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Abstract In this paper, I present a discrete solution for the paradox of Achilles and
the tortoise. I argue that Achilles overtakes the tortoise after a finite number of steps
of Zeno’s argument if time is represented as discrete. I then answer two objections
that could be made against this solution. First, I argue that the discrete solution is not
an ad hoc solution. It is embedded in a discrete formulation of classical mechanics.
Second, I show that the discrete solution cannot be falsified experimentally.
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1 Introduction

The paradox of Achilles and the tortoise is one of the most famous paradoxes on
motion. According to Zeno’s argument, Achilles can never overtake a tortoise in a
footrace if he gives him a head start. In order to pass the tortoise, Achilles must
first reach the initial position of the tortoise. But during this time, the tortoise moves
ahead. Achilles must then reach the new position. But, again, the tortoise reaches a
new point during this time; and so on. Whenever Achilles reaches a point, the tortoise
reaches a further point and Achilles never overtakes the tortoise.

It is commonly argued that the paradox can be resolved with geometric series.
Suppose for example that the tortoise runs at a speed of one unit. Suppose also that
Achilles runs twice as fast as the tortoise and grants him a unit length as a head
start. Achilles has thus to cover the sum of lengths 1+ 1

2 +
1
4 + ... in the time interval

1
2 +

1
4 +

1
8 + ... Both geometric series converge to 2 and 1 respectively. Consequently,

and contrary to Zeno’s conclusion, Achilles overtakes the tortoise in a finite amount
of time. This solution is however rejected by Black (1951) and Wisdom (1952). The
two authors emphasize that Achilles is assumed to perform an impossible task. He
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has to achieve a supertask, which is an infinite sequence of actions performed in a
finite time. While the convergence of series shows that Achilles tends to overtake the
tortoise, one cannot conclude that Achilles actually overtakes the tortoise. The debate
thus focuses on the logical and physical possibilities of supertasks but there is no
consensual solution yet (Benacerraf 1962, Chihara 1965, Grünbaum 1969, Thomson
1970, Alper & Bridger 1998, Burke 2000, Laraudogoita 2006 among others).

McLaughlin & Miller (1992) suggest another solution. They tackle Zeno’s para-
doxes using non-standard analysis. In this case, the race of Achilles is described as
a finite number of infinitesimal steps. Non-standard analysis indeed yields a rigorous
definition of infinitesimals. However, Alper & Bridger (1997) object that this solution
is based on a counterintuitive notion of finiteness. The predicate “finite” is used within
the context of non-standard analysis, which does not correspond to our intuitive no-
tion of finiteness. For example, there would be no difference between the size of a
“finite” set and the size of the set of real numbers [0,1]. In his response, McLaughlin
(1998) maintains his solution. The criticism of Alper & Bridger is based on two dif-
ferent views of sets that have to be kept distinct. A set may be finite “internally” even
if, “externally”, it has infinite cardinality. However, McLaughlin recognizes that this
notion of finiteness is not the traditional one. Nevertheless, it does not imply that the
solution has to be rejected. One would rather reconsider our intuitive notion of finite-
ness. This solution of the Achilles paradox might thus depend on the acceptability of
this notion of finiteness.

Another way to solve the paradox consists in denying the continuity of space and
time. Even if it is not a new idea (Whitrow 1980, chapter 4), there are not many for-
mulations of such solutions.1 Van Bendegem (1987, 1995), referring to Forrest’s work
(1995), suggests a discrete treatment of space and the development of a discrete ge-
ometry in order to solve Zeno’s paradoxes. In this case, contrary to the non-standard
analysis based solution, the notion of finiteness is not controversial. But this solution
seems to be useless for scientists. At best, it is very difficult to use discrete geom-
etry to describe and predict physical phenomena. In this paper, I offer another kind
of discrete solution. It differs from the previous one since it turns out to be usable to
describe and predict physical phenomena. Besides, the solution is rather based on a
discrete treatment of time than on a discrete treatment of space.

The paper is organized as follows. Section 2 is devoted to a brief presentation of
the usual modern formulation of the paradox of Achilles and the tortoise. Then, in
Section 3, I present the discrete solution of the paradox that, to my knowledge, has
never been discussed. I show how the paradox vanishes if time becomes represented
as discrete. In the remainder of the paper, I raise two possible objections and I discuss
them. First, in Section 4, I tackle the objection that the discrete solution is ad hoc
and cannot be a satisfying framework for physical theories. Then, in Section 5, I
investigate whether the discrete solution could be falsified by an experiment.

1 Whitehead (1979, p. 35; 2000, chap. 3) defends an atomic conception of space and time. However, I
do not investigate his position since it is not used to solve Zeno’s paradoxes. According to him, the paradox
of Achilles is already solved with the convergence of geometric series (1979, p. 69).
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2 Infinite Tasks with Continuous Time

Let us begin with the usual modern version of Zeno’s argument. Time is represented
by a continuous parameter t defined on a real interval: t ∈ I ⊂ R. The positions of
Achilles and the tortoise are functions of time. They are written as xA(t) = vAt and
xT (t) = x0 + vT t where vA and vT are respectively the constant velocities of Achilles
and the tortoise, and x0 the initial distance between them.The velocity is indeed de-
fined as the derivative of position in respect to time v(t) = dx

dt . Since Achilles and the
tortoise run at constant speed, position is an affine function of time: x(t) = vt+x0. At
the initial instant of the race, the positions of Achilles and the tortoise are xA(t0) = 0
and xT (t0) = x0.

According to Zeno’s argument, Achilles has first to reach the initial position
of the tortoise xT (t0) = x0. He gets to this point at the instant t1, which satisfies
xA(t1) = xT (t0), i.e vAt1 = x0. Hence, t1 is defined as t1 = x0/vA. But during this time,
the tortoise has moved ahead. Thus, after one step of Zeno’s argument, Achilles is
at the point xA(t1) = vAt1 and the tortoise at the point xT (t1) = x0 + vT t1. The tor-
toise still holds the first position. Achilles has now to reach the new position of the
tortoise xT (t1). He gets to this point at the instant t2, which satisfies xA(t2) = xT (t1),
i.e vAt2 = x0 + vT t1. This instant t2 thus corresponds to t2 = x0/vA + vT/vAt1. But,
again, during this time t2 the tortoise has moved ahead. Thus, after the second step
of Zeno’s argument, Achilles is at the point xA(t2) = vAt2 and the tortoise at the point
xT (t2)= x0+vT t2; and so on. After n steps of Zeno’s argument, Achilles is at the point
xA(tn) = vAtn and the tortoise at xT (tn) = x0 +vT tn with the series of time (tn)n∈N de-
fined as xA(tn) = xT (tn−1).2

With these conditions, let us consider the relative position of Achilles to the posi-
tion of the tortoise xA/T (tn) at the step n. It corresponds to xA/T (tn) = vrtn−x0, where
vr is the relative speed vA−vT . This can be rewritten as xA/T (tn) =−x0(vT/vA)

n. It is
a negative quantity which tends to zero when the number of steps n tends to infinity.
Thus, after a finite number of n steps, no matter how big it is, the relative distance
is still strictly negative. In other words, the tortoise is still ahead of Achilles. The
remaining distance becomes smaller and smaller but equals to zero only at the limit
when n goes to infinity. Therefore, following Black and Wisdom, Achilles overtakes
the tortoise only if one endorses that Achilles performs a supertask.

3 Achilles and the Tortoise with Discrete Time

I propose now to follow Zeno’s argument in replacing the continuous parameter t by
a discrete parameter tk, where tk = hk with h ∈ R a discrete time step and k ∈ N,0≤
k < N. Time is now treated as discrete since it is represented by a finite set of N
instants. In addition, velocity is defined as vk =

xk−xk−1
tk−tk−1

. As it will be clear in Section
4, these definitions are guided by the recent development of a discrete formulation of
classical mechanics.

2 This time series (tn)n∈N is for all n ∈ N∗, tn = x0/vA +(vT /vA)tn−1 with t0 = 0. It is an increasing
infinite series which converges to the instant t f = x0/(vA−vT ). This result may be proved in rewriting the
previous recurrence formula as the convergent geometric series : tn = x0/vA ∑

n−1
k=0(vT /vA)

k .



4 Vincent Ardourel

In our example (i) Achilles and the tortoise run at constant speed vA and vT , and
(ii) the initial positions of Achilles and the tortoise are respectively taken at zero and
x0. It results that xA(tk) = vAtk and xT (tk) = x0 + vT tk. Accordingly, the positions of
Achilles and the tortoise are also discrete since they are represented by finite sets of
N points.3

In this section, I begin to show that Achilles overtakes the tortoise with this rep-
resentation of time (Section 3.1). Then, I make clear in what sense Achilles and the
tortoise can be said to be in motion although time is represented as discrete (Section
3.2).

3.1 Achilles Overtakes the Tortoise

Let us follow Zeno’s argument with this discrete representation of time. Achilles
starts at xA(tk0) = 0 and the tortoise at xT (tk0) = x0. Thus, in order to overtake the
tortoise, Achilles has first to overtake the initial position of the tortoise.4 But, during
this time tk1 , the tortoise has moved ahead and, after one step of Zeno’s argument
with discrete time, Achilles is at the point xA(tk1) = vAtk1 and the tortoise at xT (tk1) =
x0+vT tk1 . Zeno’s argument continues. Achilles has now to overtake the new position
of the tortoise. He overtakes this new position at the discrete time tk2 . Again, during
this time, the tortoise has moved ahead. He is at the new position xT (tk2) = x0+vT tk2 ;
and so on. After n steps of Zeno’s argument, Achilles is at the position xA(tkn) = vAtkn

and the tortoise at xT (tkn) = x0 + vT tkn .5

Instead of the continuous case (Section 2), Achilles overtakes the tortoise in a
finite number of steps. Let us consider again the relative position of Achilles to the
tortoise at the step n. It is equal to xA/T (tkn) = vrtkn − x0, with vr the relative speed.
Contrary to the continuous case, there is a step m of Zeno’s argument where the rela-
tive position becomes a positive or nil quantity. This results from the fact that the ele-
mentary relative distance vrh covered in a single time step h is a strictly positive finite
quantity. Therefore, the discrete model satisfies the Archimedean property according
to which there is an integer km such as vrh+ vrh+ ...+ vrh︸ ︷︷ ︸

km terms

≥ x0. Thus, after a finite

number of m steps, the relative position is a positive or nil quantity, which means that
Achilles has overtaken the tortoise after a finite number m of steps.6 For example, let
us consider again the case where the tortoise runs at unit velocity, Achilles runs twice
as fast as the tortoise and lets him a unit length as a head start. Besides, let us take
h = 10−5 for the discrete time step. Under these conditions, Achilles overtakes the
tortoise after 17 steps of Zeno’s argument (see Table 1).

3 Representing time as discrete is sometimes reduced to the use of natural or rational numbers (Carnap
1966, p. 88–89; Newton-Smith 1980, chapter 6). In our case, time and positions are represented as discrete
although the parameters tk , xA(tk) and xT (tk) are real numbers.

4 I discuss below in this section the use of the term “overtake” instead of “reach”.
5 It can be shown that (tkn )n∈N is tk0 = 0 and for all n ∈ N∗ tkn = h

⌈
(x0/(hvA))+(vT /vA)(tkn−1/h)

⌉
,

where d.e is the ceiling function, which is defined as : ∀x ∈ R,dxe= min{n ∈ Z|n≥ x}.
6 One can show that the order of magnitude of m is ln( x0

hvA
)/ ln( vA

vT
).
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Table 1 An example of the race between Achilles and the tortoise within discrete time and with the
following parameters: vT = 1, vA = 2, x0 = 1 and h = 10−5. Under these conditions, Achilles overtakes
the tortoise after 17 steps of Zeno’s argument.

Step i of ki instant Achilles the tortoise distance remaining
Zeno’s argument tki xA(tki ) xT (tki ) ∆n

0 0 0 0 1 1
1 50,000 0.50000 1.00000 1.50000 0.50000
2 75,000 0.75000 1.50000 1.75000 0.25000
3 87,500 0.87500 1.75000 1.87500 0.12500
4 93,750 0.93750 1.87500 1.93750 0.06250
5 96,875 0.96875 1.93750 1.96875 0.03125
6 98,438 0.98438 1.96876 1.98438 0.01562
7 99,219 0.99219 1.98438 1.99219 0.00781
8 99,610 0.99610 1.99220 1.99610 0.00390
9 99,805 0.99805 1.99610 1.99805 0.00195
10 99,903 0.99903 1.99806 1.99903 0.00097
11 99,952 0.99952 1.99904 1.99952 0.00048
12 99,976 0.99976 1.99952 1.99976 0.00024
13 99,988 0.99988 1.99976 1.99988 0.00012
14 99,994 0.99994 1.99988 1.99994 0.00006
15 99,997 0.99997 1.99994 1.99997 0.00003
16 99,999 0.99999 1.99998 1.99999 0.00001
17 100,000 1.00000 2.00000 2.00000 0.00000

As I have noticed above, there is a slight difference between the formulations
of Zeno’s argument with continuous time and discrete time. With continuous time,
at each step of Zeno’s argument, Achilles has to reach the position occupied by the
tortoise. However, with discrete time, Achilles has to reach or overtake the position
occupied by the tortoise. This difference results from the fact that the series of the dis-
crete positions of Achilles and the tortoise are not necessarily superimposed. Indeed,
the distance xA(tkn) covered by Achilles during the amount of time tkn is not neces-
sarily a multiple of the elementary distance covered by the tortoise hvT . However,
this difference between the two formulations of Zeno’s argument is not a serious ob-
jection. First, one can reformulate both Zeno’s arguments with continuous time and
discrete time in assuming that, at each step, “Achilles has to overtake the tortoise”. In
this case, “overtake” means in a broad sense “reach” or “strictly overtake”. Second,
one should not dismiss the discrete solution of the paradox only because the series of
positions of Achilles and the tortoise are superimposed in the continuous case but not
in the discrete one. As I shall discuss it in Section 5, despite this difference between
both series of positions, they are empirically equivalent.

3.2 Motion with Discrete Time

I make clear in what sense Achilles and the tortoise can legitimately be considered in
motion although time is represented as discrete. At first glance, a discrete represen-
tation of time would indeed be not compatible with motion, as it is exemplified with
the Zeno’s arrow paradox.
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[S]uppose we consider a period consisting of a thousand instants, and suppose
the arrow is in flight throughout this period. At each of the thousand instants,
the arrow is where it is, though at the next instant it is somewhere else. It
is never moving, but in some miraculous way the change of position has to
occur between the instants, that is to say, not at any time whatever. (Russell
1929, in Salmon 2001, p. 50)

Russell assumes here that time is represented as discrete. Under this condition, at each
instant tk, a moving arrow occupies a unique position xk and, for that reason, cannot
be said moving at this instant. Equally, at the next instant tk+1, the arrow occupies
another unique position xk+1. Since there is not any instant between two successive
instants tk and tk+1, the change of positions cannot be made between them. Therefore,
it seems that we have to conclude that the moving arrow never moves when time is
represented as discrete. Consequently, if such a conclusion is applied to Achilles and
the tortoise, they cannot be said moving.

On contrary to the conclusion of the Arrow paradox, I claim that the arrow, and
more generally any body, can be said moving with a discrete representation of time. I
indeed endorse the “at-at theory of motion” (Russell 2010, p. 355 and p. 480)7 which
applies to a discrete representation of time. According to this account of motion,
one cannot say with a single instant if a body moves. One has to compare positions
with at least two different instants. As we have seen, position is a function of time
within a discrete representation of time. For instance, a particle with constant speed is
described by the equation xk = vtk. Therefore, a particle can be said in motion because
different discrete positions xk correspond to different discrete time tk. In summary, a
body is said moving if and only if its discrete positions xk are different at different
instants tk.

This section was dedicated to the discrete treatment of the paradox of Achilles and
the tortoise. In the remaining of the paper, I discuss two possible objections (Section 4
and Section 5).

4 Discrete Classical Mechanics

First, the discrete solution of the Achilles paradox might be viewed as an ad hoc
solution. While the use of a discrete representation of time enables to avoid Zeno’s
conclusion, it would turn out to be a fruitless representation in general because it
could not be used as a framework for physical theories.

This objection is raised because it is generally admitted that it is not possible
to formulate classical mechanics without a continuous representation of time. The
fundamental laws of motion of classical mechanics are differential equations that
require a continuous representation of time. Thus, the laws of motion and the fun-
damental principles of classical mechanics are lost when time becomes represented
as discrete. They are replaced by difference equations but a formulation of classi-
cal mechanics grounded on difference equations seems generally impossible. Ac-
cording to Grünbaum, “a physical theory whose fundamental laws take the form of

7 See also (Salmon 1980, p. 40–42).
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difference equations” is “at best, a gleam in the eyes of hopeful speculative theoreti-
cians”(Grünbaum 1968, in Salmon 2001, p. 246).

On contrary, I claim that classical mechanics can be formulated with a discrete
representation of time and, accordingly, the discrete solution of the paradox should
not be viewed as an ad hoc solution. There exists nowadays a discrete formulation of
classical mechanics, called discrete variational mechanics:

Discrete variational mechanics [is] a formulation of mechanics in discrete-
time that is based on a discrete analogue of Hamilton’s principle, which states
that the system takes a trajectory for which the action integral is stationary.
[...]
Discrete Lagrangian and Hamiltonian mechanics have been developed by re-
formulating the theorems and the procedures of Lagrangian and Hamiltonian
mechanics in a discrete time setting (see, for example, (Marsden et al 2001)).
Therefore, discrete mechanics has a parallel structure with the mechanics de-
scribed in continuous time [...] (Lee et al. 2009, p. 2001 and p. 2004)

In order to better grasp how such discrete formulations are possible, I focus on the
case of Discrete Lagrangian Mechanics (DM).

DM has been developed since the 1980’s by the 1957 Nobel Laureate in Physics
T.D Lee (1983), D’Innocenzo et al. (1987), and Marsden & West (2001) among oth-
ers. At the beginning, T.D Lee developed it in order to solve the divergence problems
of Quantum Field Theory. He wanted to build up a discrete mechanics conceived as
a first step toward fully discrete fundamental theories in which divergences could not
occur (Friedberg & Lee 1983, Lee 1987). Furthermore, this discrete mechanics has
been developed as a means to numerically solve classical mechanical systems (Feng
1986, Baez & Gilliam 1994, Marsden & Wendlandt 1997). Currently, the studies on
this discrete formulation pertain mainly to the fields of computational geometry and
mechanics (Stern & Desbrun 2008, Lee et al. 2009 among others). Numerical compu-
tations of mechanical systems turn out to be better – more stable, more accurate – if
the discrete equations implemented on computers are not the results of discretizations
but are initially derived from discrete variational principles.

Philosophers of science did not yet pay proper attention to such discrete formula-
tions of classical mechanics. This section might thus be a first step toward rectifica-
tion of this lack of discussions. I begin to introduce the fundamental principles of DM
(section 4.1). Then, I sketch how scientists can use DM to describe and predict phys-
ical phenomena (section 4.2) before suggesting further current developments within
DM (section 4.3).

4.1 Fundamental Principles

Discrete Mechanics is based on a discrete least action principle. More precisely, there
is a discrete action defined as the sum Sd = ∑

N−1
k=0 Ld(tk+1− tk) where Ld is a discrete

Lagrangian. It is a function of the discrete coordinates qk,qk+1 and the discrete time
step hk+1 = tk+1− tk. This action is the discrete analogue to the traditional action –
from now called continuous action – defined as the integral of the continuous La-
grangian S =

∫
L(q, q̇)dt.
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Fig. 1 The discrete form of Hamilton’s principle (Lew et al. 2003).

In continuous Lagrangian Mechanics, the Euler-Lagrange equations are deduced
from Hamilton’s principle according to which the flows of the mechanical systems
satisfy δS = 0. In DM, there is also a Hamilton’s principle, which states that dis-
crete flows satisfy δSd = 0. This discrete minimization principle leads to the Discrete
Euler-Lagrange equations:

hk
∂Ld

∂qk
(qk−1,qk,hk)+hk+1

∂Ld

∂qk
(qk,qk+1,hk+1) = 0 (1)

These discrete equations are analogous to the continuous Euler-Lagrange equations.
Contrary to the continuous case, another equation results from the discrete mini-

mization principle, which is:

∂

∂ tk
(hk.Ld (qk−1,qk,hk))+

∂

∂ tk
(hk+1Ld (qk,qk+1,hk+1)) = 0 (2)

It corresponds to the conservation of the energy, where the discrete energy is defined
as Ek =

∂

∂ tk
(hk.Ld (qk−1,qk,hk)). In continuous Lagrangian mechanics, the conserva-

tion of energy is already contained in the Euler-Lagrange equations. It can be deduced
from them. In DM, it is an independent equation derived from the discrete least action
principle.8

Let us consider, for example, the following discrete Lagrangian: Ld = 1
2 mv2

k+1−
V (qk) where vk+1 = (qk+1− qk)/hk+1. In these conditions, the first equation corre-
sponds to the discrete motion equation m vk+1−vk

hk+1
= − ∂V (qk)

∂qk
. It is a discrete version

of the equation of motion of Newton’s mechanics. In addition, according to the pre-
vious definition of the energy, one has Ek+1 =

1
2 mv2

k+1 +V (qk). The first term of this

8 In continuous mechanics, Euler-Lagrange equations and conservation of energy can also be derived
from the least action principle – even if it is not the usual derivation. See for example (Marsden & West
2001, p. 467, Chen et al. 2006, p. 227). However, in this case, the latter equation can be deduced from
the former. On contrary, this is not possible within DM. This specificity results from the fact that the
space coordinate and the time coordinate are treated symmetrically (D’Innocenzo et al. 1987, p. 246). In
addition, I would like to emphasize that, as in the continuous case, this framework can be generalized to
non-autonomous Lagrangian, i.e time-dependant Lagrangians. In this case, energy is not conserved and
the second equation represents the evolution of energy.
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equation represents the kinetic energy and the second one the potential energy. The
second equation thus states that the discrete total energy is conserved, i.e Ek = Ek+1.

Similarly to the continuous case, there is a discrete Noether theorem within DM
that connects laws of conservation to symmetries. In continuous mechanics, if a sys-
tem is invariant under the infinitesimal transformation (q, q̇)→ (qε , q̇ε), Noether the-
orem states that the following quantity is conserved:

Q =
∂L
∂ q̇

∂qε

∂ε

∣∣∣∣
ε=0

(3)

For example, the linear momentum Q = mq̇ is conserved if the system is invariant
under spatial translation, i.e if it is invariant under the transformation q→ qε = q+ε .
This is for example the case for a free particle. Let us now turn to DM. If a system is
invariant under the infinitesimal transformation (qk,qk+1)→ (qε

k ,q
ε
k+1), the discrete

Noether theorem states that the following quantity is conserved:

Qd = hk+1
∂Ld

∂qk+1

∂qε
k+1

∂ε

∣∣∣∣
ε=0

(4)

For example, let us consider the case of a free particle represented by the discrete
Lagrangian Ld =

1
2 mv2

k+1. This system is invariant under spatial translation qk→ qε
k =

qk + ε . Consequently, the quantity Qd = mvk+1 is conserved, which is interpreted as
conservation of the linear momentum.

In addition, it can be shown that the discrete flows of DM are symplectic. It means
that discrete equations preserve a quantity ω that can be interpreted geometrically as
a volume in the discrete state space.9 It is similar to the case of continuous mechanics
where flows also preserve symplecticity. Finally, I would like to point out that Legen-
dre transformations can also be defined within DM, which enables to connect discrete
Lagrangian mechanics with discrete Hamiltonian mechanics (Marsden & West 2001,
p. 486).

4.2 Exact and numerical solutions

I would like to make clear how DM can be used in practice by scientists to describe
and predict physical phenomena. More precisely, I show that the dynamics of me-
chanical systems can be studied within DM. First, I emphasize that the equations of
DM can be solved analytically for some elementary systems. Second, I discuss the
case of the numerical computation of DM equations.

Before investigating the solutions of DM equations, it has to be noticed that there
is not a single DM but rather a family of different DM. They depend on the ex-
pression of the potential energy Vd in the discrete Lagrangian Ld = Kd −Vd . The
discrete potential energy can be expressed, for example, as V (qk), V ((qk+1 +qk)/2),

9 A proper introduction of symplecticity requires tools of differential geometry that are beyond of the
scope of this introductory presentation. See for example (Marsden & West 2001, p. 477).
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or (V (qk+1)+V (qk))/2 among others, where V (z) is the expression for the contin-
uous potential energy.10 Accordingly, the previous section (4.1) describes a general
framework for different DM. Currently, several versions of DM are developed. For
the purpose of this paper, I focus on the version provided by d’Innocenzo et al. for
which Vd =V ((qk+1 +qk)/2).

First, I would like to point out that several elementary systems can be solved
exactly within DM. Therefore, scientists can directly describe the dynamics of such
systems with the discrete solutions. In particular, the systems of (i) a free particle, (ii)
a particle with constant force – like the gravity force mg – and (iii) the harmonic os-
cillator, are solved analytically (D’Innocenzo et al. 1987). In a nutshell, the solutions
for these systems are:

(i) free particle: qk = v0tk +q0 (5)

(ii) particle under gravity potential: qk =
1
2

gt2
k +(v0 +gh)tk +q0 (6)

(iii) harmonic oscillator: qk = Ad cos(ωdtk)+Bd sin(ωdtk) (7)

where tk = kh and Ad , Bd , ωd constants that depend on h.
I would like to emphasize that, as d’Innocenzo et al. (1987) discuss it, the solution

tk = kh for the discrete time series in the case of a free particle is not the only one.
There are other solutions for which the discrete instants are tk = khk where the size of
time steps hk is undetermined.11 It might be viewed as an issue for the solution of the
Achilles paradox since Achilles and the tortoise are represented as two free particles.
However, I follow d’Innocenzo et al. who consider such other solutions as irrelevant.
Indeed, it is expected that the solution for a free particle corresponds to the solution
for a particle with constant force when the force goes to zero. In the case of a particle
with non-null constant force, the solution is tk = kh. Therefore, the other solutions for
a free particle are left out.

Second, when the analytical solutions of DM equations are not known or could
not be known, equations can however be solved numerically. In these conditions, sci-
entists could use DM to describe and predict the dynamics of mechanical systems
with computers. As I have already emphasized it, DM is nowadays mainly devel-
oped by computer scientists in order to make accurate and stable numerical computa-
tions possible. The equations of DM can indeed be viewed as variational integrators
for continuous mechanics, which are well-known efficient integrators for mechanical
systems (Hairer et al. 2006, Keng & Qin 2010).

In practice, a slight different version of DM is developed by computer scientists.
It is more convenient, for numerical purposes, to use a “simplified” version of DM
for which the time steps hk are initially chosen to be constant. For example, instead of
using the discrete Lagrangian Ld = 1

2 mv2
k+1−V (qk) with vk+1 = (qk+1− qk)/hk+1,

the velocity is defined as vk+1 = (qk+1−qk)/h. This simplification implies that exact

10 Furthermore, there are also different versions of DM depending on the initial conditions for the value
of the time step. I go back to this point in Section 5.

11 This results from the fact that, in the case of a free particle, the discrete Euler-Lagrange equations and
the equation of energy conservation are degenerate. The discrete solution (5) still holds.
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conservation of energy may be lost.12 This is well accepted by computer scientists
since energy, even approximatively, is still better preserved than using traditional in-
tegrators within continuous mechanics. The equations of the simplified version DM
are still symplectic. This property leads to very good approximate conservation of
energy (Hairer et al 2006, chap. 1; Stern & Desbrun 2008).13 Therefore, even if the
general version of DM – described in section 4.1 – leads to more accurate computa-
tions and is theoretically more satisfying, the simplified version of DM is nowadays
mainly developed and studied by computer scientists. This can be viewed as a typical
scientific practice that consists in simplifying equations for computational purposes.
Scientists commonly use simplified physical models if such simplifications lead to
much more tractable solutions with sufficiently good approximations.

4.3 Further developments

I finish this presentation of DM with current developments that are still in progress.
There are generalizations of DM about constrained systems, dissipation, forcing, and
collisions. In this section, I briefly describe two of them.14

First, the cases of forcing and dissipation are currently studied within DM. Sim-
ilarly to continuous Lagrangian mechanics, this generalization requires to extend the
least action principle. In continuous mechanics, non-conservative systems are repre-
sented by the extended least action principle:

δ

∫ t f

t0
L(q, q̇)dt +

∫ t f

t0
f (q, q̇) .δq(t)dt = 0 (8)

where f are non-conservative forces. After integration by parts, this leads to the
forced Euler-Lagrange equations. Similarly, for non-conservative systems, there is
an extended discrete least action principle with discrete non-conservative forces that
are functions of the variables qk, qk+1 and hk+1. In the same way, after some alge-
braic manipulations, one is led to the discrete forced Euler-Lagrange equations. Such
a generalization thus enables to describe more realistic physical systems within DM.

Second, I would like to point out how collisions can be described within DM. I
focus on the case of elastic collisions even if more complex collisions can be treated.
My aim here is to answer to a possible objection against DM. Let us consider the
case of a collision between two free particles. A point particle A moves at constant
velocity vA towards another particle B. Its positions are xA(tk) = vAtk with tk = kh.

12 The fact that time step hk is allowed to vary within DM guarantees that autonomous systems exactly
preserve energy, momenta and symplecticity, as in continuous mechanics. However, as we have seen in
the examples above, it does not mean that discrete time step must vary. Even if time step is allowed to
vary in the discrete least action principle, the latter can lead to constant discrete time step depending on
mechanical systems and versions of DM.

13 See (Kane et al. 1999) for a comparison between the “simplified” version and the “general” version
of DM.

14 Such cases are currently developed in the context of numerical computation. As it should be clear
from Section 4.2, many generalizations thus pertain to the “simplified” version of DM. However, this
restriction is not mandatory. Generalizations for the general version of DM are also currently developed as
it is noticed in (Lee et al. 2009, p. 2017) and started to be achieved in (Pekarek 2010, chapter 3).
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The particle B is at rest in xB = x̃ such as vA(k−1)h < x̃ < vAkh. In other words, B is
“between” the two successive positions of the A particle, xA(tk−1) and xA(tk). In these
conditions, it seems that A cannot collide with B since there are not any positions of
A that correspond to the position of B. This would be a serious objection against the
viability of DM.

On contrary, I argue that A can collide with B. This claim is supported by re-
cent developments on collisions within DM (Fetecau et al. 2003, Pekarek & Mars-
den 2008, Pekarek 2010). In continuous Lagrangian mechanics, elastic collisions are
treated in minimizing the action under extra constraints. The variations of the position
δq are taken equal to zero at the impact point q̃, which occurs at the instant t̃. This
leads to the usual Euler-Lagrange equations and to two extra equations corresponding
to the conservation of energy and linear momentum at the impact. In DM, elastic col-
lisions are also treated in minimizing the discrete action under extra constraints. The
variations of the discrete positions δqk and the discrete time δ tk are taken equal to
zero at the impact point q̃, which occurs at the instant t̃. This minimization also leads
to the usual discrete Euler-Lagrange equations and extra discrete equations. Before
and after the impact, the system reduces to the case of a free particle. As we have
seen in Section 4.2, the discrete time step for free particle is constant and the position
of A is given by the formula xA(tk) = vAkh. However, the extra equations imply that
the time step and the discrete elementary distance are not constant near the impact
point. More precisely, the coordinate (q̃, t̃) is interpolated in the discrete sequence
{(q0, t0 = 0),(q1, t1 = h, ...,(qk−1, tk−1 = (k−1)h),(qk, tk = kh), ...(qN , tN = Nh)}. In
other words, there is an extra discrete position q̃ between qk−1 and qk at the extra in-
stant t̃ = (k−α)h where α ∈ [0,1]. Therefore, the collision of the free particle A
occurs exactly at xB = x̃.

Discrete mechanics did not yet exist when Grünbaum doubted that it was possi-
ble to formulate classical mechanics with difference equations. A discrete version of
classical mechanics was legitimately thought as very speculative. But nowadays, with
the development of discrete variational mechanics, it seems difficult to maintain such
a claim. I recognize that works on DM are still in progress. However, in my view, DM
is sufficiently well developed to dismiss the objection that it is only a speculative hy-
pothesis. Therefore, the discrete solution for the paradox of Achilles and the tortoise
cannot be considered as an ad hoc solution. It is based on a discrete representation of
time that can also be used to describe and predict physical phenomena.

5 Empirical Equivalence

The second possible objection against the discrete solution of the paradox of Achilles
and the tortoise that I answer is the following one. One could argue that the discrete
solution of the paradox might be falsified. If an experiment is set up with the aim to
follow Zeno’s argument, one could expect that the series of the discrete positions of
Achilles would be in conflict with empirical data. In this section, I first argue that the
series of the discrete and continuous positions of Achilles cannot be distinguished by
any experiment (section 5.1). Then, I defend that, more generally, DM and continuous
mechanics are empirically equivalent (section 5.2).
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First of all, I would like to emphasize the discrete solution for the paradox of
Achilles holds as far as physical phenomena are described in a classical way. As it
should be clear from Section 4, the use of a discrete representation is embedded in a
discrete formulation of classical mechanics. Therefore, by experiment, I mean in this
section experiment in a classical context.

5.1 Continuous and Discrete Achilles Races

Let us suppose that one tries to determine experimentally the positions of Achilles
following Zeno’s argument. Such an experiment would certainly not be feasible in
practice. The distances between Achilles and the tortoise become too small to be mea-
sured. But let us imagine an idealized two mass points system representing Achilles
and the tortoise with the features of the footrace. In addition, let us assume that there
is an ideal device enabling to measure the series of the positions of the two mass
points with a finite accuracy εexp as small as we want. Under these conditions, I
claim that we cannot reject the use of a discrete representation of time on the grounds
that it would be in conflict with any experiment. Zeno’s argument within a discrete
and a continuous time are empirically equivalent.

The reason of the empirical equivalence is the following one. There are as many
discrete representations of time as values for the discrete time step h. For example,
there is a discrete representation of time which corresponds to the discrete time step
h = 10−5. Another representation of time corresponds to a discrete time step h =
10−15 and so on. Consequently, for any value of the accuracy εexp, it always exists a
discrete representation of time for which the series of the positions and instants of the
two mass points within discrete time and continuous time cannot be distinguished by
a measurement.

For example, let us consider again the discrete representation of time with the
discrete time step h = 10−5. We have seen that Achilles overtakes the tortoise after
17 steps of Zeno’s argument (Section 3). Let us compare, on the one hand, the differ-
ences between the series of the instants of Zeno’s argument and, on the other hand,
the differences between the series of positions of Achilles. One can show that the
maximal differences occur at the 11th step. They are respectively 8.28125×10−6 for
the instants and 1.65625×10−5 for the positions. Therefore, for devices that cannot
provide an accuracy better than, for example, 2×10−5 for positions and 10−5 for du-
rations, Zeno’s argument within continuous and this discrete representation of time
are indistinguishable. More generally, it is proved that the differences with a contin-
uous time and a discrete time are never greater than ε1 = hvA/(1− vT/vA) for the
positions of Achilles and ε2 = h/(1− vT/vA) for the instants of Zeno’s argument.

The parameters ε1 and ε2 vary proportionally with the discrete time step h. Thus,
for any given velocities of Achilles and the tortoise, if the discrete time step h is taken
sufficiently small, the parameters become as small as we want. Consequently, what-
ever the accuracy of the device, there exists always a discrete representations of time
that makes Zeno’s arguments indistinguishable. More precisely, for any given accu-
racy εexp, it suffices to choose a discrete representation satisfying h < (εexp/vA)(1−
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vT/vA). In this case, the positions of Achilles with continuous time and discrete time
are empirically indistinguishable.

One might object that such an idealized experiment is not compatible with the
laws of physics, in particular the Heisenberg uncertainty principles of quantum me-
chanics. This kind of objection is provided by Alper & Bridger (1997) against McLau-
ghin & Miller’s solution (1992). It seems to equally apply to the present discrete
solution. According to quantum-theoretic limitations on measurement, it would be
impossible to know with sufficient accuracy the position of a particle by following
Zeno’s argument after several steps. The use of a discrete representation of time to
solve the paradox would thus be futile. I answer to this objection by emphasizing
that the discrete solution provided in this paper only pertains to classical physics.
It is based on a discrete formulation of classical mechanics for which there are no
uncertainty principles. As far as one investigates the Achilles race within classical
mechanics, the idealized experiment described in this section is compatible with the
laws of physics.15

However, there might be a case for which the continuous series and the dis-
crete one would be distinguishable. Let us consider that the velocity of Achilles
goes to infinity. Since empirical indistinguishability is guaranteed by the relation
h < (εexp/vA)(1− vT/vA), the discrete time step would have to be equal to zero.
Therefore, if the velocity of Achilles tends to infinity, the empirical equivalence of
both series would not be guaranteed. First of all, I point out that it does not follow
that both series would be distinguished but only that empirical equivalence would not
be guaranteed. Maybe a stronger constraint on h can be established that, for example,
would not depend on the velocity of Achilles. In any case, it does not seem a major
objection since assuming an unbounded velocity for Achilles might not be compatible
with the usual (continuous) formulation of the paradox of Achilles and the tortoise.
According to the usual formulation of the paradox, the relative position of Achilles
to the tortoise is xA/T =−x0(vT/vA)

n (Section 2). If the velocity of Achilles tends to
infinity, the relative distance of Achilles tends to zero even if the number n of steps
of Zeno’s argument is bounded. In my view, the paradox of Achilles and the tortoise
requires that the velocity of Achilles and the tortoise are non-null and bounded. The
empirical equivalence between the continuous and the discrete Achilles races holds
if one takes initially bounded velocities for Achilles and the tortoise and a bounded
accuracy εexp. The value of the discrete time step is allowed to vary afterwards.

5.2 Discrete Mechanics and Empirical Equivalence

Even if the series of the discrete and continuous positions of Achilles cannot be ex-
perimentally distinguished, one can however suppose that DM could be in conflict
with empirical data about other mechanical systems. In this case, it would undermine
the viability of DM and the relevance of the discrete solution of the paradox. In this

15 If we want to discuss the consequences of quantum limitations on the Achilles paradox, one should
investigate a discrete formulation of quantum mechanics. I suggest in the conclusion some perspectives in
this direction.
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section, I answer to this objection. I defend that DM is empirically adequate as con-
tinuous classical mechanics is. In other words, DM and continuous mechanics would
be empirical equivalent.

The main argument in favour of the empirical equivalence is based on the property
that the equations of DM tend to the equations of continuous mechanics when the
discrete time step goes to zero:

Obviously, physical quantities [of DM] must tend to corresponding continu-
ous classical variables when the discrete time intervals tend to zero. (D’Innocenzo
et al. 1987, p. 246)

More precisely, the discrete action Sd is an approximation of the continuous action
S such as it tends to the latter when the discrete time step goes to zero.16 Thus, the
discrete Euler-Lagrange equations, the equation of the conservation of energy, and
their respective solutions tend to the continuous case. In these conditions, one can
assume that, if the discrete time step is taken sufficiently small, the solutions of the
DM equations cannot be distinguished from the equations of continuous mechanics.

To my knowledge, there is no theorem that could guarantee that, in all cases,
the empirical equivalence holds. Nevertheless, I do not know any counter-examples
against the empirical equivalence. In order to support my claim, I investigate two
cases that exemplify the empirical equivalence.

First, let us consider the case of the harmonic oscillator provided in Section 4.2.
If one takes a small time step h, the relative difference between the discrete frequency
ωd and the continuous one ω0 is : (ω0−ωd)/ω0 = (ω2

0 h2)/12.17 For example, with
an unit continuous frequency, if h = 10−10, the order of magnitude of the relative
difference is 10−21. Therefore, if h is taken sufficiently small, it is not possible to dis-
tinguish the frequencies predicted within continuous and discrete mechanics. In addi-
tion, let us define q(t) and qk the solutions of the equations with continuous and dis-
crete mechanics. Let us also introduce the relative position σ(tk) = |(q(tk)−qk)/q0|,
which measures the relative difference between both solutions. In this case, on can
check that σ(tk) is smaller than ω3

0 h2tk/12.18 Therefore, if the best accuracy for the
measures of position is ε , the positions of the harmonic oscillator within continuous
and discrete mechanics cannot be distinguished if h <

√
12ε

ω3
0 T

, where T is the time

interval of measurement.19 Therefore, one can legitimately suppose that, for h suf-
ficiently small, the models of the harmonic oscillator with continuous and discrete
mechanics are empirically equivalent. More generally, when a system is not sensitive

16 Since the time step is allowed to vary, Sd tends to S when the initial time step h0 and the initial position
step (q1−q0) tend to zero. For the sake of the argument, I talk about time step h even if one has to keep in
mind that the parameters that go to zero are h0 and (q1−q0).

17 See (D’Innocenzo et al. 1987, p. 250).
18 For simplifications, I have used the initial conditions such as the continuous and the discrete solutions

are q(t) = q0 cos(ω0t) and qk = q0 cos(ωdtk).
19 According to the model of the harmonic oscillator, ω2

0 = k/m, where k is the constant of the spring
and m the mass of the body. There might be no empirical equivalence if k tends to infinity and if m tends to
zero. However, such extreme cases might not be compatible with the representation of a physical system
by a harmonic oscillator. For example, nonlinearity would have to be taken into account. In any case, as far
as k and m are non-null and bounded, the empirical equivalence holds. Equally, the empirical equivalence
requires that T is bounded. One can take, for example, the order of magnitude of the age of the universe.
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to initial conditions – like the harmonic oscillator – one can expect that empirical
equivalence holds. Since a small difference in the initial conditions for such systems
does not imply to big differences in the solutions, one can assume that a discrete
treatment does not imply large differences if the time step is taken sufficiently small.

Second, I would like to discuss what would be the worst case against the empirical
equivalence thesis. Let us consider the case of systems sensitive to initial conditions
within continuous mechanics. It is known that the discretization of chaotic differential
equations can suppress the chaotic behaviour of the system (Corless at al. 1991).20 In
other words, the system described with differential equations has not the same general
behaviour than the one described with difference equations. Accordingly, they are not
empirically equivalent. In these conditions, it is questionable how chaotic systems are
treated within DM and whether empirical equivalence holds. As far I know, there are
not many discussions of such systems. However, there is at least one study in (Row-
ley & Marsden 2002, Lew et al. 2003). It is the case of a system of four interacting
vortices. In using a “simplified” version of DM, the authors investigate the Poincaré
sections of the system. They show that DM leads to chaotic behaviour if the time step
is taken sufficiently small.21 This property is not so surprising. Corless et al. (1991)
emphasize that the suppression of chaotic behaviour due to discretization occurs if
time steps are taken too large. However, what was not expected is that the Poincaré
sections are actually more reliable within DM rather within continuous mechanics
in using traditional numerical integrators (Rowley & Marsden 2002). Further discus-
sions on chaotic systems within DM should continue but, according to this study, one
can legitimately assume that the empirical equivalence holds if the time step is taken
sufficiently small.

6 Conclusion

The aim of this paper was to show that the paradox of Achilles and the tortoise can
be solved if time is represented as discrete. More precisely, I have argued that in
replacing the continuous parameter t of classical mechanics by a discrete parameter
tk, Achilles overtakes the tortoise in a finite number of steps of Zeno’s argument.
Thus, one has not to endorse that Achilles performs supertasks to solve the paradox
but rather to change the way that time is represented.

This discrete solution crucially depends on whether the discrete representation
of time is acceptable. Accordingly, I have first made clear that the resulting notion
of motion can be conceived within the “at-at” theory. Then, I have argued that the
discrete solution is embedded in a new formulation of classical mechanics, called
Discrete Mechanics. Finally, I have rejected that the discrete solution could be falsi-
fied by an experiment in a classical context. Whatever the accuracy of measurements,
it is always possible to find a discrete representation of time – i.e a version of DM

20 Equally, it is well known that the discretization of non-chaotic differential equations can lead to dis-
crete chaotic behaviour, like the logistic equation. However, the discrete and the continuous solutions share
the same behaviour if the time step is sufficiently small, i.e smaller than a critical value.

21 More precisely, they use the discrete Lagrangian Ld(qk,qk+1) = L((qk+1 +qk)/2,(qk+1−qk)/2).
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– that makes the series of positions of Achilles with continuous and discrete time
indistinguishable.

In my view, the acceptability of the discrete solution of Achilles paradox mainly
depends on the viability of DM. Our intuitions on motion have indeed to be guided
by the way that physical theories represent time and moving bodies. I defend that
discrete mechanics is a genuine framework for physical theories based on a discrete
representation of time. In order to fulfil this goal, I have described its first principles
and presented how it can be used to describe physical phenomena. I have also argued
that DM is as empirically adequate as continuous classical mechanics.

This discussion might be a first step towards further investigations on DM since
little attention has been paid to DM yet. First, the question whether discrete mechan-
ics is an autonomous physical theory or a discrete formulation of classical mechanics,
and its philosophical implications should be investigated. Second, as we have seen,
there is not a single discrete mechanics but a family of many discrete mechanics de-
pending on the value of the discrete time step and, also, on the way that discrete
Lagrangians are defined. Thus, the question of the unity of DM should also be tack-
led. Third, one might investigate whether DM is preferable to continuous traditional
mechanics. Even if DM might be a genuine discrete physical theory, continuous me-
chanics could be preferable to scientists because, for example, it would be simpler.

Finally, I would like to point out that there are discrete variational formulations
of other physical theories. They should be investigated from a philosophical point
of view. In his seminal papers, T.D. Lee develops discrete formulations for quantum
mechanics and relativistic field theory (Lee 1983, Friedberg & Lee 1983, Lee 1987).
They have lead to some discussions in (Bracci et al. 1983, D’Innocenzo et al. 1984).
Currently, variational discrete formulations of hydrodynamics and electromagnetism
are being developed in a computational context (Gawlik et al. 2011, Pavlov et al.
2011, Desbrun et al. 2014, Stern et al. 2014). Thus, the discrete solution of the para-
dox of Achilles presented in this paper is part of a more general project, which is the
study of the philosophical implications of discrete formulations of physical theories.
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