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Abstract11

In this paper, we investigate optimal control problems with two objective functions12

of different nature that need to be minimized simultaneously. One objective is in13

the classical Bolza form and the other one is defined as a maximum running cost.14

In our setting, the existence of Pareto solutions is not guaranteed. We first analyze15

some notions of ε-Pareto solutions. Then we consider a relaxed problem for which16

the Pareto front exists and show that in any neighborhood of this front, there exists17

a (weak) ε-Pareto value of the original problem. We also give a precise characteri-18

zation of the Pareto front of the relaxed problem and to the ε-Pareto front of the19

original problem. Our approach is based in the Hamilton-Jacobi-Bellman framework.20

A numerical example is considered to show the relevance of our approach.21
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1. Introduction27

Optimal control problems for ordinary differential equations (ODE) consist of control-28

ling the evolution of the dynamical systems, along a certain period of time, in a manner29

that the pair of control-and-state is optimal with respect to some objective function.30

The form of this objective function is of great importance when developing the theory.31

It can be defined, for example, in a Bolza form [1,2] or in a max-type [3,4].32

Different approaches have been developed to characterize and compute optimal so-33

lutions for continuous control problems. In particular, the approach based on the Dy-34

namic Programming principle consists on the analysis of the value function that asso-35

ciates, to every initial data, the optimal value of the control problem, [5]. The value36

function can be characterized as the unique solution of a partial differential equation,37

called Hamilton-Jacobi-Bellman (HJB) equation [6]. Moreover, the value function is38

∗ ana.chorobura@gmail.com. Researcher supported by Capes-Brazil.
† hasnaa.zidani@insa-rouen.fr



very useful to reconstruct the optimal trajectories and the corresponding control strate-1

gies [7,8]. In general when the set of trajectories is not closed, it is not possible to2

guarantee the existence of a minimizer for the optimal control problem. A very known3

approach to deal with this issue is to consider a relaxed optimal control problem over a4

compactified set of trajectories; see for instance [9,10]. Under suitable assumptions, the5

value function of the original problem coincides with the value function of the relaxed6

problem, [10].7

In the present paper, we consider finite horizon optimal control problems with two8

objective functions, of different nature, that need to be minimized simultaneously.9

Namely, in the vector objective function, one component is a Bolza cost and another10

one is a maximum running cost.11

Multi-objective optimization problems arise in various interesting real-world applica-12

tions. In these contexts, generally, it is not possible to minimize all the criteria simulta-13

neously. For this reason, several solution concepts have been proposed in the literature.14

In the famous work “Cours d’Economie Politique" [11], the pioneering economist V.15

Pareto introduced the notion of efficient or Pareto solution. At a Pareto solution it is16

not possible to improve one criterion without worsening at least one of the other ones.17

For any given problem, the set of Pareto solutions may be infinite and unbounded.18

A larger set is given by weak Pareto solutions, at which it is not possible to improve19

all the objective functions simultaneously. The image of the set of all (weak) Pareto20

solutions by the objective function is called (weak) Pareto front. It is useful for prac-21

titioners for finding a trade-off between conflicting criteria. Several papers and mono-22

graphs have been devoted to the analysis and numerical methods for multi-objective23

problems, see for instance [12,13] and the reference therein. One of the most common24

approach for solving multi-objective optimization problem is to relate it with a fam-25

ily of mono-objective optimization problems, in such a way that the solutions of the26

multi-objective problem can be obtained by solving a sequence of classical nonlinear27

programming problems. The most popular scalarization techniques are the weighted28

sum method, the weighted Chebyshev method and the epsilon-constraint method [14].29

As the scalarization usually depends on certain auxiliary parameters, some numerical30

difficulties may appear if the single objective optimization problem has feasible so-31

lutions only with very few parameter values. Moreover, a weakness of the weighting32

method is that all the Pareto optimal points cannot be found if the Pareto front is33

non convex [15]. For multi-objective optimal control problems several numerical algo-34

rithms based on scalarization techniques have been developed (see for instance [16,17]35

and the references therein). For some discrete time optimal control problems with36

mixed state-control constraints the Dynamical Programming Principle has been used37

for characterizing the Pareto fronts in [18]. The HJB approach have also been a tool38

to investigate multi-objective optimal control problems. A method that combines the39

HJB framework and the weighted sum method to find some points of the Pareto front40

was introduced in [19]. In [20], an approach based on HJB theory is investigated in41

the context of exit time problems. In that paper, the Pareto front is characterized by42

using the value function associated to an auxiliary control problem where one of the43

cost objectives is chosen as primary cost and the other objectives are transformed into44

auxiliary variables subject to state constraints. This idea was extended to a class of45

hybrid control problems, see [21]. In [22] the set-valued function is characterized as a46

unique generalized solution of an HJB equation. In [23], the idea of introducing an aux-47

iliary problem to deal with mono-objective optimal control problems [24], is extended48

to work with multi-objective optimal control problems.49

In practice, for some problems, it is difficult to calculate the sets of (weak) Pareto50
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solutions and what it could be obtained is just an approximate set of solutions. The1

notion of approximate optimal solutions for multi-objective problems was introduced2

by [25]. Several notions of ε-Pareto solutions can be considered, see [26]. We discuss in3

this paper three of these concepts.4

Usually, the multi-objective control problems are investigated in the case when the5

cost functions are of the same nature (Bolza with free or fixed final time horizon).6

In this work, we use a HJB approach to characterize the Pareto front for a finite7

horizon bi-objective optimal control problem with objectives of different nature. In8

the considered problem it is not possible to guarantee that the set of trajectories is9

closed, so we introduce a relaxed (convexified) problem. We prove that if a feasible10

pair (y,u) is a Pareto optimal solution for the relaxed problem, then there exists an11

ε-Pareto optimal solution of the original problem that is in the neighborhood of (y,u).12

Following some ideas developed in [23], we define an adequate auxiliary control problem13

and show that the Pareto front of the relaxed problem is a subset of the zero level set of14

the corresponding value function. Moreover, with a geometrical approach we establish15

a characterization of the Pareto fronts.16

This paper is organized as follows. Section 2 introduces a bi-objective control prob-17

lem with cost functions of different nature. Section 3 discuss the concepts and proper-18

ties of solutions and ε-solutions of bi-objective problems. In Section 4 a relaxed control19

problem is considered and some results about the relation of solutions of the original20

and relaxed problems are proved. Moreover an auxiliary control problem is considered,21

the HJB equation and some properties of the auxiliary value function are derived. Sec-22

tion 5 studies the link between the 0-level set of the auxiliary value function and the23

Pareto front. Moreover the characterization of the Pareto Front for the relaxed problem24

is obtained. In Section 6 we shown how to obtain ε-Pareto optimal solutions for the25

original problem. We discuss the reconstruction of (approximate) Pareto trajectories26

on Section 7. An illustrative numerical example is investigated in Section 8. Section 927

concludes the paper with final remarks.28

Notations: Throughout this paper, R denotes the set of real numbers, | · | is the29

Euclidean norm. For a set S ⊆ Rn, S and bdry(S) denote its closure and boundary,30

respectively. We denote by ~1 the vector in R2 of ones and by B(a,R) the open ball31

with center at a ∈ Rn with radius R > 0, {x ∈ Rn : |x− a| < R}. Moreover, for every32

t, T ∈ R and T > t we denote by W 1,1([t, T ];Rm) (for any m > 0) the space of all33

integrable functions f : [t, T ] −→ Rm, such that f admits a weak derivative that is34

also integrable on [t, T ].35

We will use the standard convention that inf ∅ = +∞.36

For z, z′ ∈ RM , we will use the following notations for different partial order rela-37

tions:38

z < z′ ⇔
[
zi < z′i ∀i = 1, . . . ,M

]
; z ≤ z′ ⇔

[
zi ≤ zi ∀i = 1, . . . ,M

]
.
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2. Problem statement1

Let U be a given compact non-empty subset of RM (for M ≥ 1) and T ∈ R (T > 0) a
given finite horizon. Consider the set of all admissible controls defined by U :

U =
{
u : [0, T ]→ RM measurable, u(s) ∈ U a.e.

}
.

Consider the dynamical system:2 {
ẏ(s) = f(y(s),u(s)) s ≥ t,
y(t) = x.

(1)

The dynamics f satisfies the following hypothesis:3

(H1) f : RN × U → RN is continuous. For any R > 0, ∃Lf (R) > 0 such that
for every u ∈ U :

|f(x, u)− f(x′, u)| ≤ Lf (R)(|x− x′|) ∀x, x′ ∈ RN with |x| ≤ R, |x′| ≤ R.

Moreover, there exists cf > 0 such that for any x ∈ RN we have: max{|f(x, u)| :4

u ∈ U} ≤ cf (1 + |x|).5

By assumption (H1), for any control input u ∈ U , the system (1) admits a unique6

absolutely continuous solution yu
x inW 1,1([t, T ];RN ). For every x ∈ RN and 0 ≤ t ≤ T ,7

we define Xt,x ⊂W 1,1([t, T ];RN )× U as:8

Xt,x = {(y,u) : ẏ(s) = f(y(s),u(s)), for a.e. s ∈ [t, T ]; y(t) = x and u ∈ U}.

Introduce the final cost function ϕ : RN → R and the running cost ` : RN ×U → R9

satisfying:10

(H2) The function ϕ is locally Lipschitz continuous on RN : for every R > 0,

∃Lϕ(R) > 0 |ϕ(x)−ϕ(x′)| ≤ Lϕ(R)|x−x′| ∀x, x′ ∈ RN with |x| ≤ R, |x′| ≤ R.

Moreover there exists cϕ > 0 and λϕ ≥ 1 such that ϕ(x) ≤ cϕ(1+ |x|λϕ) for every11

x ∈ RN .12

(H3) The function ` is continuous on RN ×U and is locally Lipschitz continuous
on the first variable uniformly with respect to the second argument: for every
R > 0,

∃L`(R) > 0 |`(x, u)− `(x′, u)| ≤ L`(R)|x− x′| ∀|x| ≤ R, |x′| ≤ R, ∀u ∈ U,

and there exists c` > 0 and λ` ≥ 1 such that max{|`(x, u)|, u ∈ U} ≤ c`(1+|x|λ`).13

For x ∈ RN and 0 ≤ t ≤ T , the objective function in Bolza form Φ(t, x; ., .) :14
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W 1,1([t, T ];RN )× U 7→ R is defined as1

Φ(t, x; ·, ·) : W 1,1([t, T ];RN )× U −→ R, Φ(t, x;y,u) = ϕ(y(T )) +

T∫
t

`(y(s),u(s))ds.

(2)
We are also interested by a second cost function that is measured all along the2

trajectory by:3

Ψ(t, x; ·) : W 1,1([t, T ];RN ) −→ R, Ψ(t, x;y) = max
s∈[t,T ]

ψ(y(s)), (3)

where the function ψ satisfies:4

(H4) ψ : RN −→ R is locally Lipschitz continuous.5

The multi-objective optimal control problem that will be investigated in this paper6

is the following:7 {
inf(Φ(t, x;y,u),Ψ(t, x;y))

s.t (y,u) ∈ Xt,x.
(MOP)

A simple prey-predator example will be given in section 8 to illustrate the motivation of8

such bi-objective control problem. The concepts of solution and approximate solutions9

for multi-objective problems will be made precise in the next section.10

3. Pareto optimality - General results11

Consider the following bi-objective optimization problem:12 {
Minimize g(x) = (g1(x), g2(x))
subject to x ∈ X, (OP)

where Y is a Banach space, gi : Y → R are continuous functions and X ⊂ Y a feasible
nonempty set. In problem (OP), the aim is to minimize the two components of the
objective function g at the same time. If there exists no conflict between the cost
functions g1 and g2, then a solution x∗ ∈ X may exist such that:

gi(x
∗) = min{gi(x), x ∈ X}, i = 1, 2.

In this paper, we assume that there is no single solution that minimizes all the objec-13

tive functions simultaneously. This means that the cost functions are at least partly14

conflicting and several solution concepts may be associated with the problem (OP). A15

predominant optimality notion for problem (OP) is the one of Pareto solutions.16

Definition 3.1 (Pareto optimal solutions). Let x∗ ∈ X.17

• We will say that x∗ is a Pareto optimal solution if and only if there does not exist18

another x ∈ X such that19

(g1(x), g2(x)) ≤ (g1(x
∗), g2(x

∗)), and
[
g1(x) < g1(x

∗) or g2(x) < g2(x
∗)
]
.
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The set P of all Pareto optimal solutions is said to be Pareto optimal solutions1

set.2

• We will say also that x∗ is a weak Pareto optimal solution if and only if there3

does not exist another x ∈ X such that4

(g1(x), g2(x)) < (g1(x
∗), g2(x

∗)).

The set Pw of all weak Pareto optimal solutions is said to be weak Pareto5

optimal solutions set.6

With these definitions, we can check that the Pareto set is a subset of the weak7

Pareto set: P ⊂ Pw. The set of all vectors of objective values at the Pareto (resp. weak8

Pareto) minima is said to be the Pareto front (resp. weak Pareto front). More precisely,9

we have the following definition.10

Definition 3.2 (Pareto front). We will call Pareto front (respectively weak Pareto11

front) the image of the Pareto optimal solutions set P ( respectively of Pw ) by the12

multi-objective application g(x) :13

F = {g(x), x ∈ P} Fw = {g(x), x ∈ Pw} . (4)

Besides, it is known [27] that the (weak) Pareto front is subset of the boundary of14

the attainable set Z, that is defined as: Z := {g(x), x ∈ X} ⊂ R2.15

Computing the Pareto fronts and the set of Pareto solutions is a challenging problem.16

In some cases, these sets may be empty, this is the case, for instance, when the feasible17

set is not closed. In such a context, it is natural to consider a set of approximate Pareto18

solutions. Different definitions for ε-solutions have been investigated in the literature,19

see [25,26]. In what follows, we recall three of these concepts.20

Definition 3.3 (ε-Pareto solutions). Let ε ≥ 0. We define the following sets of ε-21

Pareto solutions:22

(i) P1,ε = {x ∈ X : there is no y ∈ X such that g(y) ≤ g(x) − ε~1 and g(y) 6=23

g(x)− ε~1}.24

(ii) P2,ε = {x ∈ X : there exists y ∈ P such that |g(x) − g(y)|∞ ≤ ε}, where | · |∞25

denotes the max norm.26

(iii) P3,ε = {x ∈ X : for any y ∈ X, if g(y) 6= g(x) and g(y) ≤ g(x) then g(y) ≥27

g(x)− ε~1}.28

An ε-Pareto solution x∗ ∈ P i,ε, i = 1, 2, 3, produces an ε-Pareto outcome g(x∗) and29

the set of all ε-Pareto outcomes are denoted by F i,ε, i = 1, 2, 3. Note that, if ε1 ≤ ε230

then F i,ε1 ⊂ F i,ε2 , for i = 1, 2, 3. From the above definition, one can easily check that31

F3,ε ⊂ F1,ε (or equivalently P3,ε ⊂ P1,ε). Moreover, if the feasible set X is a compact32

set, then the following relation between the ε-Pareto sets is established by [26]:33

F ⊂ F3,ε ⊆ F2,ε ⊆ F1,ε. (5)

Remark 1. We stress on that the inclusions in (5) are true only when the feasible set34

X is a compact set. However if the feasible set is not closed, there is no guarantee of35

existence of (weak) Pareto solutions and inclusion 5 is not true anymore. Actually, the36
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weak Pareto set can be empty. Consider, for example, the following problem:1 {
Minimize g(x) = (x1, x2)
subject to: x ∈ X =]− 1, 1[2\{x ∈ (−1, 0)2 : x1 + x2 < −1}. (6)

In this case the feasible set is open, see Figure 1a, where the black dashed lines repre-2

sents the boundary of X (this boundary is not included in X). For this example, the3

(weak) Pareto set and the set P2,ε are empty. However the sets P1,ε and P3,ε are not4

empty and can be seen in red in Figures 1b and 1c, respectively.

(a) Open feasible set (b) F1,ε (c) F3,ε

Figure 1.: Feasible set and ε-Pareto fronts for Problem (6), ε = 0.1

5

Some concepts of approximate solutions, Definition 3.3, can be also extended to the6

notion of weak ε-Pareto solutions (see in [25]).7

Definition 3.4. [weak ε-Pareto solution] Let ε ≥ 0. We define the following set of8

ε-Pareto solutions:9

(i) P1,ε
w = {x ∈ X : there is no y ∈ X such that g(y) < g(x)− ε~1}.10

(ii) P2,ε
w = {x ∈ X : there exists y ∈ Pw such that |g(x)− g(y)| ≤ ε}.11

Motivated by the observations made in Remark 1, we consider the problem of12

minimizing the objective functions over the closure of the feasible set X:13 {
Minimize g(x) = (g1(x), g2(x))
subject to x ∈ X (7)

We denote by P# (resp. P#
w ) the set of Pareto (resp. weak Pareto) solutions of problem14

(7). We are interested in the link between the set P# (resp. P#
w ) and the set of ε-Pareto15

(resp. weak ε-Pareto) solutions of the original problem (OP).16

Proposition 3.5. Assume that the functions gi are Lipschitz continuous, with Lip-17

schitz constant Li, i = 1, 2.18

(i) For any x∗ ∈ P# and for any ε > 0, there exists xε ∈ P3,ε such that

|x∗ − xε| ≤ min
i

(ε/2Li) and |g(x∗)− g(xε)| ≤ ε.

(ii) For any x∗ ∈ P#
w and for any ε > 0, there exists xε ∈ P1,ε

w such that

|x∗ − xε| ≤ min
i

(ε/2Li) and |g(x∗)− g(xε)| ≤ ε.

7



(iii) For ε > 0, for any x∗ ∈ P3,ε, there exists xε ∈ P# such that |g(xε)−g(x∗)| ≤ 2ε.1

Proof (i) Let x∗ ∈ P# and ε > 0. As x∗ ∈ X, there exists a sequence {xn} ⊂ X2

such that limn→∞ xn = x∗. Given ε > 0, define δ = mini(ε/Li), so there exists xN such3

that |x∗−xN | ≤ δ. By the Lipschitz continuity of functions gi, i = 1, 2 we obtain that4

|gi(x∗) − gi(xN )| ≤ Li|x∗ − xN | ≤ Liδ ≤ ε/2, which means that |g(x∗) − g(xN )| ≤ ε.5

It remains to prove that xN ∈ P3,ε. Suppose that there exists g(y) 6= g(xN ) such that6

g(y) ≤ g(xN )− ε~1. But, as |g(x∗)− g(xN )| ≤ ε, we have that g(xN )− ε~1 ≤ g(x∗) and7

then g(y) ≤ (gx∗), what is a contradiction.8

(ii) The proof is similar to (i).9

(iii) Let x∗ ∈ P3,ε. Assume that there is no x ∈ P# such that |g(x) − g(x∗)| < 2ε.10

Then x∗ /∈ P#, so there exists y ∈ X such that g(y) 6= g(x∗) and g(y) ≤ g(x∗). As11

y ∈ X, there exists a sequence {yn} ⊂ X such that limn→∞ yn = y. Choose yN such12

that g(yN ) ≤ g(x∗) and |g(y) − g(yN )| ≤ ε. As x∗ ∈ P3,ε, we must have g(yN ) ≥13

g(x∗)− ε~1. Hence g(x∗)− ε~1 ≤ g(yN ) ≤ g(x∗), which means that |g(yN )− g(x∗)| < ε.14

Then |g(y)−g(x∗)| ≤ |g(y)−g(yN )|+|g(yN )−g(x∗)| ≤ 2ε, what is a contradiction.15

16

Remark 2. Assertion (i) of Proposition 3.5 amounts saying also that for any Pareto17

value z∗ ∈ F# and for every Pareto solution x∗ corresponding to it, there exists a18

ε-Pareto solution xε ∈ P3,ε
ε and its corresponding value zε = g(xε) ∈ F3,ε such that19

|z∗ − zε| ≤ ε and |x∗ − xε| ≤ mini(ε/Li).20

4. Relaxed control problem. Auxiliary control problem21

Now, let us come back to the bi-objective control problem and let us first consider a
reformulation of the problem (MOP). Define the set-valued function

G(x) =

{(
f(x, u)

−`(x, u)− a

)
, 0 ≤ a ≤ A(x, u), u ∈ U

}
, for x ∈ RN

where A(x, u) = c`(1+ |x|λ`)−`(x, u). Under assumptions (H1) and (H3) the function
G is locally Lipschitz continuous in the sense that, for any R > 0, there exists LG(R) >
0 such that:

G(x′) ⊂ G(x) + |x− y|B(0, LR) ∀x, x′ ∈ RN with |x| ≤ R, |x′| ≤ R.

We also define the following set of trajectories:

S[t,T ](x, z) = {(y, ζ) : (ẏ(s), ζ̇(s))ᵀ ∈ G(y(s)), for a.e. s ∈ [t, T ]; (y(t), ζ(t)) = (x, z)},

and the bi-objective optimal control problem:22 {
inf
(
ϕ(y(T ))− ζ(T ),maxs∈[t,T ] ψ(y(s))

)
s.t (y, ζ) ∈ S[t,T ](x, 0).

(8)

The introduction of the dynamics G is a classical tool that is usually introduced23

to recast a cost in Bolza form into a cost in Mayer form. In this reformulation, the24

vector of state variables is increased by one more component. Let us stress again on25

8



that the problem (8) is equivalent to problem (MOP) in the sense that every Pareto1

value of (MOP) (if it exists) corresponds to a Pareto value of (8), and the reverse is2

true: every Pareto value of (8) corresponds to a Pareto solution of (MOP). So, the two3

problems have the same Pareto fronts. The same holds true also for the weak Pareto4

fronts. Besides, for every ε > 0, problems (MOP) and (8) have the same weak and5

strong ε-Pareto fronts.6

Without any additional assumption, the set of trajectories S[t,T ](x, 0) is not neces-
sarily closed, and the problem (8) might not have a solution. In this case, the weak and
strong Pareto fronts might be empty set. One approach to obtain the closure of the
set of trajectories S[t,T ](x, z), is to introduce a relaxed (convexified) dynamical system
[9,10], whose set of solutions is given by:

S#[t,T ](x, 0) = {(y, ζ) : (ẏ(s), ζ̇(s))ᵀ ∈ co
(
G(y(s))

)
, for a.e. s ∈ [t, T ]; (y(t), ζ(t)) = (x, z)},

where for every subset S ⊂ RN , co(S) denotes the closed convex hull of S, that7

is the smallest closed convex set containing S. Under assumptions (H1) and (H3),8

following the same arguments of the proof of Filippov-Wazewski Theorem (see for9

instance [9]), the closure of S[t,T ](x, z) in the space of continuous functions C(t, T ) is10

compact and equal to the set of solutions S#[t,T ](x, z). So we introduce the following11

relaxed bi-objective optimal control problem12  min

(
ϕ(y(T ))− ζ(T ), max

s∈[t,T ]
ψ(y(s))

)
s.t (y, ζ) ∈ S#[t,T ](x, 0).

(MORP)

For a fixed (t, x) ∈ [0, T ]×RN , we consider P i,ε(t, x), i = 1, 2, 3, and P i,εw (t, x), i =13

1, 2, the sets of strong and weak Pareto ε-solutions of problem (8) (according to the14

definitions 3.3 and 3.4). Besides, we denote the Pareto front and the weak Pareto front15

of problem (MORP) by F#(t, x) and F#
w (t, x), respectively. The next proposition states16

the link between the optimal Pareto solution of the relaxed control problem (MORP)17

and the ε-Pareto solutions of the original problem (MOP).18

Theorem 4.1. Assume that (H1)-(H4) hold and let (t, x) ∈ [0, T ]× RN .19

(i) For any (y∗, ζ∗) ∈ P#(t, x) and for any ε > 0, define R = |(y∗, ζ∗)| + ε. Then
for δ = min (ε/2(Lϕ(R) + 1), ε/2Lψ) there exists (y, ζ) ∈ P1,ε(t, x) such that
|(y∗, ζ∗)− (y, ζ)| ≤ δ and∣∣∣∣(ϕ(y∗(T ))− ζ∗(T ), max

s∈[t,T ]
ψ(y∗(s))

)
−
(
ϕ(y(T ))− ζ(T ), max

s∈[t,T ]
ψ(y(s))

)∣∣∣∣ ≤ ε.
(ii) For any (y∗, ζ∗) ∈ P#

w (t, x) and for any ε > 0 define R = |(y∗, ζ∗)|+ ε. Then for
δ = min (ε/2(Lϕ(R) + 1), ε/2Lψ) there exists (y, ζ) ∈ P1,ε

w (t, x) such that
|(y∗, ζ∗)− (y, ζ)| ≤ δ and∣∣∣∣(ϕ(y∗(T ))− ζ∗(T ), max

s∈[t,T ]
ψ(y∗(s))

)
−
(
ϕ(y(T ))− ζ(T ), max

s∈[t,T ]
ψ(y(s))

)∣∣∣∣ ≤ ε.

9



(iii) Given ε > 0, if (y∗, ζ∗) ∈ P3,ε(t, x), then there exists (y, ζ) ∈ P#(t, x) such that∣∣∣∣(ϕ(y∗(T ))− ζ∗(T ), max
s∈[t,T ]

ψ(y∗(s))

)
−
(
ϕ(y(T ))− ζ(T ), max

s∈[t,T ]
ψ(y(s))

)∣∣∣∣ ≤ 2ε.

Proof The proof follows with similar arguments as in Proposition 3.5.1

2

The aim is to characterize the Pareto fronts of the relaxed control problem (MORP)
and then to give some useful properties for ε-Pareto fronts of the original problem
(8) (see theorem 4.1). The general idea consists of considering a family of scalarized
optimal control problems whose optimal values correspond to Pareto values of the bi-
objective problem. A predominant method for scalarization is based on the weighted
sum problem where the cost function would take the following form: for α ∈ [0, 1] solve
the control problem:

min

{
α(ϕ(y(T ))− ζ(T )) + (1− α) max

s∈[t,T ]
ψ(y(s)) | (y, ζ) ∈ S#[t,T ](x, 0)

}
.

It is known that this weighted sum scalarization can characterize only a part of the3

Pareto front and not the entire front. Another idea would be to consider a control4

problem where one of the cost function is chosen as primary cost and the other one is5

transformed into an auxiliary variable subject to a state constraint:6

min

{
max
s∈[t,T ]

ψ(y(s)) | (y, ζ) ∈ S#[t,T ](x, 0) and ϕ(y(T ))− ζ(T )) ≤ z1
}
, (9)

or

min

{
ϕ(y(T ))− ζ(T )) | (y, ζ) ∈ S#[t,T ](x, 0) and max

s∈[t,T ]
ψ(y(s)) ≤ z2

}
.(10)

Following the same ideas as in [20], it is possible to show that all the Pareto values7

correspond to the optimal values of problem (9), when z1 runs through R. The same8

characterization holds if we use (10) and let z2 runs through R. However, it should9

be noticed that problems (9) and (10) are in presence of state constraints which make10

these problems difficult to analyse and to solve, see [28,29] and the references therein.11

We will follow some ideas introduced in [23], and consider an auxiliary control prob-12

lem and its value function w : [0, T ]× RN × R2 → R, for z = (z1, z2), defined as:13

w(t, x, z) = min
(y,ζ)∈S#

[t,T ](x,0)

[(
ϕ(y(T ))− ζ(T )− z1

)∨
max
s∈[t,T ]

(ψ(y(s))− z2)
]
, (11)

where the notation a
∨
b stands for max(a, b). Let us point out that the additional14

state components are very important to get a Dynamical Programming Principle for15

the value function w. Moreover, we note that under assumptions (H1)-(H4), there16

exists an admissible pair (y, ζ) ∈ S#[t,T ](x, z) solution of the auxiliary control problem17

(11). Notice also that from definition of differential inclusion (4) and definition of w,18

for z = (z1, z2), it follows that:19

w(t, x, z) = min
(y,ζ)∈S#

[t,T ](x,z1)

[(
ϕ(y(T ))− ζ(T )

)∨
max
s∈[t,T ]

(ψ(y(s))− z2)
]
. (12)

10



Following [23], the value function w satisfies the following property.1

Theorem 4.2. Assume that (H1)-(H4) hold. The value function w is locally Lipschitz2

continuous. Moreover, the function w is the unique viscosity solution to the following3

Hamilton-Jacobi-Bellman equation:4

min
(
− ∂tw(t, x, z) +H#(x, z,Dxw,Dzw), w(t, x, z)− (ψ(x)− z2)

)
= 0 for t ∈ [0, T ), (x, z) ∈ RN+2, (13a)

w(T, x, z) =
(
ϕ(x)− z1

)∨(
ψ(x)− z2

)
for x ∈ RN , z = (z1, z2) ∈ R2, (13b)

where the function H# is defined by:

H#(x, z, p, q) = max
(vx,vz)∈co(G(x))

(
− vx · p− vz · q1

)
, ∀p ∈ RN , ∀q = (q1, q2) ∈ R2.

Proof With similar arguments as in [5] it is possible to prove that the value function5

w is locally Lipschitz continuous and satisfies the following Dynamical Programming6

Principle (DPP) that hold for all h ≥ 0 such that t + h < T and (x, z) ∈ RN+2 with7

z = (z1, z2)8

w(t, x, z) = inf
(y,ζ)∈S#

[t,T ]
(x,z1)

{
w (t+ h,y(t+ h), ζ(t+ h), z2)

∨
max

s∈[t,t+h]
(g(y(s))− z2)

}
.

Using this DPP and with similar arguments as in [24] can be shown that the value9

function w satisfies the HJB equation (13). Moreover the uniqueness follows from [24,10

Theorem A.1].11

As in [23] the value function w is monotone with respect to the third argument.12

Proposition 4.3. Assume that (H1)-(H4) hold and let (t, x) ∈ [0, T ]× RN . Then

∀z, z′ ∈ R2,
(
z ≤ z′ ⇒ w(t, x, z) ≥ w(t, x, z′)

)
.

Proof The proof follows with similar arguments as in [23].13

14

Notice that from the definition of the Hamiltonian H#, we have:15

H#(x, z, p, q) = sup
(vx,vz)∈G(x)

(
− vx · p− vz · q1

)
, ∀p ∈ RN ,∀q = (q1, q2) ∈ R2,

= sup
u∈U,

η∈[0,A(x,a)]

(−f(x, u) · p+ `(x, u) · q1 + η · q1) .

If q1 ≤ 0, then we have H#(x, z, p, q) = supu∈U (−f(x, a) · p+ `(x, a) · q1) .16

Since the value function w is decreasing with respect to the variable z, by using17

the DPP and using the classical viscosity arguments as in [5,24], one can prove the18

following:19

Theorem 4.4. Assume that (H1)-(H4) hold. The value function w is the unique20

viscosity solution of:21

min
(
− ∂tw(t, x, z) +H(x, z,Dxw,Dzw), w(t, x, z)− (ψ(x)− z2)

)
= 0 for t ∈ [0, T ), x ∈ RN , z ∈ R2 (14a)

w(T, x, z) =
(
ϕ(x)− z1

)∨(
ψ(x)− z2

)
for x ∈ RN , z ∈ R2, (14b)
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where the function H is defined by:

H(x, z, p, q) = sup
u∈U

(−f(x, u) · p+ `(x, u) · q1) .

Remark 3. If we consider the problem1

w̃(t, x, z1, z2) = inf
(y,ζ)∈S[t,T ](x,0)

[(
ϕ(y(T ))− ζ(T )− z1

)∨
max
s∈[t,T ]

(ψ(y(s))− z2)
]
. (15)

With similar arguments as in [24], we can prove that the function w̃ can be also2

characterized as the unique viscosity solution of the HJB equation (14). By unique-3

ness of solution for (14), we conclude that the two function w and w̃ are the same:4

w = w̃. This result is not surprising as we know that the set S#[t,T ](x, 0) is the closure of5

S[t,T ](x, 0). However, the problems (MOP) and (MORP) are not the same. More pre-6

cisely, (MORP) admits Pareto fronts while for (MOP) the existence of Pareto solutions7

is not guaranteed.8

5. Characterization of the Pareto fronts of the relaxed bi-objective9

optimal control problem10

In this section, following ideas developed in [23], we relate the Pareto fronts of the11

relaxed bi-objective optimal control problem with the zero level set of the value function12

w. Moreover a precise characterization of the Pareto front is given.13

For every t ∈ [0, T ], x ∈ RN and i = 1, 2, define:14

z∗i (t, x) = inf
{
ζ ∈ R

∣∣∣∃z ∈ R2 with zi = ζ, w(t, x, z) ≤ 0
}
. (16)

Proposition 5.1. Assume that (H1), (H2), (H3) and (H4) hold and let (t, x) ∈15

[0, T ]× RN .16

(i) For every z ∈ R2, we have that w(t, x, z) ≤ 0 if and only if there exists (y, ζ) ∈17

S#[t,T ](x, 0) such that:18

ϕ(y(T ))− ζ(T ) ≤ z1, and max
s∈[t,T ]

ψ(y(s)) ≤ z2. (17)

(ii) Moreover, for i = 1, 2 and every (t, x) ∈ [0, T ] × RN , we have z∗i (t, x) = ϑi(t, x),
where

ϑ1(t, x) = min
(y,ζ)∈S#

[t,T ](x,0)
ϕ(y(T ))− ζ(T ), ϑ2(t, x) = min

(y,ζ)∈S#
[t,T ](x,0)

max
s∈[t,T ]

ψ(y(s)).

Proof Assertion (i) Let z ∈ R2, then by (11):

w(t, x, z) ≤ 0⇔ ∃(y, ζ) ∈ S#[t,T ](x, 0) s.t. ϕ(y(T ))− ζ(T ) ≤ z1 and max
s∈[t,T ]

ψ(y(s)) ≤ z2.

(ii) Let show that ϑi(t, x) ≤ z∗i (t, x). By assertion (i), for all z ∈ R2 such that

12



w(t, x, z) ≤ 0, we have:

∃(y, ζ) ∈ S#[t,T ](x, 0) s.t. ϕ(y(T ))− ζ(T ) ≤ z1 and max
s∈[t,T ]

ψ(y(s)) ≤ z2.

Therefore ϑi(t, x) ≤ zi for all z ∈ R2 such that w(t, x, z) ≤ 0 and then

ϑi(t, x) ≤ inf{γ ∈ R | z ∈ R2, w(t, x, z) ≤ 0 with zi = γ} = z∗i (t, x).

Let show now that ϑi(t, x) ≥ z∗i (t, x). Without loss of generality, we assume here1

that i = 1. The proof will be the same for i = 2. Assume that ϑ1(t, x) <2

z∗1(t, x). Then there exists δ ∈ R such that ϑ1(t, x) < δ < z∗1(t, x). The in-3

equality ϑ1(t, x) < δ implies that there exists (y, ζ) ∈ S#[t,T ](x, 0) such that4

ϕ(y(T )) − ζ(T ) < δ. Then for z2 = max
s∈[t,T ]

ψ(y(s)) we have that, w(t, x, δ, z2) ≤5

(ϕ(y(T ))− ζ(T )− δ)
∨(

maxs∈[t,T ] ψ(y(s))− z2
)

= 0, which implies that δ ∈ {γ ∈6

R | ∃z ∈ R2 with z1 = γ, w(t, x, z) ≤ 0}. However, δ is chosen such that δ < z∗1(t, x)7

which leads to a contradiction.8

9

Note that, as we are considering that there is no feasible solution that10

minimizes both objectives simultaneously, it follows from proposition 5.1 that11

w(t, x, z∗1(t, x), z∗2(t, x)) > 0.12

Let x ∈ RN , t ∈ [t, T ] and define:13

z1(t, x) = inf
{
ζ ∈ R

∣∣∣w(t, x, ζ, z∗2(t, x)) = 0
}

and

z2(t, x) = inf
{
ζ ∈ R

∣∣∣w(t, x, z∗1(t, x), ζ) = 0
}
. (18)

Now denote14

Ω = [z∗1(t, x), z1(t, x)]× [z∗2(t, x), z2(t, x)]. (19)

In the following theorem, we give the first link between the solutions of the multi-15

objective problem (MORP) and the function w. This result is an extension of results16

obtained in [23] to the case of multi-objective optimal control problems with Bolza and17

maximum running costs.18

Theorem 5.2. Assume that (H1), (H2), (H3) and (H4) hold and let (t, x) be in19

[0, T ]× RN . The following assertions hold:20

(i) F#
w (t, x) ⊂

{
z ∈ R2

∣∣∣ w(t, x, z) = 0
}
.21

(ii) F#(t, x) ⊂ F#
w (t, x) ∩ Ω ⊂

{
z ∈ Ω | w(t, x, z) = 0

}
.22

(iii) Let z ∈ Ω such that w(t, x, z) = 0. If there exists a admissible pair (y, ζ) ∈23

S#[t,T ](x, 0) such that ϕ(y(T )) − ζ(T ) = z1 and max
s∈[t,T ]

ψ(y(s)) = z2, then z ∈24

F#
w (t, x).25

Proof (i) Let z ∈ F#
w (t, x). Then there exists (y, ζ) ∈ S#[t,T ](x, 0) such that ϕ(y(T ))−

ζ(T ) = z1, max
s∈[t,T ]

ψ(y(s)) = z2 and there is no other admissible pair that dominates

13



(y, ζ). This means that for any (y, ζ) ∈ S#[t,T ](x, 0), one of the following assertions
holds: z1 ≤ ϕ(y(T ))− ζ(T ) or z2 ≤ max

s∈[t,T ]
ψ(y(s)). We can easily check that in the two

above cases, we have (ϕ(y(T ))− ζ(T )− z1)
∨

( max
s∈[t,T ]

ψ(y(s))− z2) ≥ 0. Therefore,

w(t, x, z) = min
(y,ζ)∈S#

[t,T ](x,0)

[
(ϕ(y(T ))− ζ(T )− z1)

∨
( max
s∈[t,T ]

ψ(y(s))− z2)
]

=
[
(ϕ(y(T ))− ζ(T )− z1)

∨
( max
s∈[t,T ]

ψ(y(s))− z2)
]

=0.

(ii) By item (i) we obtain immediately that F#
w (t, x) ∩ Ω ⊂ {z ∈ Ω | w(t, x, z) =1

0}. Moreover F#(t, x) ⊂ F#
w (t, x). It remains to prove that F#(t, x) ⊂ Ω. Let z =2

(z1, z2) ∈ F#(t, x). By Proposition 5.1, z∗i (t, x) = ϑi(t, x), for i=1, 2. Then for every3

(y, ζ) ∈ S#[t,T ](x, 0) we have z∗1(t, x) ≤ ϕ(y(T )) − ζ(T ) and z∗2(t, x) ≤ max
s∈[t,T ]

ψ(y(s)).4

Therefore, z1 ≥ z∗1(t, x) and z2 ≥ z∗2(t, x). Now, assume that z1 > z1(t, x). In this5

case, by definition of z1(t, x), it would exists (y, ζ) ∈ S#[t,T ](x, 0) such that ϕ(y(T )) −6

ζ(T ) ≤ z1(t, x) < z1 and max
s∈[t,T ]

ψ(y(s)) ≤ z∗2(t, x) ≤ z2, which contradicts the fact7

that z ∈ F#(t, x). We conclude that z1 ≤ z1(t, x). The same argument shows also that8

z2 ≤ z2(t, x), and then z belongs to Ω.9

(iii) Let z ∈ Ω such that w(t, x, z) = 0 and there exists an admissible pair (y, ζ) ∈
S#[t,T ](x, 0) such that ϕ(y(T ))− ζ(T ) = z1 and max

s∈[t,T ]
ψ(y(s)) = z2. By definition of w,

min
(y,ζ)∈S#

[t,T ](x,0)
(ϕ(y(T ))− ζ(T )− z1)

∨(
max
s∈[t,T ]

ψ(y(s))− z2
)

= 0.

That means, there exists no admissible par (y, ζ) such that ϕ(y(T ))−ζ(T ) < ϕ(y(T ))−10

ζ(T ) = z1 and max
s∈[t,T ]

ψ(y(s)) < max
s∈[t,T ]

ψ(y(s)) = z2. Therefore, by definition of weak11

Pareto solution z ∈ F#
w (t, x).12

13

Remark 4. With similar arguments as in [23] it can be proved that outside the14

set Ω only some trivial parts of the weak Pareto front might exist, that is z ∈15

F#
w (t, x)

⋂
ΩC ⇔ z1 = z∗1(t, x) and z2 > z2(t, x), or z2 = z∗2(t, x) and z1 >16

z1(t, x).17

Now we give a precise characterization of the Pareto front of the bi-objective optimal18

control problem (MORP) using the value function w. As in [23] consider the functions19

20

η1 : [z∗1 , z1]→ [z∗2 , z2], η1(ζ1) = inf{γ | w(t, x, ζ1, γ) ≤ 0}, (20a)
η2 : [z∗2 , z2]→ [z∗1 , z1], η2(ζ2) = inf{γ | w(t, x, γ, ζ2) ≤ 0}. (20b)

Lemma 5.3. Assume that (H1), (H2), (H3) and (H4) hold and let (t, x) be in [0, T ]×21

RN . Then for j = 1, 2 the functions ηj(·) are decreasing.22

Proof The result follows straightforward from the definition23

14



1

The following theorem gives a precise characterization of the Pareto front.2

Theorem 5.4. Assume that (H1), (H2), (H3) and (H4) hold and let (t, x) be in3

[0, T ]× RN .4

(i) F#(t, x) =
{

(ζ, η1(ζ)), ζ ∈ dom(η1)
}⋂{

(η2(ζ), ζ), ζ ∈ dom(η2)
}
.5

(ii) For any z ∈ F#(t, x) let a trajectory (y, ζ) ∈ S#[t,T ](x, 0) that is optimal for the6

auxiliary problem (11). Then (y, ζ) is a Pareto optimal solution of (MORP).7

Proof (i) Let z ∈
{

(ζ, η1(ζ)), ζ ∈ dom(η1)
}⋂{

(η2(ζ), ζ), ζ ∈ dom(η2)
}
. By

definition of functions ηi, i = 1, 2, we have that w(t, x, z) = 0. Then there exists at
least one admissible pair (y, ζ) ∈ S#[t,T ](x, 0) such that(

(ϕ(y(T ))− ζ(T ))− z1
∨

( max
s∈[t,T ]

ψ(y(s))− z2)
)
≤ 0

⇔ ϕ(y(T ))− ζ(T ) ≤ z1 and max
s∈[t,T ]

ψ(y(s)) ≤ z2 (21)

Assume that there exists no (y, ζ) ∈ S#[t,T ](x, 0) such that8 (
ϕ(y(T ))− ζ(T ), max

s∈[t,T ]
ψ(y(s))

)
= z. Then for (y, ζ) ∈ S#[t,T ](x, 0) satisfying9

(21), we have that ϕ(y(T ))− ζ(T ) < z1 or max
s∈[t,T ]

ψ(y(s)) < z2. By choice of z we have10

that zj = ηi(zi), j 6= i. Then, without loss of generality, take ζ = ϕ(y(T )) − ζ(T ),11

so w(t, x, ζ, z2) ≤ 0 with ζ < η2(z2) which is in contradiction with the definition12

of η2(z2) (see (20)). Now, to show that z = (z1, z2) is in the Pareto front, as-13

sume that there exists (y, ζ) ∈ S#[t,T ](x, 0) such that ϕ(y(T )) − ζ(T ) = ξ1 ≤ z114

and max
s∈[t,T ]

ψ(y(s)) = ξ2 ≤ z2, with (ξ1, ξ2) 6= z. Consider, without loss of gen-15

erality, that ξ1 < z1, then w(t, x, ξ1, z2) ≤ 0. As ξ1 < z1, by Proposition 4.3,16

w(t, x, ξ1, z2) ≥ w(t, x, z1, z2) = 0. So we conclude that w(t, x, ξ1, z2) = 0, with17

ξ1 < z1 = η2(z2) which is a contradiction. Therefore z ∈ F#(t, x).18

Assume now that z ∈ F#(t, x) and let (y, ζ) ∈ S#[t,T ](x, 0) be an admissible pair
such that

z1 = ϕ(y(T ))− ζ(T ) and z2 = max
s∈[t,T ]

ψ(y(s)).

Then w(t, x, z) = 0, by Theorem 5.2 and follows that η1(z1) < +∞ and η2(z2) < +∞.19

If z /∈
{

(ζ, η1(ζ)), ζ ∈ dom(η1)
}⋂{

(η2(ζ), ζ), ζ ∈ dom(η2)
}

then ∃j such that20

zj 6= ηj(zj). Consider, without loss of generality, that z1 6= η1(z1). As w(t, x, z) =21

0, we obtain that z1 > η1(z1). Consider ξ = (η1(z1), z2). By the definition of the22

function η1 we have that w(t, x, ξ) = 0 and then there exists an admissible pair (y, ζ) ∈23

S#[t,T ](x, 0) such that ϕ(y(T )) − ζ(T ) ≤ ξ1 < z1 and max
s∈[t,T ]

ψ(y(s)) ≤ ξ2 = z2, what is24

in contradiction with the assumption that z is in the Pareto front.25

(ii). Let z ∈ F#(t, x). Then w(t, x, z) = 0 and z is feasible. Take a trajectory (y, ζ) ∈26

S#[t,T ](x, 0) that is optimal for the auxiliary control problem (11). Then, as it was be27
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shown (see Proposition 5.1), (ϕ(y(T ))− ζ(T )−z1
∨

maxs∈[t,T ] ψ(y(s))−z2) = 0 if and1

only if (ϕ(y(T )) − ζ(T ) ≤ z1, and maxs∈[t,T ] ψ(y(s)) ≤ z2. If ϕ(y(T )) − ζ(T ) < z12

then ξ = (ϕ(y(T ))−ζ(T ), z2) is a feasible vector that dominates z which is impossible.3

In the same manner, if maxs∈[t,T ] ψ(y(s)) < z2 then ξ′ = (z1,maxs∈[t,T ] ψ(y(s))) is a4

feasible vector that dominates z which is impossible. So, for any trajectory (y, ζ) that5

is optimal for (11) we have that
(
ϕ(y(T ))− ζ(T ),maxs∈[t,T ] ψ(y(s))

)
= z that means6

the pair (y, ζ) is Pareto optimal for (MORP).7

8

Remark 5. It can be proved that the zero level set of the value function w, that is the9

set {z ∈ R2
∣∣∣ w(t, x, z) = 0

}
, is located in a curve. By Theorem 5.2 the weak Pareto10

front is contained in that curve and we stress on the fact that to guarantee that a point11

in this curve belongs to the weak Pareto front it is necessary to have and admissible12

trajectory (y, ζ) ∈ S#[t,T ](x, 0) such that13

ϕ(y(T ))− ζ(T ) = z1 and max
s∈[t,T ]

ψ(y(s)) = z2. (22)

It may happen that, for one z ∈ R2, w(t, x, z) = 0 and there exists no admissible14

trajectory that satisfies both equalities in (22).15

On another hand, Theorem 5.4 gives a characterization of the Pareto front as an16

intersection of two curves, that can be easily computed, once the value function w17

is obtained. This intersection aims removing the horizontal and vertical parts of the18

curve.19

6. ε-Pareto solutions of the original bi-objective optimal control problem20

In this section, we return to the original problem presented in this paper. We prove21

that using the auxiliary value function w it is possible to obtain the region of (weak) ε-22

Pareto fronts are contained. Moreover, (weak) ε-Pareto optimal solutions for problem23

MOP can be obtained by applying an algorithm of trajectory reconstruction to the24

auxiliary control problem (11).25

Theorem 6.1. Assume that (H1), (H2), (H3) and (H4) hold. Let (t, x) be in [0, T ]×26

RN and ε > 0.27

(i) F3,ε(t, x) ⊂ F1,ε(t, x) ⊂ F1,ε
w (t, x) ⊂

{
z ∈ R2

∣∣∣− ε ≤ w(t, x, z) ≤ 0
}
.28

(ii) Let zε ∈
{
z ∈ R2

∣∣∣ − ε ≤ w(t, x, z) ≤ 0
}
. If there exists (yε, ζε) ∈ S[t,T ](x, 0)29

that is optimal for the auxiliary control problem (11). Then (yε, ζε) ∈ P1,ε
w (t, x)30

of problem (8).31

(iii) Let zε ∈
{
z ∈ R2

∣∣∣ − ε < w(t, x, z) ≤ 0
}
. If there exists (yε, ζε) ∈ S[t,T ](x, 0)32

that is optimal for the auxiliary control problem (11). Then (yε, ζε) ∈ P1,ε(t, x)33

of problem (8).34

Proof By definition F3,ε(t, x) ⊂ F1,ε(t, x). Let z ∈ F1,ε
w (t, x). Then there exists an

admissible pair (y, ζ) ∈ S[t,T ](x, 0) such that ϕ(y(T ))− ζ(T ) = z1, max
s∈[t,T ]

ψ(y(s)) = z2,

16



and

w(t, x, z) = min
(y,ζ)∈S#

[t,T ](x,0)

[
(ϕ(y(T ))− ζ(T )− z1)

∨
( max
s∈[t,T ]

ψ(y(s))− z2)
]

≤
[
(ϕ(y(T ))− ζ(T )− z1)

∨
( max
s∈[t,T ]

ψ(y(s))− z2)
]

=0.

Moreover as z ∈ F1,ε
w (t, x), then for any (y, ζ) ∈ S[t,T ](x, 0), one of the following

assertions holds: z1−ε ≤ ϕ(y(T ))−ζ(T ) or z2−ε ≤ max
s∈[t,T ]

ψ(y(s)). It is possible to check

that in the two above cases, we have (ϕ(y(T ))−ζ(T )−z1)
∨

( max
s∈[t,T ]

ψ(y(s))−z2) ≥ −ε.

As the S#[t,T ](x, 0) is the closure of the S[t,T ](x, 0), we can conclude that one of assertions

above holds for any (y, ζ) ∈ S#[t,T ](x, 0). Therefore,

w(t, x, z) = min
(y,ζ)∈S#

[t,T ](x,0)

[
(ϕ(y(T ))− ζ(T )− z1)

∨
( max
s∈[t,T ]

ψ(y(s))− z2)
]
≥ −ε.

(ii) Let zε ∈
{
z ∈ R2

∣∣∣ − ε ≤ w(t, x, z) ≤ 0
}

and (yε, ζε) ∈ S[t,T ](x, 0) that
is optimal for the auxiliary problem w(t, x, zε). Then, −ε ≤ (ϕ(yε(T )) − ζε(T ) −
z1,ε

∨
maxs∈[t,T ] ψ(yε(s))− z2,ε. Assume that there exists (y, ζ) ∈ S[t,T ](x, 0) such that(

ϕ(y(T )− ζ(T )),maxs∈[t,T ] ψ(y(s))
)
< (z1,ε − ε, z2,ε − ε). Therefore,(

ϕ(y(T ))− ζ(T )− z1,ε
∨

max
s∈[t,T ]

ψ(y(s))− z2,ε
)
<
(
ϕ(yε(T ))− ζε(T )− z1,ε

∨
max

s∈[t,T ]
ψ(yε(s))− z2,ε

)
which is impossible. So, for any trajectory (yε, ζε) that is optimal for the auxiliary1

control problem w(t, x, zε) we have that the pair (yε, ζε) ∈ P1,ε
w (t, x) of problem (8).2

(iii) The proof can be obtained with similar arguments of (ii).3

4

We note that if we take a point zε in the set
{
z ∈ R2

∣∣∣ − ε ≤ w(t, x, z) ≤ 0
}

and5

there exists (yε, ζε) ∈ S[t,T ](x, 0) that is optimal for the auxiliary control problem (11),6

we could just prove that the optimal pair is in the set P1,ε(t, x) that is bigger than the7

set of ε−Pareto optimal solutions P3,ε(t, x). However, this is still relevant, once the8

definition P1,ε(t, x) it is most used in researchs in this subject.9

7. Reconstruction of the Pareto optimal trajectories10

The characterization of the weak Pareto front and the Pareto front of the relaxed11

problem (MORP) is provided in Theorems 5.2 and 5.4, respectively. Another important12

concern is to reconstruct an optimal trajectory corresponding to a given point in the13

(weak) Pareto front.14

After compute the auxiliary value function w, by Theorem 5.4 we have a characteri-
zation of the Pareto front F#(t, x). Now, let z = (z1, z2) ∈ F#(t, x). Then,an algorithm
of trajectory reconstruction, as the algorithm presented in [3], can be applied to the
function w on [t, T ] with the initial conditions (x, z). To apply the algorithm proposed
in that paper, an initial condition (x, z) should be fixed, and a time step h should be
chosen to discretize the interval [t, T ]. Then the control values uhk are defined by a re-
cursion method based on the minimization of the Dynamical Programming Principle,

17



that is

uhk ∈ argmin
u∈U

wh(sk, y
h
k + hf(yhk ), u), ζhk − `(yhk , u), z2)

∨
max(g(yhk )− z2),

and the new state positions are defined by yhk+1 = yhk +hf(yhk ) and ζhk+1 = ζhk −`(yhk , u).1

It is proven that a trajectory generated by this procedure is an approximation of the2

optimal trajectory for w(t, x, z). Finally, by Theorem 5.4, item (ii), if the trajectory is3

optimal for the auxiliary problem (11), then is a Pareto optimal trajectory of (MORP).4

In the case of weak Pareto solutions, by Theorem 5.2 F#
w (t, x) ∩ Ω ⊂

{
z ∈ Ω |5

w(t, x, z) = 0
}
. And if there exists an admissible pair (y, ζ) ∈ S#[t,T ](x, 0) such that6

ϕ(y(T ))− ζ(T ) = z1 and max
s∈[t,T ]

ψ(y(s)) = z2, then z ∈ F#
w (t, x). So we can take z ∈ Ω7

such that w(t, x, z) = 0, apply an algorithm of trajectory reconstruction to the function8

w on [t, T ] with the initial (x, z) as in [3], and see if such a trajectory exists. If there9

is a trajectory in such conditions this is an approximation of a weak Pareto trajectory10

of (MORP).11

Now consider ε > 0 and let zε ∈ R2, such that −ε ≤ w(t, x, zε) ≤ 0. By applying an12

algorithm of trajectory reconstruction to the function w on [t, T ] with the initial condi-13

tions (x, zε) we get an approximation of the optimal trajectory for w(t, x, zε). Now by14

Theorem 6.1, if there exists (yε, ζε) ∈ S[t,T ](x, 0) that is optimal for the auxiliary control15

problem (11). Then (yε, ζε) ∈ P1,ε
w (t, x) of problem (8). Moreover if we consider that16

−ε < w(t, x, zε) ≤ 0 and it is possible to obtain (yε, ζε) ∈ S[t,T ](x, 0) that is optimal17

for the auxiliary control problem (11). Then (yε, ζε) ∈ P1,ε(t, x) of problem (8).18

8. A numerical example: Pest control problem19

In this section we present a numerical example where the method proposed in this20

paper was applied to compute the (weak) Pareto front.The resultant HJB equation21

was solved by a finite difference method implement at C++ HJB-solver "ROC-HJ"22

[30].23

Consider a Lotka-Volterra model describing the interaction between two spices
(predator-prey model): a prey, that is a nuisance for humans, and a predator. We
can act on this model by spraying a chemical to poison the pest (the poison may also
kill a part of predator population). This model is given by the following dynamical
system

ẏ1(s) = y1(s)− y1(s)y2(s)− y1(s)cy1
u(s)

ẏ2(s) = −y2(s) + y1(s)y2(s)− y2(s)cy2
u(s)

where y1 represents the pest population, y2 the predator, the constants cy1
, cy2

repre-
sent the rate of each population that will be killed by the poison. As in [31], the value
of the constants cy1

, cy2
are set to 0.4 and 0.2 respectively. The control function u(s) is

restricted to take values of either 0 or 1. The goal is to keep nuisance expansion under
control by minimizing the maximum difference of certain proportion of both species
along the time horizon T − t:

max
s∈[t,T ]

0.25(y1(s)−Ky2(s))
2

18



and also reduce the cost of spraying the chemical:∫ T

t
Pu(s)ds,

where K = 0.7, P = 0.3 and T = 10. So, the optimal control problem has two different1

objective functions.2

Since the control is allowed to take only the values 0 and 1, the set of trajectories is
not compact. In the relaxed control problem, the control input may take values in the
interval [0, 1]. As described in the previous sections, we introduce an auxiliary control
problem whose value function w is solution of the following HJB equation:

min
(
− ∂tw(t, x, z) +H(x,Dxw,Dzw), w(t, x, z)− (0.25(x1 −Kx2)2 − z2)

)
= 0,

for t ∈ [0, T ), x, z ∈ R2

w(T, x, z) = −z1
∨

(0.25(x1 −Kx2)2 − z2) for x ∈ R2, z ∈ R2,

where the Hamiltonian is given by

H(x, p, q) = −(x1−x1x2)p1 + (x2−x1x2)p2 + max (cy1x1p1 + cy2x2p2 + Pq1, 0) ,∀x, p, q ∈ R2.

The HJB equation is solved on the domain [0, 3.5] × [0, 3.5] × [0, 3] × [0, 3]. For this3

example, we used an explicit Euler scheme in time and Lax-Friedrich discretization in4

space (we refer to [3,32] for more details). This discretization is known to be stable5

and convergent under an adequate interplay between the mesh size of the x-grid and6

the time step. First, we fix the initial conditions as follows: x0 = (0.7, 0.2) and t = 0.7

Figure 2a presents the 0-set-level of the value function w(0, x0, ·) computed on five8

different x-grids. This numerical test confirms the (already known) stability of the9

numerical scheme. One important feature of the HJB approach to solve bi-objective10

control problems is the possibility of obtain the Pareto front for different initial states11

with the same auxiliary value function w. Figure 2b shows the Pareto front for different12

initial states x0 computed on a x-grid of 2002 × 352 nodes.13
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(a) 0-level set of w(0, (0.7, 0.2), ·) com-
puted on different grids.
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Figure 2.: 0-level sets on different computational grids and for different initial states.

From now, we fix t = 0 and x0 = (0.7, 0.2) and we consider the approximation of the14

value function w obtained on x-grid of on a x-grid of 2002 × 352 nodes. Formula (16)15

allows to give an approximation of the utopian point associated with the bi-objective16

control problem:17

19



z∗1(0, x0) = inf
{
ζ1 ∈ R

∣∣∣∃z2 ∈ R s.t. w(0, x0, ζ1, z2) ≤ 0
}
∼= 0,

z∗2(0, x0) = inf
{
ζ2 ∈ R

∣∣∣∃z1 ∈ R s.t. w(0, x0, z1, ζ2) ≤ 0
}
∼= 0.839.

Following (18), we get also an approximation of the upper bounds of Ω:

z1(0, x0) = inf
{
ζ ∈ R

∣∣∣w(0, x0, ζ, z
∗
2(0, x0)) = 0

}
∼= 0.54,

z2(0, x0) = inf
{
ζ ∈ R

∣∣∣w(0, x0, z
∗
1(0, x0), ζ) = 0

}
∼= 1.414.

These values lead to an approximation of the set

Ω = [z∗1(0, x0), z1(0, x0)]× [z∗2(0, x0), z2(0, x0)].

Figure 3a shows the 0-level set of the value function w(0, x0, ·) in red that contains1

the (weak) Pareto front F#(0, x0) ⊂ F#
x (0, x0). Moreover, the black region in Figure 3a2

represents a region where it is possible to obtain points in F1,ε
w (0, x0), for ε = 0.05. In3

this figure the set Ω is represented by a box delimited by black dashed lines. Figure 3b4

shows the intersection of 0-level set of w(0, x0, ·) with the set Ω. In this example the5

intersection is equal to the Pareto front F#(0, x0). The possible points in the weak6

Pareto front are just trivial points and are outside the set Ω.
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(a) The 0-level set of w(0, x0, ·) (in red). The set
{z | w(0, x0, z) ≤ −ε} for ε = 0.05 (in black).
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Figure 3.: Analysis of the negative level set of w(0, x0, ·), for x0 = (0.7, 0.2).
7

The value function w is also useful to reconstruct Pareto optimal trajectories. By8

using an algorithm of trajectory reconstruction from [3], we reconstruct optimal Pareto9

trajectories, for five Pareto values z = (z1, z2) that are represented by points with10

different colors in figure 4a. Figure 4 shows these optimal trajectories for the initial11

states (x0, z) and the color used for each trajectory refers to the corresponding Pareto12

value in figure 4.13

As z∗1 = 0, the optimal control law for w(0, x0, z
∗
1(0, x0), z2(0, x0)) is identically 014

(i.e., u ≡ 0), which means that not only the point (z∗1(0, x0), z2(0, x0)) belongs to the15

Pareto front of the relaxed problem F#(0, x0), but it is also optimal Pareto for the16

original (non-relaxed) control problem, that is (z∗1(0, x0), z2(0, x0)) ∈ F(0, x0). The17

case of the others optimal Pareto trajectories represented in Figure 4 is different. It18

is possible to see in Figure 5 and 6 that the optimal control law seems to take other19

20
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Figure 4.: Optimal Pareto solutions in P#(0, x0).

values than just 0 and 1. So, we cannot guarantee that the Pareto values belong to1

F(0, x0). However, by Theorem 4.1, there exists a ε-Pareto solution in a neighborhood2

of these Pareto values, where the control takes values in the set {0, 1}. In figure 53

(resp. figure 6), we display the relaxed optimal Pareto trajectory-control corresponding4

to (z1(0, x0), z
∗
2(0, x0)) ∈ F#(0, x0) (resp. (0.09, 1.14) ∈ F#(0, x0)) and an optimal5

trajectory-control corresponding to the ε-Pareto value (z1(0, x0)+ε, z∗2(0, x0)+ε) (resp.6

(0.1, 1.15)), for ε = 0.02 (resp. ε = 0.01 ). As can be seen in this example, the two7

trajectories are very close to each other, while the structure of the controls laws are8

different.
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Figure 5.: Relaxed Pareto optimal solution corresponding to (z1(0, x0), z
∗
2(0, x0)) ∈

F#(0, x0) and ε-Pareto solution to the original problem corresponding to (z1(0, x0) +
ε, z∗2(0, x0) + ε) ∈ F1,ε(0, x0) with ε = 0.02.

9

9. Conclusion10

In this paper we have investigated a bi-objective optimal control problem with cost11

functions of different nature. We considered the situation where the set of trajectories12

is not compact and the set of Pareto solutions may be empty. We have studied the13

relation of the Pareto front corresponding to the relaxed (convexified) bi-objective14

problem with the original one. More precisely, we proved that for any x∗ is a (weak)15

Pareto optimal solution of the relaxed problem and for any ε > 0 there exist a (weak)16
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Figure 6.: Relaxed Pareto optimal solution corresponding to (0.09, 1.14) ∈ F#(0, x0)
and ε-Pareto solution to the original problem corresponding to (0.1, 1.15) ∈ F1,ε(0, x0)
with ε = 0.01.

ε-Pareto solution for the original problem that is in a neighborhood of x∗. Moreover,1

the distance between the Pareto optimal value achieved by x∗ and the optimal value2

achieved by x is small and is of order ε. A characterization of the Pareto front of the3

relaxed bi-objective problem is derived, along with a characterization of the ε-Pareto4

front of the original problem.5

The relevance of our approach is tested on a simple control problem. The numerical6

simulations confirm all the theoretical results. However, it should be noticed that for a7

control problem with two state variables and two cost functions, the method requires8

to solve a HJB equation in dimension 4. To get an approximation of the Pareto front9

in a reasonable time, the dimension of state should remain less than 4 or 5.10
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