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Abstract

The mechanical behavior of a four-layer plain weave glass fiber/epoxy matrix composite

is modeled at the mesoscopic scale, taking into account the dry fabric preforming before

resin injection, the relative shift and nesting between fabric layers, and the characteristic

damage mechanisms, i.e., intra-yarn cracking and decohesion at the crack tips. The

surface strain fields obtained numerically are similar to the strain fields observed at the

surface of the specimen. Damage is modeled by introducing discrete cracks in the FE

mesh of the representative unit cell of the composite. The crack locations are determined

using a stress based failure criterion. The predicted locations are similar to those observed

experimentally. The effects of intra-yarn cracks on the macroscopic mechanical properties

show the same trends as the experimental data. Good quantitative agreement is obtained

if yarn/yarn or yarn/matrix decohesions at the crack tips are taken into account.

Keywords: Textile composites, Damage mechanics, Finite element analysis, Multiscale

modeling, Transverse cracking

1. Introduction

Composite materials containing textile reinforcements are receiving a growing interest

in advanced structural applications. One of the advantages of textile composites is the

drapability of the reinforcing fabric, whose architecture can be varied throughout the
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structure. In addition, complex reinforcement shapes may be directly woven with modern

looms [1], which reduces the number of parts required for a composite structure, thus

limiting the use of joints, which constitute classical weak points in the structure, and

reducing the manufacturing costs.

In order to optimize the potential of woven composites and the mechanical perfor-

mances of the resulting structures, design tools able to describe the evolution of the

mechanical behavior from damage onset to final failure of the material are required. In

recent years, macroscopic phenomenological models that successfully predict damage evo-

lution and failure in textile composites have been developed for 2D [2, 3] and 3D [4, 5, 6]

textile composites. However, the experimental identification of the model parameters is

usually both expensive and time consuming. Moreover, the model parameters have to

be identified experimentally each time the reinforcement architecture or the constituents

change. Virtual material testing is a possible strategy for replacing some of the experi-

mental tests during the design phase. For that purpose, predictive models based on a more

physical description of damage are necessary. These models have to correlate the different

characteristic scales of the material. Three different scales are identified for this kind of

material. The microscopic scale is the scale of the constituents (fiber and matrix). At the

mesoscopic scale, the reinforcement architecture is described by interlaced homogeneous

fiber yarns embedded in the matrix. The macroscopic scale is the scale of the structure,

at which the material is considered to be homogeneous. In order to set up predictive

macroscopic damage models taking into account the reinforcement architecture, accurate

damage modeling at the mesoscopic scale is required.

The reinforcement architecture of the textile composites is approximatively periodic.

The weaving process, the handling of the fabric and the injection process during com-

posite manufacturing induce small variations into the periodic structure of the yarn path

and in the shapes of the yarn sections. Olave et al. [7] have shown that the mechan-
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ical properties of the composite are not significantly influenced by these variations. In

order to reduce computational costs, perfect periodicity is often assumed [8] by choosing

a meso-scale smallest pattern representative of the whole material, called the represen-

tative unit cell (RUC). In order to obtain reliable results in terms of strain and stress

field distributions, it is essential that the yarn shapes and their relative positions are close

to those observed experimentally [8, 9]. Several tools have been proposed in the litera-

ture for the generation of textile geometrical models [10, 11, 12, 13]. However, most of

them simplify the yarn shapes, generating possible interpenetrations between yarns and

resulting in yarn volume fractions lower than those observed experimentally. In order to

precisely model the characteristic damage mechanisms, the complex architecture of the

material (e.g. nesting between layers, varying yarn shapes) must be taken into account

in the geometrical model. Geometries close to the real architecture of the material can

be obtained by simulating the preforming step of the dry fabric before resin injection

[14, 15, 16].

At the mesoscopic RUC scale, damage can be modeled using different methods. An

analytical model using a damaged mosaic laminate model has been proposed by Gao et al.

[17]. It allows the calculation of the effective Young’s modulus of the damaged composite,

including three different damage modes. However, the use of a mosaic laminate does not

take into account the yarn undulation which has a significant influence on the damage

location, as shown by Melro et al. [18] and Daggumati et al. [19]. Most of the published

studies use numerical approaches based on Finite Element (FE) analyses, which are more

flexible since there are no limitations from a geometrical point of view. In the literature,

different approaches have been proposed to generate FE meshes of woven composites RUC.

A method that is widely used, due to its simplicity of implementation, is voxel meshing

[9, 20, 21, 22]. This method is well suited to the prediction of the elastic properties of

undamaged materials, but presents several limitations when attaining the damage onset
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prediction [20]. Indeed, the yarn surfaces are not correctly represented by the element

faces. The generation of consistent FE meshes with element faces that follow accurately

the yarn surfaces is complex [14], especially in zones where yarns are in contact. Therefore,

many authors insert a matrix layer between the yarns [8, 18, 23, 24], which considerably

simplifies the meshing procedure since each yarn can be meshed separately. If the layer

is thick, a lower yarn volume fraction is obtained in the RUC, and if it is thin, very small

elements are required to ensure a good mesh quality. Therefore, the method of Grail et

al. [14], which allows the generation of consistent meshes of 2D textile composite RUC

with yarns in contact, will be used in this work. This method seems to be appropriate to

model meso-scale damage in textile composites [20].

Most articles dealing with meso-scale damage modeling use continuum damage me-

chanics (CDM) with damage variables for matrix and yarns [18, 19, 25, 26, 27]. This

method consists in detecting damage onset using a stress failure criterion, and then re-

ducing the local stiffness of damaged elements with increasing loading. Models based on

CDM allow studying the evolution of the mechanical properties with increasing damage,

but can erroneously predict the direction of damage propagation [8, 26]. An approach

that is closer to experimental observations of damage at the meso-scale is to describe

damage through discrete cracks, which are inserted into the FE mesh after adapting this

mesh locally in order to follow the crack path.

There are only few publications concerning discrete damage modeling in woven com-

posites. Le Page et al. [28] have investigated the effects of a discrete crack on the strain

energy release rate for a four-layered plain weave composite with different shifts between

the layers (in-phase, out-of phase and random). The main limitation of this approach is

the use of a simplified bi-dimensional geometrical model that does not take into account

the complex 3D reinforcement architecture. Nevertheless, it has been shown that the

energy release rate associated with an intra-yarn crack is influenced by the layer shifts.
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Couegnat [10] has developed a tool able to insert cracks in 3D FE meshes of woven com-

posites. A crack is represented by a plane and an idealized geometry of the fabric is

used, including a matrix layer between yarns in order to make the meshing step easier.

Therefore, the multiple and complex contact zones between yarns are not taken into ac-

count in the model. Recently, Obert et al. [29] have investigated the effects of mesoscopic

damage by inserting discrete cracks in the yarns of a single ply of a 5H satin surrounded

by homogenized plies with the aim of developing a model with damage variables related

to the crack density in the yarns. This model does not take into account the interaction

between the yarns of different layers. However, it has been shown in different studies

that nesting between the layers of a multi-layered textile composite has to be taken into

account since it can lead to different damage initiation scenarios, and different patterns

of damage progression [24, 28].

The aim of this work is to model the characteristic damage mechanisms encountered

at the mesoscopic scale and to evaluate their effects on the macroscopic mechanical be-

havior of the material. A detailed description of damage is proposed combining: (i) a

realistic description of the meso-scale geometry obtained by modeling the preforming step

of the dry fabric, (ii) a consistent mesh of the RUC, and (iii) discrete damage modeling.

The influence of geometrical parameters on the effects of the characteristic damage mech-

anisms is evaluated. The procedure is illustrated on a RUC of a compacted and nested

four-layered plain weave glass fiber/epoxy matrix composite. Several multi-instrumented

experimental tests have been performed in order to characterize the damage mechanisms

(sequence, locations) and evaluate their effects on the macroscopic mechanical behavior

of the material. The experimental tests are presented in section 2. Then, the numerical

procedure is presented including the generation and meshing of a compacted and nested

RUC (section 3) and discrete damage modeling (section 4). In section 5, the results

obtained numerically are compared with the experimental data in terms of: (i) surface
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strain fields, (ii) detection of the damage locations and (iii) effects of mesoscopic damage

on the macroscopic mechanical properties of the composite.

2. Experimental analysis

The composite under investigation consists of four layers of a plain weave reinforcement

of E-glass fibers embedded in Araldite LY564 epoxy resin. The dry fabric was placed into

a steel mold. By tightening the screws that keep the mold closed, the fabric is compacted,

which increases the fiber volume fraction in the final composite and hence its mechanical

properties. The amount of compaction is determined by measuring the thickness of the

composite plate. Several specimens have been tested in order to characterize the meso-

scale damage and its effects on the mechanical behavior of the material. First, two

monotonic tensile tests were performed in order to determine: (i) the elastic properties

of the material, (ii) the surface strain fields using Digital Image Correlation (DIC), (iii)

the damage onset using Acoustic Emission (AE) and (iv) the failure stress. Then, an

incremental tensile test was performed to analyze both damage location and kinetics

using microscope observations on the edge of the specimen, as well as the evolution of the

mechanical properties (Young’s modulus, Poisson’s ratio) of the material with increasing

damage. The stress-strain curves of the tested specimens are shown in Figure 1.

2.1. Acoustic emission

The stress level associated with damage onset and failure of the material was deter-

mined using AE (Figure 1), as in references [30, 31]. The damage mechanisms result in

a spontaneous release of elastic strain energy that is dissipated as a wave propagating

through the material. Two sensors attached at the ends of the specimen (Figure 2a)

detect these acoustic events, which can be related to a stress level.
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2.2. Microscope observations

The location and the sequence of damage were determined using an optical microscope,

as, for instance, in [32, 33]. Microscope observations on the specimen edge were performed

at each loading step of the incremental tests. The observed damage mechanisms are: (i)

intra-yarn cracks in the yarns that are transverse to the loading direction, (ii) debonding

at the interface between cracked yarns and overlapping yarns or matrix and (iii) fiber

failure in yarns, which leads to the composite failure (Figure 2b).

2.3. Digital image correlation

The differences between the mechanical behavior of the stiff fibers and of the compliant

matrix result in heterogeneous strain fields with strong strain gradients, especially around

yarn crimp regions. Classical electrical resistance strain gages can thus not provide an

adequate spatial resolution. Therefore, the local strains on the composite surface have

been measured using DIC, as in [34, 35]. The average strain is used to evaluate the

loss of in-plane elastic properties of the material with increasing damage. The specimen

stiffness E was estimated by a non-linear regression on stress/strain curves obtained by

DIC (Equation 1).

ε̂ = ε0 +
1

E
σ + a(< σ − σy >+)2 (1)

where <>+ are the Macaulay brackets (positive part). ε̂ is the estimated strain, ε0

the strain offset at zero stress and σ the specimen stress. The quadratic part with the

non-linearity coefficient, a, accounts for small non-linearities above the stress threshold,

σy. Stresses significantly higher than σy, where the non-linearity becomes effective, are

excluded from the regression. This quadratic part is added to take into account the

uncertainty in the linearity limit σy. The resulting measurement uncertainty on E was

evaluated by using a bootstrap procedure adapted to non-linear regression [36]. It should

be noted that confidence intervals are dissymmetrical which results from the restriction

of the σy threshold to a positive value, whose uncertainty is only left-bounded.
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3. Finite element modeling of a Representative Unit Cell

3.1. Dry fabric compaction modeling

The use of a geometrical model of the reinforcement architecture that is as close as

possible to that of the real specimen is essential in order to obtain an accurate meso-

scale modeling [8, 9]. In order to increase the composite fiber volume fraction and thus to

improve its mechanical performances, the dry preform is usually compacted before adding

the matrix. The compaction phase has a significant influence on the yarn shapes and paths

and must therefore be taken into account in a mesoscopic RUC. Indeed, complex yarn

shapes can be generated during the manufacturing process, including: (i) local variations

of both the section and the fiber volume fraction in the yarns [7, 37], (ii) random shifts

and nesting between the layers [7, 38, 39], and (iii) complex contact regions between the

yarns. The shape and the relative position of the yarns have a marked influence on the

local strain and stress distributions in the composite, as well as on damage initiation and

propagation [19, 28, 40]. Therefore, realistic geometries are required for accurate damage

modeling at the mesoscopic scale.

Several automated tools have been proposed throughout the last decade to generate

geometrical models of fabric reinforcements, and covering a large variety of weaving pat-

terns [10, 11, 12, 13]. However, the deformation occurring during preforming is often

neglected. Therefore, an idealized geometrical model of the fabric is commonly adopted,

resulting in resin rich areas that are larger than those observed experimentally. As a

consequence, in order to preserve the overall fiber volume fraction in the composite (typ-

ically between 50 and 60%), the fiber volume fraction in the yarns must be set to higher

values than those observed in reality (sometimes 90%, or higher [41]). Yarn shapes closer

to those of the real composite can be obtained from FE modeling of the dry fabric pre-

forming [15, 16, 42]. In this work, the dry fabric compaction is simulated in order to

generate geometries of a slightly unbalanced four-layered plain weave fabric. The advan-
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tage of a plain weave fabric is that it has a relatively simple geometry with a small RUC.

Nevertheless, due to compaction and nesting, multiple contacts zones between yarns are

observed, which are significantly deformed with respect to their initial shapes. The initial

geometry was generated using the ’TexGen’ software [12], by imposing a relative shift

between the layers that corresponds to the shifts observed experimentally on the edge

of one of the tested specimens (Table 1). Then, the preforming step was simulated us-

ing Abaqus Standard (Figure 3) with the aim of obtaining: (i) a realistic yarn volume

fraction, (ii) a qualitative reproduction of nesting between the layers and (iii) the defor-

mation of the yarn cross section due to the neighboring yarns in contact. Since the final

thickness of the reinforcement after compaction is imposed by the mold, the calculation

of the exact force balance is not necessary. Moreover, the yarns are mainly deformed in

transverse compression. Therefore, a transverse isotropic elastic behavior for the yarns

is sufficient to obtain yarn shapes and positions close to those observed experimentally

on the edge of the specimen (see Figure 4). Lin et al. [15] also showed that the most

effective phenomena under compression are already well captured using such a simplfied

behavior. The tensile modulus in the fiber direction (index L), EL = 40.92GPa, has been

determined according to the rule of mixtures for a fiber volume fraction of 55.6% in the

yarns. The transverse (index T ) and shear moduli have been arbitrarily fixed to a much

smaller value (ET = GLT = 4.1 10−3GPa) in order to ensure that the main deformation

modes are bending and deformation of the transverse yarn section. The Poisson’s ratio

in the direction of the fibers νLT is zero, which means that transverse compaction of the

yarn does not cause a change in its length. In order to ensure an approximately constant

fiber volume fraction in the yarn, the transverse Poisson’s ratio, νTT=1, should be used.

However, too high a value of νTT leads to numerical instabilities and convergence issues;

therefore, a lower value was chosen (νTT=0.7), resulting in yarn shapes similar to those

observed experimentally. The normal contact behavior between the yarns was modeled
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using hard contact, and the tangential behavior using a penalty method with a friction

coefficient of 0.24 [43].

3.2. Consistent meshing of the Representative Unit Cell

In order to perform FE analysis, it is necessary to generate a mesh of the composite

RUC, i.e., the deformed reinforcement and the matrix complement. A consistent mesh of

the RUC (Figure 5) is obtained using the procedure developed by Grail et al. [14]. This

procedure ensures conformal meshes at the contact zones between the yarns and between

yarns and matrix. Consequently, in the undamaged RUC the yarns are perfectly glued to

each other and to the matrix, since common nodes are used in the contact zones. The FE

mesh consists of quadratic tetrahedral elements in order to ensure an accurate modeling

of the stress gradients. The mesh is then used to obtain the homogenized macroscopic

elastic properties of the material using the method described in [20]. Periodic boundary

conditions, as described in [8], are applied in the fabric plane directions of the RUC,

whereas the top and bottom surfaces are left free in order to correctly represent the

boundary conditions applied to the composite specimen subjected to a tensile test.

The matrix behavior is supposed to be linear elastic, and the mechanical properties

provided by the manufacturer are: Young’s modulus Em = 3.2 GPa and Poisson’s ratio

νm = 0.35. The yarn behavior is obtained by micro-meso homogenization, as in [18],

using Ef = 73.6 GPa [44] and νf = 0.3 for the fibers. The fiber volume fraction in the

yarns is chosen in order to obtain an overall fiber volume fraction in the RUC similar to

the fiber volume fraction in the real composite. The overall fiber volume fraction in the

composite is calculated as a function of the number of fabric layers nlayers, the fabric mass

per unit area σs, the mass density of the fibers ρfiber and the thickness of the specimen h

(Equation 2).

Vf =
nlayers ∗ σs
ρfiber ∗ h

(2)

The fabric properties given by the manufacturer are σs = 504 + 40 g.m−2 and ρfiber = 2.54
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g.cm−3. The thickness of the specimen is between 1.672 mm and 1.695 mm, with a mean

value of h = 1.679 mm. The uncertainties of these fabric properties lead to a resulting

fiber volume fraction in the composite between 43.1% and 51.3%. The overall fiber volume

fraction in the RUC is chosen equal to Vf = 49.2 % in order to obtain a Young’s modulus of

the undamaged RUC that is close to the experimental Young’s modulus of the undamaged

specimen. This leads to a fiber volume fraction in the yarns of 55.6 %. A transverse

isotropic elastic behavior is obtained for the yarns, with El = 42.2 GPa, Et = 9.93 GPa,

νtt = 0.423, νlt = 0.319 and Glt = 7.31 GPa, where the index l refers to the fiber direction

and the index t to the transverse direction. The local orientation of the yarn material

is calculated separately at each integration point through orthogonal projection of its

position on the neutral line of the yarn. The tangent to the neutral line at the projected

point defines the axis of transverse isotropy of the yarn material (the fiber direction) at

the integration point.

4. Discrete damage modeling

Damage in the form of discrete cracks is inserted into the RUC mesh in order to model

its effects on the macroscopic mechanical behavior of the composite. The studied damage

scenarios are based on experimental observations (section 2). In order to insert the cracks,

some tools, initially developed by Chiaruttini et al. [45] for crack propagation simulation

in metallic structures, are used.

The crack surface is inserted into the RUC mesh using a mesh intersection algorithm.

Another possible method would be to generate the cracked mesh by using general Boolean

operations on both meshes. However, Boolean operations between complex meshes are

difficult to handle correctly using standard double precision encoding of the nodal posi-

tions. Indeed, numerous round-off errors make it impossible to obtain, in a robust way,

a surface mesh that could be filled with tetrahedral elements using an automatic mesh

generator. The algorithm used in this work allows the generation of an approximation
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of the mesh that would have been built using a general Boolean operation between the

volume mesh and a crack surface mesh, as detailed in [45].

Experimental observations show that, at the mesoscopic scale, the first damage is

cracking in the yarns that are transversely oriented to the loading direction. At the same

time, inter-yarn decohesions are observed at the crack tips. On the other hand, isolated

decohesions, not related to transverse yarn cracks, are not observed in this material.

This leads to the conclusion that damage onset is driven by transverse yarn cracking and

that the decohesions between yarns or between yarn and matrix are a consequence of

the transverse yarn cracks. The algorithm described previously is used to model these

two damage mechanisms within the RUC. In most publications, the damage location is

determined by a stress failure criterion [18, 19, 25]. For instance, Daggumati et al. [19]

have shown that for a multi-layered 5-harness satin weave, damage onset occurs at the

center of the yarn crimp zones for an outer layer, and at the edges of the yarn crimp

zones for an inner layer. However, an idealized geometry of the yarns was used without

shifts between the layers; therefore, the multiple and complex contact zones between yarns

existing in real multi-layered composites were not taken into account. Experimentally,

the location of cracks in yarns seems to be influenced by the local relative position of

yarns [32].

In this work, a failure criterion developed for unidirectional plies is used in order to

determine crack locations in the yarn [46], and a failure criterion for quasi-brittle materials

is used for the matrix [47]. These criteria have already been used in a previous study in

order to determine the damage onset mechanism and location in woven composites [20].

Since decohesions are a direct consequence of transverse yarn cracking in the studied

material, a separate criterion for the onset of decohesions has not been used. Under

different kinds of loading, the damage mechanisms may change, and in this case, the

inserted type of damage has to be adapted. For instance, if decohesion was the first main
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damage mechanism, a failure criterion able to predict decohesion onset would have to

be used to determine the damage location. The equations and the damage mechanisms

taken into account are summarized in Table 2. Xt and Xc are the tensile and compressive

ply strengths in the direction of the fibers. Yt and Yc are the transverse tensile and

compressive strengths. Sf12 and Sf13 are called the effective shear strengths. They are

higher than the real shear strengths SR12 and SR13 of the ply such that damage onset is

predicted correctly in a matrix-dominated mode (2 or 3) for pure shear loading, instead

of the compressive fiber failure mode [48]. p12, p13 and p23 are shape parameters that take

into account the coupling between compressive and shear stresses. These parameters can

be directly determined from the transverse compressive ply strength Yc [48]. The values

of the different parameters taken from Soden et al. [49], Charrier [48] and Laurin [50] are

summarized in Table 3.

Several hypotheses are made concerning the geometry of the crack. The first assump-

tion is that the crack, once nucleated, is supposed to propagate instantaneously across the

whole yarn. Obert et al. [29] justified this assumption by arguing that the energy density

is nearly uniform along a yarn. The second assumption is that the decohesion length

is supposed to be constant and symmetric on each side of the crack which is inserted

perpendicularly to the macroscopic loading direction.

The first step in the crack insertion process consists in determining the location of the

first cracks in the undamaged RUC using the failure criterion described above, as shown

in Figure 6 where f = max(f+
1 , f

−
1 , f

+
2 , f

−
2 , f

+
3 , f

−
3 , fmatrix). At these locations, cracks

are inserted into the FE mesh (Figure 6c). Then, a calculation with the damaged RUC

leads to the determination of the location of new cracks (Figure 6d) that are also inserted

into the RUC mesh. This process is repeated until the crack density in the RUC is close

to the crack density measured experimentally on the specimen edge just before failure

(ρs = 0.87 cracks/mm2). In the undamaged zones of the material, the stress fields are
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regular, thus providing a good estimation of possible locations of crack onset. However,

stress concentrations are observed around the decohesion tips (or the crack tips if there

is no decohesion) due to the geometric singularity (Figure 7). Therefore, the integration

points in the immediate vicinity of decohesion or crack tips are not considered as possible

locations of new cracks, even if the failure criterion is reached there first. The study

of decohesion propagation would require an energy based fracture mechanics approach,

which constitutes the subject of ongoing activities.

5. Comparison between numerical and experimental results

The numerical and experimental surface strain distributions are similar (Figure 8a

and b). This result may be attributed to the fact that the relative layer positions in the

RUC were determined experimentally from microscope observations on the edge of the

specimen. In order to obtain a quantitative comparison between both methods, the FE

results were smoothed on a zone corresponding to the DIC resolution window. Along a

line (Figure 8a and b), the numerical and experimental transverse strains are close to

each other (Figure 8c).

The final damaged RUC (with a crack density close to that measured experimentally

just before failure) obtained using the procedure presented in section 4 contains 14 cracks

and is shown in Figure 9. The crack locations obtained with the FE model are compared

to several microscope observations (corresponding to a RUC length) on the edge of the

same specimen (Figure 10). It can be seen that some cracks appear at similar locations

in the RUC over the whole specimen length, showing a certain regularity of damage in

the material. In addition, some variability is detected within the zones with repeating

damage patterns, both in terms of crack position and number. Furthermore, several crack

locations are observed only once. Both phenomena result from the material having an

overall periodic architecture, with local variations due to: (i) dry fabric preforming, (ii)

matrix injection, (iii) possible defects inside the material, etc. Despite the fact that
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edge effects are not taken into account in the model, the numerical and experimental

crack locations are quite similar. Therefore, it seems to be reasonable to assume that the

overall influence of the edge effects on the crack location is, in this case, relatively weak.

However, these effects may partially be responsible for the differences between numerical

predictions and experimental observations. Other possible causes that may explain these

differences could be the crack modeling hypotheses and the material variability that is

not taken into account.

The decrease in Young’s modulus (E11) and in Poisson’s ratio (ν12) with growing crack

density (ρs) is compared to experimental data for different decohesion lengths (µ) (Figure

11). The crack density is the number of cracks per unit area on the specimen edge. The

crack density used in the numerical simulations may not be exactly equal to the crack

densities at which the elastic properties have been measured experimentally. Therefore,

since the numerically calculated trends of the elastic properties are continuous, the results

are interpolated (lines connecting the numerically calculated values in Figure 11) before

comparing them to the experimental values. The evolution trends of Young’s modulus

and of Poisson’s ratio are in good agreement with the experimental data. Moreover, it is

necessary to take into account the decohesions at the crack tips, otherwise the reduction

of the properties would be underestimated. For example, the maximum reduction of

Young’s modulus observed experimentally is 5.82 + 1.16 % at a crack density of ρs = 0.92

cracks.mm−2. Without decohesions at the crack tips, the numerical model only yields a

reduction of 3.28 % at that value of ρs. A decohesion length of µ = 0.07 mm gives a

better approximation of the measured Young’s moduli and Poisson’s ratios as a function

of crack density.

Microscope observations show that some intra-yarn transverse cracks are not exactly

perpendicular to the loading direction, but slightly disoriented with a small tilt angle

(Figure 2b). The reduction of the elastic properties as a function of the crack density
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has been calculated for a RUC with cracks perpendicular to the loading direction and

compared to a RUC with tilted cracks, with a tilt angle varying from −40◦ to 40◦ with

respect to the normal to the composite surface. The differences obtained between the

RUCs with perpendicular and tilted cracks are below 0.5% for E11, 1.3% for ν12 and 2.2%

for G12. Therefore, we conclude that the crack tilt only has a minor influence on the

in-plane homogenized macroscopic properties.

6. Conclusion

A strategy for the numerical modeling of damage at the mesoscopic scale of woven

polymer matrix composites has been presented. The complex geometry of the reinforce-

ment in the RUC is correctly described by modeling the dry fabric preforming before resin

injection. A consistent FE mesh of a four-layered plain weave fabric with shifts between

layers determined from experimental observations is used to model the mechanical behav-

ior of the woven composite. The surface strain fields obtained numerically are in good

agreement with the strain fields observed at the surface of the specimen.

Damage is introduced into the FE model of the RUC by inserting discrete cracks

including decohesions at the crack tips in yarns transverse to the loading direction. The

prediction of the location of damage is computed using a stress failure criterion able to

take into account different damage mechanisms in yarns and matrix. The crack locations

obtained with the FE model are quite similar to experimental observations, even if some

differences are observed. However, the stress criterion is only a necessary condition for

a crack onset, but not a sufficient one, since crack onset is possible only if the energy

release rate is also high enough. Therefore, a criterion based on both stress and energy

will be used in future works. An energy-based error estimator will also be used to ensure

the energetic convergence of the FE meshes.

The decrease in the homogenized in-plane macroscopic properties with damage growth

is in good agreement with experimental data if decohesions at the crack tips are taken
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into account. In this article, the decohesion length has been assumed to be the same

around each crack tip and the influence of this average length on the macroscopic prop-

erties has been studied. Future work will consist in applying fracture mechanics based

methods together with numerical tools for the simulation of crack propagation to esti-

mate quantitatively the size and shape of the decohesion zones. The crack orientation

only has a minor influence on the in-plane macroscopic properties, but its effect on the

out-of-plane properties still needs to be further studied. Using microscope observations,

damage can only be characterized on the edge of the composite material, and additional

experimental characterization (using for instance thermography or micro-computed to-

mography (µ−CT )) will be required to better understand the damage mechanisms inside

the material and to validate the modeling hypotheses, in particular the crack length along

the yarns and the size of the decohesion zones.
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[33] Böhm R, Hufenbach W. Experimentally based strategy for damage analysis of textile-
reinforced composites under static loading. Compos Sci Technol 2010;70:1330-7.

[34] Lomov SV, Ivanov DS, Verpoest I, Zako M, Kurashiki T, Nakai H, Molimard J,
Vautrin A. Full-field strain measurements for validation of meso-FE analysis of textile
composites. Compos Part A 2008;39(8):1218-31.

[35] Koohbor B, Ravindran S, Kidane A. Meso-scale strain localization and failure re-
sponse of an orthotropic woven glass-fiber reinforced composite. Compos Part B
2015;78:308-18.
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[50] Laurin F. Approche multiéchelle des mécanismes de ruine progressive des matériaux
stratifiés et analyse de la tenue de structures composites. Ph.D. Thesis, University of
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Figure captions

Fig. 1 - Stress-strain curves of the tested specimens and cumulated acoustic emission
energies as a function of the specimen strains.

Fig. 2 - Optical microscope observation of the damage pattern on the specimen edge,
just before failure: (a) experimental set-up and (b) damage pattern (the picture was not
taken at the failure location).

Fig. 3 - FE simulation of the compaction of four layers of plain weave fabric: (a)
before compaction and (b) after FE compaction (ε33 is the compaction strain).

Fig. 4 - Yarn shapes (a) observed experimentally on the specimen edge and (b)
obtained numerically through dry fabric compaction modeling.

Fig. 5 - FE mesh of the compacted RUC where the shifts between the fabric layers
are determined from microscope observations: (a) meshed RUC and (b) visualization of
the meshed yarns in the RUC.

Fig. 6 - Schematic representation of the damage modeling algorithm: (a) failure
criterion in the undamaged RUC, (b) crack locations predicted by the failure criterion,
(c) insertion of cracks at the predicted locations, and (d) prediction of new cracks resulting
from the failure criterion in the damaged RUC.

Fig. 7 - Failure criterion in a cracked yarn and zoom to the area around the crack
tip.
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Fig. 8 - Qualitative comparison between (a) computed (6 dashed line delimited
RUCs) and (b) measured (DIC) transverse strain fields under tensile (blue arrows) loading
(macroscopic strain εyy = 0.0036). (c) quantitative comparison along the dotted lines.

Fig. 9 - Damaged RUC containing 14 longitudinal cracks in the transverse yarns and
the corresponding decohesions at the crack tips on the yarn surfaces.

Fig. 10 - Comparison between the crack locations predicted using the failure criterion
and experimental observations on the specimen edge: (a), (b), (c), (d), (e) experimental
examinations in various areas (RUC size) on the specimen edge and (f) crack locations
predicted through the failure criterion.

Fig. 11 - Comparison between experimental and numerical results of the effect of
transverse cracks in the weft yarns on Young’s modulus (a) and on Poisson’s ratio (b) in
the warp direction as a function of the crack density ρs and the decohesion length µ.

Shifts with respect to ∆x (mm) ∆y (mm)
layer 1 (top layer) (Warp direction) (Weft direction)

Layer 2 -0.61 -0.30
Layer 3 -0.59 3.43

Layer 4 (bottom layer) 0.43 2.93

Table 1: Layer shifts in warp and weft directions with respect to the top layer (the layers are sorted in z
coordinate decreasing order).
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Table 2: Failure criterion including different damage mechanisms such as fiber failure, transverse, and
out-of-plane cracking for the yarns, and inter yarn matrix cracking for the matrix.
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Strength Xt Xc Yt Yc SR12 SR13 SR23 Sf12 Sf13 X
(MPa) 1140 570 35 114 72 72 45 83 83 80

Table 3: Values of the parameters of the failure criterion (Table 2).
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