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Abstract
Usual CAE tools simulate the behavior of composite parts from models considering the structures as being homogenized.
Such approach reveals itself not to be effective when the engineer aims at determining the number of plies and the material
characteristics of each ply to aim a specific dynamic behavior. To reply to this problem, we developed a multi-scale model
that explicitly integrates the different design parameters of the composite structure being considered at different scales: the
number of plies, the orthotropic law of each ply and the characteristics of each interface between the plies made by the matrix.
This paper is detailing the method that we developed to lead to our multi-scale and parametric model. This method is coupled
to an experimental approach that allows specific variables named fractional variables to be identified. These variables add
to the detailed representation of the dynamic capacities of the laminated composite beams that led our study. In the case of
our composite beams, the effect of damping due to the ply-interface behavior is significant, and consequently we dealt with
the viscoelastic response of the laminated composite beam under dynamic load. As a result, the strategy of simulation based
on our reduced, viscoelastic and multi-scale beam model is presented: solutions with low computational resources may be
obtained.

Keywords Fast simulation for CAE · Reduced model · Multi-scale model · viscoelastic behavior · Model parametrization ·
Method based on numerical and experimental approach

List of symbols
E Young’s modulus (MPa)
G Shear modulus = G0 (MPa)
v Poisson’s ratio
l Beam length (m)
h Beam height (m)
w Beam width (m)
u Direction x
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v Direction y
w Direction z
ε Strain tensor
σ Stress tensor (MPa)
σi j Stress tensor element (MPa)
U Displacement field (m)
H Tensor of material properties
B Body forces (N)
R External forces (N)
τ Relaxation time (s)
G∞ Long-term shear modulus (Mpa)
α Fractional order of a derivative
η Loss factor
u∗ Test function
� Continuous domain
� Continuous boundary domain
X PGD function in x domain (in-plane)
Y PGD function in y domain (transverse)
D PGD function in d domain used for parametrization

of G∞
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A PGD Function in a domain used for Parametrization
of the fractional derivative order α

Q PGD function for properties change q
S, P PGD function for ply orientation change θ

M PGD function for number of plies m

1 Introduction

Laminated composite materials are mainly known to be used
on applications where both a high strength and low density
are required. But their benefits go far beyond these char-
acteristics because it is also possible to obtain mechanical
properties on demand, this means that it is possible to obtain
a desired strength defining a given stacking sequence of
layers whose maximum strength is oriented towards strate-
gic directions. Further, due to the resin used as matrix
and transferring the stresses to the fibers, these materi-
als also exhibit a higher damping characteristics than the
observed on metals, which results on a better capacity to
dissipate vibrations (Galuppi and Royer-Carfagni 2012).
These, and many other characteristics besides the mechan-
ical ones, make laminated composites attractive to very
critical structures where simulations are very important to
predict their mechanical behaviors; however, the mismatch
of properties between fibers and resin-producing localized
strains makes important to be able to develop simulations
not only at the highest scales to account for global defor-
mations, but also in lower scales to develop advanced and
optimized material properties or to understand the feasibil-
ity to develop a failure. This work presents the simulation
of a laminated composite response under dynamic load,
and considering viscoelasticity in the interfaces, the inter-
est is to obtain a computationally light model representing
the behavior of the lamination under a set of different
mechanical properties, stacking sequences and number of
plies.

2 Case of study

A laminated composite beam under dynamic load is studied
in this work and it is restrained at one end and loaded at
the other end as shown in Fig. 1. The lamination has eight
unidirectional plies symmetrically stacked as [0, 90, 90, 0, 0,
90, 90, 0].

Ten samples of such a laminated composite beam were
built all at the same time. They aremade by eight prepreg uni-
directional carbon fiber layers, coded as HexPly® M21/34%/
UD200/T800S/150 mm. The resulting beams are shown in
Fig. 2.

Fig. 1 Cantilever beam under study

Fig. 2 Carbon fiber-laminated composite beams

3 Significance of inter-ply viscoelastic
behavior

3.1 Test setup

The test setup is shown in Fig. 3 and carried out at a con-
trolled temperature of 25 ± 2◦C. The frequency response
functions were measured according to the procedure rec-
ommended by ISO 7626-2 (1990) using an electrodynamic
shaker attached to the beams. The excitation force was
measured with a force transducer PCB 208C01 installed
between the shaker stinger and the free end of the bar,
while three simultaneous responses were captured with a
PCB 35C34 accelerometer mounted at the same position
of the excitation and two other PCB 352C68 located at the
beam midpoint and at the beam first quarter, respectively.
The four sensors were carefully aligned in the center of
the beams to diminish the influence of torsional modes on
the responses and they connected to a simultaneous four-
channel data acquisition module NI 9234, and the data
were gathered using LabVIEW®. Figure 3 shows a detailed
description of the location of sensors. The calibration of all
the instrumentation and equipment used is regularly verified
in accordance with an ISO 17025 accreditation granted to the
lab.

3.2 Demonstration of the damping behavior

Avisual inspectionwas conducted, so the test was performed
with five of the most similar beams, and tested with the same
procedure. Random vibrationwas then induced to each of the
beams, with an approximated constant force of 1 N through
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Fig. 3 Test setup

Table 1 Convention used to name the FRF’s where ω is the angular
frequency

Point FRF Response 0 (ω)
Excitation f orce (ω)

Transfer FRF 1 Response 1 (ω)
Excitation f orce (ω)

Transfer FRF 2 Response 2 (ω)
Excitation f orce (ω)

a frequency span of 2000 Hz. Three Frequency Response
Functions were available for each beam, so along this work
they are named according to the convention indicated in
Table 1.

Three mobility FRFs at each beam were computed using
single integration from the accelerometer signals and apply-
ing 50 linear vector averages. The results of every beams are

also averaged and two of the most relevant mobility FRFs
are plotted in Fig. 4. A first source of error is the sensor and
wiring mass interference on the beams, this is why miniature
sensors were installed in positions one and two, so the rela-
tionship between sensor to beammass is 0.2. Moreover, even
if the instrumentation frequency response is good above 5Hz,
from the coherence plots in Fig. 4 it is possible to check a
roughly non-linear behavior below 11 Hz, so this is a second
limitation to the validity of the data which could be caused by
the first resonance peak and some compliance in the clamp
used to avoid producing damage in the beams, although still
following a positive trend in the magnitude FRFs in this first
low-frequency zone, meaning a spring characteristic typical
of cantilever beams.

At a first glance, the identification of viscoelastic behavior
in the beams is seen in Fig. 4 on the phase lag remaining
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Fig. 4 Mobility FRF. Left: drive point. Right: transfer two. Highlighted is the phase lag caused by viscoelasticity

outside the natural frequencies, it is actually quite evident
between 20 and 70 Hz, bearing in mind that the coherence
function in this zone is approximately one, indicating a good
chance of linearity. Indeed, if no viscoelastic behavior was
present there, the phase lag would be 90◦, corresponding
to pure elastic behavior between the velocity response and
the force excitation. Then, an anti-resonance is identified at
72 Hz, followed by a second longitudinal resonance peak at
77 Hz. Besides, it is possible to identify torsional modes at
30 and 58 Hz, but they are lightly excited due to the careful
alignment of the sensors and excitation force along the center
of the beams. Torsional modes are not considered along this
work to simplify further simulations under 2D plane strain
assumption.

Taking into account from the above, in Fig. 5 the stiffness
magnitude and phase are plotted for a narrower frequency
span where the best data quality is found in terms of linear
response and the viscoelastic behavior to simulate further
on, specifically because the long-term mechanical property
is expected to be higher than the static property and the phase
shift as function of frequency.

4 Amodellingmethod based on a combined
numerical versus experimental approach

4.1 Fundamental basis of themulti-scale and
viscoelastic model

Weaim tomodel the response of a laminated composite beam
under dynamic load, considering pure elastic responsewithin
the fibers and a viscoelastic behavior in the interfaces, so that
the detailed stress and strain through the thickness direction
may be analyzed at different material properties, ply orien-
tation and number of plies.

This makes the equivalent single-layer theories (ESL)
exposed by Reddy (1993) out of the options, although they
offer good overall accuracy especially using high-order the-
ories (Li et al. 2014) or zero-order theories (Datta and Ray
2016), they fail representing the stress field detail through
the thickness direction. Layer-wise approaches as used by
Robbins et al. (2005) or as the ones presented in Carrera
(2002) might be a good choice, particularly in this work,
the author uses fictitious thin layers to introduce interfacial
effects to model imperfect bonding between plies, obtain-
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Fig. 5 Stiffness magnitude and phase for FRF two

ing accuracy improvements, although even if in Carrera and
Ciuffreda (2005) the authors propose a unified formulation
to assess theories, a designer still has to deal with choosing
along a complex and wide diversity of models in advance to
perform a simulation.

Within this scenario, the only option is to fully model the
behavior through the thickness direction and obtain a solution
by the finite element method (FEM) (Budiman et al. 2015;
Liu et al. 2016), but new terms are added to the equations
and very fine meshes are required, thus the computational
cost and time is high.

Venkatachalam and Balasivanandha Prabu (2012), and
Sahoo andRay (2017) highlighted the relevance of viscoelas-
tic properties of a composite part.However, themain problem
is that simulation costs are important. Yet in 2006, Lisandrin
and Tooren (2006) aimed at making lower computing costs
by reducing a dynamic model of a composite beam. This
position matches with our objective.

Therefore, an alternative reduced model is desired, pro-
viding full 3D modelling so no previous assumption theories
are requested to the user, yet at a reasonable computational
cost and time. In this sense, the proper generalized decompo-
sition (PGD) has been used to provide those characteristics
all together (Chinesta et al. 2014). The validation of the PGD
method used hereby has been presented extensively (Ammar
et al. 2015; Bognet et al. 2012; Ghnatios et al. 2016) and

the application to a detailed through the thickness model and
parametrization has been presented in a previous work for
the same beam but under static load.

Finally, the PGD method is also used to construct a new
model by parametrization of key variables, this is the most
remarkable and interesting characteristic because the result-
ing model requires low computing cost to obtain a solution
within seconds, thus a potential application to optimization
purposes.

In the case of the laminate used in this work with multi-
ples bodies i interacting between each other, the principle of
conservation of linear momentum defines the kinetics of the
problem by the internal forces, inertia and body forces,

n∑

i=0

∇ · σ i +
n∑

i=0

ρ
∂2U

∂t2
= B (1)

Assuming that the displacement gradients are sufficiently
small, the kinematics relating to strain and displacement is
defined by,

εi (U ) = 1

2

(
∇Ui +

(
∇Ui

)T)
(2)

So by the Hamilton’s principle the governing equations is,

∫

Ω

σ i : εi
(
u∗) · dΩ · dt − ρ

∫

Ω

∂2Ui

∂t2
· u∗ · dΩ · dt

=
∫

Ω

B · u∗ · dΩ · dt +
∫

Γ

R · u∗ · dΓ · dt (3)

In the case of a viscoelastic body i , the stress tensor is not
only composed by a mechanism storing energy by elasticity
responding to the Hooke’s law but it is also responding to a
second mechanism dissipating energy by viscoelasticity so,

σ i (t) = σ i (t)ela + σ i (t)visc
σ i (t)Ela = H i · εiela (t) ; Elastic stress

σ i (t)visc = H i · εivisc (t) ; Viscoelastic stress (4)

Contrary to elasticitywhere vibrating energy is stored, damp-
ing is a mechanism of energy dissipation. When a body is
exposed to external damping sources, it is commonly mod-
eled by the simple memory approach (Rayleight damping)
(Osiński 1998). By the other hand, when a structure devel-
ops internal friction under a load at a molecular scale, there
is a tendency to find new equilibrium positions, this might be
caused by inclusions, pores or crystallization. In this case, the
vibration characteristic stress may be modeled by a fading
memory approach which depends on strain rate. This phe-
nomenon is known as viscoelasticity, a rheological behavior
of materials presenting anelastic deformation. Differential
models are more commonly used to model viscoelasticity,
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where combinations of uni-dimensional elastic elements and
viscous dashpots represent this behavior (Gutierrez-Lemini
2014). This is how there is a linear relation between the stress
with its derivatives and strain with its derivatives, the general
case with mechanical properties a and b is given by,

b0σ (t) +
n∑

i=1

bi
diσ (t)

dti
= a0ε (t) +

m∑

i=1

ai
diε (t)

dti
(5)

A combination of both Kelvin–Voigt model and Maxwell
model are more suitable to represent the viscoelastic charac-
teristics of internal friction, including creep, stress relaxation,
hysteresis, recovery response and stress dependence on strain
rate (Assie et al. 2010). In this sense, the standard linear vis-
coelastic solid model or simply the Zener model responds
to this characteristic. Particularly from assuming that the
interfaces are isotropic, with constant Poisson ration and con-
sidering only a viscoelastic shear strain, with n = 1 and
m = 1 and expressing τ = η/G0, as the relaxation time, the
Zener model now becomes,

σ (t) + τ
dσ (t)

dt
= G0ε (t) + G∞τ

dε (t)

dt
. (6)

4.2 Principle of model reduction

Nowadays, most of simulation models are implemented with
the finite element method. Thesemodels, that we could name
FE regular models, are highly specialized: one model can
only represent the behavior of a unique multilayer structure.
Such model is limited in design because some major design
parameters are not explicit in the behavioral model such as
the number of layers or the constitutive laws of each layer.

We define a FE regular model as:
A finite element regular model can only represent the

behavior of a unique multilayer structure: all design param-
eters must be determined for each simulation (such as the
number of layers, the fiber orientation of each layer and the
nature of fibers and matrix). A FE regular model is not a
parametrized model useful for searching some design solu-
tions (i.e. exploring solution spaces), but rather for validating
a design solution.

Definition of a Reduced Model:
In our approach, a reduced model is a model:

– Having a tensorial form,
– Making explicit design variables that are not explicit in
a FEM; they are the number of layers, the orthotropic
constitutive laws of each layer (including the fiber ori-
entation), and the matrix interface properties (viscosity,
thickness). The model becomes a parametrized model,

– Being low computing cost; the size of a model is much
lower than a FEM regular model.

A reduced model is useful in exploring solution spaces for
defining the main parameters of a composite structure.

4.3 First numerical approach tomake explicit the
design parameters, towards a reduced,
parametric andmulti-scale behavioral model

We make explicit in our model the design variables deter-
mining (Fig. 6):

– The nature of the multi-layer structure : the number of
plies,

– The constitutive law of each ply being defined by the
usual nine material characteristics for an orthotropic law.

By doing it, we achieve a model that is said:

– Parametrized, making explicit some design parameters,
– Multi-scale because the different designvariables address
different scales of the composite structure, but together
acting on the overall behavior of the structure.

To achieve such parametrized and multi-scale model, we
implement a numerical approach based on the variable sep-
aration principle. The proper generalized decomposition
method (PGD method) has been implemented; it has the
advantage to lead, both, to a parametrized model and a to
reduced model.

In a laminated composite, the PGDmethod randomlyfinds
solutions at the meso-scale and then they are tested at the
macro-scale until achieving convergence. The PGD implies
a separation of space variables and the solution is approxi-
mated by a sum of functional products called “modes”. For
simplicity but without loose of generality, the procedure is

Fig. 6 Lamination model
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exposed in the case of two dimensions, but similarly more
dimensions may be added.

U (x, y) ∼= Un (x, y)

Un (x, y) =
n∑

i=1

{
Xi
u · Y i

u
Xi
v · Y i

v

}
(7)

In this separated representation, X and Y are functions along
each separated domain x and y, respectively. The prod-
ucts are performed in each direction u and v as shown in
Eq. (7). The functions are not needed to be known “a-priori”,
instead they are constructed from an “alternative direction
strategy”. This strategy implies that from an initial condi-
tion of (n − 1) modes already known, the next mode n is
obtained by an iteration process such that in iteration p

it is possible to compute 1-D

{
X p
u

X p
v

}
vector space from a

random guess of functions

{
Y p−1
u

Y p−1
v

}
in a previous itera-

tion p − 1. So the displacement, strain and test functions
are,

Un−1,p
(x,y) =

(
n−1∑

i=1

{
Xi
u · Y i

u
Xi
v · Y i

v

})
+
{
X p
u · Y p−1

u

X p
v · Y p−1

v

}
(8)

ε (n − 1, p) =

⎛

⎜⎜⎝
n−1∑

i=1

⎧
⎪⎪⎨

⎪⎪⎩

dXi
u

dx · Y i
u

Xi
v · dY i

v
dy

Xi
u · dY i

u
dy + dXi

v
dx · Y i

v

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟⎠

+

⎧
⎪⎪⎨

⎪⎪⎩

dX p
u

dx · Y p−1
u

X p
v · dY p−1

v
dy

X p
u · dY p−1

u
dy + dX p

v
dx · Y p−1

v

⎫
⎪⎪⎬

⎪⎪⎭
(9)

ε∗ (p − 1) =

⎧
⎪⎪⎨

⎪⎪⎩

dX∗
u

dx · Y p−1
u

X∗
v · dY p−1

v
dy

X∗
u · dY p−1

u
dy + dX∗

v
dx · Y p−1

v

⎫
⎪⎪⎬

⎪⎪⎭
(10)

Then, from the just computed

{
X p
u

X p
v

}
, it is possible to obtain

{
Y p
u

Y p
v

}
in iteration p with displacement and test function

as,

Un−1,p
(x,y) =

(
n−1∑

i=1

{
Xi
u · Y i

u
Xi
v · Y i

v

})
+
{
X p
u · Y p

u

X p
v · Y p

v

}
(11)

ε∗ (p − 1) =

⎧
⎪⎪⎨

⎪⎪⎩

dX p
u

dx · Y ∗
u

X p
v · dY ∗

v

dy

X p
u · dY ∗

u
dy + dX p

v
dx · Y ∗

v

⎫
⎪⎪⎬

⎪⎪⎭
(12)

The iteration process stops when the norm εp of the differ-
ence between the obtained mode at iteration p and the last
incorporated mode (n − 1) is small. Similarly, the aZpprox-
imated solution Un (x, y) is achieved when the sum of all
modes results in a sufficiently small residual εres . As a con-
sequence of the separation of space domains, the number of
equations to be solved are N × D at each iteration, instead
of ND as in FEM.

The most remarkable characteristic of the PGDmethod is
the ability to handle parametric computations as a separated
extra domain (Chinesta et al. 2014), in such a way rather than
a single solution, the method produces a model that allows
obtaining solutions within a scenario inside the boundaries
of a weight function. This is very different and efficient than
other parametric analysis as theMonteCarlomethod,where a
solution has to be computed several times, eachwith different
input quantities to obtain a set of solutions to fit a model (El-
Hafidi et al. 2017).

When Eqs. (8), (9) and (10) are implemented on the
governing Eq. (3), the orthotropic material properties are
introduced according to Table 2, where the bodies i are num-
bered as indicated in Fig. 6.

By the other side, the experimental data do not produce
detailed information about the viscoelastic properties in the
interfaces, only a global idea of the beam viscoelastic behav-
ior was given. Therefore, the four fractional operators in
Eq. (13) must be derived from an identification procedure.

4.4 Second numerical approach: parametrization of
fractional operators to represent the damping
behavior due to thematrix

Beyond the Zener model, additional elastic elements and
dashpots may be added in more complex models with the
intention to gain accuracy; however, experimental results
show a weaker frequency dependence than the effect of a
viscous dashpot with constant loss factor for all frequencies
(Pritz 1996). For this reason, especially in the case of met-
als and polymers, it is known that viscous friction is not the
actual characteristic of their viscoelastic behavior; indeed,
there are several research works reporting that the stress in a
dashpot representing structural internal friction is not com-
pletely related to a derivative of integer order, as it is used in
fluids, but instead it could be related in a diminished extent
to the time variation of strain or a fractional derivative of the
strain. Further, in Pritz (1996), the advantages of assuming
a four-parameter Zener model is explained in terms of the
satisfaction of the thermodynamic constraints if the order
of the derivatives α = β, and a wider frequency range of
application. So Eq. (6) becomes,

σ (t) + τα d
ασ (t)

dtα
= G0ε (t) + G∞τα d

αε (t)

dtα
. (13)
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Table 2 Mechanical properties Units Interface (epoxy) Ply (fibers) Layer (fibers+epoxy)

Young’s module (Exx)
(principal direction)

GPa 3.5 294 170

Young’s module (Eyy) GPa 3.5 15 15

Young’s module (Ezz) GPa 3.5 15 15

Poisson’s ratio (vxy) – 0.35 0.27 0.27

Poisson’s ratio (vyz) – 0.35 0.4 0.4

Poisson’s ratio (vxz) – 0.35 0.27 0.27

Shear modulus Gxy GPa 1.85 4.8 4.8

Shear modulus Gyz GPa 1.85 3.2 3.2

Shear modulus Gxz GPa 1.85 4.8 4.8

Layer thickness mm 0.193

Total thickness for 8 layers (h): 1.544 mm

Length (l): 250 mm

Width (w): 25 mm

Stacking sequence: [00, 90, 90, 00]s

By the Riemann–Liouville, the definition of the fractional
operator is (Ostalczyk 2016)

dα f (t)

dtα
= 1

Γ (1 − α)

d

dt

∫ t

0

f (s)

(t − s)α
ds (14)

where the gamma function � introduces the memory effect
by,

n! = Γ (n + 1) . (15)

In a time integration scheme, the Grünwald approximation
to the fractional operator is used instead, with time steps
h = �t , so that the w j are the non-integer infinite sum
of binomial coefficients introducing the memory effect; this
may be approximated finite if h is small enough, so the frac-
tional operand develops into,

dα f (t)

dtα
∼= 1

hα

Nt∑

j=0

w j f (t − jh)

w j = Γ ( j − α)

Γ (−α) Γ ( j + 1)
= j − (α + 1)

j
w j−1. (16)

Finally, using the Grünwald approximation as in Galucio
(2004), the viscoelastic shear strain in Eq. (13) in tensor nota-
tion for an interface i is,

εixy visc (t) =
(
1 − τα

τα + �tα

)
G∞ − G0

G∞
εxy ela (t)

− τα

τα + �tα

Nt∑

j=1

w jε
i
xy visc (t − j�t) . (17)

It is seen from the equation above that the viscoelastic strain
is composed both by an instantaneous effect and a history
effect computed at previous time steps so,

σ i
xy (t)visc = σ i

xy (t)inst + σ i
xy (t)mem

σ i
xy (t)inst = 2G0

(
1 + τα

τα + �tα

)

G∞ − G0

G∞
εxy ela (t) Instantaneous stress

σ i
xy (t)mem = 2

G∞
G0

τα

τα + �tα

Nt∑

j=1

w jε
i
xy mem (t − j�t) Memory stress

(18)

Monte Carlo simulations have been frequently used by dif-
ferent authors to construct models to identify the viscoelastic
parameters from experimental FRFmeasurements (El-Hafidi
et al. 2017; Irazu and Elejabarrieta 2017; Zhang et al. 2013).
By this way, several discrete simulations are selected with
carefully selected points of the parameters to be found, so
the solution has to be computed several times. In contrast,
the PGD method is able to produce a parametrized model
solution incorporating an additional domain for each vari-
able, so they can have a variation within a given probability
distribution. An identification algorithm based on a function
that minimizes the error between the experimental data and
the simulated response may be used, but the main objective
of this work is rather to define the methodology to develop
parametrized models, so that optimization algorithms may
be applied to them in a future work. Therefore, as a first
instance it is decided to keep the relaxation time τ and the
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Table 3 Viscoelastic properties at the interfaces

τ = 1.031 × 10−7 s

G0 = 3.24 × 106 Pa

0 ≤ α ≤ 1

5 × 107 Pa ≤ G∞ ≤ 5 × 109 Pa

short-term shear modulus G0 constant, using the data pub-
lished in (Irazu and Elejabarrieta 2017) and exploring the
best solution making direct variations on the fractional order
α and the long-term shear modulusG∞, as shown in Table 3.

Each domain x and y must be specified separately by a
1-D mesh, which at the same time shall be defined in each
direction u and v, as illustrated in Fig. 7, assuming 2D plane
strain.

In this case, incorporating the fractional parameters in
Eq. (7) becomes,

U (x, y) ∼= Un (x, y, a, d)

Un (x, y) =
n∑

i=1

{
Xi
u · Y i

u · Ai
u · Di

u
Xi
v · Y i

v · Ai
v · Di

v

}
(19)

The approach adopted here is to assume orthotropic elas-
tic plies and isotropic viscoelastic interfaces. To the sake of
simplicity plane strain will be assumed so in this case for an
orthotropic material the mechanical properties are,

J = 1

1 − ϑxyϑyx

[
Hi
]

= J

⎡

⎣
Exx Exx

(
ϑyx

)
0

Exx
(
ϑyx

)
Eyy 0

0 0 Gxy/J

⎤

⎦ (20)

Mechanical properties are first assigned at the layer scale as a
discrete function trough the thickness domain y, keeping the
x domain constant and equal to unity. Just the shear modulus
Gxy is presented here, but the other properties are handled
by the same manner,

Gxy = Gxu · (Gyu0 · Gqu0 + · · · + Gyui · Gqui

+ · · · + Gyun · Gqun)

+
(
1 +

(
τ (α)

τ (α) + �t (α)

)
Gy∞ − Gy0

Gy0

)

Gxu = 1

Gyui =
{
Gxyi i f y = bodyi
0 i f y �= bodyi

Gy∞ =
{
0 i f i /∈ inter f ace
d i f i ∈ inter f ace

5 × 107 Pa ≤ d ≤ 5 × 109 Pa

αau = αav = α = a; 0 ≤ a ≤ 1 (21)

It is convenient to group the known terms to the right of the
governing equation, so recalling from Eq. (18), it is possible
to redefine the load into the beam adding the memory load
so,

R = Rext + Rmem

Rext = fy (t) Instantaneous stress

Rmem = 2
τ (αa)

τ (αa) + �t (αa)
G∞
G0

Hi
xy

×
Nt∑

j=1

w jU
i
mem (t − j�t) Memory stress (22)

Fig. 7 PGD implementation and fractional operator parametrization
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Summarizing, from Eq. (4),

σ xx = J · (Exxεxx
(
1 − ϑyzϑzy

)+ Exxεyy
(
ϑyx − ϑzxϑyz

))

σ yy = J
(
Eyyεyy (1 − ϑxzϑzx ) + Exxεxx

(
ϑyx − ϑzxϑyz

))

σ xy = 2Gxyεxy ela + 2Gxyεxy visc (23)

Then the governing Eq. (3) becomes,

∫Ω σ xx · ε∗
xx · dx · dy · dd · da · dt

+∫Ω σ yy · ε∗
yy · dx · dy · dd · da · dt

+∫Ω σ xy · 2ε∗
xy · ·dx · dy · dd · da · dt

−ρ ∫Ω

∂2Ui

∂t2
· u∗ · dx · dy ·

dt = ∫Γ R · u∗ · dΓ · dd · da · dt (24)

Incorporating domains d and a in Eqs. (9) and (10) and apply-
ing these to Eq. (24),

σ xx · ε∗
xx = J ·

(
Exx

((
n−1∑

i=1

(
dXi

u

dx

)
· Y i

u · Di
u · Ai

u

)

+
(
dX p

u

dx

)
· Y p−1

u · Dp−1
u · Ap−1

u

)
(1 − ϑyzϑzy)

+Exx

((
n−1∑

i=1

Xi
v

(
dY i

v

dy

)
· Di

v · Ai
v

)

+X p
v ·
(
dY p−1

v

dy

)
· Dp−1

v · Ap−1
v (ϑyx − ϑzxϑyz)

)

·
(
dX∗

u

dx

)
· Y p−1

u · Dp−1
u · Au p − 1

σ yy · ε∗
yy = J ·

(
Eyy

((
n−1∑

i=1

Xi
v

(
dY i

v

dy

)
· Di

v · Ai
v

)

+X p
v ·
(
dY p−1

v

dy

)
· Dp−1

v · Ap−1
v (1 − ϑyzϑzy)

+Exx

((
n−1∑

i=1

(
dXi

u

dx

)
· Y i

u · Di
u · Ai

u

)

+
(
dX p

u

dx

)
· Y p−1

u · Dp−1
u · Ap−1

u

)
(ϑyx − ϑzxϑyz)

)

·X∗
v ·
(
dY p−1

v

dy

)
· Dp−1

v · Ap−1
v

σ xy · 2ε∗
xy =

(
Gxy

((
n−1∑

i=1

(
Xi
u · dY

i
u

dy
· Di

u · Ai
u

+dXi
v

dx
· Y i

v · Di
v · Ai

v + 2Gxyεxy visc · Di
v · Ai

v

))

+X p
u · dY

p−1
u

dy
· Dp−1

u · Ap−1
u + dX p

v

dx
· Y p−1

v · Dp−1
v

· Ap−1
v + 2Gxyεxy visc · Dp−1

v · Ap−1
v

))

·
(
X∗
u ·
(
dY p−1

u

dy

)
· Dp−1

u · Ap−1
u

+
(
dX∗

v

dy

)
· Y p−1

v · Dp−1
v · Ap−1

v

)

R = fy(t) · X∗
v ·
(
dY p−1

v

dy

)
· Dp−1

v · Ap−1
v (25)

A final important step is to reorganize Eq. (25) such that
the domain x is apart from the domain y and the unknowns
remain at the left part of the equation. Finally, after converg-
ing to a solution, from the 1D solutions a new solution is
mapped in 2D to the y direction and another one to the x
direction. Then in Fenics, the 2D solution may be projected
either to separated 2D function spaces or combine them to a
2D vector function space.

4.5 Combining numerical approach to an
experimental process to identify damping
Parameters

Using the same setup shown in Fig. 3, two sinusoidal exci-
tation forces were generated with a maximum amplitude of
1N. The frequencieswere 50Hz and 120Hz, so they are apart
from the resonances. The responses were passed through a
high pass filter with cut frequency on 10 Hz. To compare the
results, the simulated data were first synchronized having as
reference the excitation force.

Identification procedure
Recalling that only the long-term relaxation module G∞

and the fractional order derivative α were parametrized, a
quick simple direct search over the solution scenario gener-
ated by the PGDmethodwas performed, so that firstG∞ was
adjusted against the response amplitude with 50 Hz excita-
tion and fixing α = 0.9. Then α was adjusted against the
response amplitude with 120 Hz excitation. This identifica-
tion is done on post-processing; the computing cost is very
low since technically these are arrays projected on 2D FEM
meshes. Some of the values used are presented in Table 4,
and the results are presented in Fig. 8.
As expected, adjusting the long-term shear modulus lags the
simulated response at 50Hz; however, the results above show
a better fit at 120 Hz if the loss factor is not related to an inte-
ger order of the strain derivative as it is in the classic Zener’s
model, but to a derivative of diminished order, this trend
agrees with the ones analyzed in the references. The data
fit may be improved by incorporating the relaxation time
to the PGD reduced model and using an optimization algo-
rithm that minimizes the error, with the advantage that every
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Table 4 Fractional parameter
identification

50 Hz 120 Hz

G∞ [Pa] d1 = 1 × 108 d2 = 6 × 108 d3 = 7, 1 × 108 d3 = 7, 1 × 108

α a1 = 0.9 a1 = 0.9 a2 = 0.63

Fig. 8 Fractional parameters adjustment. Left: adjusting G∞ with 50 Hz excitation force. Right: adjusting α with 120 Hz excitation force

computed solutionmay be quickly calculatedwith light com-
puting resources.

5 Amulti-scale, reduced and parametrized
model for fast simulation in CAE

5.1 A parametrizedmodel of the dynamic behavior
of composite beam

Wepropose a reducedmodelmaking explicit themain design
parameters of the laminated beam even if these parameters
occurs at different scales. Figure 9 presents:

– these design parameters,
– the variables allowing to know the overall behavior of the
laminated beam.

5.2 A separated and reducedmodel of the dynamic
behavior of composite beam

The application of the PGDmethod adds the required dimen-
sions. In this case, the displacement field is,

U (x, y) ∼= Un (x, y, q, s, p,m)

Un (x, y) =
n∑

i=1

{
Xi
u · Y i

u · Qi
u · Siu · Pi

u · Mi
u

Xi
v · Y i

v · Qi
v · Siv · Pi

v · Mi
v

}
(26)

To the sake of simplicity, in this work the model is limited
to symmetrical plies orientation; additionally, the plies are
grouped as shown in Fig. 10 so they can be treated individ-
ually by coefficients on the appropriate dimension domain,
thus computing individual stresses needs grouping the prop-
erties as shown in Fig. 10 for the Young’s modulus.

Under this circumstances, theYoungmodulus is expressed
by,

Ei
xx = Exu · Ei

yu · Ei
qu · Ei

su · Ei
pu · Ei

mu

Exu = 1 Material properties direction u through domain x

Ei
yu =

{
Ei
xx i f y = bodyi

0 i f y �= bodyi
material properties direction u through domain y

Ei
qu =

{
q i f y = bodyi
1 i f y �= bodyi

Variation of material properties

Ei
su =

{
cos (θs) + Ei

zz
Ei
xx
sin (θs) bodyi ∈ group V 1

1 i f bodyi /∈ group V 1

Ply orientation of group V1

Ei
pu =

{
cos

(
θp
)+ Ei

zz
Ei
xx
sin

(
θp
)
i f bodyi ∈ group V 2

x1 i f bodyi /∈ group V 2

Ply orientation of group V2

Ei
mu1 =

{
1 × 10−14 otherwise
1 i f m ≥ 8

Presence of group V1

Ei
mu2 =

{
1 × 10−14 otherwise
1 i f m ≥ 6

Presence of group V2.

(27)

5.3 Model processing for CAE

First, we developed a finite element model to simulate the
dynamic behavior of our laminated beam.

The FEM models has been realized with Ansys® by
implementing a distributed parallel process. Figure 11
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Fig. 9 Design variables of the lamination model

Fig. 10 Grouping of plies

presents the different models being developed, the cost pro-
cessing, and the advantages and inconvenient.

We realize (Fig. 11):

1 Overall orthotropic models with 3D elements and next
with 2D elements : such models and not separated and
cannot allow the user to represent the damping effect at
interfaces level,

2 Separated models:

– Separately representing thebehavior of eachply: each
ply is a 2D plane,

– Representing the behavior of the matrix between the
plies: the matrix is represented by 2D planes also
having capacities of viscoelasticity,

We were not able to compute a FEM viscoelastic separated
model with more than two plies. Figure 11 shows that two
plies and one interface is computed in 88 h.

Second, we used our reduced and parametrized model.
Table 5 compares the processing cost from the two-ply-
laminated beam having a viscoelastic behavior. The models
were implemented on:

– For the FEM with an Intel® Xeon® CPU @ 2.5 GHz, 2
processors, 16 cores, Ram memory: 40 GB, with a par-
allel processes,

– For the separated and parametrized model on an Intel®
core i7 processor, 4 cores. Ram memory 16 GB, without
any parallel processes.

As an illustration, we used our reduced and parametrized
model to simulate a laminated composite beam having more
than two plies: our model is not limited. Figure 12 shows the
detail of the shear strain distribution through the thickness
direction in a eight-ply beam. The simulation was computed
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DESCRI
PTION

MESH REPRESENTATION MODEL AND COSTS COMMENTS

O
VE

RA
LL

 M
O

DE
L

Full 3D model,

One equivalent 
single layer

10 elements 
through the 
thickness direc�on

Elements: 2.622.780
Nodes: 2.904.660
Max allocated memory: 23,6 GB
Compu�ng �me: 364 sec

Impossible to compute 
separately the plies 

behavior and to 
represent the visco-

elas�c behavior due to 
the matrix

2D plane strain, 

One equivalent 
single layer

Elements: 256.000
Nodes: 262.000
Max allocated memory: 17,5 GB
Compu�ng �me: 30 sec

SP
ER

AT
ED

 M
O

DE
L

2D plane strain,

Un�l 8 Layers 

For 2 layers:
Elements: 256.000
Nodes: 307,248
Max allocated memory: 17,5 GB
Compu�ng �me: 32 sec

The behavior of the 
plies has been 
separated but the 
viscosity due to the 
matrix between the 
plies is not represented. 
Convergence difficul�es 
due to mismatch of 
proper�es

VI
SC

O
-E

LA
ST

IC
 S

EP
AR

AT
ED

 
M

O
DE

L

2D plane strain,

2 plies + 1 inteface For 2 layers: 

Elements: 840.000
Nodes: 976.122
Max allocated memory: 19,5 GB
Compu�ng �me: 88 hours and 21 
minutes

The behavior of the 
plies have been 
separated and the 
behavior of each ply 
interface is represented: 
also the viscosity is 
represented at the scale 
of the ply interface

Fig. 11 FEMs being developed

Table 5 Comparing FEM and the reduced model of the two-ply-laminated beam having a viscoelastic behavior

FEM Reduced and parametrized
viscoelastic model

Error

Machine: server distributed processes: 16 Machine: laptop no distributed processes

Max shear strain (%) Computing time Max shear strain (%) Post-processing time

Number of layers:2 Stacking sequence: [90, 00, ]∗ 4.83 × 10−5 71 h 4.55 × 10−5 15 s 5.8%
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Fig. 12 Shear strain distribution through the thickness direction

in a couple of seconds. An equivalent result was attempted to
be run using FEM, but it was impossible to run an explicit and
non-linear model with more than two layers on the available
computer resources.

6 Conclusion

Viscoelastic behavior was detected in laminated compos-
ite beams through experimental measurements, particularly
observing the phase shift as function of frequencyonmobility
and stiffness frequency response functions. The viscoelastic
characteristic was assumed to be on the interfaces between
plies, whereas the fibers were considered responding with an
elastic characteristic. Therefore, the Zener model was used
to represent the viscoelastic characteristic of the interfaces,
but it was found that modifying its derivatives by deriva-
tives of fractional order, the model becomes more feasible to
fit experimental measurements. The implementation of frac-
tional derivatives implied the use of a discrete version of the
fadingmemory effect, characteristic of viscoelasticity, so that
it could be applied to the Newton–Raphson time integration
scheme. The PGD method was used to solve the governing
equations at each time step, this is how models were devel-
oped, including the parametrization of the fractional order
derivative, the long-term shear stress modulus, the variation
of material properties, the orientation of groups of plies and
of the number of plies.

Computationally speaking, these models are multidimen-
sional arrays so finding particular solutions does not imply
a high-computational cost; therefore, the implementation of
optimization algorithms reaches faster results.
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