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Introduction

As a matter of fact, the interest of rational series, over the alphabets Y 0 = {y n } n∈N , Y = Y 0 \ {y 0 } and X = {x 0 , x 1 }, is twofold: algebraic and analytic.

Firstly, (from the algebraic point of view) these series are closed under shuffle products and the shuffle exponential of letters (and their linear combinations) is precisely their Kleene star 6 . Secondly, the growth of their coefficients is tame 7 [START_REF] Duchamp | Mathematical renormalization in QED via noncommutative generating series[END_REF][START_REF] Hoang | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF]. [START_REF] Duchamp | Mathematical renormalization in QED via noncommutative generating series[END_REF][START_REF] Hoang | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF][START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF] and as such their associated polylogarithms can be rightfully computed [START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF][START_REF] Hoang | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF][START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF].

Doing this, we recover many functions (as simple polynomials, for instance) forgotten in the straight algebra of polylogarithms at positive indices, which can be viewed as the image of the following isomorphism of algebras [START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF] Li • : (C X , ⊔⊔, 1 X * ) -→ (C{Li w } w∈X * , ×, 1),

x s 1 -1 0 x 1 . . . x s r -1 0 x 1 -→ Li s 1 ,...,s r , ∀n ≥ 0, x n 0 -→ log n (z) n! .
To study multi-indexed polylogarithms, one relies on the one-to-one correspondence between the multi-indices (-s 1 , . . ., -s r ), in Z r ≤0 (or (s 1 , . . . , s r ) ∈ N r + ), and the words y s 1 . . . y s r , in the monoid Y * 0 , indexing polylogarithms by y s 1 . . .y s r as follows [START_REF] Duchamp | Harmonic sums and polylogarithms at negative multi-indices[END_REF][START_REF] Duchamp | Mathematical renormalization in QED via noncommutative generating series[END_REF][START_REF] Hoang | Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier[END_REF][START_REF] Hoang | Lyndon words, polylogarithmic functions and the Riemann ζ function[END_REF]] : Li y s 1 ...y s r = Li s 1 ,...,s r and Li - y s 1 ...y s r = Li -s 1 ,...,-s r . We will explain the whole project to extend Li • over a sub algebra of rational power series. In particular, we study here various aspects of C {Li w } w∈X * , where C denotes the ring of polynomials in z, z -1 and (1z) -1 , with coefficents in C, and we will express polylogarithms (resp. harmonic sums) at negative multi-indices as polynomials in (1z) -1 (resp. N ∈ N), with coefficients in Z (resp. Q).

We will concentrate, in particular, on algebraic and analytic aspects of this extension allowing index polylogarithms at non positive multi-indices by rational series and regularize (divergent) polyzetas at non positive multi-indices.

The paper is structured as follows:

(i) In Section 2, we will provide some background consisting in the algebraic 1 Email: gheduchamp@gmail.com 2 Email: hoang@univ-lille2.fr 3 Email: ngoquochoanhp1986@gmail.com 6 i.e. for any S ∈ C X such that S | 1 X * = 0, S * denotes the sum 1 X * + S + S 2 + S 3 + . . . and is called its Kleene star (see [START_REF] Berstel | Rational series and their languages[END_REF]). 7 i.e. for such a rational series S over X, there exists real numbers K, R > 0 such that, for any w ∈ X * , the coefficient | S | w | is bounded from above by K • R |w| .

combinatorial framework on which the first structures of polylogarithms and harmonic sums rely, namely their indexation by words and then by (non commutative) polynomials.

(ii) In Section 3, we observe that, as such, the derivations, z d dz and (1z) d dz are continuous (for the standard topology) and so are their sections z z 0 ds s • and z z 0 ds 1-s • (for z 0 in a suitable non-void open domain) but, in order to satisfy the standard asymptotic condition (see eq. [START_REF] Eilenberg | Automata, Languages, and Machines[END_REF], we need other sections which we develop in this paragraph. We will then study the bi-integro-differential algebra and some functional analysis aspects of polylogarithms, here defined on the cleft complex plane C \ (] -∞, 0] ∪ [1, +∞[). We will give also a linear basis of the algebra of polylogarithms with respect to coefficients being Cpolynomials of {z, 1/z, 1/(1z)}.

(iii) In Section 4, in order to extend, to classes of rational series, the indexation of Li • , we review properties of rational series and the notation of rational expressions.

(iv) In Section 5, in order to study Kummer functional equations on polylogarithms, via their non commutative generating series satisfying noncommutative differential equation, we define polylogarithms on the universal covering of C \ {0, 1}.

(v) Finally, in Section 6, the extended double regularization of divergent polyzetas, on

C X ⊔⊔ C[x * 0 ] ⊔⊔ C[(-x * 0 )] ⊔⊔ C[x * 1 ] and C Y C[y * 1 ]
, is obtained. These studies wil be applied to obtain solutions of KZ 3 and examples of associators with rational coefficients [START_REF] Duchamp | About some Drinfel'd associators[END_REF][START_REF] Ngoc | On solutions of KZ 3[END_REF].

Polylogarithms and algebraic combinatorial framework

Let us, now, go into details, using the notations of [START_REF] Berstel | Rational series and their languages[END_REF][START_REF] Reutenauer | Free Lie Algebras[END_REF], (i) We construct the bialgebras.

(C X , conc, ∆ ⊔⊔ , 1 X * , ε) and (C Y 0 , conc, ∆ , 1 Y * 0 , ε) in which, for any i = 0, 1 and j ≥ 0, one has ∆ ⊔⊔ (x i ) = x i ⊗ 1 X * + 1 X * ⊗ x i , ∆ (y j ) = y j ⊗ 1 Y * + 1 Y * ⊗ y j + ∑ k+l= j y k ⊗ y l .
and conc is the usual concatenation product between noncommutative polynomials. Out of these two, only the first one is Hopf, the last one contains 1 + y 0 which is group-like and has no inverse (see infiltration product phenomenon in [START_REF] Bui | Pure) transcendence bases in φ -deformed shuffle bialgebras[END_REF]) and therefore has no antipode.

(ii) Let C rat X denote the closure of C X by rational operations {+, ., * } [START_REF] Berstel | Rational series and their languages[END_REF][START_REF] Duchamp | Un critère de rationalité provenant de la géométrie noncommutative (à la mémoire de Schützenberger)[END_REF] (it is closed by shuffle products). By Kleene-Schützenberger's theorem (see below paragraph 4.1), any power series S belongs to C rat X if and only if it is recognizable by an automaton admitting a linear representation (β , µ, η)

of dimension n, with β ∈ M 1,n (C), µ : X * -→ M n,n (C), η ∈ M n,1 (C)
such that, for any w ∈ X * , one has (see [START_REF] Berstel | Rational series and their languages[END_REF][START_REF] Duchamp | Un critère de rationalité provenant de la géométrie noncommutative (à la mémoire de Schützenberger)[END_REF] and paragraph 4.1) S | w = β µ(w)η.

(iii) Let us consider the following morphism of algebras, defined by

π X : (C Y , conc, 1 Y * ) -→ (C X , conc, 1 X * ), y s 1 . . . y s r -→ x s 1 -1 0 x 1 . . . x s r -1 0 x 1 .
It admits an adjoint π Y for the two standard scalar products, i.e.

∀p ∈ C X , ∀q ∈ C Y , π Y (p) | q Y = p | π X (q) X .
One checks immediately that π Y (x s-1

0 x 1 ) = y s , ker(π Y ) = C X x 0 and π Y re- stricted to the subalgebra (C 1 X * ⊕ C X x 1 , .) is an isomorphism, inverse of π X .
In this work, unless symmetries are involved (i.e. until section 5) Ω denotes the cleft plane C \ (] -∞, 0] ∪ [1, +∞[) and H (Ω), the set of holomorphic functions over the simply connected domain Ω.

The principal object of the present paper, as in [START_REF] Duchamp | Harmonic sums and polylogarithms at negative multi-indices[END_REF][START_REF] Duchamp | Mathematical renormalization in QED via noncommutative generating series[END_REF], is the polylogarithm well defined, for any (s 1 , . . . , s r ) ∈ C r , r ∈ N + and for any z

∈ C such that | z |< 1, by Li s 1 ,...,s r (z) := ∑ n 1 >...>n r >0 z n 1 n s 1 1 . . . n s r r .

So is the following Taylor expansion

Li s 1 ,...,s r (z)

1 -z = ∑ N≥0 H s 1 ,...,s r (N) z N ,
where the arithmetic function

H s 1 ,...,s r : N -→ Q is expressed by H s 1 ,...,s r (N) := ∑ N≥n 1 >...>n r >0 1 n s 1 1 . . . n s r r .
Here, Li s 1 ,...,s r can also be obtained by iterated integrals (which provide for free their analytic continuations), along paths in Ω and with respect to the differential forms

ω 0 (z) = dz z and ω 1 (z) = dz 1 -z .
Let H r [START_REF] Goncharov | Multiple polylogarithms and mixed Tate motives[END_REF][START_REF] Zhao | Analytic continuation of multiple zeta functions[END_REF] denote the following domain These limits are no longer valid in the divergent cases and requires the renormalization of the corresponding divergent polyzetas. This has been done for the case of polyzetas at positive multi-indices [START_REF] Costermans | Some Results à l'Abel Obtained by Use of Techniques à la Hopf[END_REF][START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF][START_REF] Hoang | Algebraic combinatoric aspects of asymptotic analysis of nonlinear dynamical system with singular inputs[END_REF] and in [START_REF] Furusho | Desingularization of multiple zetafunctions of generalized Hurwitz-Lerch type[END_REF][START_REF] Guo | Renormalization of multiple zeta values[END_REF][START_REF] Manchon | Nested sums of symbols and renormalised multiple zeta functions[END_REF] and completed in [START_REF] Duchamp | Harmonic sums and polylogarithms at negative multi-indices[END_REF][START_REF] Duchamp | Mathematical renormalization in QED via noncommutative generating series[END_REF] for the case of negative multi-indices. The technique used in [START_REF] Duchamp | Harmonic sums and polylogarithms at negative multi-indices[END_REF][START_REF] Duchamp | Mathematical renormalization in QED via noncommutative generating series[END_REF] (based on encoding polylogarithms, harmonic sums at positive multi-indices by words in Y * ) allows renormalize globally polyzetas at non positive multi-indices (via their noncommutative generating series) but the regularization is not achieved yet. To do that, in the present work, we introduce the rational series as a new and extended encoding suitable to regularize these functions (see [START_REF] Ngoc | On solutions of KZ 3[END_REF] for the analytical justification of such algebraic process). This technique is already presented in [START_REF] Duchamp | The algebra C X ⊔⊔ C rat x 0 ⊔⊔ C rat x 1 and polylogarithms[END_REF], as a preprint, but never was published before.

H r = {(s 1 , . . ., s r ) ∈ C r |∀m = 1, . . . ,
3 Bi-integro-differential algebra of polylogarithms

Differential rings

Let us consider the following group of transformations of B = C \ {0, 1} which permutes the singularities in {0, 1, +∞}

G := {z → z, z → 1 -z, z → z -1 , z → (1 -z) -1 , z → 1 -z -1 , z → z(z -1) -1 }
and let us also consider the following rings :

C ′ 0 := C[z -1 ], C ′ 1 := C[(1 -z) -1 ], C 0 := C[z, z -1 ], C 1 := C[z, (1 -z) -1 ], C ′ := C[z -1 , (1 -z) -1 ], C := C[z, z -1 , (1 -z) -1 ], (1) 
which are differential rings, endowed with the differential operator ∂ z := d/dz and with the neutral element 1 Ω : Ω → C, mapping z to 1 Ω (z) = 1. It follows that Lemma 3.1 One has the following properties (i) For i = 0 or 1,

C ′ i C i C and C ′ i C ′ C . (ii) The differential ring C is closed under action of G : ∀G(z) ∈ C , ∀g ∈ G , G(g(z)) ∈ C .
(iii) The subrings C 0 , C 1 are closed by the involutions {z → z -1 , z → 1 -z} and are exchanged by {z → 1z -1 , z → z(z -1) -1 }, respectively.

Proof. 1). (ii) This is an easy consequence of the fact that the element G ∈ C can be represented in the form:

(i) It is immediate from the definitions of C , C i , C ′ i , i = {0, 1} in (
G(z) = N 1 ∑ n=1 1 z n + N 3 ∑ m=-N 2 (1 -z) m , N 1 , N 2 , N 3 ∈ N.
(iii) It is immediate from the definitions. ✷

Differential and integration operators

Now, let us consider also the differential operators, acting on H (Ω) [START_REF] Ngoc | On a conjecture by Pierre Cartier about a group of associators[END_REF] :

θ 0 = z d dz and θ 1 = (1 -z) d dz and integration operators ι z 0 0 ( f ) = z z 0 f (s)ω 0 (s) and ι z 0 1 ( f ) = z z 0 f (s)ω 1 (s).
One has θ i ι z 0 i = Id H (Ω) (sections of the θ i ). One has other sections of θ i , defined on C {Li w } w∈X * named ι i (without superscripts).

They are in fact, much more interesting (and adapted to the explicit computation of associators), these operators (ι i without superscripts), mentioned in the introduction are (more rigorously) defined by means of a C-basis of

C {Li w } w∈X * = C ⊗ C C{Li w } w∈X * .
(The family (Li w ) w∈X * can be shown to be free free w.r.t. to all rational functions, see [START_REF] Deneufchâtel | Independence of hyperlogarithms over function fields via algebraic combinatorics[END_REF].) Now, we recall that a word is Lyndon if it is always less (for the lexicographic ordering defined by x 0 < x 1 ) than its proper right factors. Their set, noted L yn(X ), is a transcendance basis of the shuffle algebra (C X , ⊔⊔, 1 X * ) (Radford's theorem [START_REF] Radford | A natural ring basis for the shuffle algebra and an application to group schemes[END_REF]). Then

C{Li w } w∈X * ∼ = C[L yn(X )],
one can partition the alphabet of this polynomial algebra in

(L yn(X ) ∩ X * x 1 ) ⊔ {x 0 }
and then get the decomposition

C {Li w } w∈X * ≃ C ⊗ C C{Li w } w∈X * x 1 ⊗ C C{Li w } w∈x * 0 .
Using the following identity [START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF],

ux 1 x n 0 = ux 1 ⊔⊔ x n 0 - n ∑ k=1 (u ⊔⊔ x k 0 )x 1 x n-k 0 ,
we get

ux 1 x n 0 = n ∑ m=0 P m x 1 ⊔⊔ x m 0 ,
where P m ∈ C X is uniquely defined by the above. Thus

Li ux 1 x n 0 (z) = ∑ m≤n Li P m x 1 (z) log m (z) m! .
This means that

B := (z k Li ux 1 (z) Li x n 0 (z)) (k,n,u)∈Z×N×X * ⊔ ((1 -z) -l Li ux 1 (z) Li x n 0 (z)) (l,n,u)∈N + ×N×X * ⊔ (z k Li x n 0 (z)) (k,n)∈Z×N ⊔ ((1 -z) -l Li x n 0 (z)) (l,n)∈N + ×N , is a C-basis of C {Li w } w∈X * .
With this basis, we can define the operator ι 0 as follows Definition 3.2 Define the index map ind :

B → Z by ind(z k (1 -z) -l Li x n 0 (z)) = k and ind(z k (1 -z) -l Li ux 1 (z) log n (z)) = k + |ux 1 |. Then ι 0 is computed as follows ι 0 (b) =      z 0 b(s)ω 0 (s), if ind(b) ≥ 1, z 1 b(s)ω 0 (s), if ind(b) ≤ 0. and, as z = 1, ι 1 is defined by ι 1 ( f ) = z 0 f (s)ω 1 (s)
We will see in section 3.3 that ι 0 is discontinuous. Nevertheless the pair {ι 0 , ι 1 } is adapted to computation of the special solution Li • . One can check easily the following properties. Proposition 3.3 ([10,[START_REF] Duchamp | Mathematical renormalization in QED via noncommutative generating series[END_REF][START_REF] Hoang | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF][START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF]) One has the following properties

(i) The operators {θ 0 , θ 1 , ι 0 , ι 1 } satisfy in particular, θ 1 + θ 0 = θ 1 , θ 0 = ∂ z and ∀k = 0, 1, θ k ι k = Id, [θ 0 ι 1 , θ 1 ι 0 ] = 0 and (θ 0 ι 1 )(θ 1 ι 0 ) = (θ 1 ι 0 )(θ 0 ι 1 ) = Id.
(ii) The subspace C {Li w } w∈X * is closed under the action of {θ 0 , θ 1 } and {ι 0 , ι 1 }. This means that, for any w = y s 1 . . .

y s r ∈ Y * (then π X (w) = x s 1 -1 0 x 1 . . . x s r -1 0 x 1 ) and u = y t 1 . . . y t r ∈ Y * 0 , the functions Li w and Li - u satisfy Li w = (ι s 1 -1 0 ι 1 . . . ι s r -1 0 ι 1 )1 Ω and Li - u = (θ t 1 +1 0 ι 1 . . . θ t r +1 0 ι 1 )1 Ω , ι 0 Li π X (w) = Li x 0 π X (w) and ι 1 Li w = Li x 1 π X (w) , θ 0 Li x 0 π X (w) = Li π X (w) and θ 1 Li x 1 π X (w) = Li π X (w) . (iii) The bi-integro differential ring (C {Li w } w∈X * , θ 0 , ι 0 , θ 1 , ι 1 ) is stable under the action of G 8 ∀h ∈ C {Li w } w∈X * , ∀g ∈ G , h(g(z)) ∈ C {Li w } w∈X * .
(iv) θ 0 ι 1 and θ 1 ι 0 are scalar operators within C {Li w } w∈X * , respectively with eigenvalues λ := z → z(1z) and 1/λ , i.e.

∀ f ∈ C {Li w } w∈X * , (θ 0 ι 1 ) f = λ f and (θ 1 ι 0 ) f = (1/λ ) f .
Proof. The three first points can be checked by (more or less) straightforward computations. The last point needs on the one hand identification of each Li w with its unique lifting to C \ {0, 1} which coincides with Li w on Ω and on the other hand to lift the elements of G so that this group acts on C \ {0, 1} 9 . ✷

Topology on H (Ω) and continuity or discontinuity of the sections ι i

The algebra H (Ω) is that of analytic functions defined over Ω. We quickly describe the standard topology on it (see also [START_REF] Remmert | Theory of complex functions[END_REF]), namely that of compact convergence whose seminorms are indexed by compact subsets of Ω, and defined by

p K ( f ) := || f || K = sup s∈K | f (s)| .
Of course, 8 When the functions Li w and C are extended to B.

p K 1 ∪K 2 = sup(p K 1 , p K 2 ),
and therefore the same topology is defined by extracting a fundamental subset of seminorms, which can be choosen denumerable. As H (Ω) is complete with this topology it is a Fréchet space (see [START_REF] Rudin | Functional analysis, Second Edition[END_REF]) 10 .

With the standard topology above, an operator φ ∈ End(H (Ω)) is continuous iff, with K i compacts of Ω,

(∀K 2 )(∃K 1 )(∃M 21 > 0)(∀ f ∈ H (Ω))(||φ ( f )|| K 2 ≤ M 21 || f || K 1 ),
the algebra C {Li w } w∈X * (and H (Ω) ) is closed under the operators θ i , i = 0, 1. We have build sections of them ι z 0 i , ι 1 , which are continuous and, ι 0 which is discontin- uous and adapted to renormalisation and the computation of associators.

For

z 0 ∈ Ω, let us define ι z 0 i ∈ End(H (Ω)) by ι z 0 0 ( f ) = z z 0 f (s)ω 0 (s) and ι z 0 1 ( f ) = z z 0 f (s)ω 1 (s).
It is easy to check that θ i ι z 0 i = Id H (Ω) and that they are continuous on H (Ω) (for the topology of compact convergence) because for all K ⊂ compact Ω, we have

|p K (ι z 0 i ( f )| ≤ p K ( f )[sup z∈K | z z 0 ω i (s)|],
and this is sufficient to prove continuity. The operators ι z 0 i are also well defined on C {Li w } w∈X * and it is easy to check that

ι z 0 i (C {Li w } w∈X * ) ⊂ C {Li w } w∈X * . Due to the decomposition of H (Ω) into a direct sum of closed subspaces H (Ω) = H z 0 →0 (Ω) ⊕ C1 Ω ,
it is not hard to see that the graphs of θ i are closed, thus, the θ i are also continuous.

To show discontinuity of ι 0 , one of the possibilities consists in exhibiting two sequences f n , g n ∈ C{Li w } w∈X * converging to the same limit but such that

lim ι 0 ( f n ) = lim ι 0 (g n ).
Here, we choose the function z for being approached in a twofold way and if ι 0 were continuous, we would have equality of the limits of the image-sequences (and this is not the case). We first remark that

z = ∑ n≥0 log n (z) n! = ∑ n≥1 (-1) n+1 log n ((1 -z) -1 n! Set f n = ∑ 0≤m≤n log m (z) m! and g n = ∑ 1≤m≤n (-1) m+1 log m ((1 -z) -1 )) m! (these two sequences are in C{Li w } w∈X * ). It is easily seen that ι 0 ( f n ) = f n+1 -1 and then lim n→+∞ ι 0 ( f n )(z) = z -1. Now, for any s ∈ [0, z] with z ∈]0, 1[, one has |g(s)| = | n ∑ m=1 (-1) m+1 log n (1 -s) m! | ≤ n ∑ m=1 | log n (1 -s)| m! ≤ exp(-log(1 -s)) -1 = s 1 -s .
In order to exchange limits, we apply Lebesgue's dominated convergence theorem to the measure space (]0, z], B, dz/z) (B is the usual Borel σ -algebra) and the function p(x) = s(1s) -1 which is -as are the functions g n -integrable on ]0, z] (for every z ∈]0, 1[). Then Hence, for z ∈]0, 1[, we obtain,

lim(ι 0 ( f n )) = z -1 = z = lim(ι 0 (g n ))
. This completes the proof.

4 Extension of Li • to its rational domain.

Rational series

Rational series arise from an extension of finite state (boolean) automata to graphs with costs or weights [START_REF] Eilenberg | Automata, Languages, and Machines[END_REF][START_REF] Schützenberger | On the definition of a family of automata[END_REF]. They have many connections with computer science [START_REF] Berstel | Rational series and their languages[END_REF][START_REF] Schützenberger | On the definition of a family of automata[END_REF] but also with operator and Hopf algebras [START_REF] Duchamp | Un critère de rationalité provenant de la géométrie noncommutative (à la mémoire de Schützenberger)[END_REF][START_REF] Duchamp | Sweedler's duals and Schützenberger's calculus[END_REF]. In short a weighted graph is a finite directed graph with edges marked by weights (taken in a semiring, ring or field) and letters (taken in an alphabet X ) as follows

< tail > x|α -→< head >
this amounts to giving a map µ : X -→ M n,n (C) which is extended to words as µ : X * -→ M n,n (C) by morphism. Along a graph path, weights multiply and letters concatenate, this gives the behaviour of the automaton, which has an initial vector as input β ∈ M 1,n (C) and a final vector η ∈ M n,1 (C) as output ; this behaviour is a series S ∈ C X . It can be proved the following theorem Theorem 4.1 ([1,8,35]) Let X be a finite alphabet and S ∈ C X . The following are equivalent i) S admits a linear representation (β , µ, η) of dimension n i.e. it exists

β ∈ M 1,n (C), µ : X * -→ M n,n (C), η ∈ M n,1 (C) such that, for all w ∈ X * S | w = β µ(w)η (2) 
ii) S belongs to the smallest (concatenation) subalgebra of C X , containing C X and closed by S → S -1 (rational closure 11 of C X ). (ii) For any S, T ∈ Dom(Li • ), one has Li S ⊔⊔ T = Li S Li T .

(iii) One has C X ⊔⊔ C rat x 0 ⊔⊔ C rat x 1 ⊂ Dom(Li • ).
Proof. (i) and (ii): Suppose S, T ∈ Dom(Li • ) and S = ∑ p≥0 S p (resp. T = ∑ q≥0 T q ) their decomposition in homogeneous components, then the family (Li S p ) p≥0 (resp.

(Li T q ) q≥0 ) is summable in H (Ω). This implies ( [START_REF] Bourbaki | General Topology[END_REF] Ch III §6) that the families (Li S p Li T q ) p,q≥0 and then (∑ p+q=n Li S p Li T q ) n≥0 are summable in H (Ω). As

∑ p+q=n

Li S p Li T q = ∑ p+q=n Li S p ⊔⊔ T q = Li (S ⊔⊔ T ) n one gets that S ⊔⊔ T ∈ Dom(Li • ) and Li S ⊔⊔ T = Li S Li T .

(iii): In view of (i,ii) it suffices to check that each of C X , C rat x 0 , C rat x 1 is in Dom(Li • ). The first being given, the property for the last two is a consequence of Kronecker's theorem [START_REF] Zygmund | Trigonometric series[END_REF] i.e. the fact that

C rat x = {P/Q} P,Q∈C[x] Q(0) =0
and the partial fraction decomposition. ✷

This extension is compatible with identities between rational series as Lazard's elimination 12 , for instance, for all S ∈ C rat S ∩ Dom(Li • ) :

Li S (z) = ∑ n≥0 S | x n 0 log n (z) n! + ∑ k≥1 ∑ w∈(x * 0 x 1 ) k x * 0 S | w Li w (z),
Remark 4.3 Here we will be mostly interested by rational series within Dom(Li • ).

But there are other series as the following (infinite sum of rational series).

T = ∑ n≥0 (nx 0 ) * n! = ∑ n≥0 1 n!(1 -nx 0 ) Treves = e ∑ k≥0 B k x k 0
where the Treves topology is just the product topology and therefore limits, for it, are computed term by term 13 . Now, it is easy to see that we have compact convergence because on Ω (or, below, B) as for all φ ∈ H (Ω), and K ⊂ compact Ω (or B) one gets

||e N ∑ k=0 B k φ k k! || K ≤ e N ∑ k=0 B k ||φ || k K k! ≤ e ∞ ∑ k=0 B k ||φ || k K k! = ee e ||φ || K -1 = e (e ||φ || K ) . Now, remarking that Li x k 0 (z) = log k (z)/k!, this proves that T ∈ Dom(Li •
) and Li T (z) = e (e z ) .

12 i.e. X * = (x * 0 x 1 ) * x * 0 . In other words, in C X , (1 -

(x 0 + x 1 )) -1 = (1 -(1 -x 0 ) -1 x 1 )) -1 (1 - x 0 ) -1 . 13 i.e. S n → S iff (∀w ∈ X * )(lim n S n | w = S | w ).
The morphism Li • is no longer injective on its domain but the family (Li w ) w∈X * is still C -linearly independant [START_REF] Hoang | Differential Galois groups and noncommutative generating series of polylogarithms[END_REF]. We will use several times the following lemma which is characteristic-free. 

Stars of the plane

with 15 P j ∈ R[t] pol , P j (z) = 0 for all j (we will, in the sequel refer to these expressions as packed linear relations). We choose one of them minimal with respect to the triplet [N, deg(P N ), ∑ j<N deg(P j )], lexicographically ordered from left to right 16 .

Remarking that d(P(z)) = P ′ (z) (because d(z) = 1), we apply the operator d -α N Id to both sides of (3) and get

N ∑ j=1 (P ′ j (z) + (α j -α N )P j (z))e α j = 0. (4) 
Minimality of (3) implies that (4) is trivial i.e. P ′ N (z) = 0 and (∀ j = 1..N -1) (P ′ j (z) + (α j -α N )P j (z) = 0). ( 5)

Now (3) implies N-1 ∏ j=1 (α N -α j ) N ∑ j=1 P j (z)e α j = 0,
which, because A has no zero divisors, is a packed linear relation and has the same associated triplet as [START_REF] Costermans | Some Results à l'Abel Obtained by Use of Techniques à la Hopf[END_REF]. From (5), we see that for any k < N, one has 14 Here R[z] is understood as ring adjunction i.e. the smallest subring generated by R ∪ {z}. 15 Here, R[t] pol means the formal univariate polynomial ring (the subscript is here to avoid confusion). 16 i.e. consider the ones with N minimal and among these, we choose one with deg(P N ) minimal and among these we choose one with ∑ j<N deg(P j ) minimal. 

N-1 ∏ j=1 (α N -α j )P k (z) = N-1 ∏ j=1, j =k (α N -α j )P ′ k (z), so, if N ≥ 2,
, z * 1 ] is algebraically in- dependent on C[Z] within (C[[Z]], ⊔⊔, 1 Z * ).
Proof. Recall that, for x a letter, one has 

x * := +∞ ∑ n=0 x n = +∞ ∑ n=0 x ⊔⊔ n n! = e x ⊔⊔ . (6 
(i) The family {x * 0 , x * 1 } is algebraically independent over (C X , ⊔⊔, 1 X * ) within (C X rat , ⊔⊔ , 1 X * ). (ii) The module (C X , ⊔⊔, 1 X * )[x * 0 , x * 1 , (-x 0 ) * ] is free over C X and the family {(x * 0 ) ⊔⊔ k ⊔⊔ (x * 1 ) ⊔⊔ l } (k,l)∈Z×N is a C X -basis of it. (iii) As a consequence, {w ⊔⊔ (x * 0 ) ⊔⊔ k ⊔⊔ (x * 1 ) ⊔⊔ l } w∈X * (k,l)∈Z×N is a C-basis of it.
Now, we can construct the following morphism Definition 4.9 The following morphism

Li

(1)

• : (C X , ⊔⊔, 1 X * )[x * 0 , (-x 0 ) * , x * 1 ] -→ H (Ω)
can be defined, for any w ∈ X * and Li

(1)

w = Li w , by Li (1) x * 0 = z, Li (1) 
(-x 0 ) * = z -1 , Li (1) 
x

* 1 = (1 -z) -1 .
In fact existence and uniqueness of this morphism obtained as a consequence of Proposition 4.8. Moreover, its kernel and image are given by the following result 17 :

Theorem 4.10 We have Im(Li (1) 
• ) = C {Li w } w∈X * and ker(Li

(1) • ) is the ideal gen- erated by x * 0 ⊔⊔ x * 1 -x * 1 + 1 X * . Proof. As C X [x * 0 , x * 1 , (-x 0 ) * ] admits {(x * 0 ) ⊔⊔ k ⊔⊔ (x * 1 )
⊔⊔ l } k∈Z,∈N as a basis for its structure of C X -module, it suffices to remark that Li

(1) (x * 0 ) ⊔⊔ k ⊔⊔ (x * 1 ) ⊔⊔ l (z) = z k (1 -z) l
, is a generating system of C . As regards the second assertion, let us prove the following lemma (in this lemma and its proof, all sums are supposed finitely supported) Lemma 4.11 Let M 1 and M 2 be K-modules (K is a unitary commutative ring). Suppose the following map is linear

φ : M 1 -→ M 2
Let N ⊂ ker(φ ) be a submodule. If there is a system of generators in M 1 , namely {g i } i∈I and J ⊂ I, such that

(i) For any i ∈ I \ J, g i ≡ ∑ j∈J⊂I c j i g j [modN], (c j i ∈ K; ∀ j ∈ J); (ii) {φ (g j )} j∈J is K-free in M 2 ;
then N = ker(φ ).

Proof. Suppose P ∈ ker(φ ). Then

P ≡ ∑ j∈J p j g j [mod N] with {p j } j∈J ⊂ K. Thus 0 = φ (P) = ∑ j∈J p j φ (g j ).
From the fact that {φ (g j )} j∈J is K-free in M 2 , we obtain p j = 0 for any j ∈ J. This means that P ∈ N. Thus ker(φ ) ⊂ N and, finally, N = ker(φ ).

✷ (w,l,k) (1 X * ,×,×) k • • (w,-l,k) l -l ⊳ ⊲ (w,l -1,k) (w,l -1,k -1) ⊲ ▽ (w,-l + 1,k) (w,-l,k -1) Fig. 1. Rewriting modJ of {w ⊔⊔ (x * 0 ) ⊔⊔ l ⊔⊔ (x * 1 ) ⊔⊔ k } k∈N,l∈Z,w∈X * .
Let now J be the ideal generated by

x * 0 ⊔⊔ x * 1 -x * 1 + 1 X * .
It is easily checked, from the following formulas 18 , for l ≥ 1,

w ⊔⊔ x * 0 ⊔⊔ (x * 1 ) ⊔⊔ l ≡ w ⊔⊔ (x * 1 ) ⊔⊔ l -w ⊔⊔ (x * 1 ) ⊔⊔ l-1 [J ], w ⊔⊔ (-x 0 ) * ⊔⊔ (x * 1 ) ⊔⊔ l ≡ w ⊔⊔ (-x 0 ) * ⊔⊔ (x * 1 ) ⊔⊔ l-1 + w ⊔⊔ (x * 1 ) ⊔⊔ l [J ], that one can rewrite [mod J ] any monomial w ⊔⊔ (x * 0 ) ⊔⊔ k ⊔⊔ (x * 1 )
⊔⊔ l as linar combination of such monomials with kl = 0. Applying Lemma 4.11 with the following data:

• the morphism φ = Li (1) • , • the modules M 1 = C X [x * 0 , x * 1 , (-x 0 ) * ], M 2 = H (Ω), N = J , • the families {g i } = {w ⊔⊔ (x * 1 ) ⊔⊔ n ⊔⊔ (x * 0 ) ⊔⊔ m } (w,n,m)∈I , • and the indices I = X * × N × Z, J = (X * × N × {0}) ⊔ (X * × {0} × Z),
we have the second point of Theorem 4.10. ✷

Examples of polylogarithms indexed by rational series

Proposition 4.12 ( [START_REF] Ngoc | Evaluation Transform[END_REF][START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF]) One has

(i) For x ∈ X , i ∈ N + , a ∈ C, | a |< 1, Li (1) 
(ax 0 ) * i (z) = z a i-1 ∑ k=0 i -1 k (a log(z)) k k! , Li (1) 
(ax 1 ) * i (z) = 1 (1 -z) a i-1 ∑ k=0 i -1 k (a log((1 -z) -1 ) k k! . (ii) For any (s 1 , . . . , s r ) ∈ N r + and |t 1 | < 1, . . . , |t r | < 1, Li (1) 
(t 1 x 0 ) * s 1 x s 1 -1 0 x 1 ...(t r x 0 ) * s r x s r -1 0 x 1 (z) = ∑ n 1 >...>n r >0 z n 1 (n 1 -t 1 ) s 1 . . . (n r -t r ) s r .
In particular,

Li

(t 1 x 0 ) * x 1 ...(t r x 0 ) * x 1 (z) = ∑ n 1 ,...,n r >0 Li x n 1 -1 0 x 1 ...x n r -1 0 x 1 (z) t n 1 -1 0 . . .t n r -1 r . (1) 
To prove this proposition, we use the following easy lemma: Lemma 4.13 For any i, n ∈ N * , we have

n + i -1 n = n ∑ k=0 i -1 k n n -k .
Now, we give the proof of Proposition 4.12.

Proof.

(i) Let's choose i ∈ N * , a ∈ C and x ∈ X . Note that

(ax) * = ∞ ∑ n=0 (ax) n = 1 1 -ax , ( (ax) 
* ) i = ∞ ∑ n=0 n + i -1 n (ax) n , (ax) * ⊔⊔ (1 + ax) i-1 = ∞ ∑ n=0 ( n ∑ k=0 i -1 k n k )(ax) n ,
and use Lemma 4.13, we obtain, for i ∈ N * , a ∈ C, x ∈ X , ((ax) * ) i = (ax) * ⊔⊔ (1 + ax) i-1 .

Thus, for i ∈ N * , |a| < 1, x ∈ X , Li (1) 
((ax) * ) i = Li (1) (ax) * Li (1) (1+ax) i-1 = Li (1) (ax) * i-1 ∑ k=0 i -1 k a k Li (1) 
x k .

It follows then the expected results.

(ii) Using Lemma 4.13, we obtain this statement by direct calculation. ✷ Corollary 4.14 One has 5 Symmetries and transition elements

{Li S } S∈C X ⊔⊔ C[x * 0 ] ⊔⊔ C[(-x * 0 )] ⊔⊔ C[x * 1 ] = span C z a (1 -z) b Li w (z) a∈Z,b∈N w∈X * ⊂ span C {Li s 1 ,...,s r } s 1 ,...,s r ∈Z r ⊕span C {z a |a ∈ Z}, {Li S } S∈C X ⊔⊔ C rat x 0 ⊔⊔ C rat x 1 = span C z a (1 -z) b Li w (z)

Framework

Up to now (and historically [START_REF] Lappo-Danilevskij | Mémoires sur la théorie des systèmes des équations différentielles linéaires[END_REF]), the polylogarithms are computed in

Ω = C \ (] -∞, 0] ∪ [1, +∞[),
cleft in order to cope with the two singularities {0, 1}. But B = C \ {0, 1} is acted on by the following group of symmetries (which permutes, in fact, {0, 1, +∞}).

G := {z → z, z → 1 -z, z → z -1 , z → (1 -z) -1 , z → 1 -z -1 , z → z(z -1) -1 }
To this end and because C \ (] -∞, 0] ∪ [1, +∞[) is not stable by this group we have now to work on Ω = B.

Monodromy Principle

For convenience, we consider the following situation Y X ′ X p f g and recall the monodromy principle (see [7] 16.28.8)

Theorem 5.1 (Monodromy Principle) Let (Y, X , p) be a covering of a differential manifold X and let f : X ′ → X be a C ∞ -mapping of a simply-connected 19 , differential manifold. Let a ′ ∈ X ′ and b ∈ p -1 ( f (a ′ )). Then there exists a unique C ∞ -mapping g : X ′ → Y such that g(a ′ ) = b and p • g = f (the mapping g is said to be a lifting of f ). First remark that G is a copy of S 3 as it permutes the three singularities and

10 ∞ 01 ∞ 1 ∞ 0 ∞ 10 0 ∞ 1 ∞ 01 1-z 1/z 1/z 1-z 1-z 1/z
Fig. 2. Orbit of the singularities choose an orbit in Ω (as the orbit of i), for instance now, we can pinpoint the lifting i 

1 -i -i 1+i 2 1 + i 1-i 2 1-z 1/z 1/z 1-z 1-z 1/z
(z) = 1 -z, g 1/z (z) = z -1 ∈ S B and set g φ ∈ S B such that p • g φ = g φ • p with p • g φ (s(z 0 )) = g φ (z 0 ).
where z 0 = i. Before computing the transition maps for L (extension of L to B) under g 1-z and g 1/z , we must take an excursion to noncommutative differential equations.

Noncommutative differential equations

Let (V, d) be a one-dimensional C ω connected complex manifold 20 

It can be easily checked that d is a derivation of the C-algebra H (V ) X .

We are now able to define noncommutative differential equations (left multiplier case).

Definition 5.3 A noncommutative differential equation, on V , with left multiplier M ∈ H (V ) + X is an equality d(S) = MS. (8) 
An initial condition can be pinpointed (with

z 0 ∈ V and S 0 ∈ C X )    d(S) = MS, S(z 0 ) = S 0 . (9) 
It can be asymptotic 21 20 A Riemann surface in short. 21 Below and in general F is a filter, the reader who is not familiar with these objects can replace F by any mode of convergence with respect to a subset (e.g. a cone, cluster point, to infinity -full or with restrictions -etc.).. 

We gather here the needed results

Proposition 5.4 ([6,9]) We have the following properties:

(i) If V is simply connected, equation ( 9) has a unique solution:

• with S 0 = 1 X * , it can be computed, through Picard's process, by iterated integrals with lower bond z 0 , this solution will be noted S z 0

Pic

• in the general case (initial condition S 0 ) the solution is S z 0 Pic S 0 . If V is connected, solutions to equation [START_REF] Duchamp | Harmonic sums and polylogarithms at negative multi-indices[END_REF] may not exist, but if it does, the solution is unique.

(iii) (V is connected) The set of solutions of ( 8) is a vector space. Two solutions which coincide at a point -actual [START_REF] Duchamp | About some Drinfel'd associators[END_REF] or asymptotic (10) -coincide everywhere.

(iv) (V is simply connected) The set of invertible solutions of ( 9) is the following orbit on the right S = S z 0 Pic (C X ) × .

Equivariance of polylogs on B.

Now, we will explain the property of polylogs expressed by formulas of the type

L(g.z) = µ g (L(z))Z(g),
where µ g is a morphism of alphabets of the type 

 µ g (x 0 ) µ g (x 1 )   =   a 11 a 12 a 21 a 22     x 0 x 1   (11) 
and Z(g) ∈ C X . We detail here the computation for g 1-z .

(i) g 1-z has been choosen such that

p • g 1-z = g 1-z • p and p • g 1-z (s(i)) = 1 -i. (12) 
(ii) From p : B → B, one has p * : H (B) → H ( B) and define the functions φ z (resp. φ 1/z ) in H ( B) by

φ z (u) = p(u) ∈ C resp. φ 1/z (u) = 1 p(u) ∈ C. ( 13 
) (iii) Solve, in H ( B) X ,      d( S)(u) = x 0 φ z (u) + x 1 φ 1-z (u)
S(u), limz→0 z∈Ω S(s(z))e -x 0 log(z) = 1 X * .

(

) 14 
The uniqueness of such a solution is a result of Proposition 5.4 (iii). The existence can be obtained by lifting or remarking that the analog of ( 14) (first row) can be solved at the level of Ω and, for any choice of z 0 ∈ Ω, one has (v) Setting L 1 (z) = L(1z), one gets

d dz L 1 = - x 0 1 -z - x 1 z L 1 = µ x 0 z + x 1 1 -z L 1 ,
where µ is the morphism of alphabets

µ   x 0 x 1   =   0 -1 -1 0     x 0 x 1  
(vi) as µ permutes with the derivation and is invertible, one has

d dz µ -1 (L 1 ) = x 0 z + x 1 1 -z µ -1 (L 1 ).
Hence, µ -1 (L 1 ) = LZ 1 and L 1 = µ(L)µ(Z 1 ). Note that, by a Newton-Girard like identity (see [START_REF] Guo | Renormalization of multiple zeta values[END_REF]), one has [START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF] ∑ k≥0 H y k

1 z k = exp -∑ k≥1 H y k (-z) k k ,
and by the properties of Gamma function, we obtain, for |t| < 1,

γ π Y ((tx 1 ) * ) = exp γt -∑ n≥2 ζ (n) (-t) n n = 1 Γ(1 + t) . ( 19 
)
For t ∈ N, we put γ π Y ((tx 1 ) * ) = 1 t! . Proof. The first part of this proposition is the direct consequence of ( 16) and Proposition 6.2. See [START_REF] Ngoc | On solutions of KZ 3[END_REF] for the analytical justification of such algebraic process and the proof of the uniqueness. ✷ Example 6.6 

γ 0 = -1 + 1 1! = 0, γ -1 = - 1 1! + 1 2! = - 1 2 , γ -2 = 1 1! - 3 2! + 2 3! = - 1 
γ 0,0 = 1 - 2 1! + 1 2! = - 1 2 , γ 0,-1 = 1 1! - 2 1! + 1 3! = - 5 

4. 2 4 . 2

 242 Domain of Li • Under suitable conditions of convergence (see below), the extension of Li • in general and to some subdomain of C rat X can be done as follows: call Dom(Li • ) the set of series S = ∑ n≥0 S n with S n := ∑ |w|=n S | w w such that ∑ n≥0 Li S n converges uniformly any compact of Ω. Then Proposition One has (i) The set Dom(Li • ) is closed by shuffle products.

Lemma 4 . 4

 44 Let (A , d) be a commutative differential ring without zero divisors, and R = ker(d) be its subring of constants. Let z ∈ A such that d(z) = 1 and S = {e α } α∈I be a set of eigenfunctions of d, with all different eigenvalues (for example, take I ⊂ R) i.e., e α = 0 and d(e α ) = αe α ; ∀α ∈ I. Then the family (e α ) α∈I is R[z]-linearly free 14 . Proof. If there is no non-trivial R[z]-linear relation, we are done. Otherwise let us consider relations N ∑ j=1 P j (z)e α j = 0,

⊂

  span C {Li s 1 ,...,s r } s 1 ,...,s r ∈C r ⊕span C {z a |a ∈ C}.

19

  Here we specialize this to B = C \ {0, 1} choose a universal covering (B, B, p) and a section s : Ω → B of p, lifted from the canonical embedding j : Ω ֒→ B B Nowadays simply-connected implies path-connected.We first remark that any g ∈ G maps in fact B = C \ {0, 1} to itself and apply the Monodromy Principle to the following situation , B, p) is any universal covering of B.

Fig. 3 .

 3 Fig. 3. Orbit of i (i.e. find points like a ′ , b in Theorem 5.1).Let us note g 1-z (z) = 1z, g 1/z (z) = z -1 ∈ S B and set g φ ∈ S B such that

Remark 5 . 2

 52 An involutive bi-homomorphism cannot always be lifted as a permutation of finite order as shows the example of Z/2Z acting on C * = C \ {0} by a(z) = -z. It can be shown (exercise left to the reader) that every lifting ã of a i.e.

  with its derivation d = d/dz. We endow H (V ) X with d d(S) = ∑ w∈X * d( S | w )w .

  ) = MS, lim F S(z) = S 0 .

S s(z 0 )

 0 Pic • s = S z 0 Pic[START_REF] Furusho | Desingularization of multiple zetafunctions of generalized Hurwitz-Lerch type[END_REF] then the solution of (14) is given byL = S s(z 0 ) Pic L(z 0 ) and satisfies • s = L. (iv) Now d( L • g 1-z ) • s = d dz ( L • g 1-z ) • sand, in a neighbourhood of i, one has L • g 1-z ≡ L(1z).

(

  vii) Finally, as they coincide on an open subset and are analytic, one gets L 1 = µ( L)µ(Z 1 ). Then ∀t ∈ C, ζ ⊔⊔ ((tx 1 ) * ) = 1.

Proposition 6 . 5 (

 65 [START_REF] Ngoc | On solutions of KZ 3[END_REF]) Let w = y s 1 . . . y s r ∈ Y * 0 . Then there exists a unique polynomial P w ∈ (C[x * 1 ], ⊔⊔ , 1 X * ) such that Li - w = Li P w . Setting γ -s 1 ,...,-s r := γ π Y (P w ) , we get γ -s 1 ,...,-s r = s 1 +...s r +r ∑

  r; ℜ(s 1 ) + . . . + ℜ(s m ) > m} .

	After a theorem by Abel, for any r ≥ 1, if (s 1 , . . ., s r ) ∈ H r , we have
	ζ (s 1 , . . . , s r ) := lim z→1	Li s 1 ,...,s r (z) = lim

N→∞

H s 1 ,...,s r (N) .

  we would get a relation of lower triplet. This being impossible, we get N = 1 and (3) boils down to P N (z)e N = 0 which, as A has no zero divisors, implies P N ≡ 0, a contradiction. Then the (e α ) α∈I are R[z]-linearly independent. ✷ Remark 4.5 If A is of characteristic zero, d(z) = 1 implies that z is transcendent over R and the two notations R[z] and R[z] pol coincide.

First of all, let us prove

Lemma 4.6 Let A be a Q-algebra (associative, unital, commutative) and z an indeterminate, then e z ∈ A [[z]] is transcendent over A [z]. Proof. It is a straightforward consequence of Remark 4.5. Note that this can be rephrased as [z, e z ] are algebraically independant over A . ✷ Proposition 4.7 Let Z = {z n } n∈N be an alphabet, then [z * 0

In Figure1, (w, l, k) codes the element w ⊔⊔ (x * 0 ) ⊔⊔ l ⊔⊔ (x * 1 ) ⊔⊔ k .

Such a (non-empty) word w can always be written uniquely w = y k u where y k ∈ Y 0 and u ∈ Y *

Conclusion

In this work, we explained the whole project of extending Li • over a shuffle subalgebra of rational power series.

In particular, we have studied different aspects of C {Li w } w∈X * , where C denotes the ring of polynomials in z, z -1 and (1z) -1 , with coefficents in C.

On the other hand, we applied this new indexing of Li • to express the polylogarithms (resp. harmonic sums) at negative multi-indices as polynomials in (1z) -1 (resp. N), with coefficients in Z (resp. Q).

We concentrated, particularly, on algebraic and analytic aspects of this extension allowing index polylogarithms, at non positive multi-indices, by rational series and to regularize divergent polyzetas, at non positive multi-indices.

 [START_REF] Bourbaki | General Topology[END_REF]The space of rational series considered here is (5 This research of Ngo Quoc Hoan is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101. 04-2017.320

Applications

In this section, we will give some applications of this new presentation of polylogarithms at negative integer multi-indices.

A new presentation of harmonic sums with non-positive multi-indices

From Corollary 4.14, for any w ∈ Y * 0 , the corresponding polylogarithm Li - w is an element of the algebra Q[(1z) -1 ]. Thus, for w ∈ Y * 0 , we suppose that Li - w can be expanded as follows

We note that a

Then, using Proposition 3.3, the sequences {a w i } w∈Y + 0 ,n∈N are computed as follows:

for otherwises.

Proof.

Hence, we obtain this condition. (ii) This condition is a direct corollary of the identity Li - y k u = θ 0 Li - y k-1 u . ✷ Proposition 6.2 For any w ∈ Y * 0 , we have Li - w = Li P w , where

and the coefficients {a w i } i∈N are defined as in Lemma 6.1. Now, we note that for any k ∈ N,

On the other hand, for any w ∈ Y * 0 , denoting p = (w) + |w|, we have

This means that,

In fact, since the definition of the sequence {a w p } w∈Y * 0 ,p∈N , we can use the for-

and Proposition 6.3 to obtain an extension of Faulhaber's result [START_REF] Knuth | Johann Faulhaber and Sums of Powers[END_REF], i.e., the harmonic sum H - w (N), w ∈ Y * 0 can be written like a finite linear combination of the elements in the family { N+n m } n,m∈N , where the number of terms is at most

Example 6.4

Regularization of polyzetas at negative multi-indices

Let {t i } i∈N + be a family of variables. The symmetric functions {η k } k∈N + and the power sums {ψ k } k∈N + are defined [START_REF] Gelfand | Noncommutative symmetric functions[END_REF] respectively by

Then the generating series of the family 23 {η k } k∈N is defined by

In the same way, we also define

Note that the functions η(t | z) and ψ(t | z) satisfy Euler's identity

For any w = y s 1 . . . y s r ∈ Y * , the quasi-symmetric function of depth |w| = r and of degree (or weight) (w) := s 1 + . . . + s r ,namely F w , is defined by

Note that F y k 1 = η k and F y k = ψ k , and from equation [START_REF] Goncharov | Multiple polylogarithms and mixed Tate motives[END_REF], we obtain

Remark that the harmonic sum H w (N) can be obtained by specializing, in the quasisymmetric function F w , the variables {t i } i≥1 as follows [START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF]:

On the other hand, we recall the morphisms of regularization [START_REF] Costermans | Noncommutative algebra, multiple harmonic sums and applications in discrete probability[END_REF] γ