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ABSTRACT
The increasing number of disruptions to critical infrastructure, like natural disasters, terrorist attacks
or internal failure is today a major problem of society. Concern is even greater when considering
the interconnected nature of critical infrastructure, which might lead to failure propagation, caus-
ing domino and cascade effects. To mitigate such outcomes, critical infrastructure must recover its
capacity to function with regard to several criteria. Stakeholders must therefore analyse and
improve the resilience of critical infrastructure before any disruption occurs, and base this analysis
on different models so as to guarantee society’s vital needs. Current resilience assessment meth-
ods are mainly oriented toward the context of a single system, thus narrowing their criteria met-
rics, limiting flexibility and adaptation to other contexts and overlooking the interconnected nature
of systems. This article introduces a new tool-equipped approach that makes it possible to define
a model to evaluate the functionalities of interconnected systems. The model is then used to
assess the resilience of these systems based on simple and generic criteria that can be extended
and adapted. Several assertions related to the concept of resilience and some resilience indicators
are also introduced. A case study provides the validation performed by experts from sev-
eral domains.

KEYWORDS
Resilience; functionality
evaluation; resilience
assessment; risk; decision
criteria; simulations; critical
infrastructure; engineer-
ing systems

1. Introduction

Modern society relies on the functioning and mutual
exchange of services of various interconnected and inter-
dependent infrastructures, i.e. systems or systems of systems
(healthcare, energy, transport, manufacturing, financial, etc.)
(Maier, 2009; Mattsson & Jenelius, 2015). The interdepen-
dencies between and within systems make them less resilient
to disruptions (Johanson, 2010). Specifically, a disruption in
an interconnected system can lead to domino and cascade
effect that impacts on the other systems related to the ini-
tially affected one (Ouyang, Due~nas-Osorio, & Min, 2012).
This becomes a problem when considering the currently
increasing number of natural disasters. For instance, in July
2012, the largest blackout in history affected more than 600
million people in India. Through a cascade effect, several
other systems (transport, telecommunication, finance,… )
also failed (Lai, Zhang, Lai, Xu, & Mishra, 2013), (Romero,
2012). In 2011, the flooding in South-East Asia led to a lack
of hard drives and to an increase in the price of these devi-
ces all over the world (Booth, 2014). The growing number
of hurricanes – Sandy, Isabel, Harvey and Irma – has pro-
voked not only human and material damage, but also eco-
nomic and production/service capacity failures (Saleh
et al., 2017).

The notion of resilience is related to the functioning of
critical infrastructures or systems and is here defined as ‘the
capacity of a system to recover, in a minimum time, with min-
imum costs (financial, human, workload, etc.) a certain func-
tioning capacity on all dimensions of its performances’. Some
aspects of the resilience of a system can be assessed by analy-
sing its functionalities in several situations: (a) before a dis-
ruptive event, (b) during a disruptive event and (c) after a
disruptive event. During each situation, it is important to (i)
be able to assess the resilience at a given timestamp and/or
period, including during disruptive events, and (ii) to identify
preventive actions for different scenarios, to improve the
results of the resilience assessment.

This work focuses on situation (a) and proposes a meth-
odology for continuous and multidimensional resilience
assessment based on analysis of the functionalities of inter-
connected systems. Current resilience assessment approaches
are oriented towards individual systems (Pursiainen, 2018),
whether they be financial, healthcare or transport systems.
These approaches are therefore inflexible (difficult to adapt
to other domains), with fixed criteria that generally concern
performance (other criteria that might be important in the
assessment of resilience are overlooked) and not applicable
in the context of interconnected systems.
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This article defines a new, tool-equipped approach that
makes it possible to define a model to evaluate the function-
alities of interconnected systems that are linked to some
aspects of resilience. The model is further used to assess
resilience, based on several criteria. The proposed generic
criteria can easily be extended and adapted depending on
the context and needs. The originality of the approach lies
in: (1) the combination of functionality-analysis models and
continuous resilience assessment following several dimen-
sions of systems, (2) flexibility of criteria metrics for easy
adaptation in different contexts and (3) the possibility to
aggregate the results of several functionality-analysis models
with continuous assessment of the resilience of intercon-
nected systems.

The article is organised as follows: The next section
reviews the literature on the definition of resilience and
resilience assessment. The contribution is presented in the
third section and illustrated in the fourth section by a case
study, before concluding in the last section by an evaluation
of the limits and perspectives of the research work.

2. Literature review

This section reviews the literature on the definition of resili-
ence and resilience assessment.

2.1. Resilience definition

The need for resilience has deep roots in many civilisations
(Harrison & Williams, 2016). The original meaning of the
word resilience comes from the Latin word ‘resiliere’, which
means ‘bounce back’ (Lenort, Grakova, Karkula, Wicher, &
Sta#s, 2014). The common and probably initial acceptance of
this term comes from the domain of metallurgy and
describes the ability of a piece of metal to return to its ini-
tial shape after a thermic or physical deformation (Anaut,
2005). The definition of resilience varies in different
domains (Hosseini, Barker, & Ramirez-Marquez, 2016).

Table 1 provides an overview of several definitions. Each
one of these definitions highlights three common properties:
(i) the term resilience supposes a ‘disruption’, (ii) it refers to
the ‘performance of a system’ before, during and after a

disruption and (iii) it is relevant to evaluate it at different
moments for various ‘decision-making processes’ that help
to maintain a required level of performance. In a decision-
making process it is necessary to compare the resilience
after the disruption to its initial value (before the disrup-
tion). Some of these definitions ignore the dependent nature
of systems (to other systems or to their environment and its
constraints). There are several types of dependencies
described by Kamissoko (2013) and Rinaldi, Peerenboom,
and Kelly (2001).

According to Kamissoko (2013), the categorisation of
dependencies depends on the circulation of flow. Hence, the
term dependence induces the circulation of flow between
the systems and their components. The term influence is
used in situations where there is no flow circulation. Flow
can be material or immaterial (information). In the context
of this article, considering the circulation of flow, dependen-
cies are defined as the exchange of services and information.
They refer to the term dependence defined in (Kamissoko,
2013). Whenever the performance of one system decreases,
all systems that are dependent on this system can be directly
impacted. The performance of the system is then likely to
decrease further, impacting other systems and consequently
forming a domino effect that eventually reaches all systems
as well as the environment they belong to. To know what
must be done and prevent such situations, the systems must
be sufficiently resilient. For this purpose, an assessment of
their resilience is needed.

Further analysis of the definitions reveals the following:

! Functionality analysis: a functionality analysis binds
together a temporal dimension with the behaviour of the
system to express the change in state (e.g. performance,
stability or integrity) of systems throughout the whole
process (i.e. before, during and after a disturbance). For
instance, Barker et al. (2017) and Haimes (2009) argue
that a time dimension must be defined to measure the
system recovery after a perturbation. The idea of recov-
ery time reduction is also defended by Vugrin, Warren,
Ehlen, and Camphouse (2010) as the ‘duration of devi-
ation’. For these reasons, we argue that resilience assess-
ment is based on a functionality analysis model (FAM)
that is a time-dependent function.

Table 1. Resilience definitions.

Author(s) Definition

(Hollnagel, 2011) ‘the intrinsic ability of a system to adjust its functioning prior to, during, or following changes and disturban-
ces, so that it can sustain required operations under both expected and unexpected condition’

(Cimellaro, Reinhorn, & Bruneau, 2010) ‘the capability to sustain functionality and recover from losses generated by extreme events’
(Cutter et al., 2013) ‘the ability to anticipate, prepare for, respond to, adapt to disruptions and to mitigate the consequences as

well as to recover in timely and efficient manner including preservation restoration of services’
(Barker et al., 2017) ‘the ability to adapt to changing conditions and withstand and rapidly recover from disruption’
(Allenby & Fink, 2005) ‘the capability of a system to maintain its functions and structure while facing internal and external changes

and to degrade gracefully when it is obliged to’
(Haimes, 2009) ‘the ability of system to withstand a major disruption within acceptable degradation parameters and to recover

with a suitable time and reasonable costs and risks’
(Yodo & Wang, 2016) ‘the ability of an engineered system to autonomously sense and respond to adverse changes in health condi-

tions, to withstand failure events, and to recover from the effects of these unpredicted events’
(Vugrin et al., 2010) ‘given the occurrence of a disruptive event (or set of events), the resilience of a system to that event (or events)

is that system’s ability to reduce efficiently both the magnitude and duration of deviations from targeted
system performance levels’



! Multi-dimensional nature: Several authors argue that
there are many dimensions involved in assessing the
resilience of a system. For instance, in Allenby and Fink
(2005) resilience is related to the maintenance of
‘functions and structure’, while in (Haimes, 2009) the
focus is on the ‘degradation parameters’. Vugrin et al.
(2010) elaborate some ‘performance levels’ as dimensions
of the resilience. Considering simultaneously multiple
and relevant dimensions might improve the resilience of
a system even further. Due to these multi-dimension
aspects, it is mandatory to study and include all aspects
through different criteria in the assessment of resilience.

In the context of this article, to consider the temporal,
interdependent and multi-dimensional nature of a system,
resilience is defined as ‘the aptitude of a system to success-
fully interact (i.e. comply with constraints, provide the
required services) with other systems and its environment and
fulfil the assigned objectives while facing various disruptions’.
This definition takes account of the multi-dimensional
nature of resilience. The objectives and constraints refer to
several dimensions that may be technical, economic, envir-
onmental, etc.

The objectives and the interactions of a system are
defined through several independent criteria. A criterion is
a tool allowing comparison of alternatives according to a
point of view (Bouyssou, 1990). For example, a criterion is
considered in a functionality analysis to allow the compari-
son of system states as a function of the change in state
over time. Each criterion can be represented by a surrogate
measure of performance, represented by some measurable
attribute (Ramanathan, Mathirajan, & Ravindran, 2017).

2.2. Resilience assessment

Resilience assessment is a process across a lifespan (Liu,
Reed, & Girard, 2017). Its assessment methodologies are
classified into a quantitative and a qualitative category
(Hosseini et al., 2016). The quantitative category relies on
formal and numerical methods for criteria evaluation and
aggregation to provide a quantitative end-value. The qualita-
tive category relies on more abstract methods that provide
qualitative end-results.

Figure 1 presents the subcategories of this classification.
This classification is controversial for two reasons: the first
reason is that simulation models and optimisation models

do not need to be separate. They can be mixed together.
The second reason is that several simulation models are
based on optimisation algorithms. To complete this classifi-
cation, (Hosseini et al., 2016) introduce two complementary
subcategories of the semi-quantitative assessment approach.
These two approaches are: Data analysis and Expertise.

2.2.1. Data analysis
New emerging methods for resilience assessment through
big data have been proposed in the domain of smart cities.
For instance, during Hurricane Sandy, over 20 million
tweets were posted (Barker et al., 2017), embedding infor-
mation that could be extracted and exploited. Due to this
quantity of data, the social, economic and political processes
that provide structure to society can be better characterised
(Meier, 2013). These methods introduce analytics sensors on
several sources to capture relevant data streams. Sensors
may be traditional media providing data and information
(Newspapers, Television, etc.), or open data (weather, traffic,
air/water etc.), or they might be Mobile Devices, Social
Media, Audio/Video feeds, Satellite images, etc. The innov-
ation in these methods is the combination of structured
data with unstructured data.

Resilience is assessed by means of data visualisation
(Khan, Anjum, & Kiani, 2013), data monitoring (Garcia,
Lin, & Meerkov, 2012), statistical models (Campbell-Sills,
Cohan, & Stein, 2006), data mining (Chan & Wong, 2007),
machine learning (Zhang, Burton, Sun, & Shokrabadi,
2018), natural language and crowdsourcing (Mejri, Menoni,
Matias, & Aminoltaheri, 2017). Data analytics are hence
centred around three perspectives: descriptive, predictive
and prescriptive (Barker et al., 2017). The descriptive per-
spective focuses on the problem of description and visualisa-
tion during and after a disruptive event. The quantification
of future behaviour and, often, risk is the aim of the pre-
dictive perspective. Prescriptive analysis provides guidance
on how to achieve desirable outcomes.

2.2.2. Expert analysis
Assessing resilience through expertise relies on sending sur-
veys to identified experts (Taysom & Crilly, 2017). Experts
determine different criteria and alternatives to quantify the
situation and assess each decision for each criterion. Criteria
identification could be done through a methodology called
3S indicator validation. This methodology is proposed by

Figure 1. Classification of resilience assessment methodologies by Hosseini et al. (2016).



Cloquell-Ballester, Cloquell-Ballester, Monterde-D!ıaz, and
Santamarina-Siurana (2006). It is also used by Grafakos and
Flamos (2017) and consists of Desk and internal peer
review, Internal validation, Expert validation and
Stakeholder validation.

Desk and internal review validation identify criteria
under some conditions of operationality, value relevance,
reliability, measurability, non-redundancy, decomposability,
preferential independence, intelligibility, comprehensiveness,
completeness and data availability. Multiple-source studies
allow the impact of decisions on criteria assessment to be
evaluated (Roth et al., 2009). Cutter et al. (2008) use this
approach to assess community resilience in its ecological,
social, economic, institutional and infrastruc-
ture dimensions.

2.2.3. Simulation
Simulation-based approaches can be used to define func-
tionality models of systems by plotting and analysing differ-
ent criteria related to their functioning (e.g. a performance
curve) in various situations (i.e. before, during and after a
disruption), as illustrated in Figure 2. Depending on the dis-
ruption, the capabilities of a system vary (see fo, fw, fd and
fe). Resilience is assessed by comparing the state of the sys-
tem according to a specific performance parameter before
and after a disruption (Hosseini et al., 2016). In Figure 2, t0
is the occurrence time, t1 corresponds to the time of the
worst performance, t2 marks the beginning of performance
improvement, t3 is the time of new stable state and t4 is the
time considered for resilience assessment.

Other examples are detailed in Bruneau et al. (2003),
Gama Dessavre, Ramirez-Marquez, and Barker (2016),
Henry and Emmanuel Ramirez-Marquez (2012), Tran,
Balchanos, Domerçant, and Mavris (2017) and Zobel,
(2011). Guidotti et al. (2016) use a Monte Carlo Simulation
approach to assess the percentages of demand nodes, while
Ash and Newth (2007) use a simulation model based on an
evolutionary algorithm to analyse the resilience through
it topology.

Table 2 shows an overview of the most relevant formulas
to assess some aspects of resilience based on functionality

analysis. Several common properties of these formulas are
synthesised hereafter:

1. Functionality model and resilience assessment: Even
though the functionality analysis can be defined based
on several criteria (e.g. performance and safety), these
authors use a single criterion (e.g. performance). This
further limits the assessment of resilience, because only
the aspect of resilience related to the given criterion can
be assessed (Francis & Bekera, 2014; Henry &
Emmanuel Ramirez-Marquez, 2012).

2. Linear behaviour: Functionality analysis is assumed to
be linear (Hosseini et al., 2016). This is contradictory to
the non-linear behaviour of complex critical infrastruc-
tures and systems.

3. Need for a disruption: Current approaches are unable to
assess resilience during a normal functioning time
period, because their core formulas rely on a disruption
hypothesis (i.e. a comparison of performance before
and after a disruption), (Henry & Emmanuel Ramirez-
Marquez, 2012; Zobel, 2011). Indeed, when considering
a FAM based on several criteria, the ‘dropdown/over-
load’ of a criterion does not necessarily mean that a dis-
ruption has occurred. ‘Dropdown/overload’ refers to a
situation when the value of a criterion exceeds an
authorised maximal (for overload) or minimal (for
dropdown) value.

4. Recovery of new stable state: The system is supposed to
recover into a new stable state (Enjalbert,
Vanderhaegen, Pichon, Ouedraogo, & Millot, 2011). It
is therefore not possible to assess the functionalities if
the system stays in a state of disruption. Furthermore,
it is not possible to assess resilience in the current state
if the previous state is unknown.

5. Lack of consideration of criteria for all resilience capabil-
ities: Absorptive, adaptive, restorative (Francis &
Bekera, 2014; Nan & Sansavini, 2017).

3. Proposal for resilience assessment methodology

This section first introduces a model to evaluate the func-
tionality of interconnected systems (Functionality Evaluation

Figure 2. Using simulation to define functionality models based on system performance. By Henry and Emmanuel Ramirez-Marquez (2012).



Model - FEM) for the purpose of resilience assessment.
Secondly, several formulas for resilience assessment are
defined as assertions. The Functionality Evaluation Model is
defined through three types of object (Components, Systems
and Territories) and several types of criteria that can be
assigned to the objects, depending on the context:

! Component is a part of the system. The criteria assigned
to a Component characterise the Component at a low
level and depend on its type and functions within the
Territory. For instance, the pressure at the outlet can
characterise a pump.

! System is a critical infrastructure that operates in the ter-
ritory. For instance, a System may refer to a power sta-
tion, a production system, a supply chain, a transport
infrastructure, or a healthcare system (Yodo & Wang,
2016). The criteria of several Components are aggregated
at a higher level to assess those of the System. For
instance, within the field of systems engineering, quality
attributes as non-functional requirements are used to
evaluate the performance of a system (Weck, Roos, &
Magee, 2011). Notable quality attributes include redun-
dancy, efficiency, diversity (Molyneaux, Wagner,
Froome, & Foster, 2012), stability, technological matur-
ity, innovative ability (Grafakos & Flamos, 2017) reliabil-
ity, severity, time to recovery (Guidotti et al., 2016),

robustness, fault tolerance, survivability, agility (Hosseini
et al., 2016), vulnerability, recoverability (Henry &
Emmanuel Ramirez-Marquez, 2012), rapidity (Zhang,
Wang, & Nicholson, 2017) and resourcefulness
(Cimellaro, Reinhorn, & Bruneau, 2010).

! Territory is a portion of geographical space that coincides
with the spatial extension of a government’s jurisdiction
(Gottmann, 1975). The higher-level criteria of several
systems are aggregated to assess those of the Territory.
For instance, a territory is characterised by diversity, eco-
logical variability, modularity, acknowledged slow varia-
bles, tight feedback, social capital, innovation, overlap in
government, ecosystem governance (Gaudreau & Gibson,
2010) and climate resilience (Grafakos & Flamos, 2017).

The main concepts of the proposal are illustrated in
Figure 3. A system can be composed of several components.
A territory can hosts several systems. The relations between
systems might be functional or non-functional. Functional
relations allow the circulation of flows. Non-functional rela-
tions refer to influence relations described by Kamissoko
(2013). A component is characterised by several criteria. A
criterion is defined by a value and a unit. To consider
uncertainty, in normal functioning, a criterion value is com-
prised between a minimum value f nmin and a maximum one
f nmax. The value of a criterion must not be outside the lim-
its fmax and fmin.

Criteria and Systems are composable (i.e. contain other
criteria or systems). An evolution function defines a behav-
iour to simulate the evolution of a criterion and to change
its value over time. The aggregation function, as its name
suggests, aggregates the values of at least two criteria. The
influence function determines how a given criterion/system
changes another one under specified conditions. Note that
feared events and flows are also instances of the concept
System (see Figure 3).

A functionality evaluation process defines a Functionality
Evaluation Model that is further used for resilience assess-
ment. This process is based on three steps: (1) modelling,
(2) model transformation and (3) simulation:

! Step 1: modelling consists of identifying systems, criteria,
evolution, aggregation and influence functions. After
that, relevant criteria characterising the system are also
identified. Then, a function that manages every criterion
is defined if needed. From a technical point of view, the
modelling of these concepts is done in the Obeo
Designer environment (https://www.obeodesigner.
com/en).

Table 2. Approaches to resilience assessment based on a functionality analysis.

Formula Authors Comments

R ¼
Ð t3
t0
ðfnðt0Þ % fnðtÞÞdt (Bruneau et al., 2003) t1 % t0 ¼ 1; Fðt0Þ ¼ 100, is the quality of system before the disruption.

R ¼ s0% s
s0

(Zobel, 2011) !s is the surface of the rectangle fo-t0-t3-fe, and s is the surface of fo-fw-fd-fe
R ¼ fe% fw

fnðt0Þ% fw
(Rose, 2007) fe is the expected value fw is the worst value

RðtÞ ¼ fnðtÞ% fw
fnðt0Þ% fw

(Henry & Emmanuel Ramirez-Marquez, 2012)

R ¼
Ð t3
t0

dfnðtÞ
dt

(Enjalbert, Vanderhaegen, Pichon,
Ouedraogo, & Millot, 2011)

Figure 3. Conceptual model.



! Step 2: model transformation is an automated process
that transforms designed models into a simulation envir-
onment. Technically, a model-to-text transformation
script is written in ObeoAceleo to perform the trans-
formation from Obeo Designer to the GAMA platform.
This transformation is based on Nastov, Chapurlat,
Dony, and Pfister (2016a, 2016b)

! Step 3: simulation consists of simulating the results of
the model transformation and plotting the result (i.e. a
functionality curve). This is technically provided through
the GAMA multi-agent simulation platform (http://
gama-platform.org/).

This proposal is included in the framework of the
MAIIEUTIC project (http://maiieutic.mines-ales.fr/) founded
by the CARNOT M.I.N.E.S. institute. The validation process
includes several meetings with experts from System
Engineering, Crisis Management, Risk Management and
Multi-criteria Decision-Making approaches.

Throughout this article, assertions 1 to 10 below define
some aspects of the Functionality Evaluation Model related
to resilience assessment:

! Assertion (1): Several elementary independent criteria
that characterise a system can be used to define a
Functionality Evaluation Model as a parameter to assess
a particular aspect of the resilience of this system.

Defining a Functionality Evaluation Model of a system
implies defining and aggregating it for all components of
this system. Relationships between components are defined
based on domain knowledge and might play a role when
aggregating the results. This assertion is not mandatory. In
fact, a Functionality Evaluation Model can also rely on a
single criterion. However, in real situations, the resilience of
a system depends on that of its components. Resilience
assessment is then based on the composing criteria
of components.

! Assertion (2): A Functionality Evaluation Model must
consider the objectives and constraints of the Territory.

Several authors ignore the objectives of the system and
the constraints of the Territory (Bruneau et al., 2003; Rose,
2007). For a given system, at a given time, the FAM must
change according to the objectives and the constraints of
the Territory. For a single system characterised by a set of
criteria C ¼ fC1;C2; . . . ;Ccg, Figure 4 describes the evolu-
tion of a system’s criterion over time by a function
fn tð Þ: All the values in Figure 4 are for a single criterion C,
while fn tð Þ models the behaviour of C. It changes between a

Figure 4. Using simulation to define a functionality evaluation model.

Figure 5. An illustration of Assertion (8).



minimum value f nmin tð Þ and a maximum value f nmax tð Þ: These
values cannot be above (respectively below) a certain value
fmax tð Þ ðrespectively fminðtÞ). Above them, the system is con-
sidered as non-functional.

In Figure 4, G ¼ fG1;G2; . . . ;Ggg are the good function-
ing periods. B ¼ fU1;U2; . . . ;Uug are the bad functioning
periods when the value is greater than the normal max-
imum. B0 ¼ fD1;D2; . . . ;Ddg are bad functioning periods
when the value is lower than the normal minimum. The
number of good functioning periods is g; the number of bad
functioning periods when the value is greater than the nor-
mal maximum is u; the number of bad functioning periods
when the value is lower than the normal minimum is d.
Note that the values of f nmin and f nmax (or fmax and fmin) do
not necessarily have to be constant and depend on the
nature of the system of interest or the context. They could
be a curve. For instance, in the use case section, the evolu-
tion functions for f nmin, f nmax, fmax, fmin are defined. Their
value changes with respect to time.

! Assertion (3): The value of the assessed resilience is
between 0 (not resilient at all) and 1 (fully resilient).

0 & Rs & 1 (1)

where Rs is the value of assessed resilience of a system for a
given FAM. Assertion (3) highlights the necessity to have
bounded resilience so as to allow comparison.

! Assertion (4): The value of assessed resilience of a system
depends on the value of each criterion aggregated into the
Functionality Evaluation Model.

Rs ¼
Yc

i¼1
Ri (2)

where Ri is the value of assessed resilience for the criterion
i and c is the number of criteria. Assessed resilience for a
criterion must respect Assertions 1 to 3.

Considering Equation (2), if the value of assessed resili-
ence of all criteria is equal to one, then that of the system is
also one. On the other hand, if that of one criterion is zero,
that of the system will also be zero. The more the value of
assessed resilience of a criterion tends towards 0, the more
that of the system tends towards 0 (and inversely). It is pos-
sible to have a value of assessed resilience of a system that
is very low if that of several criteria is inferior to 1. For this
reason and according to the context, a more complex aggre-
gation function can be defined, instead of using the product

of various Ri. In a general way, the resulting value of
assessed resilience from several criteria is:

Rs ¼ a Rið Þ (3)

where a is an aggregation function respecting Assertion (4).
Resilience assessment is based on a Functionality Evaluation
Model. The value of assessed resilience based on a FAM is
calculated using seven ‘resilience factors’ (Rc0 to Rc6) that
are defined hereafter.

! Assertion (5): Based on the Functionality Evaluation
Model, the value of a given criterion must not be greater
than certain values.

Assertion (5) considers the constraints on a criterion C.
The value of assessed resilience of a system becomes null if,
at any given time-stamp, the value of a criterion is greater
than the authorised maximum value or lower than the
authorised minimum value. The time-stamp refers to an
instant in the simulation. Due to the behaviour of the criter-
ion C, the value of assessed resilience for C is the product
of two values: Rup

C0 and Rdown
C0 . The first indicates the exceed-

ing of fmax while the second indicates that of fmin:

Rup
C0 ¼

0 if 9fn tð Þ j fn tð Þ ' fmax

1 otherwise

"
(4)

Rdown
C0 ¼ 0 if 9fn tð Þ j fn tð Þ & fmin

1 otherwise

"
(5)

RC0 ¼ Rup
C0 ( Rdown

C0 (6)

RC0 defines the value of assessed resilience for the criter-
ion C induced by its behaviour considering the two limits
fmax and fmin:

! Assertion (6): Based on the Functionality Evaluation
Model, the value of a given criterion must be between cer-
tain values.

Assertion (6) considers the objective on a criterion. For a
given criterion, there is a normal functioning zone limited
by two values f nmin and f nmax. The value of assessed resilience
of the system remains at 1 if the value of the criteria, calcu-
lated by the Functionality Evaluation Model, remains in
this zone.

! Assertion (7): There is a decrease in the value of assessed
resilience due to the value of the criteria dropping out of
the limits f nmin and f nmax:

Assertion (7) addresses the situations where the value of
the criterion is between ½f nmin; fmin* or between f nmax; fmax½ *. If
the limit f nmin ¼ fmin, or f nmax ¼ fmax, the value of assessed
resilience is calculated using Assertion (5).

Based on the FAM (e.g. see Figure 4), the more the value
of criteria stays in the interval B [ B0, the lower the value of
assessed resilience becomes. The value of assessed resilience
induced by this behaviour is calculated by the resilience fac-
tor RC1. It is assessed for every time-stamp.

Figure 6. An illustration of Assertion (10).



Rup
C1 ¼

Yu

i¼1
1 % Si

S0i

# $
(7)

Rdown
C1 ¼

Yu

i¼1
1 % Si

S0i

# $
(8)

RC1 ¼ Rup
C1 ( Rdown

C1 (9)

Rup
C1 is the factor when the value is greater than the nor-

mal maximum and Rdown
C1 is the factor when the value is

lower than the normal minimum. Si is the area of the pro-
file in bad functioning and S0i is the total area of bad func-
tioning at the ith bad functioning period, as shown in Figure
4. The two areas are calculated every time-stamp based on
the Newton-Cotes quadrature rule (Dehghan, Masjed-Jamei,
& Eslahchi, 2005).

Based on Assertion (7), at a given time-stamp t, if Si ¼ 0
then the system remains in the normal functioning interval
½f nmin; f

n
max*. So its value of assessed resilience is equal to 1

(fully resilient at t). In other words, the situation Si ¼ S0i ¼ 0
describes the case where the system remains in the good
functioning situation described by Assertion (5). The equal-
ity Si ¼ S0i describes the situation where the system reaches
the maximum limits. In such a situation its value of assessed
resilience is equal to 0.

! Assertion (8): Based on a Functionality Evaluation
Model, the closer the value of criteria is to the limit
fmax or fmin the lower the value of assessed resilience is.

Figure 5(a) illustrates two FAMs, curves P1 and P2. The
surface of Si and S!i are equal for both, but, P2 (in blue) has
been closer to the limit f nmax than P1 (in red). Resilience fac-
tor RC2 is defined to consider such situations of proximity
of criteria value to the limits.

Rup
C2 ¼

Ys

t¼0
1 % fn tð Þ% f nmax tð Þ

fmax tð Þ % f nmax tð Þ

!

(10)

where s is the duration of the simulation and t is a given
time-stamp. Rup

C2 is computed at every time-stamp of the
simulation. So, the more fnðtÞ is closer to f nmaxðtÞ, the lower
the value of assessed resilience becomes. It is assumed that
fmax and f nmax are different during s. In case of equality,

Assertion (5) predominates. If fn and f nmax are equal, the part
induced by Assertion (8) is 1. If fn is inferior to f nmax then
Assertion (6) predominates.

Similarly, the value of assessed resilience related to the
proximity of the value of a criterion to fmin is assessed by
the following factors:

Rdown
C2 ¼

Ys

t¼0
1 % f nmin tð Þ% fn tð Þ

f nmin tð Þ % fmin tð Þ

!

(11)

RC2 ¼ Rup
C2 ( Rdown

C2 (12)

! Assertion (9): Based on a Functionality Evaluation
Model, if the value of a criterion is between fmin and f nmin
or fmax and f nmax (this situation is denoted as ‘the system
stays in a bad functioning period’) for more than a given
period, then the value of assessed resilience decreases.

As shown in Figure 5(b), the two profiles P2 and P3 have
the same resilience factors RC1 and RC2. But P2 stays in bad
functioning longer than P3. To consider this situation, three
proposals are defined hereafter:

Proposal 1: a social acceptance time tu is used when the value
is greater than f nmax and td or lower than f nmin. tu and td are
defined considering one period of bad functioning. The value of
assessed resilience becomes null if the system stays longer that
the limits tu or td in a bad functioning period. tu, td depend on
the context, the criterion, the system and the territory:

Rup
C3 ¼

0 if 8i 2 1 . . . u½ *; 9Ui 2 BjUi ' tu
% &

Qs
i¼1 1% Ui

tu

# $
otherwhise

8
><

>:
(13)

Rdown
C3 ¼

0 if 8i 2 1 . . . d½ *; 9Di 2 B0jDi ' td
% &

Qs
i¼1 1% Di

td

# $
otherwhise

8
><

>:
(14)

RC3 ¼ Rup
C3 ( Rdown

C3 (15)

Proposal 2: There are situations where the system stays in
a bad functioning state less than tu or td but several times.
This situation is managed by the social acceptance times Tu

and Td (related to the frequency of disruption) for all bad
functioning periods of the simulation. Tu, Td depend on the
context, the criterion, the system and the territory.

The value of assessed resilience become null if:

! The duration of all bad functioning periods defined by B
is greater that Tu;

Rup
C4 ¼

0 if
Pu

i1 Ui ' Tu

1
Pu

i1 Ui

Tu
otherwise

8
<

:

(16)

! The duration of all bad functioning periods defined by
B0 is greater that Td

Figure 7. A use case based on a network of infrastructures.



Rdown
C4 ¼

0 if
Pd

i1 Di ' Td

1
Pd

i1Di

Td
otherwise

8
><

>:
(17)

RC4R
up
C4 ( Rdown

C4 ð18Þ

Proposal 3: In some situations, the constraint concerns the
overall bad functioning time whether it is spent in minimal
(B0) or maximal (B) bad functioning. In such a situation, there
is a global time T that cannot be exceeded whatever the dis-
ruption. The next factor considers this situation:

RC5 ¼
0 if

Pd
i¼1 Di þ

Pu
i¼1 Ui ' T

1%
Pd

i¼1 Di þ
Pu

i¼1 Ui

T
otherwise

8
><

>:
(19)

! Assertion (10): The more often the value of a criterion
goes outside of f nmin and f nmax, the lower the value of the
assessed resilience is.

Assertion (10) considers the behaviour of a system that goes
into bad functioning periods more than once. Previous
assertions consider some aspects of this assertion, but not
all of them. Let us consider Figure 6. It shows two situations
a’ and b’ with two profiles P1’ and P2’. The areas of P1’ and
P2’ are the same. Nonetheless, P2’ has two bad functioning
periods. This assertion takes such a situation into account:

Rup
C6 ¼

Yu

i¼1

1
i
i ' 1ð Þ (20)

Rdown
C6 ¼

Yd

i¼1

1
i
i ' 1ð Þ (21)

Figure 8. (a) Simulation for RupC0. (b) Evolution of the value of Rupc0 .



RC6 ¼ Rup
c6 ( Rdown

C6 (22)

In some situations, Assertion (10) might not be manda-
tory. In fact, previous assertions already consider some of
its aspects.

According to these assertions, it is now possible to assess
the resilience, whether or not there is a disturbance.
Actually, according to the objectives and constraints
f nmax; fmax; f nmin; fmin the system might be non-functional even
though there is no disturbance. The changing of objective
could change the FAM and consequently the value of
assessed resilience. The identification of relevant criteria that
characterise the system is the main challenge of this model.
Criteria such as the number of times the system does not
fulfil the objective on a criterion must not be considered.
They are integrated in the previous assertions.

The resulting value of the resilience for criterion C is then:

RC ¼ RC0 ( RC1 ( RC2 ( RC3 ( RC4 ( RC5 ( RC6 (23)

The resulting value of the resilience in Equation (23) uses a
product model to aggregate resilience factors. According to the
context, the resilience factors could be aggregated differently.
Hence, instead of using a simple product in the assessment,
other aggregation functions such as the mean and the median
could be used. This is important for the adaptation of this
research to other contexts. However, the study of these aggre-
gation functions is outside the scope of this article.

4. Case study

The proposed methodology is applied to a simple case
study. The aim here is to demonstrate the claims of the

Figure 9. (a) Simulation for Rdownc0 . (b) Evolution of the value of Rdownc0 .



proposal. The system considered here is a network of infra-
structures composed of: (1) a coal power plant, (2) a road
(transport system) and (3) a signalling system. The power
plant produces a certain quantity of electricity and needs
trucks to deliver coal. The amount of electricity depends on
the overall production capacity and the quantity of coal in
incoming trucks (i.e. the quantity of transported coal). The
performance of the signalling system depends on the electri-
city used.

A bad performance impacts the safety of the road that
furthermore influences the number of trucks in circulation
(i.e. the quantity of transported coal to produce electricity).
Therefore, a decreasing number of trucks decreases the elec-
tricity production of the power plant. Figure 7 depicts the
relationship between the criteria of these systems, where the
arrows represent the dependence relationship.

This example is modelled using the Obeo Designer plat-
form, transformed based on an Acceleo transformation
script and simulated based on the multi-agent platform
GAMA. The focus here is on the simulation results. There
are six criteria: The Quantity of Produced Electricity (QPE),
the Number of Incoming Trucks (NIT), the Quantity of
Required Electricity (QRE), the Performance (PER), the
Safety (SAF) and the Number of Circulating Trucks (NCT).
These criteria characterise the global system, as shown in
the Figure 7. The proposal complies with Assertions 1 to 4;
6, defined in the previous section.

For the sake of space and simplicity, only the Quantity of
Produced Electricity (QPE) criterion is discussed hereafter.
The objective of the power plant, assumed for this case
study, is the production of 5.0 units (e.g. gigawatts); author-
ised minimum and maximum are assumed to be

Figure 10. (a) Simulation for Rdownc1 . (b) Evolution of the value of Rdownc1 .



respectively 0.1 and 10. Note that Figure 3 defines the meta-
model for these parameters. In normal functioning, the fluc-
tuation might be between 3.0 and 7.0. Five units are
tolerated if the objective is not fulfilled. The evolution func-
tion for the QPE, i.e. fnðtÞ is defined:

fn 0ð Þ ¼ 5:0

fn t þ 1ð Þ ¼ fn tð Þ6q 0:5ð Þ
(24)

where qðxÞ is a random function that for a given number x
returns a random number n such that 0 & n & x.

In addition, the value of f nmin, f nmax, fmin and fmax

should change with respect to time. For instance, the
power consumption of a city depends on seasons (e.g.
electricity consumption increases during winter) and
thus the minimal production of the power plant should
be greater than 3.0. Consequently, the evolution func-
tions defined by Equations (25)–(28) are assigned to

f nmin, f nmax, fmin and fmax. Note that for the sake of sim-
plicity, these functions randomly change the value of
their parameters:

fmin 0ð Þ ¼ 0:1
fmin t þ 1ð Þ ¼ fmin tð Þ6q 0:1ð Þ (25)

fmax 0ð Þ ¼ 10
fmax t þ 1ð Þ ¼ fmax tð Þ6q 0:1ð Þ (26)

f nmin 0ð Þ ¼ 3:0
f nmin t þ 1ð Þ ¼ f nmin tð Þ6q 0:1ð Þ (27)

f nmax 0ð Þ ¼ 7:0
f nmax t þ 1ð Þ ¼ f nmax tð Þ6q 0:1ð Þ (28)

For all situations the value of assessed resilience is
between 0 and 1 and depends on all six criteria. However,
there is no constraint on the duration of the bad

Figure 11. (a) Simulation for Rupc1 . (b) Evolution of the value of Rupc1 .



functioning periods, and consequently, Assertions 9 and10
are not tested in this use case. For the other assertions, i.e.
Assertions 5, 7 and 8, two simulations are proposed: one for
the up value, and one for the down value. For each asser-
tion, the simulation result shown here is for 12 timestamps.
Figures 8–13 illustrate the evolution of
fn; f nmin; f

n
max; fmin; fmaxðtÞ and the related resilience factor

through 6 examples – Figures 8 and 9 present Rup
C0, Figures

10 and 11 illustrate Rup
C1 and Figures 12 and 13 illus-

trate Rup
C2.

Example 1 - Rup
C0: Figure 8 illustrates a disruptive event

that causes a drop-up (overload) of the QPE that cannot be
mitigated and causes a system crash. Resilience factor Rup

C0
remains 1 while the value of the criteria is superior to fmin

or inferior to fmax, until the disruptive event occurs at time-
stamp 9 (see Figure 8(a)). After timestamp 9, a drop-up of
the QPE causes the system to enter a bad functioning
period. Shortly after, i.e. just before timestamp 10, the

system enters an unacceptable state because the QPE
becomes superior to fmax and Rup

C0 becomes 0 (see
Figure 7(b)).

Example 2 - Rdown
C0 : Figure 9 presents a disruptive event

that causes a drop-down of the QPE, followed by a domino
effect that causes a system crash. Rdown

C0 remains 1 after the
first disruptive event occurs at timestamp 2 because QPE is
superior to fmin (see Figure 8(a)). The disruption is managed
at timestamp 5.6. However, the decrease in QPE provokes a
domino effect (not enough coil) that causes another drop
down of QPE at timestamp 6.2. This causes the system to
enter an emergency state and Rdown

C0 until timestamp 8.6
when QPE becomes inferior to fmin and Rdown

C0 reaches 0 (see
Figure 8(b)).

Example 3 - Rdown
C1 : Figure 10 illustrates a disruptive event

at timestamp 3.8 that causes a drop-down of the QPE. The
drop-down of the QPE <f nmin causes the system to enter a
bad functioning period. Rdown

C1 is used to consider such a

Figure 12. (a) Simulation for Rdownc2 . (b) Evolution of the value of Rdownc2 .



situation. It starts decreasing after a certain period (see
Figure 10(b)). When the system re-enters normal function-
ing (time-stamp 6.15), Rdown

C1 stops decreasing.
Example 4 - Rup

C1: Similarly, Figure 11 depicts a drop-up
of QPE from timestamp 3.4 to timestamp 5.8. The system
enters a bad functioning period and thus the value of
Rup
C1 starts decreasing after timestamp 3 until timestamp 6,

when the system re-enter normal functioning.
Example 5 - Rdown

C2 : The proximity to the inferior limit
induces a decrease in the value of assessed resilience, as
shown in Figure 12. The value of QPE is outside the normal
functioning at timestamp 2.6, reaching a minimal value at
time-stamp 5, and re-enters normal functioning after time-
stamp 6.7. The value of the resilience factor Rdown

C2 starts
decreasing after time-stamp 2, because the value of QPE
decreases during this period. Rdown

C2 reaches a minimal value
at time-stamp 5 when the value of QPE reaches the low-
est value.

Example 6 - Rdown
C2 : With regard to the behaviour

concerning proximity to the maximum limit, Figure 13
plots the evolution of the resilience factor in Assertion
(8). For the time-stamps where the value of the criteria
is outside normal functioning, the induced resilience
factor is 0.72.

5. Conclusions

Infrastructures are nowadays facing an increasing number of
disruptions, from natural disasters to terrorist attacks and
internal failures. Mitigating these negative effects means that
the infrastructures must recover their initial functioning
capacity in minimum time, with minimum costs, i.e. they
must be resilient. Thus, stakeholders must analyse the resili-
ence of infrastructures before any disruption to anticipate
the right decisions at the right time.

Figure 13. (a) Simulation for Rupc2 . (b) Evolution of the value of Rupc2 .



This article introduces a methodology for the evaluation
of the functionality of interconnected systems for the pur-
pose of resilience assessment. The methodology is designed
to prepare stakeholders for different disruptions before they
happen, allowing them to make the right decisions at the
right time. The major contributions of the methodology are:

! It provides a relevant tool for the combination of FAMs
and continuous resilience assessment following several
dimensions of systems.

! It proposes a way to connect rough data with functional
analysis and resilience assessment.

! It proposes an agile, evolutive and continuous resilience
assessment paradigm (it can be extended with other cri-
teria, other data sources to define criteria, other aggrega-
tion formulas, etc.).

On the other hand, the main limitation of the approach
is its dependence on relevant input data. In other words, an
incorrect domain knowledge as input will surely provide an
incorrect evaluation. In this sense, it is unable to warn users
about the inconsistency of their input data.

The first perspective of this study concerns Big-data and
the way to exploit incoming data continuously from hetero-
geneous, various and non-dedicated data sources. The
second perspective involves a better use of the timeframe
and the way to manage the history of data (what timeframe
should be considered to include data in the criterion calcu-
lation). Depending on the criterion and on the data sources,
the volatility of data is very different and this aspect should
be considered to refine and improve criteria evaluation. The
third perspective concerns the aggregation functions. The
product in the resilience assessment has been considered,
however, other resilience functions could be used. The last
perspective concerns guiding users to provide relevant data
without errors and mistakes.
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