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Bi-objective finite horizon optimal control problems with
Bolza and maximum running cost

Ana Paula Chorobura ∗ and Hasnaa Zidani†

November 20, 2018

ABSTRACT
In this paper, we investigate optimal control problems with two objective functions of different nature that
need to be minimized simultaneously. One objective is in the classical Bolza form and the other one is
defined as a maximum running cost. Our approach is based on the Hamilton-Jacobi-Bellman framework.
In the problem considered here the existence of Pareto solutions is not guaranteed. So first, we consider the
bi-objective problem to be minimized over the convexified dynamical system. We show that if a vector is
(weak) Pareto optimal solution for the convexified problem, then there exists an (weak) ε-Pareto optimal
solution of the original problem that is in the neighborhood of this vector. After we define an auxiliary
optimal control problem and show that the weak Pareto front of the convexified problem is a subset of the
zero level set of the corresponding value function. Moreover, with a geometrical approach we establish
a characterization of the Pareto front. It is also proved that the (weak) ε-Pareto front is contained in the
negative level set of the auxiliary optimal control problem that is less or equal ε. Some numerical examples
are considered to show the relevance of our approach.

KEYWORDS
Multi-objective programming; Hamilton-Jacobi-Bellman approach; Optimal control problem; Approximate
Pareto solutions.

1 Introduction
In optimal control problems the aim is to control the dynamical systems evolution along a certain period of time
in a manner that the pair of control-and-state is optimal with respect to some criterion, given in the objective
function. The type of this objective function is of great importance when developing the theory. It can be defined,
for example, in a Bolza form [3, 21, 12, 11, 34] or in a max-type [4, 7].

Continuous optimal control problems have been studied with the Dynamic Programming approach, see [6, 10].
The idea is to work with the value function that results from considering the optimal value of the control problem
as a function of the initial state for the dynamical system. Under suitable conditions, such value function satisfies
a dynamic programming principle and the value function can be characterized as the unique viscosity solution of
a partial differential equation, called Hamilton-Jacobi-Bellman (HJB) equation [2]. Moreover the value function
contains all necessary information to reconstruct the optimal trajectories and control strategies [4, 6, 8, 31].

In general when the set of trajectories is not closed, it is not possible to guarantee the existence of a minimizer
for the optimal control problem. A very known approach to deal with it is introduce a convexified (relaxed) optimal
control problem; see for instance [5, 18]. For this relaxed problem is possible to prove that the set of trajectories
is compact. Moreover, under some assumptions, this convexified set of trajectories is the closure of the set of
trajectories of the original problem. Therefore this new optimal control problem has an optimal solution and the
value function is equal to the value function of the original problem [6, 18].
∗Federal University of Paraná, Graduate Program in Mathematics, CP 19081, CEP 81531-980, Curitiba-Brazil. This author is supported by

Capes-Brazil ana.chorobura@gmail.com
†Unité de Mathématiques Appliquées (UMA), Ensta ParisTech, 828 Bd des Maréchaux, 91762 Palaiseau Cedex

hasnaa.zidani@ensta-paristech.fr

1



This paper presents a novel theory for finite horizon optimal control problems with objectives of different
nature that need to be minimized simultaneously. Namely, in the vector objective function, one component can be
a Bolza cost and another one a maximum running cost. So the considered bi-objective optimal problem is:

inf
(y,u)∈X

(
ϕ(y(T )) +

T∫
t

`(y(s),u(s))ds, max
s∈[t,T ]

ψ(y(s))
)
,

for a given final cost ϕ : RN → R, a running cost ` : RN × RM → R, and a given function ψ : RN −→ R, and
where X is the feasible set, T is the final time horizon, u : [0, T ]→ RM is the control variable and y : [0, T ]→ RN
is the state variable, solution of a differential system.

Multi-objective optimization is an area of great interest in applications. In this context, generally, it is not
possible to minimize all the criteria simultaneously. For this reason, several solution concepts have been proposed
in the literature. In the famous work “Cours d’Economie Politique" [30], the pioneering economist V. Pareto
introduced the notion of efficient or Pareto solution. At a Pareto solution it is not possible to improve one criterion
without worsening at least one of the other ones. For any given problem, the set of Pareto solutions may be infinite
and unbounded. A larger set is given by weak Pareto solutions, at which it is not possible to improve all the
objective functions simultaneously. The image of the set of all (weak) Pareto solutions by the objective function is
called (weak) Pareto front. It is useful for practitioners for finding a trade-off between conflicting criteria. A great
number of works are developed in optimization problems with several goals, see for instance [13, 14, 22, 28] and
the reference therein.

One of the most common approach for solving multi-objective optimization problem is to relate it with a family
of mono-objective optimization problems, in such a way that the solutions of the multi-objective problem can be
obtained by solving a sequence of classical nonlinear programming problems. The most popular scalarization
techniques are the weighted sum method and the weighted Chebyshev method, [22, 28]. As the scalarization
usually depends on certain auxiliary parameters, some numerical difficulties may appear if the single objective
optimization problem has feasible solutions only with very few parameter values. Moreover, a weakness of the
weighting method is that all the Pareto optimal points cannot be found if the Pareto front is nonconvex [23]. For
multi-objective optimal control problems several numerical algorithms based on scalarization techniques have been
developed (see for instance [9, 23, 26] and the references therein).

Multi-objective optimal control problems have also been investigated within the HJB framework. A method
that combines the HJB approach and the weighted sum method to find some points of the Pareto front was intro-
duced in [29]. In [24] a numerical method for multi-objective optimal control problems under integral constraints
is proposed. With the HJB approach for an extending state space the Pareto front can be constructed. These idea
was extended to a class of hybrid control problems, see [33]. In [20] the set-valued function is characterized as a
unique generalized solution of an HJB equation. In [15], the idea of introduce an auxiliary problem to deal with
mono-objective optimal control problems [3], is extended to work with multi-objective optimal control problems.

In practice, for some problems, it is difficult to calculate the sets of (weak) Pareto solutions and what it could be
obtained is just an approximate set of solutions. The notion of approximate optimal solutions for multi-objective
problems was introduced by [27]. But this notion of ε-Pareto solutions can be investigated with several different
definitions, as proposed in [35]. We discuss in this paper three of these concepts, that are the most relevant, being
one of them the concept introduced in [27] and also investigate by [16, 17, 19].

All works of multi-objective optimal control refereed here, investigate problems where the objective functions
must have the same nature. In this work, we use the HJB approach to characterize the (weak) Pareto front for a
finite horizon bi-objective optimal control problem with objectives of different nature. In the considered problem
it is not possible to guarantee that the set of trajectories is closed, so we introduce a convexified (relaxed) problem
where is possible to guarantee that the set of trajectories is compact. Moreover this convexified set of trajectories
is the closure of the set of trajectories of the original problem. Moreover we prove that if a feasible pair (y,u)
is a Pareto optimal solution for the convexified problem, then there exists an ε-Pareto optimal solution of the
original problem that is in the neighborhood of (y,u). After we define an auxiliary control problem that has good
properties and can be characterized as a solution of an HJB equation. Then we show that the weak Pareto front
of the convexified problem is a subset of the zero level set of the corresponding value function. Moreover, with a
geometrical approach we establish a characterization of the Pareto front.

2



This paper is organized as follows. Section 2 discuss the concepts and properties of solutions of bi-objective
problems. In Section 3 the bi-objective problem with objectives of different nature is formulated. Moreover the
convexified problem is introduced and some results about the relation of solutions of two problems are proved.
In Section 4 an auxiliary control problem is considered, the HJB equation and some properties to the auxiliary
value function are derived. Section 5 studies the link between the 0-level set of the auxiliary value function and
the (weak) Pareto front. Moreover the characterization of the Pareto Front for the convexified problem is obtained.
In Section 6 we shown how to obtain (weak) ε-Pareto optimal solutions for the original problem. We discuss
the reconstruction of (approximate) Pareto trajectories on Section 7. Some numerical examples are presented in
Section 8. Section 9 concludes the paper with final remarks.

Notations Throughout this paper, R denotes the set of real numbers, | · | is the maximum norm. For a set
S ⊆ RN , S and bdry(S) denote its closure and boundary, respectively. Moreover, for every t > 0 we denote
by W 1,1([t, T ];RM ) (for any M > 0) the space of integrable functions, from [t, T ] in RM , that admit a weak
derivative integrable also on [t, T ].

We will use the standard convention that inf ∅ = +∞.
For z, z′ ∈ RN , we will use the following notations for different partial order relations:

z < z′ ⇔
[
zi < z′i ∀i = 1, . . . , N

]
; z ≤ z′ ⇔

[
zi ≤ zi ∀i = 1, . . . , N

]
.

2 Pareto optimality
Consider the following bi-objective optimization problem:{

Minimize g(x) = (g1(x), g2(x))
subject to x ∈ X (P)

where Y is a Banach space, gi : Y → R are continuous functions and X ⊂ Y a feasible nonempty set.
In the multi-objective optimization we want to minimize all the components of the objective function at the

same time. If there exists no conflict between the objective functions, then a solution x∗ ∈ X can be found where
all objectives attains its optimum, that is

gi(x
∗) = min{gi(x), x ∈ X}, i = 1, 2.

In this case, no special methods are needed. To avoid such trivial cases we assume that does not exist a single
solution that minimizes all the objective functions simultaneously. This means that the objective functions are at
least partly conflicting and several solution concepts may be associated with the problem (P). In this paper, we use
the concept of Pareto optimality [30], to define the notion of solution for the multi-objective optimization problem
(P).

Definition 2.1 (Pareto optimal solutions). Let x∗ ∈ X be an admissible pair.

• We will say that x∗ is a Pareto optimal solution if and only if there is no admissible pair x ∈ X such that

(g1(x), g2(x) ≤ (g1(x∗), g2(x∗)), and
[
g1(x) < g1(x∗) or g2(x) < g2(x∗)

]
.

The set P of all Pareto optimal solutions is said to be Pareto optimal solutions set.

• We will say also that x∗ is a weak Pareto optimal solution if and only if there is no admissible pair x ∈ X
such that

(g1(x), g2(x)) < (g1(x∗), g2(x∗)).

The set Pw of all weak Pareto optimal solutions is said to be weak Pareto optimal solutions set.
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With theses definitions, we can check that the Pareto set is a subset of the weak Pareto set: P ⊂ Pw.
The set of all vectors of objective values at the Pareto (resp. weak Pareto) minima is said to be the Pareto front

(resp. weak Pareto front). More precisely, we have the following definition.

Definition 2.2 (Pareto front). We will call Pareto front (respectively weak Pareto front) the image of the Pareto
optimal solutions set P ( respectively of Pw ) by the multi-objective application g(x) :

F = {g(x), x ∈ P} Fw = {g(x), x ∈ Pw} . (1)

Denote the image of the feasible set by Z and call it the attainable set. It is a subset of the objective space
R2. It is known that if a vector z ∈ Z is in the (weak) Pareto front then z is necessarily a boundary point of Z
[25]. It is a challenging problem to compute the sets P and Pw. In some cases (weak) Pareto solutions may not
exist, for instance when the feasible set is not closed. In such a problems what it could be obtained is a set of
approximate solutions. The notion of approximate solutions for multi-objective problems can be investigated with
several different definitions. One definition was introduced by [27], then in [35] six different concepts of ε-Pareto
solutions were proposed for multi-objective problems and some methods for their generation were examined. We
discuss in this paper three of these concepts, that are the most relevant and the first one is the concept introduced
in [27].

Definition 2.3 (ε-Pareto solutions). Let ε ≥ 0. We define the following sets of ε-Pareto solutions:

(i) P1,ε = {x ∈ X : there is no y ∈ X such that g(y) ≤ g(x)− ε1 and g(y) 6= g(x)− ε1}.

(ii) P2,ε = {x ∈ X : there is y ∈ P such that |g(x)− g(y)| ≤ ε}.

(iii) P3,ε = {x ∈ X : if g(y) 6= g(x) and g(y) ≤ g(x) for some y ∈ X, then g(y) ≥ g(x)− ε1}.

An ε-Pareto solution x∗ ∈ Pi,ε, i = 1, 2, 3, produces an ε-Pareto outcome g(x∗) and the set of all ε-Pareto
outcomes are denoted by F i,ε, i = 1, 2, 3. Note also that, if ε1 ≤ ε2 then F i,ε1 ⊂ F i,ε2 and F i,ε1w ⊂ F i,ε2w ,
i = 1, 2, 3. Moreover, if the feasible set X is a compact set, then the following relation between the ε-Pareto sets
was proved by [35]:

F ⊂ F3,ε ⊆ F2,ε ⊆ F1,ε. (2)

Remark 2.4. The reverse inclusions are not true. Consider the following multi-objective optimization problem:{
Minimize g(x) = (x1, x2)
subject to: x ∈ X = [−1, 1]2 {x ∈ [−1, 0]2 : x1 + x2 < −1}. (3)

The feasible set X is given by Figure 1.

Figure 1: Feasible set X

Note that for all ε > 0 the point a1 = (1,−1) ∈ P1,ε. In fact g2(a1)− ε = −1− ε, so there is no x ∈ X such
that g(x) 6= g(a1) and g(x) ≤ g(a1) − ε, therefore a1 ∈ P1,ε. Moreover if 0 < ε < 1 then a1 /∈ P3,ε ⊂ P2,ε,
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because g(0,−1) 6= g(a1), g(0,−1) ≤ g(a1) and g1(0,−1) = 0 < 1−ε = g1(a1)−ε. Now, consider ε = 0.1 and
the point a2 = (−0.8, 0). As (−0.9,−0.1) is a Pareto optimal solution, we obtain that a2 ∈ P2,ε, but a2 /∈ P3,ε.
In fact g(−1, 0) 6= f(a2), g(−1, 0) ≤ f(a2) and g1(−1, 0) = −1 < −0.9 = g1(a2)− ε, therefore a2 /∈ P3,ε.

The ε-Pareto fronts of this example, for the three different concepts of approximate solutions (Definition 2.3),
are represented in red in Figure 2, for ε = 0.1. In Figure 2a the black dashed lines represents that those lines are
not in F1,ε.

(a) F (1,ε) (b) F (2,ε) (c) F (3,ε)

Figure 2: ε-Pareto fronts for Problem 3

Remark 2.5. We stress on that the inclusions in (2) are true only when the feasible set X is a compact subset od
RN . However if the feasible set it is not closed, there is no guarantee of the existence of (weak) Pareto solutions.
Actually, the (weak) Pareto set can be empty. Consider, for example, the problem of{

Minimize g(x) = (x1, x2)
subject to: x ∈ X = (−1, 1)2 {x ∈ (−1, 0)2 : x1 + x2 ≤ −1}. (4)

In this case the feasible set is open, see Figure 3a, where the black dashed lines represents that those lines are not
in the set. Then the (weak) Pareto set and the the set P2,w are empty. However the sets P1,ε and P3,ε are not
empty and can be seen in red in Figures 3b and 3c, respectively.

(a) Open feasible set (b) F (1,ε) (c) F (3,ε)

Figure 3: Feasible set and ε-Pareto fronts for Problem 4

The concept of approximate solutions, as defined in 2.3 (i) is extended for weak ε-Pareto solutions in [27].
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Definition 2.6. [weak ε-Pareto solution] Let ε ≥ 0. We define the following set of ε-Pareto solutions:

(i) P1,ε
w = {x ∈ X : there is no y ∈ X such that g(y) < g(x)− ε1}.

Motivated by the case of Remark 2.5, we are going to consider a problem of minimize the objective functions
over the closure of the feasible set X and prove some interesting relations with the (weak) Pareto solutions of this
problem 5, and the (weak) ε-Pareto solutions of the original problem P.{

Minimize g(x) = (g1(x), g2(x))
subject to x ∈ X (5)

We are going to denote the Pareto set and the weak Pareto set of problem (5) by P# and P#
w , respectively.

The following proposition states a relation between the (weak) Pareto optimal solutions of problem (5) and
(weak) ε-Pareto optimal solutions of the original problem (P).

Theorem 2.1. Assume that fi are Lipschitz continuous functions, with Lipschitz constant Li, i = 1, 2.

(i) For any x∗ ∈ P# and for any ε > 0 define δ = mini(ε/Li), then there exists x ∈ P1,ε such that

|x∗ − x| ≤ δ and |g(x∗)− g(x)| ≤ ε.

(ii) For any x∗ ∈ P#
w and for any ε > 0 define δ = mini(ε/Li)the there exists x ∈ P1,ε

w such that

|x∗ − x| ≤ δ and |g(x∗)− g(x)| ≤ ε.

(iii) Given ε > 0, for any x∗ ∈ P3,ε there exists x ∈ P# such that |g(x)− g(x∗)| ≤ 2ε.

Proof. (i) Let x∗ ∈ P# and ε > 0. As x∗ ∈ X , there exists a sequence {xn} ⊂ X such that

lim
n→∞

xn = x∗.

Then, given ε > 0, define δ = mini(ε/Li), so there exists xN such that |x∗−xN | ≤ δ. By the Lipschitz continuity
of functions gi, i = 1, 2 we obtain that

|gi(x∗)− gi(xN )| ≤ Li|x∗ − xN | ≤ Liδ ≤ ε,

which means that |g(x∗) − g(xN )| ≤ εi. It remains to prove that xN ∈ P1,ε. Note that, by definition of x∗ there
is no x ∈ X such that gi(x) ≤ gi(x

∗), for i = 1, 2. This implies that for any x ∈ X at least for one i = 1, 2 the
following assertion holds:

g1(x) > g1(x∗) > g1(xN )− ε or g2(x) > g2(x∗) > g2(xN )− ε

Therefore, there is no x ∈ X such that gi(x) ≤ gi(xN ) − ε for i = 1, 2, which means that xN ∈ P1,ε and the
assertion is now proved with x = xN .

(ii) Let x∗ ∈ P#
w and ε > 0. As x∗ ∈ X , there exists a sequence {xn} ⊂ X such that

lim
n→∞

xn = x∗.

Then, given ε > 0, define δ = mini(ε/Li), so there exists xN such that such that |x∗− xN | ≤ δ. By the Lipschitz
continuity of functions fi, i = 1, 2 we obtain that

|gi(x∗)− gi(xN )| ≤ Li|x∗ − xN | ≤ Liδ ≤ ε,

which means that |g(x∗) − g(xN )| ≤ ε. It remains to prove that xN ∈ P1,ε
w . Note that, by definition of x∗ there

is no x ∈ X such that gi(x) < gi(x
∗), for i = 1, 2. This implies that for any x ∈ X at least for one i = 1, 2 the

following assertion holds:

gi(x) ≥ g1(x∗) > g1(xN )− ε or g2(x) ≥ g2(x∗) > g2(xN )− ε.
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Therefore, there is no x ∈ X such that gi(x) < gi(xN ) − ε for i = 1, 2, which means that xN ∈ P1,ε
w and the

assertion is now proved with x = xN .
(iii) Let x∗ ∈ P3,ε. Assume that there is no x ∈ P# such that |g(x)− g(x∗)| < 2ε. Then x∗ /∈ P#, so there

exists y ∈ P# such that g(y) 6= g(x∗) and g(y) ≤ g(x∗). As y ∈ X , there exists a sequence {yn} ⊂ X such that
limn→∞ yn = y. Choose yN such that g(yN ) ≤ g(x∗) and |g(y) − g(yN )| ≤ ε. As x∗ ∈ P3,ε, we must have
g(yN ) ≥ g(x∗)− ε1. Hence g(x∗)− ε1 ≤ g(yN ) ≤ g(x∗), which means that |g(yN )− g(x∗)| < ε. Then

|g(y)− g(x∗)| ≤ |g(y)− g(yN )|+ |g(yN )− g(x∗)| ≤ 2ε,

what is a contradiction.

Remark 2.7. Theorem 2.1 also means that for any z∗ ∈ F# (resp. z∗ ∈ F#
w ) and for any ε > 0, there exists

z ∈ F1,ε (resp. z ∈ F1,ε
w ) such that |z∗ − z| ≤ ε.

3 Problem statement
Let U be a given compact non-empty subset of RM (for m ≥ 1). A measurable function u : [0,+∞[→ Rm is said
admissible if it satisfies u(s) ∈ U for almost every s ≥ 0. The set of all admissible controls will be denoted by U :

U =
{
u : [0,+∞)→ RM measurable, u(s) ∈ U a.e.

}
.

Let T > 0 be a fixed finite horizon, and consider the dynamical system:{
ẏ(s) = f(y(s),u(s)) s ≥ 0,
y(t) = x.

(6)

The dynamics f satisfies the following hypothesis:

(H1) f : RN × U → RN is continuous. For any R > 0, ∃Lf (R) > 0 such that for every u ∈ U :

|f(x, u)− f(x′, u)| ≤ Lf (R)(|x− x′|) ∀x, x′ ∈ RN with |x| ≤ R, |x′| ≤ R.

Moreover, there exists cf > 0 such that for any x ∈ RN we have: max{|f(x, u)| : u ∈ U} ≤ cf (1 + |x|).

By assumption (H1), for any control input u ∈ U , the system (6) admits a unique absolutely continuous
solution yu

x inW 1,1([t, T ];RN ). For every x ∈ RN and 0 ≤ t ≤ T , we define the set, Xt,x ⊂W 1,1([t, T ];RN )×U
as:

Xt,x = {(y,u) : ẏ(s) = f(y(s),u(s)), for a.e. s ∈ [t, T ]; y(t) = x and u ∈ U}.

Now, consider the final cost function ϕ : RN → R and the running cost ` : RN × U → R satisfying:

(H2) The function ϕ is locally Lipschitz continuous on RN : for every R > 0,

∃Lϕ(R) > 0 |ϕi(x)− ϕi(x′)| ≤ Lϕ(R)|x− x′| ∀x, x′ ∈ RN with |x| ≤ R, |x′| ≤ R.

Moreover there exists cϕ > 0 and λϕ ≥ 1 such that ϕ(x) ≤ cϕ(x)(1 + |x|λϕ) for every x ∈ RN .

(H3) The function ` is continuous on RN × U and is locally Lipschitz continuous on the first variable uniformly
with respect to the second argument: for every R > 0,

∃L`(R) > 0 |`(x, u)− `(x′, u)| ≤ L`(R)|x− x′| ∀|x| ≤ R, |x′| ≤ R, ∀u ∈ U,

and there exists c` > 0 and λ` ≥ 1 such that max{|`(x, u)|, u ∈ R} ≤ c`(1 + |x|λ`).
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For x ∈ RN and 0 ≤ t ≤ T , the objective function in Bolza form Φ(t, x; ., .) : W 1,1([t, T ];RN )× U 7→ R is
defined as

Φ(t, x; ·, ·) : W 1,1([t, T ];RN )× U −→ R, Φ(t, x;y,u) = ϕ(y(T )) +

T∫
t

`(y(s),u(s))ds. (7)

Assume we are interested by another cost function that is measured all along the trajectory by:

Ψ(t, x; ·, ·) : W 1,1([t, T ];RN )× U −→ R, Ψ(t, x;y,u) = max
s∈[t,T ]

ψ(y(s)), (8)

where the function ψ satisfies:

(H4) ψ : RN −→ R is Lipschitz continuous.

Now, the multi-objective optimal control problem that will be investigated in this paper is the following:{
inf(Φ(t, x;y,u),Ψ(t, x;y,u))

s.t (y,u) ∈ Xt,x.
(MOP)

An example of this kind of problem is to consider the pest control problem, that consider the joint evolution of
two species: a nuisance for humans and its predator. The population of these species are the state variables while
the control variable is the rate at which a chemical is sprayed to poison the pest (which also kills the predator). The
growth of both populations represents the dynamics. The goal is to maintain a certain proportion of both species
along the time and also reduce the cost of spraying the chemical. The integral criterion is suitable for the spraying
cost and the other objective is naturally defined as a max-type criterion.

Define the set-valued function

G(x) =

{(
f(x, u)

−`(x, u)− a

)
, 0 ≤ a ≤ A(x, u), u ∈ U

}
,

where A(x, u) = c`(1 + |x|λ`) − `(x, u). Under assumptions (H1) and (H3) the function G is locally Lipschitz
continuous in the sense that, for any R > 0, there exists LG(R) > 0 such that:

G(x′) ⊂ G(x) + |x− y|B(0, LR) ∀x, x′ ∈ RN with |x| ≤ R, |x′| ≤ R.

We also define the following set of trajectories:

S[t,T ](x, 0) = {(y, z) : (ẏ(s), ż(s))ᵀ ∈ G(y(s)), for a.e. s ∈ [t, T ]; (y(t), z(t)) = (x, 0)},

and the bi-objective optimal control problem:{
inf
(
ϕ(y(T ))− z(T ),maxs∈[t,T ] ψ(y(s))

)
s.t (y, z) ∈ S[t,T ](x, 0).

(9)

Remark 3.1. From definition of the differential inclusion (3), every trajectory (y, z) ∈ S[t,T ](x, 0) is associated
to a control function u ∈ U and γ ∈ Γ(y(s),u(s)), where

Γ(x, u) = {γ : [0,+∞)→ R measurable, γ(s) ∈ [0,A(x, u)]}.

Let (y∗, z∗) a Pareto optimal solution of (9) and u∗, γ∗ the respective controls. Then there exist no (y, z) ∈
S[t,T ](x, 0) such that(

ϕ(y(T ))− z(T ), max
s∈[t,T ]

ψ(y(s))
)
≤
(
ϕ(y∗(T ))− z∗(T ), max

s∈[t,T ]
ψ(y∗(s))

)
, (10)

and
[
ϕ(y(T ))− z(T ) < ϕ(y∗(T ))− z∗(T ) or max

s∈[t,T ]
ψ(y(s)) < max

s∈[t,T ]
ψ(y∗(s))

]
(11)
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Note that ϕ(y(T ))− z(T ) = ϕ(y(T )) +
∫ T
t
`(y(s),u(s))ds+

∫ T
t
γ(s)ds. As 0 ≤ γ(s) ≤ Γ(y(s),u(s)), for

s ≥ 0, and the second objective function of (9) does not depend on control γ we obtain that for all (y∗, z∗) that is
a Pareto optimal solution of (9) the control function γ∗ ≡ 0. Then by (10), we obtain that there is no (y,u) ∈ Xt,x
such that(

ϕ(y(T )) +

∫ T

t

`(yx(s),u(s))ds, max
s∈[t,T ]

ψ(y(s))
)
≤
(
ϕ(y∗(T )) +

∫ T

t

`(y∗(s),u∗(s))ds, max
s∈[t,T ]

ψ(y∗(s))
)
,

(12)

and
[
ϕ(y∗(T )) +

∫ T

t

`(y(s),u(s))ds < ϕ(y∗(T )) +

∫ T

t

`(y∗(s),u∗(s))ds or max
s∈[t,T ]

ψ(y(s)) < max
s∈[t,T ]

ψ(y∗(s))

]
,

(13)

which means that (y∗,u∗) is a Pareto optimal solution for problem (MOP). Moreover as η∗ ≡ 0 the Pareto front
for problems (MOP) and (9) are equal. With similar arguments it is possible to prove that if (y∗, z∗) is a weak
Pareto optimal solution of (9) with respective controls u∗, and γ∗ then (y∗,u∗) is a weak Pareto optimal solution
for problem (MOP). Moreover the weak Pareto front of two problems coincides.

Without any additional assumption it is not possible to guarantee that the set of trajectories S[t,T ](x, 0) is
closed, so the problem (9) might not have a solution and the Pareto front can not be defined for this problem.
One approach to obtain the closeness of the set of trajectories S[t,T ](x, z), is to introduce a convexified (relaxed)
dynamical system [5, 18], whose set of solutions is given by:

S#[t,T ](x, 0) = {(y, z) : (ẏ(s), ż(s))ᵀ ∈ co
(
G(y(s))

)
, for a.e. s ∈ [t, T ]; (y(t), z(t)) = (x, z)},

where co(S) denotes the closed convex hull of the subset S, that is the minimal convex set that contains S.
Under assumptions (H1) and (H3), following the same arguments of the proof of Filippov-Wazewski Theorem

(see for instance [5]), the closure of S[t,T ](x, z) in the space of continuous functions C(t, T ) is compact and equal
to the set of solutions S#[t,T ](x, z). So we introduce the following convexified bi-objective optimal control problem min

(
ϕ(y(T ))− z(T ), max

s∈[t,T ]
ψ(y(s))

)
s.t (y, z) ∈ S#[t,T ](x, 0).

(MORP)

In the following, for a fixed (t, x) ∈ [0, T ] × RN , we are going to denote the Pareto front and the weak
Pareto front of bi-objective optimal control problem (9) by F(t, x) and Fw(t, x), respectively. We also denote by
Pi,ε(t, x) andPi,εw (t, x), i = 1, 2, 3. the set of (weak) approximate Pareto solutions of problem (9), according with
definitions 2.3 and 2.6, respectively. Moreover we denote the Pareto front and the weak Pareto front of problem
(MORP) by F#(t, x) and F#

w (t, x), respectively. The next proposition states that all optimal solution of problem
(MORP) can be approximated with an ε-optimal solution of problem (9).

Theorem 3.1. Assume that (H1)-(H4) hold and let (t, x) ∈ [0, T ]× RN .

(i) For any (y∗, z∗) ∈ P#(t, x) and for any ε > 0 defineR = |(y∗, z∗)|+ε, then for δ = min (ε/(Lϕ(R) + 1), ε/Lψ)
there exists (y, z) ∈ P1,ε(t, x) such that |(y∗, z∗)− (y, z)| ≤ δ and∣∣∣∣(ϕ(y∗(T ))− z∗(T ), max

s∈[t,T ]
ψ(y∗(s))

)
−
(
ϕ(y(T ))− z(T ), max

s∈[t,T ]
ψ(y(s))

)∣∣∣∣ ≤ ε.
(ii) For any (y∗, z∗) ∈ P#

w (t, x) and for any ε > 0 defineR = |(y∗, z∗)|+ε, then for δ = min (ε/(Lϕ(R) + 1), ε/Lψ)
there exists (y, z) ∈ P1,ε

w (t, x) such that |(y∗, z∗)− (y, z)| ≤ δ and∣∣∣∣(ϕ(y∗(T ))− z∗(T ), max
s∈[t,T ]

ψ(y∗(s))

)
−
(
ϕ(y(T ))− z(T ), max

s∈[t,T ]
ψ(y(s))

)∣∣∣∣ ≤ ε.
9



(iii) Given ε > 0, if (y∗, z∗) ∈ P3,ε(t, x), then there exists (y, z) ∈ P#(t, x) such that∣∣∣∣(ϕ(y∗(T ))− z∗(T ), max
s∈[t,T ]

ψ(y∗(s))

)
−
(
ϕ(y(T ))− z(T ), max

s∈[t,T ]
ψ(y(s))

)∣∣∣∣ ≤ 2ε.

Proof. (i) Let (y∗, z∗) ∈ P#(t, x) and ε > 0. As (y∗, z∗) is in the closure of S[t,T ](x, 0), there exists a sequence
{(yn, zn)} ⊂ S[t,T ](x, z) such that

lim
n→∞

(yn, zn) = (y∗, z∗).

Then, given ε > 0, for R = |(y∗, z∗)|+ ε define δ = min (ε/(Lϕ(R) + 1), ε/Lψ), so there exists (yN , zN ) such
that |(y∗, z∗) − (yN , zN )| ≤ δ. Moreover, we have that |(y∗, z∗)| ≤ R and |(yN , zN )| ≤ R. By the locally
Lipschitz continuity of function ϕ and the globally Lipschitz continuity of ψ, we obtain that

|ϕ(y∗(T ))− z∗(T )− ϕ(yN (T )) + zN (T )| ≤ |ϕ(y∗(T ))−ϕ(yN (T ))|+|z∗(T )−zN (T )| ≤ (Lϕ(R)+1)δ ≤ ε,∣∣∣∣ max
s∈[t,T ]

ψ(y∗(s))− max
s∈[t,T ]

ψ(yN (s))

∣∣∣∣ ≤ max
s∈[t,T ]

|ψ(y∗(s))− ψ(yN (s))| ≤ Lψδ ≤ ε,

which means that∣∣∣∣(ϕ(y∗(T ))− z∗(T ), max
s∈[t,T ]

ψ(y∗(s))

)
−
(
ϕ(yN (T ))− zN (T ), max

s∈[t,T ]
ψ(yN (s))

)∣∣∣∣ ≤ ε.
It remains to prove that (yN , zN ) ∈ P1,ε(t, x). Note that, by definition of (y∗, z∗) there is no (y, z) ∈ S[t,T ](x, 0) ⊂
S#[t,T ](x, 0) such that(

ϕ(y(T ))− z(T ), max
s∈[t,T ]

ψ(y(s))

)
≤
(
ϕ(y∗(T ))− z∗(T ), max

s∈[t,T ]
ψ(y∗(s))

)
,

and
[
ϕ(y(T ))− z(T ) < ϕ(y∗(T ))− z∗(T ) or max

s∈[t,T ]
ψ(y(s)) < max

s∈[t,T ]
ψ(y∗(s))

]
.

This means that for any (y, z) ∈ S[t,T ](x, 0) at least for one of the following assertion holds:

ϕ(y(T ))− z(T ) > ϕ(y∗(T ))− z∗(T ) ≥ ϕ(yN (T ))− zN (T )− ε, or

max
s∈[t,T ]

ψ(y(s)) > max
s∈[t,T ]

ψ(y∗(s)) ≥ max
s∈[t,T ]

ψ(yN (s))− ε.

Therefore, there is no (y, z) ∈ S[t,T ](x, 0) such that(
ϕ(y(T ))− z(T ), max

s∈[t,T ]
ψ(y(s))

)
≤
(
ϕ(yN (T ))− zN (T ), max

s∈[t,T ]
ψ(yN (s))

)
− (ε, ε),

and
[
ϕ(y(T ))− z(T ) < ϕ(yN (T ))− zN (T )− ε or max

s∈[t,T ]
ψ(y(s)) < max

s∈[t,T ]
ψ(yN (s))− ε

]
,

which means that (yN , zN ) ∈ P1,ε(t, x) and the assertion is now proved for (y, z) = (yN , zN ).
(ii) Let (y∗, z∗) ∈ P#

w (t, x) and ε > 0. Given ε > 0, forR = |(y∗, z∗)|+ε1 define δ = max (ε/(Lϕ(R) + 1), ε/Lψ).
With similar arguments as in item (i) we obtain (yN , zN ) ∈ S[t,T ](x, 0) such that |(y∗, z∗)− (yN , zN )| ≤ δ and∣∣∣∣(ϕ(y∗(T ))− z∗(T ), max

s∈[t,T ]
ψ(y∗(s))

)
−
(
ϕ(yN (T ))− zN (T ), max

s∈[t,T ]
ψ(yN (s))

)∣∣∣∣ ≤ ε.
It remains to prove that (yN , zN ) ∈ P1,ε

w (t, x). Note that, by definition of (y∗, z∗) there is no (y, z) ∈ S[t,T ](x, 0) ⊂
S#[t,T ](x, 0) such that(

ϕ(y(T ))− z(T ), max
s∈[t,T ]

ψ(y(s))

)
<

(
ϕ(y∗(T ))− z∗(T ), max

s∈[t,T ]
ψ(y∗(s))

)
.
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This implies that for any (y, z) ∈ S[t,T ](x, 0) at least for one of the following assertion holds:

ϕ(y(T ))− z(T ) ≥ ϕ(y∗(T ))− z∗(T ) ≥ ϕ(yN (T ))− zN (T )− ε, or

max
s∈[t,T ]

ψ(y(s)) ≥ max
s∈[t,T ]

ψ(y∗(s)) ≥ max
s∈[t,T ]

ψ(yN (s))− ε.

Therefore, there is no (y, z) ∈ S[t,T ](x, 0) such that(
ϕ(y(T ))− z(T ), max

s∈[t,T ]
ψ(y(s))

)
<

(
ϕ(yN (T ))− zN (T ), max

s∈[t,T ]
ψ(yN (s))

)
− (ε, ε),

which means that (yN , zN ) ∈ P1,ε
w (t, x) and the assertion is now proved for (y, z) = (yN , zN ).

(iii) Let (y∗, z∗) ∈ P3,ε(t, x). Assume that there is no (y, z) ∈ P#(t, x) such that∣∣∣∣(ϕ(y∗(T ))− z∗(T ), max
s∈[t,T ]

ψ(y∗(s))

)
−
(
ϕ(y(T ))− z(T ), max

s∈[t,T ]
ψ(y(s))

)∣∣∣∣ ≤ 2ε.

Then (y∗, z∗) /∈ P#(t, x), so there exists (y, z) ∈ P#(t, x) such that(
ϕ(y(T ))− z(T ), max

s∈[t,T ]
ψ(y(s))

)
6=
(
ϕ(y∗(T ))− z∗(T ), max

s∈[t,T ]
ψ(y∗(s))

)
and

(
ϕ(y(T ))− z(T ), max

s∈[t,T ]
ψ(y(s))

)
≤
(
ϕ(y∗(T ))− z∗(T ), max

s∈[t,T ]
ψ(y∗(s))

)
,

As (y, z) is in the closure of S[t,T ](x, 0), there exists a sequence {(yn, zn)} ⊂ S[t,T ](x, 0) such that lim
n→∞

(yn, zn) =

(y, z). Choose (yN , zN ) such that(
ϕ(yN (T ))− zN (T ), max

s∈[t,T ]
ψ(yN (s))

)
≤
(
ϕ(y∗(T ))− z∗(T ), max

s∈[t,T ]
ψ(y∗(s))

)
, and∣∣∣∣(ϕ(y(T ))− z(T ), max

s∈[t,T ]
ψ(y(s))

)
−
(
ϕ(yN (T ))− zN (T ), max

s∈[t,T ]
ψ(yN (s))

)∣∣∣∣ ≤ ε.
As (y∗, z∗) ∈ P3,ε(t, x), we must have(

ϕ(yN (T ))− zN (T ), max
s∈[t,T ]

ψ(yN (s))

)
≥
(
ϕ(y∗(T ))− z∗(T ), max

s∈[t,T ]
ψ(y∗(s))

)
− (ε, ε).

Hence (
ϕ(y∗(T ))− z∗(T ), max

s∈[t,T ]
ψ(y∗(s))

)
− (ε, ε) ≤

(
ϕ(yN (T ))− zN (T ), max

s∈[t,T ]
ψ(yN (s))

)
≤
(
ϕ(y∗(T ))− z∗(T ), max

s∈[t,T ]
ψ(y∗(s))

)
,

which means that∣∣∣∣(ϕ(y∗(T ))− z∗(T ), max
s∈[t,T ]

ψ(y∗(s))

)
−
(
ϕ(yN (T ))− zN (T ), max

s∈[t,T ]
ψ(yN (s))

)∣∣∣∣ ≤ ε.
Then ∣∣∣∣(ϕ(y∗(T ))− z∗(T ), max

s∈[t,T ]
ψ(y∗(s))

)
−
(
ϕ(y(T ))− z(T ), max

s∈[t,T ]
ψ(y(s))

)∣∣∣∣
≤
∣∣∣∣(ϕ(y∗(T ))− z∗(T ), max

s∈[t,T ]
ψ(y∗(s))

)
−
(
ϕ(yN (T ))− zN (T ), max

s∈[t,T ]
ψ(yN (s))

)∣∣∣∣
+

∣∣∣∣(ϕ(yN (T ))− zN (T ), max
s∈[t,T ]

ψ(yN (s))

)
−
(
ϕ(y(T ))− z(T ), max

s∈[t,T ]
ψ(y(s))

)∣∣∣∣
≤2ε.

what is a contradiction.
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4 Auxiliary control problem
In what follows we consider the single objective optimal control problems and the associated value functions:

ϑ1(t, x) = min
(y,z)∈S#

[t,T ]
(x,0)

ϕ(y(T ))− z(T ), ϑ2(t, x) = min
(y,z)∈S#

[t,T ]
(x,0)

max
s∈[t,T ]

ψ(y(s)). (14)

Consider the following augmented differential inclusion

Ĝ(x) =

{(
G(x)

0

)}
,

and for x ∈ RN and z ∈ R2 define the set of trajectories

Ŝ#[t,T ](x, z) = {ŷ = (y, z,b) : ˙̂y(s) ∈ co
(
Ĝ(y(s))

)
, for a.e. s ∈ [t, T ]; ŷ(t) = (x, z)}.

Based on [15], we introduce an auxiliary control problem and its value function w : [0, T ]× RN × R2 → R .
We shall see later that the 0-level set of the auxiliary value function w is very useful for characterizing the Pareto
fronts of the problem (MORP).

w(t, x, z1, z2) = min
ŷ∈Ŝ#

[t,T ]
(x,z)

[(
ϕ(y(T ))− z(T )

)∨
max
s∈[t,T ]

(ψ(y(s))− z2)

]
, (15)

where the notation a
∨
b stands for max(a, b). Let us point out that the additional state components are very

important to get a Dynamical Programming Principle for the value function w. Moreover, we note that under as-
sumptions (H1)-(H4), there exists an admissible pair (y, z,b) ∈ Ŝ#[t,T](x, z) that minimizes the auxiliary control
problem (15).

Let us remark that from the definition of differential inclusion (3) and from the definition of w, it follows that:

w(t, x, z1, z2) = inf
(y,z)∈S#

[t,T ]
(x,0)

[(
ϕ(y(T ))− z(T )− z1

)∨
max
s∈[t,T ]

(ψ(y(s))− z2)

]
. (16)

Following [15], the value function w satisfies the following property.

Theorem 4.1. Assume that (H1)-(H4) hold. The value function w is locally Lipschitz continuous. Moreover, the
function w is the unique viscosity solution to the following Hamilton-Jacobi-Bellman equation:

min
(
∂tw(t, x, z) +H#(x,Dxw,Dzw), w(t, x, z)− (g(x)− z2)

)
= 0 for t ∈ [0, T ), x ∈ RN , z ∈ R2

w(T, x, z) =
(
ϕ(x)− z1

)∨(
g(x)− z2

)
for x ∈ RN , z ∈ R2,

where the functionH# is defined by:

H#(x, p, q) = max
(vx,vz)∈co(G(x))

(
− vx · p− vz(t) · q1

)
,

for p ∈ RN and q ∈ R2.

Proof. The locally Lipschitz continuity can be obtained by arguments as in [6]. The value function w satisfies the
following Dynamical Programming Principle that hold for all h ≥ 0 such that t+ h < T and (x, z) ∈ Rn+2

w(t, x, z1, z2) = inf
ŷ∈Ŝ#

[t,T ]
(x,z)

{
w (t+ h,y(t+ h), z(t+ h), z2)

∨
max

s∈[t,t+h]
(g(y(s))− z2)

}
.

So we can derive the HJB equation

min
(
∂tw(t, x, z) +H#(x,Dxw,Dzw), w(t, x, z)− (g(x)− z2)

)
= 0 for t ∈ [0, T ), x ∈ RN , z ∈ R2

w(T, x, z) =
(
ϕ(x)− z1

)∨(
g(x)− z2

)
for x ∈ RN , z ∈ R2,

The uniqueness result is a consequence of [3, Theorem A.1].
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Another interesting property is that w is monotone with respect to the third argument as proved in the following
proposition.

Proposition 4.1. Assume that (H1)-(H4) hold and let (t, x) ∈ [0, T ]× RN . Then

∀z, z′ ∈ R2,
(
z ≤ z′ ⇒ w(t, x, z) ≥ w(t, x, z′)

)
.

Proof. Let z, z′ ∈ R2 such that z ≤ z′ and one admissible trajectory (y, z) ∈ S#[t,T ](x, 0) . Then

ϕ(y(T ))− z(T )− z′1 ≤ ϕ(y(T ))− z(T )− z1 and max
s∈[t,T ]

ψ(y(s))− z′2 ≤ max
s∈[t,T ]

ψ(y(s))− z2,

and then

(ϕ(y(T ))− z(T )− z′1)
∨(

max
s∈[t,T ]

ψ(y(s))− z′2
)
≤ (ϕ(y(T ))− z(T )− z1)

∨(
max
s∈[t,T ]

ψ(y(s))(t, x;y,u)− z2
)
.

Taking the minimum over all (y, z) ∈ S#[t,T ](x, 0) it follows from the last inequality that w(t, x, z′) ≤ w(t, x, z).

Remark 4.2. If we consider the problem

w̃(t, x, z1, z2) = inf
(y,z)∈S[t,T ](x,0)

[(
ϕ(y(T ))− z(T )− z1

)∨
max
s∈[t,T ]

(ψ(y(s))− z2)

]
. (17)

with similar arguments of the proof of Theorem 4.1 the function w̃ can be characterized as the unique viscosity
solution of the following HJB equation:

min
(
∂tw(t, x, z) +H(x,Dxw,Dzw), w(t, x, z)− (g(x)− z2)

)
= 0 for t ∈ [0, T ), x ∈ RN , z ∈ R2

w(T, x, z) =
(
ϕ(x)− z1

)∨(
g(x)− z2

)
for x ∈ RN , z ∈ R2,

where the HamiltonianH is given by

H(x, p, q) = max
u∈U

(
− f(x, u) · p+ `(x, u) · q1

)
,

for p ∈ RN and q ∈ R2. Moreover, it is possible to prove that for fixed (t, x, z) ∈ [0, T ]×RN ×R2, the minimum
of problem (15) is equal the infimum of problem (17).

5 Characterization of the Pareto fronts of the convexified bi-objective op-
timal control problem

For every t ∈ [0, T ], x ∈ RN and i = 1, 2, we introduce the value:

z∗i (t, x) = inf
{
ζ ∈ R

∣∣∣∃z ∈ R2 with zi = ζ, w(t, x, z) ≤ 0
}
. (18)

Proposition 5.1. Assume that (H1), (H2), (H3) and (H4) hold and let (t, x) ∈ [0, T ]× RN .

(i) For every z ∈ R2, we have that w(t, x, z) ≤ 0 if and only if there exists (y, z) ∈ S#[t,T ](x, 0) such that:

ϕ(y(T ))− z(T ) ≤ z1, and max
s∈[t,T ]

ψ(y(s)) ≤ z2. (19)
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(ii) Moreover, for i = 1, 2 and every (t, x) ∈ [0, T ]× RN , we have z∗i (t, x) = ϑi(t, x).

Proof. Assertion (i) follows directly from (16): Let z ∈ R2, then

w(t, x, z) ≤ 0⇔ ∃(y, z) ∈ S#[t,T ](x, 0) s.t. ϕ(y(T ))− z(T ) ≤ z1 and max
s∈[t,T ]

ψ(y(s)) ≤ z2.

(ii) Let show that ϑi(t, x) ≤ z∗i (t, x). By item (i) we have that for all z ∈ R2 such that w(t, x, z) ≤ 0

∃(y, z) ∈ S#[t,T ](x, 0) s.t. ϕ(y(T ))− z(T ) ≤ z1 and max
s∈[t,T ]

ψ(y(s)) ≤ z2.

Therefore ϑi(t, x) ≤ zi for all z ∈ R2 such that w(t, x, z) ≤ 0 and then

ϑi(t, x) ≤ inf{γ ∈ R | z ∈ R2, w(t, x, z) ≤ 0 with zi = γ} = z∗i (t, x).

Let show now that ϑi(t, x) ≥ z∗i (t, x). Without loss of generality, we assume here that i = 1. The proof will be
the same for i = 2. Assume that ϑ1(t, x) < z∗1(t, x). Then there exists δ ∈ R such that ϑ1(t, x) < δ < z∗1(t, x).
The inequality ϑ1(t, x) < δ implies that there exists (y, z) ∈ S#[t,T ](x, 0) such that ϕ(y(T ))− z(T ) < δ. Then for
z2 = max

s∈[t,T ]
ψ(y(s)) we have that,

w(t, x, δ, z2) ≤ (ϕ(y(T ))− z(T )− δ)
∨(

max
s∈[t,T ]

ψ(y(s))− z2
)

= 0,

which implies that δ ∈ {γ ∈ R | ∃z ∈ R2 with z1 = γ, w(t, x, z) ≤ 0}. But, we have chosen δ such that
δ < z∗1(t, x) which is impossible.

Let us also denote
β∗(t, x) = (z∗1(t, x), z∗2(t, x)) ∈ R2. (20)

It follows from the proposition 5.1 that β∗ is the utopian point associated with the bi-objective control problem
for a given (t, x) ∈ [0, T ]× RN . If this point is feasible (i.e., there is an admissible pair (yx, z0) that realizes the
minimum of both cost functions ϕ(yx(T )) − z0(T ) and max

s∈[t,T ]
ψ(yx(s)), then the Pareto front is reduced to this

point. In what follows it is assumed that the utopian point is not feasible. In this case, we have:

w(t, x, β∗(t, x)) > 0. (21)

In the following theorem, we give the first link between the solutions of the multi-objective problem (MORP)
and the function w.

Theorem 5.2. Assume that (H1), (H2), (H3) and (H4) hold and let (t, x) be in [0, T ]×RN . Then the weak Pareto
front F#

w (t, x) for the bi-objective optimal control problem (MORP) with the initial condition (t, x) is a subset of
the zero level set of the value function w(t, x, ·, ·):

F#(t, x) ⊂ F#
w (t, x) ⊂

{
z ∈ R2

∣∣∣ w(t, x, z) = 0
}
.

Proof. Let z ∈ F#
w (t, x). Then there exists an admissible pair (y, z) ∈ S#[t,T ](x, 0) such that

ϕ(y(T ))− z(T ) = z1, max
s∈[t,T ]

ψ(y(s)) = z2

and there is no other admissible pair that dominates (y, z). This means that for any (y, z) ∈ S#[t,T ](x, 0), one of
the following assertions holds:

(i) z1 ≤ ϕ(y(T ))− z(T ),
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(ii) or z2 ≤ max
s∈[t,T ]

ψ(y(s)).

We can easily check that in the two above cases, we have (ϕ(y(T ))−z(T )− z1)
∨

( max
s∈[t,T ]

ψ(y(s))− z2) ≥ 0.

Therefore,

w(t, x, z) = min
(y,z)∈S#

[t,T ]
(x,0)

[
(ϕ(y(T ))− z(T )− z1)

∨
( max
s∈[t,T ]

ψ(y(s))− z2)
]

=
[
(ϕ(y(T ))− z(T )− z1)

∨
( max
s∈[t,T ]

ψ(y(s))− z2)
]

=0.

Let x ∈ RN and t > 0. We define:

z1(t, x) = inf
{
ζ ∈ R

∣∣∣w(t, x, ζ, z∗2(t, x)) = 0
}
,

z2(t, x) = inf
{
ζ ∈ R

∣∣∣w(t, x, z∗1(t, x), ζ) = 0
}
. (22)

By definition, z∗i (t, x) ≤ zi(t, x) < +∞, for i = 1, 2. Denote by (y1, z1) and (y2, z2) two admissible pairs in
S#[t,T ](x, 0) that realize respectively the minimum of ϕ(y(T ))− z(T ) and max

s∈[t,T ]
ψ(y(s)):

ϕ(y1(T ))− z1(T ) = ϑ1(t, x) = z∗1(t, x), max
s∈[t,T ]

ψ(y2(s)) = ϑ2(t, x) = z∗2(t, x).

Then, the values zi can be interpreted as:

z1 = ϕ(y2(T ))− z2(T ), z2 = max
s∈[t,T ]

ψ(y1(s)).

Let us denote
Ω = [z∗1(t, x), z1(t, x)]× [z∗2(t, x), z2(t, x)]. (23)

Theorem 5.3. Assume that (H1), (H2), (H3) and (H4) hold and let (t, x) be in [0, T ] × RN . The following
assertions hold:

(i) F#(t, x) ⊂ F#
w (t, x) ∩ Ω ⊂

{
z ∈ Ω | w(t, x, z) = 0

}
.

(ii) Let z ∈ Ω such that w(t, x, z) = 0. If there exists a admissible pair (y, z) ∈ S#[t,T ](x, 0) such that ϕ(y(T ))−
z(T ) = z1 and max

s∈[t,T ]
ψ(y(s)) = z2, then z ∈ F#

w (t, x).

Proof. (i) By Theorem 5.2 we obtain immediately that

F#
w (t, x) ∩ Ω ⊂ {z ∈ Ω | w(t, x, z) = 0}.

Moreover F#(t, x) ⊂ F#
w (t, x). It remains to prove that F#(t, x) ⊂ Ω.

Let z = (z1, z2) ∈ F#(t, x). By Proposition 5.1, z∗i (t, x) = ϑi(t, x), for i=1, 2. Then for every (y, z) ∈
S#[t,T ](x, 0) we have

z∗1(t, x) ≤ ϕ(y1(T ))− z1(T ), z∗2(t, x) ≤ max
s∈[t,T ]

ψ(y(s)).

Therefore, z1 ≥ z∗1(t, x) and z2 ≥ z∗2(t, x).
Now, assume that z1 > z1(t, x). In this case, by definition of z1(t, x), it would exists (y, z) ∈ S#[t,T ](x, 0)

such that
ϕ(y1(T ))− z1(T ) ≤ z1(t, x) < z1 and max

s∈[t,T ]
ψ(y(s)) ≤ z∗2(t, x) ≤ z2,
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which contradicts the fact that z ∈ F#(t, x). We conclude that z1 ≤ z1(t, x). The same argument shows also that
z2 ≤ z2(t, x), and then z belongs to Ω.

(ii) Let z ∈ Ω such that w(t, x, z) = 0 and there exists an admissible pair (y, z) ∈ S#[t,T ](x, 0) such that

ϕ(y(T ))− z(T ) = z1 and max
s∈[t,T ]

ψ(y(s)) = z2.

By definition of w

min
(y,z)∈S#

[t,T ]
(x,0)

(ϕ(y(T ))− z(T )− z1)
∨(

max
s∈[t,T ]

ψ(y(s))− z2
)

= 0.

That means, there exists no admissible par (y, z) such that

ϕ(y(T ))− z(T ) < ϕ(y(T ))− z(T ) = z1 and max
s∈[t,T ]

ψ(y(s)) < max
s∈[t,T ]

ψ(y(s)) = z2.

Therefore, by definition of the weak Pareto optimal solution z ∈ F#
w (t, x).

Remark 5.4. As proved in [15] outside of the set Ω only some trivial parts of the weak Pareto front might exists,
that is

z ∈ F#
w (t, x)

⋂
ΩC ⇔ z1 = z∗1(t, x) and z2 > z2(t, x), or z2 = z∗2(t, x) and z1 > z1(t, x).

In this section we give a characterization of the Pareto optimal front of bi-objective optimal control problem
(MORP) using the value function w. Assume that the hypothesis Hi, i = 1,2,3,4 hold and let (t, x) be in
[0, T ]× RN . Let us introduce the operators on R2 defined by:

π1(z) = z1, π2(z) = z2. (24)

Let denote
Ω1 = [z∗1 , z1[; Ω2 = [z∗2 , z2[

and introduce the following extended functions

η1 : [z∗1 , z1]→ [z∗2 , z2], η1(ζ1) = inf{γ | w(t, x, ζ1, γ) ≤ 0}, (25a)
η2 : [z∗2 , z2]→ [z∗1 , z1], η2(ζ2) = inf{γ | w(t, x, γ, ζ2) ≤ 0}. (25b)

Proposition 5.5. Assume that (H1), (H2), (H3) and (H4) hold and let (t, x) be in [0, T ]×RN . Then for j = 1, 2
the functions ηj(·) are decreasing:

∀ζ, ζ ′ ∈ [z∗j , zj ],
(
ζ ≤ ζ ′ ⇒ ηj(ζ) ≥ ηj(ζ ′)

)
Proof. Let assume that there exists ξ ≤ ζ such that

η1(ξ) < η1(ζ).

It follows from definition (25) that w(t, x, ζ, α) > 0, for all α < η1(ζ).
Let us take α = η1(ξ) and consider the point z = (ζ, η1(ξ)). It is clear that w(t, x, z) > 0. On the other hand,

by Proposition 4.1 we obtain that

w(t, x, z) = w(t, x, ζ, η1(ξ)) ≤ w(t, x, ξ, η1(ξ)) ≤ 0

because ξ ≤ ζ. This is in contradiction with the fact that w(t, x, z) > 0 as established before.
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The following theorem gives a characterization of the Pareto front.

Theorem 5.6. Assume that (H1), (H2), (H3) and (H4) hold and let (t, x) be in [0, T ]× RN .

(i) F#(t, x) =
{

(ζ, η1(ζ)), ζ ∈ dom(η1)
}⋂{

(η2(ζ), ζ), ζ ∈ dom(η2)
}
.

(ii) For any z ∈ F#(t, x) let a trajectory (y, z) ∈ S#[t,T ](x, 0) that is optimal for the auxiliary problem (16). Then
(y, z) is a Pareto optimal solution of (MORP).

Proof. (i) Step 1. Let us show that
{

(ζ, η1(ζ)), ζ ∈ dom(η1)
}⋂{

(η2(ζ), ζ), ζ ∈ dom(η2)
}
⊂ F#(t, x).

Let z ∈
{

(ζ, η1(ζ)), ζ ∈ Ω1 and η1(ζ) < +∞
}⋂{

(η2(ζ), ζ), ζ ∈ Ω2 and η2(ζ) < +∞
}

. First, we

have to show that such a point is feasible, that is, there exists an admissible pair (y, z) ∈ S#[t,T ](x, 0) such that(
ϕ(y(T ))− z(T ), max

s∈[t,T ]
ψ(y(s))

)
= z. By definition of the functions ηi, i = 1, 2, we have that w(t, x, z) = 0.

Then there exists at least one admissible pair (y, z) ∈ S#[t,T ](x, 0) such that(
(ϕ(y(T ))− z(T ))

∨
( max
s∈[t,T ]

ψ(y(s))− z2)

)
≤ 0 ⇔ ϕ(y(T ))− z(T ) ≤ z1 and max

s∈[t,T ]
ψ(y(s)) ≤ z2 (26)

Assume that z is not feasible. Then for any admissible pair (y, z) ∈ S#[t,T ](x, 0) satisfying (26), we have that

ϕ(y(T ))− z(T ) < z1 or max
s∈[t,T ]

ψ(y(s)) < z2.

Let us recall that by choice of z we have that zi = ηi(πi(z)). Then, without loss of generality, take

ζ = ϕ(y(T ))− z(T ), so w(t, x, ζ, z2) ≤ 0

with ζ < η1(π1(z)) which is in contradiction with the definition of η1(π1(z)) (see (25)).
Now, let us show that z = (z1, z2) is Pareto optimal. Assume that there exists (y, z) ∈ S#[t,T ](x, 0) such that

ϕ(y(T ))− z(T ) = ξ1 ≤ z1 and max
s∈[t,T ]

ψ(y(s)) = ξ2 ≤ z2,

with (ξ1, ξ2) = ξ 6= z. Consider, without loss of generality, that ξ1 < z1, then w(t, x, ξ1, z2) ≤ 0. As ξ1 < z1, by
Proposition 4.1 we have that w(t, x, ξ1, z2) ≥ w(t, x, z1, z2) = 0. So we conclude that w(t, x, ξ1, z2) = 0, with
ξ1 < z1 = η1(π1(z)) which is a contradiction.

(i) Step 2. Let us show that

F#(t, x) ⊂
{

(ζ, η1(ζ)), ζ ∈ dom(η1)
}⋂{

(η2(ζ), ζ), ζ ∈ dom(η2)
}
.

Assume that z ∈ F#(t, x) and let (y, z) ∈ S#[t,T ](x, 0) be an admissible pair such that

z1 = ϕ(y(T ))− z(T ) and z2 = max
s∈[t,T ]

ψ(y(s)).

It follows from Theorem 5.2 that w(t, x, z) = 0. Then it is obvious that η1(π1(z)) < +∞ and η2(π2(z)) < +∞.
If

z /∈
{

(ζ, η1(ζ)), ζ ∈ dom(η1)
}⋂{

(η2(ζ), ζ), ζ ∈ dom(η2)
}

then ∃j such that zj 6= ηj(πj(z)). Consider, without loss of generality, that z1 6= η1(π1(z)). As w(t, x, z) = 0,
we obtain that z1 > η1(π1(z)). Consider

ξ = (η1(π1(z)), z2).
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By the definition of the function η1 we have that w(t, x, ξ) = 0 and then there exists an admissible pair (y, z) ∈
S#[t,T ](x, 0) such that

ϕ(y(T ))− z(T ) ≤ ξ1 < z1 and max
s∈[t,T ]

ψ(y(s)) ≤ ξ2 = z2,

what is in contradiction with the assumption that z is Pareto optimal.
(ii). Let z ∈ F#(t, x). Then w(t, x, z) = 0 and z is feasible. Take a trajectory (y, z) ∈ S#[t,T ](x, 0) that is

optimal for the auxiliary control problem (16). Then, as it was be shown (see Proposition 5.1),

(ϕ(y(T ))− z(T )− z1
∨

max
s∈[t,T ]

ψ(y(s))− z2) = 0 ⇔ (ϕ(y(T ))− z(T ) ≤ z1, and max
s∈[t,T ]

ψ(y(s)) ≤ z2.

If ϕ(y(T ))− z(T ) < z1 then ξ = (ϕ(y(T ))− z(T ), z2) is a feasible vector that dominates z which is impossible.
In the same manner, if maxs∈[t,T ] ψ(y(s)) < z2 then ξ′ = (z1,maxs∈[t,T ] ψ(y(s))) is a feasible vector that
dominates z which is impossible. So, for any trajectory (y, z) that is optimal for (16) we have that(

ϕ(y(T ))− z(T ), max
s∈[t,T ]

ψ(y(s))

)
= z

that means that the pair (y, z) is Pareto optimal for (MORP).

6 ε-Pareto solutions of the original bi-objective optimal control problem
In this section we return to the original problem presented in this paper. We prove that using the auxiliary value
function w it is possible to obtain the region of (weak) ε-Pareto fronts are contained. Moreover (weak) ε-Pareto
optimal solutions for problem MOP can be obtained by applying an algorithm of trajectory reconstruction to the
auxiliary control problem (15).

Theorem 6.1. Assume that (H1), (H2), (H3) and (H4) hold. Let (t, x) be in [0, T ]× RN and ε > 0.

(i) F1,ε(t, x) ⊂ F1,ε
w (t, x) ⊂

{
z ∈ R2

∣∣∣− ε ≤ w(t, x, z) ≤ 0
}
.

(ii) Let zε ∈
{
z ∈ R2

∣∣∣ − ε ≤ w(t, x, z) ≤ 0
}

. If there exists (yε, zε) ∈ S[t,T ](x, 0) that is optimal for the

auxiliary control problem (15). Then (yε, zε) ∈ P1,ε
w (t, x) of problem (9).

(iii) Let zε ∈
{
z ∈ R2

∣∣∣ − ε < w(t, x, z) ≤ 0
}

. If there exists (yε, zε) ∈ S[t,T ](x, 0) that is optimal for the

auxiliary control problem (15). Then (yε, zε) ∈ P1,ε(t, x) of problem (9).

Proof. (i) Let z ∈ F1,ε
w (t, x). Then there exists an admissible pair (y, z) ∈ S[t,T ](x, 0) such that

ϕ(y(T ))− z(T ) = z1, max
s∈[t,T ]

ψ(y(s)) = z2,

then

w(t, x, z) = min
(y,z)∈S#

[t,T ]
(x,0)

[
(ϕ(y(T ))− z(T )− z1)

∨
( max
s∈[t,T ]

ψ(y(s))− z2)
]

≤
[
(ϕ(y(T ))− z(T )− z1)

∨
( max
s∈[t,T ]

ψ(y(s))− z2)
]

=0.

Moreover as z ∈ F1,ε
w (t, x), then for any (y, z) ∈ S[t,T ](x, 0), one of the following assertions holds:

(a) z1 − ε ≤ ϕ(y(T ))− z(T ),
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(b) or z2 − ε ≤ max
s∈[t,T ]

ψ(y(s)).

It is possible to check that in the two above cases, we have (ϕ(y(T ))− z(T )− z1)
∨

( max
s∈[t,T ]

ψ(y(s))− z2) ≥ ε.

As the S#[t,T ](x, 0) is the closure of the S[t,T ](x, 0), we can conclude that one of assertions above holds for any

(y, z) ∈ S#[t,T ](x, 0). Therefore,

w(t, x, z) = min
(y,z)∈S#

[t,T ]
(x,0)

[
(ϕ(y(T ))− z(T )− z1)

∨
( max
s∈[t,T ]

ψ(y(s))− z2)
]
≥ −ε.

(ii) Let zε ∈
{
z ∈ R2

∣∣∣ − ε ≤ w(t, x, z) ≤ 0
}

and (yε, zε) ∈ S[t,T ](x, 0) that is optimal for the auxiliary
problem w(t, x, zε). Then,

− ε ≤ (ϕ(yε(T ))− zε(T )− z1,ε
∨

max
s∈[t,T ]

ψ(yε(s))− z2,ε

Suppose that there exists (y, z) ∈ S[t,T ](x, 0) such that(
ϕ(y(T )− z(T )), max

s∈[t,T ]
ψ(y(s))

)
< (z1,ε − ε, z2,ε − ε).

Then(
ϕ(y(T ))− z(T )− z1,ε

∨
max
s∈[t,T ]

ψ(y(s))− z2,ε
)
<
(
ϕ(yε(T ))− zε(T )− z1,ε

∨
max
s∈[t,T ]

ψ(yε(s))− z2,ε
)

which is impossible. So, for any trajectory (yε, zε) that is optimal for the auxiliary control problem w(t, x, zε) we
have that the pair (yε, zε) ∈ P1,ε

w (t, x) of problem (9).
(iii) The proof can be obtained with similar arguments of (ii).

7 Reconstruction of the Pareto optimal trajectories
Theorems 5.3 and 5.6 provide the characterization of the weak Pareto front and the Pareto front, respectively, of the
convexified problem (MORP). Another important concern is to reconstruct an optimal trajectory corresponding
to a given Pareto optimal solution. Once the auxiliary value function w is known by Theorem 5.6 we have a
characterization of the Pareto front F#(t, x). Now, let z be an optimal Pareto solution. Then a corresponding
Pareto trajectory can be obtained by using the value function w. Indeed, by applying an algorithm of trajectory
reconstruction to the function w on [t, T ] with the initial conditions (x, z) as the algorithm presented in [4], we
get an approximation of the optimal trajectory for w(t, x, z). Now, by Theorem 5.6, item (ii), if the trajectory is
optimal for the auxiliary problem (15), then is a Pareto optimal trajectory of (MORP).

In the case of weak Pareto solutions, by Theorem 5.3

F#
w (t, x) ∩ Ω ⊂

{
z ∈ Ω | w(t, x, z) = 0

}
.

And if there exists an admissible pair (y, z) ∈ S#[t,T ](x, 0) such that ϕ(y(T ))− z(T ) = z1 and max
s∈[t,T ]

ψ(y(s)) =

z2, then z ∈ F#
w (t, x). So we can take z ∈ Ω such that w(t, x, z) = 0, apply an algorithm of trajectory recon-

struction to the function w on [t, T ] with the initial (x, z) as in [4], and see if such a trajectory exists. If there is a
trajectory in such conditions this is an approximation of a weak Pareto trajectory of (MORP).

Now consider ε > 0 and let zε ∈ R2, such that −ε ≤ w(t, x, zε) ≤ 0. By applying an algorithm of tra-
jectory reconstruction to the function w on [t, T ] with the initial conditions (x, zε) we get an approximation of
the optimal trajectory for w(t, x, zε). Now by Theorem 6.1, if there exists (yε, zε) ∈ S[t,T ](x, 0) that is optimal
for the auxiliary control problem (15). Then (yε, zε) ∈ P1,ε

w (t, x) of problem (9). Moreover if we consider that
−ε < w(t, x, zε) ≤ 0 and it is possible to obtain (yε, zε) ∈ S[t,T ](x, 0) that is optimal for the auxiliary control
problem (15). Then (yε, zε) ∈ P1,ε(t, x) of problem (9).
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8 Numerical examples
In this section we present some numerical examples where the method proposed in this paper was applied to
compute the (weak) Pareto front. In both examples the resultant HJB equation was solved by a finite difference
method implement at C++ HJB-solver "ROC-HJ" [1].

8.1 A problem of business strategy
Denote by y(s) the quantity of steel produced by an industry, at time s. At every moment, such production can
either be reinvested to expand the productive capacity or sold. The initial productive capacity is x > 0; such
capacity grows as the reinvestment rate. Let the function u : [0, T ] → [0, 1], where u(s) is the fraction of the
output at time s that should be reinvested. The objective is to maximize the total sales. As u(s) is the fraction of
the output y(s) that we reinvest, then (1− u(s))y(s) is the part of y(s) that we sell by a a price P at time s, that
is constant over the time horizon. So the first objective is

max

∫ T

0

P (1− u(s))y(s)ds = min

∫ T

0

P (u(s)− 1)y(s)ds.

However, consider that the owner also wants that the production to be around a quantity c, so the second objective
can be modeled as

min max
s∈[0,T ]

|y(s)− c| .

Hence the bi-objective problem is

minimize

(∫ T

t

P (u(s)− 1)y(s)ds, max
s∈[0,T ]

|y(s)− c|

)

subject to ẏ(s) = y(s)u(s)
y(t) = x0
0 ≤ u(s) ≤ 1.

For numerical simulation we considered P = 0.5, c = 0.5 and T = 2. Note that image set of the augmented
dynamics is convex. So, by remark 4.2 the auxiliary value function w is the unique viscosity solution to the
following HJB equation:

min
(
∂tw(t, x, z) +H(x,Dxw,Dzw), w(t, x, z)− (|x− c| − z2)

)
= 0, for t ∈ [0, T ), x ∈ R, z ∈ R2

w(T, x, z) = −z1
∨

(|x− c| − z2) for x ∈ R, z ∈ R2.

where the Hamiltonian is given by

H(x, p, q) = max
0≤u≤1

(−xup+ P (u− 1)xq1) , ∀x, p ∈ R, q ∈ R2

The HJB equation was solved on a grid of 3003 nodes on the domain [0, e2] × [−e2, 0] × [0, 7]. For the initial
state x0 = 0.4 and t = 0 first we use the formula (18) to obtain the utopian point associated with the bi-objective
control problem:

z∗1(t, x0) = inf
{
ζ1 ∈ R

∣∣∣∃z2 ∈ R s.t. w(t, x0, ζ1, z2) ≤ 0
}
∼= −0.539,

z∗2(t, x0) = inf
{
ζ2 ∈ R

∣∣∣∃z1 ∈ R s.t. w(t, x0, z1, ζ2) ≤ 0
}
∼= 0.0985.

After, following (22), we compute the upper bounds for the set Ω:

z1(t, x0) = inf
{
ζ ∈ R

∣∣∣w(t, x0, ζ, z
∗
2(t, x0)) = 0

}
∼= −0.4359,

z2(t, x0) = inf
{
ζ ∈ R

∣∣∣w(t, x0, z
∗
1(t, x), ζ) = 0

}
∼= 0.5711.
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So the Pareto front is a subset of the bounded set:

Ω = [z∗1(t, x0), z1(t, x0)]× [z∗2(t, x0), z2(t, x0)].

Figure 4a a part of the negative set of the value functionw(t, x0, ·) where is containedFw(t, x0) ⊂ F1,ε
w (t, x0),

for ε = 0.05 that includes the blue region and the red curve. Moreover the red curve is the zero level of the value
function w(t, x0, ·) that corresponds of the curve that the weak Pareto front is contained. In this figure the set Ω
is represented by a box delimited by black dashed lines. In Figure 4b, we show the intersection of zero level set
of w(t, x0, ·) with the set Ω. In that case this set is equal the Pareto front. The possible points in the weak Pareto
front are just trivial points and are outside the set Ω.

(a) Set that contains Fw(t, x0) ⊂ F1,ε
w (t, x0) (b) zoom of the Pareto front F(t, x0)

Figure 4: Business strategy: analysis of the zero level set of w(t, x, ·), where x = 0.4

The value function w also gives sufficiently information to reconstruct Pareto optimal trajectories. We chose
four point zi, i = 1, 2, 3, 4 at the Pareto front, that can be seen in Figure 5a, and compute the optimal trajectories
for w(t, x0, zi), i = 1, 2, 3, 4, using the reconstruction algorithm from [4]. Figure 5b shows the corresponding the
optimal trajectories for the initial states (x0, zi) . By Theorem 5.6 the trajectories are Pareto optimal solutions for
the optimal control problem 8.1.

(a) Points zi for initial condition of computed trajectories (b) Optimal trajectories for the initial states (x, zi)

Figure 5: Business strategy: 0ptimal trajectories as Pareto optimal solutions

One important advantage of the HJB approach to solve bi-objective optimal control problems is the possibility
of obtain the Pareto front for different initial states with the same auxiliary value function w. Figure 6a shows the
Pareto front for different initial states x0. The algorithm is also stable, as can be seen in Figure 6b, that represents
the 0-level set for the problem construct with different grids, of 3003, 1503 and 753, respectively. It is possible to
see a difference between the zero level set with different discretizations of the state space, however the difference
between the curve red and the others is lees than 0.02.
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(a) Pareto front for different initial states x0 (b) zero level set of w(t, x0, ·) with different grids

Figure 6: Business strategy: Pareto front for different initial states and grids

8.2 Pest control problem
Consider the Lotka-Volterra equations, also known as predator-prey equations. Those equations are a differential
nonlinear system of two equations, and they are used to model biological systems where two species interact: a
prey, that is a nuisance for humans, and a predator. Both species grow according to the following system

ẏ1(s) = y1(s)− y1(s)y2(s)
ẏ2(s) = −y2(s) + y1(s)y2(s)

where y1 represents the pest population, y2 the predator. We are going to influence these model of evolution of
species spraying a chemical to poison the pest (which also kills the predator). So the dynamical system becomes

ẏ1(s) = y1(s)− y1(s)y2(s)− y1(s)cy1
u(s)

ẏ2(s) = −y2(s) + y1(s)y2(s)− y2(s)cy2
u(s)

where the constants cy1
, cy2

represent the maximum level of the chemical in a time instant s for each population,
that, in our numerical experiments, are going to be 0.4 and 0.2 respectively, as considered in [32]. The control
function u(s) is restricted to take values of either 0 or 1.

The goal is to keep nuisance expansion under control by minimizing the maximum difference of certain pro-
portion of both species along the time horizon T − t:

max
s∈[t,T ]

0.25(y1(s)−Ky2(s))2,

and also reduce the cost of spraying the chemical:∫ T

t

Pu(s)ds,

where, in our experiments, K = 0.7, P = 0.3 and T = 10.
Therefore it is a bi-objective optimal control problem with two different objective functions. Note that in this

case the set of trajectories is not compact. To obtain a problem where the set of trajectories is compact we are going
to consider that the control function is continuous and can assume any value in the interval [0, 1]. So we define the
auxiliary control problem where we minimize with controls u(s) ∈ [0, 1]. The corresponding value function w is
solution of the following HJB equation

min
(
∂tw(t, x, z) +H(x,Dxw,Dzw), w(t, x, z)− (0.25(x1 − 0.7x2)2 − z2)

)
= 0, for t ∈ [0, T ), x, z ∈ R2

w(T, x, z) = −z1
∨

(0.25(x1 − 0.7x2)2 − z2) for x ∈ R2, z ∈ R2.
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where the Hamiltonian is given by

H(x, p, q) = max
0≤u≤1

(−(x1 − x1x2 − 0.4x1u)p1 − (−x2 + x1x2 − 0.2x2u)p− 2 + 0.3uq1) , ∀x, p, q ∈ R2

The HJB equation was solved on a grid of 754 nodes on the domain [0, 3.5] × [0, 3.5] × [0, 3] × [0, 3]. For the
initial state x0 = (0.7, 0.2) and t = 0, first we use the formula (18) to obtain the utopian point associated with the
bi-objective control problem:

z∗1(t, x0) = inf
{
ζ1 ∈ R

∣∣∣∃z2 ∈ R s.t. w(t, x0, ζ1, z2) ≤ 0
}
∼= 0,

z∗2(t, x0) = inf
{
ζ2 ∈ R

∣∣∣∃z1 ∈ R s.t. w(t, x0, z1, ζ2) ≤ 0
}
∼= 0.3245.

After, following (22), we compute the upper bounds for the set Ω:

z1(t, x0) = inf
{
ζ ∈ R

∣∣∣w(t, x0, ζ, z
∗
2(t, x0)) = 0

}
∼= 0.9560,

z2(t, x0) = inf
{
ζ ∈ R

∣∣∣w(t, x0, z
∗
1(t, x), ζ) = 0

}
∼= 2.5427.

So the Pareto front is a subset of the bounded set:

Ω = [z∗1(t, x0), z1(t, x0)]× [z∗2(t, x0), z2(t, x0)].

Figure 7a shows the zero level set of the value function w(t, x0, ·) in red that contains the (weak) Pareto front
F#(t, x0) ⊂ F#

x (t, x0). Moreover it is represented a region in black, including the curve in red, where it is
possible to obtain points z ∈ R2 such that z ∈ F1,ε

w (t, x0), for ε = 0.05. In this figure the set Ω is represented by a
box delimited by black dashed lines. In Figure 7b, we show the intersection of zero level set of w(t, x0, ·) with the
set Ω. In that case this set is equal the set F#(t, x0). The possible points in the weak Pareto front are just trivial
points and are outside the set Ω.

(a) Set that contains F1,ε
w (t, x0) and F#

w (t, x0) (b) zoom of F#(t, x0)

Figure 7: Pest control: analysis of the negative level set of w(t, x, ·), where x0 = (0.7, 0.2)

As discussed in Section 7, with the value function w we can also reconstruct optimal Pareto trajectories starting
from (x, z), where x ∈ R2 is the initial state and z ∈ R2 is a point in the Pareto front. With the algorithm
of trajectory reconstruction from [4] we reconstruct the optimal trajectories for w(t, x, z∗1(t, x0), z2(t, x0)) and
w(t, x, z1(t, x0), z∗2(t, x0)) that are also optimal trajectories of the scalar problems ϑ1(x) = z∗1(t, x0) and ϑ2(x) =
z∗2(t, x0). Those trajectories and the respective optimal control are represented in Figure 8.

As can be seen in Figure 8 the optimal trajectory for ϑ1(x), in green, is obtained with the control u ≡ 0,
which means that beyond (z∗1(t, x0), z2(t, x0)) ∈ F#(t, x0), we have that (z∗1(t, x0), z2(t, x0)) ∈ F(t, x0). How-
ever the control, in blue, related to the optimal trajectory for ϑ2(x) do not take just values 0 or 1, which means
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Figure 8: Pest control: optimal trajectories and controls of the scalar problems

that (z1(t, x0), z∗2(t, x0)) ∈ F#(t, x0), but (z1(t, x0), z∗2(t, x0)) /∈ F(t, x0). By Theorem 3.1, there exists an
ε-Pareto solution in a neighborhood of (z1, z

∗
2), where the control takes values in the set {0, 1}. We chose a point

(z1 + 0.01, z∗2 + 0.01) that is in the black region of Figure 7a. The optimal trajectory for w(0, x0, z1, z
∗
2) and

w(0, x0, z1 + 0.01, z∗2 + 0.01), that corresponds to a Pareto optimal trajectory for the convexified problem and a
ε-Pareto trajectory of the original problem, respectively, are represented, in Figure 9.

Figure 9: Approximate optimal trajectory and controls of the second scalar problem

To analyze more examples of optimal Pareto trajectories, we chose four point zi, i = 1, 2, 3, 4 at the Pareto
front, that can be seen in Figure 10, and compute the optimal trajectories and the respective controls forw(0, x, zi), i =
1, 2, 3, 4, using the reconstruction algorithm from [4]. Figure 5b shows the corresponding optimal trajectories. By
Theorem 5.6 the trajectories are the corresponding Pareto optimal solutions of the convexified bi-objective prob-
lem.

(a) Points zi for initial condi-
tions of computed trajectories (b) Pareto optimal trajectories and controls

Figure 10: Pest control: optimal pairs in P#(t, x0)
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We observe that the optimal pairs represented in Figure 10 are in P#(t, x0) but are not in P(t, x0), because
the respective control functions for those optimal Pareto trajectories, takes values different from 0 and 1. So we
selected two points z1ε = z1 + (0.01, 0.01) and z3ε = z3 + (0.01, 0.01) that are in the black region of Figure
7a to reconstruct the respective optimal trajectories. In Figure 11 are represented Pareto optimal trajectories for
the convexified problem for z1 = (0.072, 1.409), z3 = (0.412, 0.4753) and ε-Pareto optimal trajectories that the
optimal values are in a neighborhood of z1 and z3, when considering ε = 0.05.

Figure 11: Pest control: comparison between optimal pairs in P#(t, x0) and P1,ε(t, x0)

One important advantage of the HJB approach to solve bi-objective optimal control problems is the possibility
of obtain the Pareto front for different initial states with the same auxiliary value function w. Figure 12a shows the
Pareto front for different initial states x0. Moreover the stability of the method can be seen in Figure 12b, where
the zero level set of the auxiliary value problem w(t, x0, ·), with initial condition x0 = (0.7, 0.2) is represented
for different grids. The first grid represented in red, is the one used to obtain the other results of this section. It is
possible to see that the zero level set of the grids 70× 70× 60× 60 and 504 nodes, in green and blue, respectively,
are practically equal.

(a) Pareto front for different initial states x0 (b) zero level set of w(t, x0, ·) with different grids

Figure 12: Pest control: Pareto front for different initial states and grids
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9 Conclusion
In this paper we have investigated for the first time bi-objective optimal control problems with objectives of dif-
ferent nature. As for the considered problem the existence of Pareto solutions was not guaranteed we consider
the bi-objective problem to be minimized over the closure of the set of trajectories. The relation of this relaxed
(convexified) problem with the original one is that if x∗ is a (weak) Pareto optimal solution of the relaxed problem
then for any ε > 0 there exist an (weak) ε-Pareto solution for the original problem that is in a neighborhood of x∗.
Moreover the norm of image of x∗ and x by the objective function is less or equal ε.

We introduced an auxiliary control problem that the corresponded value function was characterized as a unique
viscosity solution of an HJB equation. Then we proved that the weak Pareto front of the convexified problem is
contained in the zero level set of the auxiliary control problem. Moreover we could characterize the Pareto front
for the convexified bi-objective optimal control problem without any assumption about the convexity of the Pareto
front.

A set where the (weak) ε-Pareto front for the original problem is contained could also be determined as a part
of the negative level set of value function for the auxiliary control problem. Moreover with the value function
is also possible to obtain (weak) Pareto optimal solutions and (weak) ε-Pareto solutions for the original and the
relaxed optimal control problems.

The method proposed performs well, as could be seen with the numerical examples. Moreover, some good
features are the stability of the method and the fact that after solving the derived HJB equation, the Pareto front for
the bi-objective control problem with different initial states can easily be obtained.
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