
he5 6527.95 0.00 25.67 6527.95 0.00 43.71 0 3
he6 5827.42 0.00 6.91 5827.42 0.00 17.65 0 2
he7 5805.69 0.00 15.70 5805.69 0.00 30.22 0 2
he8 5805.69 0.00 16.18 5805.69 0.00 35.20 0 2
he9 5805.69 0.00 27.35 5805.69 0.00 46.29 0 2
Avg. 0.00 14.74 0.00 26.78 0.11 2.11

r103c10
he1 4646.67 0.00 0.80 4646.67 0.00 2.62 0 2
he2 4029.23 0.00 0.77 4029.23 0.00 2.93 0 1
he3 4029.23 0.00 0.28 4029.23 0.00 1.75 0 1
he4 4029.23 0.00 3.26 4029.23 0.00 9.27 0 1
he5 4646.67 0.00 6.60 4646.67 0.00 10.99 0 2
he6 4029.23 0.00 1.88 4029.23 0.00 5.38 0 1
he7 4029.23 0.00 2.90 4029.23 0.00 14.21 0 1
he8 4029.23 0.00 4.53 4029.23 0.00 12.32 0 1
he9 4029.23 0.00 3.68 4029.23 0.00 10.48 0 1
Avg. 0.00 2.74 0.00 7.77 0.00 1.22

r201c10
he1 INFEASIBLE
he2 5746.83 0.00 7.69 5746.83 0.00 14.02 0 2
he3 6746.83 0.00 13.08 6746.83 0.00 27.62 0 2
he4 5746.83 0.00 21.96 5746.83 0.00 48.73 0 2
he5 6397.82 0.00 471.62 6397.82 0.00 762.24 0 3
he6 5765.39 0.00 37.05 5765.39 0.00 69.45 0 2
he7 5746.83 0.00 167.91 5746.83 0.00 330.79 0 2
he8 5746.83 0.00 159.66 5746.83 0.00 293.70 0 2
he9 5746.83 0.00 99.04 5746.83 0.00 243.71 0 2
Avg. 0.00 122.25 0.00 223.78 0.00 2.13

r203c10
he1 41633.03 0.00 8.23 41633.03 0.00 31.42 2 2
he2 11554.98 0.00 8.75 11554.98 0.00 16.15 1 2
he3 6889.35 0.00 8.83 6889.35 0.00 16.64 0 2
he4 6889.35 0.00 32.80 6889.35 0.00 55.27 0 2
he5 10279.95 0.00 94.86 10279.95 0.00 154.09 1 3
he6 6889.35 0.00 16.25 6889.35 0.00 59.59 0 2
he7 6889.35 0.00 88.40 6889.35 0.00 166.85 0 2
he8 6889.35 0.00 108.97 6889.35 0.00 266.08 0 2
he9 6889.35 0.00 97.37 6889.35 0.00 180.74 0 2
Avg. 0.00 51.61 0.00 105.20 0.44 2.11
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Table 10: Results obtained from BDA on the instances in rc102c10, rc108c10, rc201c10, and
rc205c10

BDA Phase 1 BDA Phase II
Obj g1 t(s) Obj g2 t2(s) NS NV

rc102c10
he1 INFEASIBLE
he2 76690.66 0.00 5.17 76690.66 0.00 14.13 3 2
he3 37865.41 0.00 2.88 37865.41 0.00 6.18 1 2
he4 8828.98 0.00 1.19 8828.98 0.00 5.70 0 3
he5 86013.10 0.00 5.67 86013.10 0.00 14.81 3 3
he6 9828.98 0.00 29.86 9828.98 0.00 76.39 0 3
he7 8828.98 0.00 2.89 8828.98 0.00 7.95 0 3
he8 8828.98 0.00 7.58 8828.98 0.00 15.26 0 3
he9 8828.98 0.00 26.74 8828.98 0.00 47.55 0 3
Avg. 0.00 10.25 30714.26 0.00 23.50 0.88 2.75

rc108c10
he1 124573.00 0.00 10.99 124573.00 0.00 104.82 2 2
he2 82773.00 0.00 11.09 82773.00 0.00 42.82 1 2
he3 42320.90 0.00 15.98 42320.90 0.00 63.07 2 2
he4 12013.54 0.00 50.80 12013.54 0.00 114.87 1 3
he5 86279.65 0.00 36.33 86279.65 0.00 3593.30 2 3
he6 9872.52 0.00 78.42 9872.52 0.00 208.28 0 3
he7 10613.42 0.00 100.28 10613.42 0.00 262.38 0 4
he8 9872.52 0.00 89.67 9872.52 0.00 195.21 0 3
he9 8167.99 0.00 3.97 8167.99 0.00 10.44 0 2
Avg. 0.00 44.17 42942.95 0.00 510.58 0.89 2.67

rc201c10
he1 67397.81 0.00 7.92 67397.81 0.00 14.57 2 2
he2 29172.61 0.00 7.32 29172.61 0.00 22.68 1 2
he3 6970.88 0.00 4.83 6970.88 0.00 11.10 0 2
he4 6970.88 0.00 2.84 6970.88 0.00 9.11 0 2
he5 32631.14 0.00 23.79 32631.14 0.00 124.47 2 3
he6 6970.88 0.00 5.39 6970.88 0.00 17.00 0 2
he7 6970.88 0.00 3.81 6970.88 0.00 12.93 0 2
he8 6970.88 0.00 6.01 6970.88 0.00 17.10 0 2
he9 6970.88 0.00 13.50 6970.88 0.00 26.70 0 2
Avg. 0.00 8.38 19002.98 0.00 28.41 0.56 2.11

rc205c10
he1 114637.14 0.00 3.42 114637.14 0.00 54.62 2 2
he2 73637.14 0.00 8.80 73637.14 0.00 38.19 2 2
he3 32637.14 0.00 7.61 32637.14 0.00 15.59 2 2
he4 11302.91 0.00 37.63 11302.91 0.00 63.07 1 3
he5 74017.00 0.00 14.75 74017.00 0.00 271.92 3 3
he6 9805.75 0.00 102.60 9805.75 0.00 198.58 0 3
he7 11302.91 0.00 167.22 11302.91 0.00 346.33 1 3
he8 9805.75 0.00 245.76 9805.75 0.00 486.49 0 3
he9 8123.37 0.00 3.33 8123.37 0.00 9.35 0 2
Avg. 0.00 65.68 38363.23 0.00 164.90 1.22 2.56
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Table 11: Results obtained from BDA on the instances in c103c15, c106c15, c202c15, and c208c15

BDA Phase 1 BDA Phase II
Obj g1 t(s) Obj g2 t2(s) NS NV

c103c15
he1 INFEASIBLE
he2 35972.13 0.00 61.99 35972.13 0.00 135.28 2 2
he3 15627.39 0.00 304.52 15627.39 0.00 730.97 1 2
he4 8753.00 0.00 614.77 8753.00 0.00 1807.29 0 3
he5 42487.92 0.31 10800.00 Memory Limit
he6 9705.97 0.20 10800.15 9705.97 0.16 21609.34 0 3
he7 8753.00 0.00 2614.33 8753.00 0.00 7028.82 0 3
he8 8753.00 0.09 10800.23 8753.00 0.07 10800.52 0 3
he9 8033.82 0.00 2396.53 8033.82 0.00 4213.18 0 2
Avg. 0.07 4799.07 0.03 6617.91 0.43 2.57

c106c15
he1 40236.32 0.00 29.72 40236.32 0.00 97.25 1 2
he2 5857.67 0.00 6.23 5857.67 0.00 15.85 0 2
he3 6857.67 0.00 175.43 6857.67 0.00 338.04 0 2
he4 5857.67 0.00 46.15 5857.67 0.00 113.44 0 2
he5 6546.65 0.00 45.72 6546.65 0.00 241.86 0 3
he6 6857.67 0.00 4675.78 6857.67 0.00 5472.12 0 2
he7 5857.67 0.00 79.12 5857.67 0.00 253.03 0 2
he8 5857.67 0.00 97.94 5857.67 0.00 279.20 0 2
he9 5857.67 0.00 137.21 5857.67 0.00 338.73 0 2
Avg. 0.00 588.14 0.00 794.39 0.11 2.11

c202c15
he1 INFEASIBLE
he2 78027.86 0.00 76.13 78027.86 0.00 209.37 2 2
he3 46465.93 0.00 64.59 46465.93 0.00 333.44 2 2
he4 11821.63 0.00 1108.28 11821.63 0.00 1716.57 1 3
he5 101057.82 0.00 812.10 101057.82 0.00 10029.75 3 3
he6 9811.94 0.00 7931.55 9811.94 0.00 13665.04 0 3
he7 10530.88 0.00 9859.18 10530.88 0.00 15680.36 0 4
he8 9811.94 0.00 7968.24 9811.94 0.00 13957.72 0 3
he9 8153.33 0.00 14.70 8153.33 0.00 91.24 0 2
Avg. 0.00 3479.35 0.00 6960.44 1.00 2.75

c208c15
he1 INFEASIBLE
he2 34116.90 0.00 3.82 34116.90 0.00 15.60 1 2
he3 11927.76 0.00 312.81 11927.76 0.00 505.10 1 2
he4 8683.64 0.00 1528.66 8683.64 0.00 5650.08 0 3
he5 66401.92 0.00 426.32 66401.92 0.00 1044.02 3 3
he6 9683.64 0.17 10800.16 9683.64 0.18 21944.58 0 3
he7 8683.64 0.00 4758.60 8683.64 0.00 13249.26 0 3
he8 8683.64 0.05 10800.20 8683.64 0.00 19530.75 0 3
he9 8012.56 0.00 4773.94 8012.56 0.00 8767.81 0 2
Avg. 0.03 4175.56 0.02 8838.40 0.63 2.63
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Table 12: Results obtained from BDA on the instances in r102c15, r105c15, r202c15, and r209c15

BDA Phase 1 BDA Phase II
Obj g1 t(s) Obj g2 t2(s) NS NV

r102c15
he1 INFEASIBLE
he2 19772.60 0.00 185.56 19772.60 0.00 382.04 2 2
he3 6956.29 0.00 25.19 6956.29 0.00 62.01 0 2
he4 6956.29 0.00 108.55 6956.29 0.00 189.70 0 2
he5 24632.65 0.97 9128.06 Memory limit
he6 6956.29 0.00 136.97 6956.29 0.00 366.41 0 2
he7 6956.29 0.00 354.79 6956.29 0.00 637.32 0 2
he8 6956.29 0.00 787.49 6956.29 0.00 1048.69 0 2
he9 6956.29 0.00 906.36 6956.29 0.00 2164.50 0 2
Avg. 0.12 1454.12 0.00 692.95 0.29 2.00

r105c15
he1 INFEASIBLE
he2 21864.09 0.00 164.84 21864.09 0.00 377.97 1 2
he3 6968.14 0.00 45.07 6968.14 0.00 84.90 0 2
he4 6968.14 0.00 176.11 6968.14 0.00 462.12 0 2
he5 22441.59 0.00 861.12 22441.59 0.00 1845.61 2 3
he6 6968.14 0.00 236.61 6968.14 0.00 659.36 0 2
he7 6968.14 0.00 621.14 6968.14 0.00 1626.27 0 2
he8 6968.14 0.00 1326.38 6968.14 0.00 3560.06 0 2
he9 6968.14 0.00 743.83 6968.14 0.00 1693.28 0 2
Avg. 0.00 521.89 0.00 1288.70 0.38 2.13

r202c15
he1 INFEASIBLE
he2 54739.58 0.00 70.94 54739.58 0.00 168.63 2 2
he3 9126.41 0.00 80.11 9126.41 0.00 171.37 2 2
he4 8766.77 0.00 775.92 8766.77 — 21600.00 0 3
he5 INFEASIBLE
he6 9126.41 0.07 10800.17 9126.41 0.04 21631.12 2 2
he7 8766.77 0.00 2045.60 8766.77 0.00 4351.67 0 3
he8 8766.77 0.07 10800.58 8766.77 0.06 22225.61 0 3
he9 8076.85 0.00 901.42 8076.85 0.00 1592.38 0 2
Avg. 0.02 3639.25 0.02 10248.68 0.86 2.43

r209c15
he1 INFEASIBLE
he2 22048.46 0.00 56.94 22048.46 0.00 125.10 2 2
he3 6967.49 0.00 2.98 6967.49 0.00 13.33 0 2
he4 6967.49 0.00 76.41 6967.49 0.00 124.19 0 2
he5 31800.31 0.00 99.90 31800.31 0.00 267.06 2 3
he6 6967.49 0.00 6.41 6967.49 0.00 19.14 0 2
he7 6967.49 0.00 144.45 6967.49 0.00 318.28 0 2
he8 6967.49 0.00 152.79 6967.49 0.00 290.81 0 2
he9 6967.49 0.00 131.37 6967.49 0.00 223.50 0 2
Avg. 0.00 83.91 0.00 172.68 0.50 2.13

— Not available. The model hits the time limit before finding a feasible solution.
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Table 13: Results obtained from BDA on the instances in rc103c15, rc108c15, rc202c15, and
rc204c15

BDA Phase 1 BDA Phase II
Obj g1 t(s) Obj g2 t2(s) NS NV

rc103c15
he1 INFEASIBLE
he2 83276.41 0.00 111.75 83276.41 0.53 10921.09 2 2
he3 41149.97 0.00 359.31 41149.97 0.00 1591.95 2 2
he4 14115.34 0.00 5613.98 14115.34 0.00 13561.48 1 3
he5 83831.10 0.00 845.83 83831.10 0.00 3035.31 3 3
he6 9836.81 0.57 10800.00 9836.81 0.66 21636.20 0 3
he7 10583.00 0.14 10800.00 10583.00 0.29 18699.63 0 4
he8 9836.81 0.54 10800.00 9836.81 0.94 22227.84 0 3
he9 8132.34 0.00 75.90 8132.34 0.00 286.11 0 2
Avg. 0.16 4925.85 0.30 11494.95 1.00 2.75

rc108c15
he1 INFEASIBLE
he2 124758.58 0.00 746.79 124758.58 0.00 11555.48 2 2
he3 62132.20 0.00 180.29 62132.20 0.00 11028.02 2 2
he4 16428.49 0.00 376.09 16428.49 0.00 1251.25 2 3
he5 INFEASIBLE
he6 9857.04 0.00 1466.78 9857.04 0.00 1980.25 0 3
he7 14281.31 0.13 10800.26 14281.31 0.00 18935.20 1 4
he8 9857.04 0.00 1166.45 9857.04 0.00 2254.59 0 3
he9 8143.23 0.00 27.66 8143.23 0.00 54.27 0 2
Avg. 0.02 2109.19 0.00 6722.72 1.00 2.71

rc202c15
he1 INFEASIBLE
he2 79004.57 0.00 5.16 79004.57 0.00 3058.47 1 2
he3 42795.42 0.00 162.46 42795.42 0.00 761.17 2 2
he4 19597.07 0.00 1400.59 19597.07 0.00 4199.88 1 3
he5 94305.77 0.14 Memory limit
he6 12557.00 0.24 10800.24 12557.00 0.25 21615.56 1 3
he7 16636.76 0.43 10800.33 16636.76 0.42 21961.32 1 4
he8 11554.38 0.20 10800.20 11554.38 0.25 23013.04 0 4
he9 9840.74 0.06 10800.48 9840.74 0.08 21789.51 0 3
Avg. 0.13 6395.64 0.14 13771.28 0.86 3.00

rc204c15
he1 INFEASIBLE
he2 INFEASIBLE
he3 35895.95 0.00 12.45 35895.95 0.00 94.25 1 2
he4 19828.42 0.00 1617.84 19828.42 — 14614.88 1 3
he5 INFEASIBLE
he6 9890.67 0.00 7576.35 9890.67 0.00 11903.85 0 3
he7 13888.20 0.26 10800.33 13888.20 0.30 21841.39 1 4
he8 9890.67 0.04 10800.74 9890.67 0.00 16407.53 0 3
he9 10853.21 0.19 10800.40 10853.21 0.20 22006.29 0 3
Avg. 0.08 6934.69 0.10 14450.66 0.50 3.00

— Not available. The model hits the time limit before finding a feasible solution.
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