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Multi-objective optimizations by means of 3D finite element models result in very high computation burden. To have an affordable computation cost, the output space-mapping technique is applied with a new method where the scalar correction of the model outputs is replaced by a set of corrective functions. This method is used for the bi-objective optimization of a transformer and allows finding the complete Pareto optimal set in less than two days on a laptop.

II. OPTIMIZATION PROBLEM

The safety isolating transformer is a one-phase step-down transformer. It uses grain-oriented E-I laminations. The primary and secondary windings are both wound around the frame surrounding the central core (Fig. 1).

It has been selected as a simple practical example capable to provide a quantitative evaluation of the savings possible with the proposed procedure.

The bi-objective optimization problem of a safety isolating transformer contains 7 design variables. There are three parameters a, b, c for the shape of the lamination, one for the frame d, two for the section of conductors S 1 , S 2 , and one for the number of primary turns n 1 . The geometrical parameters and section of conductors are shown in Fig. 1.

The bi-objective optimization problem is expressed as: 
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There are 6 non-linear inequality constraints in this problem. The copper and iron temperatures T co , T ir should be less than 120°C and 100°C, respectively. The magnetizing current I μ /I 1 and drop voltage ∆V 2 /V 2 should both be less than 10%. Finally, the filling factors of both coils f 1 and f 2 should both be lower than 0.5. The objective functions are to maximize the efficiency η and to minimize the total mass M tot of iron and copper materials. All electric and thermal quantities are computed at full-load. Digital Object Identifier inserted by IEEE

A. Coarse and fine models

The multi-physical phenomena within the transformer are electric, magnetic and thermal. They are modeled by a lumped-mass (coarse) model (LM) and a 3D finite element (fine) model (3D FE) [START_REF] Tran | A Benchmark for Multi-Objective, Multi-Level and Combinatorial Optimizations of a Safety Isolating Transformer[END_REF].

The LM model is built with the assumption that the voltage drop due to the magnetizing current is neglected. Therefore the maximal induction depends on the primary voltage. The computational time of the coarse model is very short (50 ms on an Intel Pentium M 2.13 GHz laptop).

The 3D FE magneto-thermal model is built with the assumption that all magnetic and electric quantities are sinusoidal. The iron loss is computed with Steinmetz formula described in [START_REF] Tran | A Benchmark for Multi-Objective, Multi-Level and Combinatorial Optimizations of a Safety Isolating Transformer[END_REF] and the leakage inductances are calculated with the magnetic energy. Full-load and no-load simulations are used to compute all characteristics of the safety isolating transformer. The 3D FE model with magneto-thermal coupling requires a very expensive computational time (about 2 hours on an Intel Pentium M 2.13 GHz laptop).

B. Designer's dilemma

Generating 100 optimal solutions of the Pareto optimal set by means of the 3D FE model requires 10 000 hours while 5 minutes only are needed with the LM model. In fact, as solving 3D FE model is very expensive only six points are computed and considered as a reference set (Fig. 2). The points are found by using the mono-objective OSM technique to reduce the computation time. The LM model is used to build an extended Pareto optimal set in a short time. It is obvious that this last optimal set is far from the reference set.

A first solution to this dilemma is to interpolate the reference set. Unfortunately, no information on the design parameters can be obtained because the interpolation can only be made in the objective space.

Therefore, the authors propose to adapt OSM technique for bi-objective optimization problems in order to generate an extended and accurate Pareto optimal set in less than 100 hours.

III. ADAPTED SPACE-MAPPING TECHNIQUE

A. Bi-objective optimization algorithm

According to the state of the art, the ε-constraint method is a useful approach to build a Pareto optimal set [START_REF] Murano | Multiobjective Optimization of Electro-optic Modulators by Using the ε-constraint Method[END_REF]. Moreover, this method may reach Pareto optimal solutions in the nonconvex region. The ε-constraint method consists to transform the multi-objective problem in a single-objective problem. Among the objectives, one is kept and the others are transformed in inequality constraints:
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B. Space-mapping techniques

Space mapping techniques aim to use both coarse and fine models to reduce the computational time and increase the accuracy of the obtained solution [START_REF] Choi | A New Design Technique of Magnetic Systems using Space Mapping Algorithm[END_REF]- [START_REF] Encica | Aggressive Output Space-Mapping Optimization for Electromagnetic Actuators[END_REF].

In general, the coarse computationally cheaper model is
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. In practical engineering, the coarse and fine model spaces are often the same, i.e. x represents the solution of a given optimization problem:
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where m R y ∈ denotes a vector of design specifications and can be zeros in the case of a minimization. In practice, solving (3) is very expensive. Therefore, the faster optimization problem based on the coarse model is preferred:
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One approach of SM techniques, called Output Space-Mapping (OSM) [START_REF] Encica | Aggressive Output Space-Mapping Optimization for Electromagnetic Actuators[END_REF] consists to modify the coarse model by 
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. The algorithm stops when all the corrective coefficients are unchanged from one iteration to the next one.

C. Corrective spline functions

A corrective coefficient is introduced for each objective and constraint therefore the corrected coarse model has the following expression:
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In the case of a mono-objective optimization only a set of p scalar coefficients is searched (p is the number of objectives and constraints computed with the fine model).
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where the indices f and c denote the fine and coarse model respectively.

In the case of a multi-objective optimization, the p corrective coefficients' values must be changed for each solution from the Pareto set, i.e. for each value of the threshold value ] , [ max min ε ε ε ∈ . So that these p coefficients are replaced by p corrective functions of ε:
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where S(ε) is a spline cubic interpolation function. The spline cubic functions avoid the oscillations that appear in the polynomial interpolation approach when the order is high.

Since the mapping functions are defined, they are used by the multi-objective algorithm to correct the coarse model and to obtain a new Pareto optimal set.

The following section presents the proposed algorithm that combines OSM and ε-constraint algorithm.

D. Proposed algorithm

At the beginning of the algorithm (j = 0), all the corrective coefficients are initialized to unity:
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At each iteration, a multi-objective optimization is performed by using the ε-constraint method and the corrected coarse model in order to obtain a new Pareto optimal set in a short time: values 30 takes and
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Then, (2 j +1) solutions *
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. Note that only 2 j-1 points are new.

To establish the corrective functions at the next iteration, the new points are at the center of the intervals, in the same way as the Dichotomy method.

If the following condition is checked, the algorithm stops:
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where τ is the required accuracy. If the corrected coarse model responses are not close enough to the fine model ones, the algorithm continues by updating the corrective functions (8) with the new points.

To summarize, the algorithm carries out the following main steps: 0. initialization: j = 0, θ (0) =I 1. build a Pareto optimal set by using the εconstraints method and the corrected coarse model c(x, θ (j) ) to solve (11) 2. choose 2 j + 1 points on the Pareto optimal set. 3. evaluate the fine model with the chosen points to compute f(x) and k f (x) 4. update the p corrective functions θ (j+1) (ε). 5. if (12) stop the algorithm else j = j + 1, go to 1.

IV. APPLICATION CASE

The bi-objective optimization problem of the safety isolating transformer presented in section II is solved with the proposed algorithm.

For this optimization problem, two constraints (filling factors f 1 , f 2 ) among six and one objective (total mass M tot ) among two are not evaluated by the 3D FE model. Indeed, both filling factors and the total mass are analytically computed. So that, five responses η, T co , T ir , I μ /I 1 , and ∆V 2 / V 2 need 3D FE computation, i. 
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At initialization (j = 0), the coarse model is not corrected yet and the corrective functions are all equal to one. Two points at min j ε and max j ε are computed with the fine model to test the stop criteria and build the corrective functions for the next iteration. At iteration 1, the corrective functions are now linear (Fig. 4) and a new optimal set is obtained. In Fig. 4, the corrective function is given only for the efficiency of the transformer, i.e. θ 1 .

At each iteration, one new point is added at the middle of each couple of points, resulting in 2 j-1 new points amongst a total of (2 j + 1) points, i.e. 3D FE model evaluations.

Fig. 3 shows the Pareto optimal set obtained by using the corrective functions. 30 points are given at each iteration.

At the end of the optimization, a Pareto optimal set very close to the reference set is found.

Finally, only 17 3D FE simulations are needed to obtain an accurate Pareto optimal set. The computational time of the proposed algorithm is approximately 34 hours (1.4 day) on an Intel Pentium M 2.13 GHz laptop. The reference Pareto optimal set requires 60 hours (2.5 days) on the same machine.

To have an accurate Pareto optimal set by using the 3D FE model only, approximately 10,000 hours (14 months) are required. All the computed points are shown with circles in Fig. 4.

V. CONCLUSION

The output space-mapping technique is adapted to provide a practical way to build an accurate Pareto optimal set in biobjective optimization using full 3D coupled finite element model and keeping the computational time in an acceptable limit. In addition to the 3D FE model, a simpler one provided with corrective coefficients has been used. Cubic spline interpolation functions are used to predict the values of the corrective coefficients. By using these corrective functions, the ε-constraints bi-objective optimization algorithm gives an extended and accurate Pareto optimal set in less than 2 days. 
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 1 Fig.1. Bi-objective optimization problem of a safety isolating transformer
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  ≠ are the other objectives, f k are the ordinary constraints, and j ε are the threshold values. By varying j ε between min j ε and max j ε , the whole Pareto optimal set may be found. Two mono-objective optimizations are computed to determine the upper and lower threshold values. min j ε is found by minimizing i j f ≠ and max j ε is found by minimizing i f . Using the ε-constraint method with the coarse model, a Pareto front with 100 points is quickly built and shown in Fig. 2.
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  e. only five values of corrective coefficients [θ 1 , θ 2 , θ 3 , θ 4 , θ 5 ] are computed for each threshold value ] The losses 1-η are c 1 in (11) and the total mass M tot is c 2 . Therefore, the bi-objective optimization problem (1) becomes a set of 30 mono-objective optimization problems with one additional constraint on the total mass M tot :
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 4 Fig.4. Corrective functions for the efficiency at each iteration.
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 3 Fig.3. Pareto optimal set obtained at each iteration