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Abstract This article presents an extension of the Asymptotic Numerical Method combined with
the Harmonic Balance Method to the continuation of periodic orbits of Delay Differential Equa-
tions. The equations can be forced or autonomous and possibly of neutral type. The approach
developed in this paper requires the system of equations to be written in a quadratic formalism
which is detailed. The method is applied to various systems, from Van der Pol and Duffing os-
cillators to toy models of clarinet and saxophone. The Harmonic Balance Method is ascertained
from a comparison to standards time-integration solvers. Bifurcation diagrams are drawn which
are sometimes intricate, showing the robustness of this method.

Keywords Nonlinear dynamics · Delay equations · Harmonic balance method · Numerical
continuation · Periodic solutions · Quadratic recast · Asymptotic Numerical Method.

1 Introduction

The aim of this article is to extend the framework of the numerical continuation of periodic solutions
of differential systems using the Harmonic Balance Method (HBM) coupled with the Asymptotic
Numerical Method (ANM) to time-delayed systems.

For dynamical systems without delay, the efficiency of this method has already been shown
in several works, see [8], [17] and [22] for some examples. The work [15] treats the case of quasi–
periodic solutions using the same framework. To achieve better efficiency, the choice to recast the
original system into a quadratic version has been done. The procedure to obtain such a recast has
been explained in great details in [14] and is briefly recalled in this paper. The way to recast non-
polynomial non-linearities was explained for the first time in [17] and a way to recast fractional order
derivatives is already known from [23]. As opposed to already existing methods of continuation of
delay differential equations (DDE), see [12] and its adaptation for neutral systems [2], the method
developed in this paper is based on the frequency representation of the periodic solutions.

This article contains three sections. In the first section the ANM and the HBM are recalled.
It is admitted that the method can be applied to virtually any explicit or implicit differential-
algebraic equations. It is extended in a second section to the case of explicit or implicit delay
algebraic-differential equations which can be forced or autonomous. Neutral systems can also be
treated. The effect of time-delay on Fourier series is derived and the use of auxiliary variables to
write the delayed variable in the frequency domain is detailed. This makes the quadratic recast of
a delayed variable clear. In the last section, the method is applied to several examples, showing its
versatility and its robustness particularly when applied to neutral systems. The convergence of the
Fourier series with the order of truncation is shown and the solutions are compared to standard
time-integration solvers. The continuation with respect to the delay is also explored in the first
example.
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2 Continuation of periodic solutions

2.1 Harmonic Balance Method

As described in [8], the periodic solutions t 7→ x(t) of a dynamical systems are represented by their
truncated Fourier decomposition which is found through the Harmonic Balance Method :

x(t) =

H
∑

k=−H

xk exp(ikωt) = a0 +

H
∑

k=1

ak cos(kωt) + bk sin(kωt) (1)

where ω is the pulsation of the oscillations and H is the number of harmonics i.e the order of
truncation of the Fourier series. Given that x−k is the complex conjugate of xk, the complex form
and the real form of the Fourier series are equivalent, hence both can be used depending on which
is more convenient.

For example, let’s seek periodic solutions of

ẍ+ 2µẋ+ x+ x3 = F cos(ωt) (2)

The system is rewritten quadratically as in [8] :

ẍ+ 2µẋ+ x+ xy = F cos(ωt)
y = x2 (3)

The next step is to compute products and derivatives directly on the complex form of the Fourier
series (1). The products can be written as a convolution :

(

H
∑

k=−H

xk exp(ikωt)

)(

H
∑

k=−H

yk exp(ikωt)

)

=

H
∑

k=−H

exp(ikωt)
∑

h1+h2=k
|h1|≤H,|h2|≤H

xh1
yh2

(4)

The derivatives can be written :

ẋ(t) =
∑H

k=−H ikωxk exp(ikωt)

ẍ(t) =
∑H

k=−H −k2ω2xk exp(ikωt)
(5)

Now it is possible to write (3) in the frequency domain by replacing with the formula (4) and (5)
and by balancing the harmonics. This leads to a set of algebraic equations.

2.2 Continuation through Asymptotic Numerical Method

The Asymptotic Numerical Method (ANM) that has first been described in [4,5,6], relies on a
high-order Taylor series representation of the solution-branch. This technique has already proven
its efficiency for a lot of applications in engineering [10], mechanics [24] or acoustics for example.
While some implementations relying on automatic differentiation do exist, see [3] for example, the
choice is made here to work with a quadratic framework. A generic implementation of this latest
approach which minimizes problem-dependent implementation has been developed [14]. It is based
on the numerical continuation of algebraic systems of the form

R(V ) = 0 (6)

where V ∈ R
n+1 and R(V ) ∈ R

n is an analytic function of its argument. This system is always
written in a quadratic format as a prerequisite of the method. Again, this formalism is not a
constraint that we suffer but a choice that allows to treat a very wide range of problems as shown
in [17]. The system (6) can then be written

R̃(Ṽ ) = C + L(Ṽ ) +Q(Ṽ , Ṽ ) = 0 (7)

where Ṽ ∈ R
N+1, N ≥ n and C, L and Q are respectively a constant, a linear and a quadratic

operator. For the small example (3), the introduction of an auxiliary variable y = x2 in the time
domain allows to have almost directly a quadratic algebraic system. The only non-quadratic terms
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are due to the second order derivative (5) that leads to cubic terms xkω
2. The introduction of the

auxiliary variable Ω = ω2 solves this problem.

The coupling between ANM and HBM in the quadratic framework (7) can be automatized
and is detailed in [8]. Again, the key idea of the ANM is to compute a high-order Taylor series
development of the solution-branch. Let consider that Ṽ0 is a regular solution of the system (7).
Let Ṽ1 be a tangent vector at Ṽ0. The classical arc-length parameter a = Ṽ t

1 (Ṽ0 − Ṽ ) is introduced
and the solution-branch around Ṽ = Ṽ0 is written as a power series with respect to a

Ṽ (a) = Ṽ0 + aṼ1 + a2Ṽ2 + a3Ṽ3 + · · · (8)

More on the implementation of continuation in the case of algebraic systems coming from the
harmonic balance method is available in [8]. The next section generalizes this approach for systems
with time-delayed variables in their formulation.

3 Continuation of periodic solution of systems with time delay

In this section a system of delay differential equations, forced or autonomous and possibly neutral,
of the following general form is considered:

f(t, x(t), ẋ(t), x(t− τ), ẋ(t− τ), λ) = 0 (9)

Where f : R ×
(

R
N
)4 × R 7→ R

N is an analytic function that is periodic with respect to its first
variable, x : R 7→ R

N is an unknown periodic function of unknown pulsation ω, τ is a real number
called the delay and λ is a control parameter of interest called the continuation parameter. The
continuation parameter λ may be equal to the delay τ as shown in section 4.1.

A systematic way to recast the equations (9) quadratically is first to introduce three auxiliary
variables :















f(t, x(t), y(t), xτ (t), yτ (t), λ) = 0
y(t)− ẋ(t) = 0

xτ (t)− x(t− τ) = 0
yτ (t)− y(t− τ) = 0

(10)

The system has now 4N+1 unknowns for 4N equations. The equations on delayed variables appear
isolated and a classical quadratic recast [8,17,14] can be applied to the function f to write the
system (10) quadratically :















g(t, x(t), y(t), xτ (t), yτ (t), λ, v(t)) = 0
y(t)− ẋ(t) = 0

xτ (t)− x(t− τ) = 0
yτ (t)− y(t− τ) = 0

(11)

where v : R 7→ R
Naux is a function of the time that can be expressed as quadratic expressions of all

the variables. The system has now 4N+1+Naux unknowns for 4N+Naux quadratic equations. The
two last equations are the only one that are not treated in [8,17,14], thus, the Fourier coefficients
of xτ are now derived from the Fourier coefficients of x with their quadratic recast.

3.1 Harmonic Balance Method applied to delayed variables

The order of truncation of the Fourier series is noted H . The truncated Fourier series of t 7→ x(t)
is:

x(t) = a0 +

H
∑

k=1

ak cos(kωt) + bk sin(kωt) (12)
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The Fourier series of t 7→ x(t− τ) is:

x(t− τ) = a0 +
∑H

k=1 ak cos(kω(t− τ))

+
∑H

k=1 bk sin(kω(t− τ))

= a0 +
∑H

k=1 ak (cos(kωt) cos(kωτ) + sin(kωt) sin(kωτ))

+
∑H

k=1 bk (sin(kωt) cos(kωτ)− cos(kωt) sin(kωτ))

= a0 +
∑H

k=1 [ak cos(kωτ) − bk sin(kωτ)] cos(kωt)

+
∑H

k=1 [bk cos(kωτ) + ak sin(kωτ)] sin(kωt)

(13)

Therefore, if aτk and bτk are the Fourier coefficients of t 7→ x(t− τ), their expression is given by:

aτ0 = a0
aτk = ak cos(kωτ)− bk sin(kωτ) , k ≥ 1
bτk = bk cos(kωτ) + ak sin(kωτ) , k ≥ 1

(14)

3.2 Asymptotic Numerical Method applied to delayed variables

For k ≥ 1, the auxiliary variables cτk = cos(kωτ) and sτk = sin(kωτ) are defined to get a quadratic
recast for (14):

τ̃ = ωτ

aτ0 = a0
aτk = akc

τ
k − bks

τ
k

bτk = bkc
τ
k + aks

τ
k

sτk = sin(kτ̃ ) and d(sτk) = kcτk × d(τ̃ )
cτk = cos(kτ̃) and d(cτk) = −ksτk × d(τ̃ )

(15)

where in the last two equations, the differentiated forms are used as explained in [14] to compute
the Taylor series expansions (8) of sτk and cτk. The last equations are defined as "initial conditions"
plus a "differential system". For the computation of the Taylor series (8), the "initial conditions"
are used to compute the zero-th order coefficient Ṽ0 and the differential system to compute higher
order coefficients Ṽp, p ≥ 1. This type of computation of Taylor series development is explained in
details in the book [13]. The main ideas are recalled below.

Let x = x0 + ax1 + a2x2 + . . . be a given Taylor series and let s = sin(x) and c = cos(x) be its
sine and its cosine. To compute the coefficients of the Taylor series of s (= s0 + as1 + a2s2 + . . . )
and c (= c0 + ac1 + a2c2 + . . . ), the following procedure is applied:

– s0 = sin(x0) and c0 = cos(x0).
– For p ≥ 1, identify the term of order p − 1 in the differentiated equations ds = cdx and

dc = −sdx.

For the second step, the development in Taylor series of the differentiated equations are written:

s1 + 2as2 + 3a2s3 + . . . =
(

c0 + ac1 + a2c2 + . . .
) (

x1 + 2ax2 + 3a2x3 + . . .
)

c1 + 2ac2 + 3a2c3 + . . . = −
(

s0 + as1 + a2s2 + . . .
) (

x1 + 2ax2 + 3a2x3 + . . .
) (16)

For p = 1, the identification of the constant term of the system (16) gives s1 = c0x1 and c1 = −s0x1.
For p ≥ 1, the identification of the terms of order p − 1 in the system (16) gives the following
recursive formula:

sp = 1
p
[c0 × pxp + c1 × (p− 1)xp−1 + · · ·+ cp−2 × 2x2 + cp−1 × x1]

cp = − 1
p
[s0 × pxp + s1 × (p− 1)xp−1 + · · ·+ sp−2 × 2x2 + sp−1 × x1]

(17)
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4 Applications

In this section, four examples are given which have been explored with our method. The first
one, a delayed Van der Pol oscillator [1], is autonomous. It is used to show the convergence of
the Fourier series to a reference solution of the system, computed with a standard solver [20].
Moreover, a bifurcation diagram with respect to the delay is drawn and the location of the many
Hopf bifurcations is ascertained with the results of a linear stability analysis. The second example,
a forced delayed Duffing oscillator [16], exhibits a lot of resonances (both super-harmonic and
sub-harmonic). Its bifurcation diagram is represented with a focus on two symmetry-breaking
bifurcations. The third example is a toy model of clarinet [21] that is purely algebraic. Its periodic-
solutions are squared shaped and their Fourier series converge rather slowly. This example shows
the robustness of our approach. The fourth and last example is a neutral model of saxophone [18,9]
using transcendental functions in its writing. A solution is compared to a finite-difference scheme
from the literature [18] and a bifurcation diagram is drawn, showing an expected behaviour for
this type of system according to [11].

4.1 A delayed Van der Pol oscillator

In this part we consider the Van der Pol oscillator (dimensionless) with delayed feedback that has
been studied in [1]:

ü(t)− ε(1− u(t)2)u̇(t) + u(t) = εku(t− τ) (18)

The continuation is performed with respect to τ . Introducing the auxiliary variables v(t) = u̇(t),
r(t) = 1 − u(t)2 and Fnl(t) = v(t)r(t) − ku(t − τ). In order to minimize the number of auxiliary
variables, the variable Fnl is the sum of the delayed variable ku(t− τ) (with k constant) and the
product v × r. Hence the delayed variable is not isolated like in (10) and (11), but as it appears
linearly, this allows to use the approach explained in the previous section. The following quadratic
recast is used:

v̇(t) + u(t)− εFnl(t) = 0
v(t)− u̇(t) = 0
r(t) − 1 + u(t)2 = 0
Fnl(t)− v(t)r(t) − ku(t− τ) = 0

(19)

To validate the method, the figure 1 shows the difference between time integration and harmonic
balance for the periodic solution of equation (18) obtained with ε = 2, τ = 0.2 and k = 0.2. The
number of harmonics is varied to show the convergence of the harmonic balance towards the time
integration solution. The reference solution is a time integration performed with dde23 built-in
solver of MATLAB. Its absolute and relative tolerance thresholds have been set to 10−8.

With a low number of harmonics, i.e for H < 10 , the solution is not accurate and even the
period of the oscillation is not computed correctly. Indeed, the plot H = 5 stops before t = 10 s,
conversely to the other plots. From H = 25 to H = 50, the solution gets much closer to the
reference. Solutions for H = 100 and H = 200 look superimposed. In fact, the tolerance at which
the reference has been computed, i.e 10−8, is reached for H = 50. When computing the solution
with a higher number of harmonics, the time-integration reference is probably farther from the
true solution than the solution obtained with the harmonic balance method. In addition, the time-
integration solver used takes approximately ten times the time needed to compute the solution
with H = 50. Moreover, once a solution has been computed the computation of the bifurcation
diagram through ANM is very fast : for the same computation time as one time-integration over
twenty periods (to get rid of the transient), all the steady state solutions between ε = 2 and ε = 5
are available with our method.

The figure 2 shows a part of the bifurcation diagram of the system (18) with the delay τ as a
continuation parameter. There are infinitely many Hopf bifurcations in this system. The analytic
position of the Hopf bifurcations is determined by the stability analysis of the equilibrium u = 0
and is given by the solutions of the system [1]:

{

1− ω2 = kε cos(τω)
εω = kε sin(τω)

(20)
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Fig. 1 Differences over one period between several solutions of equation (18) obtained with the harmonic balance
method with increasing H and a reference solution obtained with time integration. Here ε = 2, τ = 0.2 and k = 0.2.

where ω is the pulsation of the arising periodic solution at the corresponding Hopf point. The
continuation of the periodic solution branches has been initialized with an analytic approximation
with H = 1 and the pulsation ω solution of the system (20) for the corresponding value of τ . In
this particular case, the robustness of the ANM allows to follow all the solution branches from just
one starting point. In the general case, it would probably necessitate to initialize with an analytic
approximation at every Hopf bifurcations. On the figure 2 some parts of the diagram are of null
amplitude : these are just some parts where the solution found is the equilibrium u = 0.

Fig. 2 Bifurcation diagram of equation (18) with respect to the delay τ , ε = 0.1 and k = 2. There are as many Hopf
bifurcations as branches starting from a null amplitude. The red dots are the analytical position of Hopf bifurcations
given by the solutions of system (20).
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4.2 A forced delayed Duffing oscillator

The example presented in this section is taken from [16]. It is an example of a forced delayed
differential equation. The dimensionless equation of motion (Eq.(3) in the reference) is :

ẍ(t) + 2ζẋ(t) + x(t) + µx3(t) = 2ux(t− τ) + 2vẋ(t− τ) + f cos(λt) (21)

The continuation is performed with respect to λ. The following quadratic recast is used :

ẋ(t)− y(t) = 0
ẏ(t) + 2ζy(t) + x(t) + µr(t)x(t) − 2ux(t− τ)− 2vy(t− τ) = f cos(λt)
r(t) − u(t)2 = 0

(22)

where λ is the continuation parameter and the set of parameters used is : ζ = ε, µ = ε, u = ε, v =
−ε, τ = π and f = 5 with ε = 0.05. Again, the time-delayed terms are not isolated but as they
appear linearly in the equations, the recast of section 3 is applicable. In [16], the primary and the
1/3 subharmonic resonances were studied with the method of multiple scales. In this present article
a whole bifurcation diagram is drawn, showing both primary and 1/3 subharmonic resonances. To
find the starting point of the continuation, the approximations computed in [16] are used. The
forcing amplitude has been chosen high to have a rich dynamics as can be seen in the bifurcation
diagram which is represented in figure 3. To draw this diagram, the order of truncation of the
Fourier series has been set to H = 25 which is sufficient away from superharmonic resonances. The
1/3 subharmonic resonance is disconnected from the main branch. It corresponds to a solution-
branch where the pulsation of the oscillation verifies ω = λ

3 .

Fig. 3 Bifurcation diagram of the amplitude of the solution with respect to the forcing pulsation λ. On the primary
resonance solution-branch, there are several super-harmonic resonances appearing for λ = 1

3
, 1

5
, 1

7
, 1

9
, . . . . There are

also two symmetry-breaking bifurcation, noted SB on the zoom of the diagram, detected with the method explained
in [7] for which even harmonics appear.

The zoom on the top of figure 3 shows the many superharmonic resonances and the symmetry-
breaking (SB) bifurcations. The superharmonic resonances appear for λ & 1

2p+1 , p ∈ N and in
these areas the solutions become more complex as the harmonics 2p + 1 are close to the natural
pulsation of the system. In addition, two symmetry-breaking bifurcations are detected and the
emerging solution is then continued with the method explained in [7]. On the bifurcated branches,
the solutions have strong even harmonics appearing and their phase diagrams (x, ẋ) are no longer
symmetric.
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4.3 A clarinet toy model

The following example is a simplified model of clarinet-like instrument, taken from [21] [Eq.(4)-
(5)-(6)-(7)-(10)]. This system has been chosen to highlight that our approach copes even with a
degenerate form of the general system (9). In this example, there are no time derivatives in the
equations of the motion. The unknowns are functions of the time and the dynamics comes from the
coupling between a non-linearity and an equation with time delayed variable. As in the reference,
the reed dynamics is neglected and the dimensionless equations can be written :

u(t) =

{

0 if p(t) ≤ γ − 1

ζ(p(t)− γ + 1)
√

|γ − p(t)|sign(γ − p(t)) if p(t) > γ − 1
p−(t) = −λp+(t− 2ℓ

c
)

(23)

where p and u are respectively the acoustic pressure and the volume flow in the mouthpiece of the
instrument. p+ and p− are respectively the forward and the backward progressive waves, linked to
p and u through p = p−+ p+ and u = p+− p−. ℓ is the length of the instrument and c is the speed
of sound. The delay 2ℓ

c
in equation (23) represents the time for a pressure wave to go back and

forth the cylindrical bore of the clarinet. λ is the reflection coefficient at the end of the instrument
which can be seen as a damping term. γ is the static blowing pressure in the mouth of the player
and ζ is the reed parameter. All the variables but the time are dimensionless in this model. In the
following, the time is normalized by 2ℓ

c
so that the value of the delay τ is 1. For simplicity, the

nonlinear characteristics (the first equation of the system (23)) is written under the assumption
that −1 < p−γ < 0 which means according to [21] that the reed channel is open and air is allowed
to enter the clarinet. The system (23) becomes

u(t) = ζ(p(t)− γ + 1)
√

γ − p(t)
p−(t) = −λp+(t− 1)

(24)

Its quadratic recast is

p−(t) = −λp+(t− 1)
v(t)2 = γ − p(t)
u(t) = ζ(p(t) − γ + 1)v(t)

(25)

The variable v(t) is defined implicitly by the second equation. To ensure that the results are correct,
we have to check that v(t) is non-negative. The parameters chosen are λ = 0.95 and ζ = 0.8. The
continuation is performed with respect to γ, the dimensionless blowing pressure. The bifurcation
diagram is plotted in figure 4.

0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54
Dimensionless blowing pressure 

0
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e 
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Fig. 4 Bifurcation diagram of the toy model of clarinet (24) with respect to the dimensionless blowing pressure γ,
with H = 200. The period doubling bifurcation is visible as the connection of the branches. The red dotted lines
correspond to section of branches where the variable v(t) is negative, i.e where the simplified model is not valid
anymore to represent the clarinet functioning.
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The values for which the system encounters a Hopf bifurcation γH = 0.35 or a period doubling
bifurcation γPD = 0.43 are the same as the one given in [21] (table 1) up to the third significant
digit. On the figure 4, the Hopf bifurcation occurs at the lowest point of the solution-branch. As the
mean value of p is not zero, the L2 norm of p is not 0 at the bifurcation point. The exact solution of
this system in the time-domain is a square and the decomposition in Fourier series is obviously not
very well suited for this discontinuous type of signal. However, the numerical method is so robust
that it is able to continue this solution on the whole domain which is remarkable. This also explains
why the diagram represents the L2 norm of p and not its amplitude : Gibbs phenomenon leads to
an overshoot at each of the two discontinuous point of the signal. This gives wrong amplitude for
the acoustic pressure. The analytical solutions given in [21] were used as starting points for the
continuation process, using their truncated decomposition in Fourier series.

4.4 A neutral saxophone model

In this section, a neutral system that is a dimensionless model of saxophone taken from [18] is
studied. It has also been the subject of the conference talk [9]. The derivative of Eq.(40) in [18] is
taken to get rid of the integrals. This will necessitate to be taken into account when considering
the Fourier developments of the unknowns. The following equation is obtained :

p̈+
√
3(1− F ′(p))ṗ+ p = p̈τ +

√
3(−1− F ′(pτ ))ṗτ + pτ (26)

where p is the acoustic pressure in the mouthpiece of the instrument; γ and ζ have the same
meaning as in section 4.3. Everytime there is a τ index, it means that the variable is delayed,
i.e pτ (t) = p(t − τ). In order to have a smooth function, the nonlinear characteristics F (p) is an
exponential regularized law [9] :

F (p) = ζ
exp(1)√

3
exp(3(p− γ))(γ − p) (27)

To recast the equation (26) quadratically, the idea is to write it on the form I +
√
3ṗ = Iτ −

√
3ṗτ

with I = p̈ −
√
3F ′(p)ṗ + p. It is then necessary to write F ′(p) quadratically. This is done using

the same idea as for the recast in equation (15) ; setting ∆p = p − γ, the exponential is written
using A = exp(3∆p) and its differentiated form dA = 3Ad(∆p). These remarks lead to introduce
the following auxiliary variables :

∆p = p− γ

A = exp(3∆p)

F ′(p) = ζ
exp(1)√

3
A(−1− 3∆p)

q = ṗ

I = p̈+ p−
√
3F ′(p)q

(28)

which allows to write the equation (26) in a quadratic format :

I − Iτ +
√
3(q + qτ ) = 0

∆p− (p− γ) = 0
A− exp(3∆p) = 0 and dA− 3A d(∆p) = 0

F ′(p)− ζ
exp(1)√

3
A(−1− 3∆p) = 0

q − ṗ = 0

I − (p̈+ p−
√
3F ′(p)q) = 0

(29)

The definition of A (third line, left hand side in (29)) is used only to compute the mean value (or the
constant term) of its Fourier series and its differentiated form (third line, right hand side in (29))
is used to compute higher order terms. This has been explained in [17]. The dimensionless delay
τ can be expressed in term of the length of the conical resonator ℓ of the saxophone, truncated at
its input to plug the mouthpiece, and the length x1 of the missing part of the cone (from the apex
to the input of the truncated cone). This is not our purpose here to understand the refinements of
this model, the interested reader can find the details in [18].

Below, the value of τ is set to 2
√
3ℓ

x1

with ℓ = 17
15 and x1 = 1

5 . ζ is set to 1.2 to draw the bifurcation
diagram with respect to γ in figure 5. As said above, the equation (26) is the derivative of another
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Fig. 5 Bifurcation diagram of a model of saxophone with respect to the dimensionless blowing pressure γ and for
ζ = 1.2. The sub-critical Hopf bifurcations can be seen clearly. It is not surprising for the saxophone to show such
sub-critical bifurcations [11]. This diagram has been computed using H = 50 harmonics.

equation. This implies that after the Harmonic Balance Method (HBM) has been performed,
the constant coefficient equation (i.e its mean value) states 0 = 0. As this leads to a singular
system, this equation is replaced by p0 = 0 where p0 is the constant term [the a0 of the Fourier
decomposition (12)] of p.

The waveform of each unknown over one period is a by-product of the method and is available
for each value of γ, i.e for each point of the bifurcation diagram 5. The waveform of p is compared
to the one obtained with the numerical integration algorithm presented in [18] for γ = 0.5 and is
in very good agreement as can be seen in figure 6. On the same figure, the pressure obtained by
integration with the built-in solver ddensd [19] of MATLAB is presented. The three methods give
very close results. However, as expected in [18], their scheme is unstable and the Hopf bifurcation
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Fig. 6 Comparison of the periodic solutions of equations (26) over one period for ζ = 1.2 and γ = 0.5. In blue, the
solution obtained with Harmonic Balance Method with H = 50 and extracted from the bifurcation diagram shown
in figure 5. In red dashed, the solution obtained with the time-integration algorithm of [18] with 5000 samples per
period. In yellow dotted, the solution obtained with ddensd Matlab’s solver with absolute and relative thresholds
set to 10−3. A zoom on the zone of beating reed is shown to enhance the differences between the waveforms.
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is detected around γ = 0.285, that is below the theoretical value of γ = 1
3 which is found with our

method.
The scheme used in [18] is very fast but requires a high sampling frequency (more than 1000

samples per period) to converge. The ddensd solver takes a longer time especially when the tolerance
chosen is decreased to the minimum value possible of 10−5. In our approach, the transient is not
available but the shape of the steady state is obtained on all the solution-branch instantly through
the Fourier series construction, as well as the unstable periodic regimes. In addition, the Hopf
bifurcation and the limit point can be deduced from the bifurcation diagram.

The model of saxophone presented should have a zero mean over one period by physical con-
sideration [18]. For the signals represented in figure 6, the acoustic pressure obtained by Harmonic
Balance has a mean value around the numerical precision 10−16 while the time integration solver
from [18] gives a mean around 10−4 and ddensd gives 10−3.

5 Conclusion

An extension of the HBM, coupled with the ANM continuation, to time-delayed systems is de-
veloped. Various types of systems exhibiting constant time-delays is explored. Especially, delayed
differential equations of neutral type do not require a specific setting in the framework presented.
The available tools of the ANM continuation allow to compute bifurcated branches without the
need of a specific implementation.

The coupling between HBM and ANM shows its efficiency and its robustness compared to
time-integration methods. Especially in some cases where there are not many numerical methods
available (neutral systems) and even when the Fourier series of the periodic solution have bad
convergence properties. It is ascertained by a comparison to time-domain solvers. The algorithms
used for this article are freely available online at http://manlab.cnrs-mrs.fr.
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