
HAL Id: hal-01929072
https://hal.science/hal-01929072

Submitted on 20 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient algorithms for hierarchical graph-based
segmentation relying on the Felzenszwalb-Huttenlocher

dissimilarity
Edward Jorge Yuri Cayllahua Cahuina, Jean Cousty, Yukiko Kenmochi,

Arnaldo Albuquerque de Araújo, Guillermo Cámara-Chávez, Silvio Jamil F.
Guimarães

To cite this version:
Edward Jorge Yuri Cayllahua Cahuina, Jean Cousty, Yukiko Kenmochi, Arnaldo Albuquerque de
Araújo, Guillermo Cámara-Chávez, et al.. Efficient algorithms for hierarchical graph-based segmenta-
tion relying on the Felzenszwalb-Huttenlocher dissimilarity. International Journal of Pattern Recog-
nition and Artificial Intelligence (IJPRAI), 2019, 33 (11), pp.1940008. �10.1142/S0218001419400081�.
�hal-01929072�

https://hal.science/hal-01929072
https://hal.archives-ouvertes.fr

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

International Journal of Pattern Recognition and Artificial Intelligence

© World Scientific Publishing Company

Efficient algorithms for hierarchical graph-based segmentation relying

on the Felzenszwalb-Huttenlocher dissimilarity

Edward Cayllahua Cahuina

Universidade Federal de Minas Gerais, Computer Science Department, 31270-901 Belo
Horizonte, Brazil and Université Paris-Est, ESIEE Paris, F-93162 Noisy-le-Grand, France

Jean Cousty

Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM, F-93162,
Noisy-le-Grand, France

Université Paris Descartes, Laboratoire MAP5 (UMR 8145), 12 Rue de l’École de Médecine,
75006 Paris , France

Yukiko Kenmochi

Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM, F-93162,
Noisy-le-Grand, France

Arnaldo de Albuquerque Araújo

Universidade Federal de Minas Gerais, Computer Science Department, 31270-901 Belo
Horizonte, Brazil and Université Paris-Est, ESIEE Paris, F-93162 Noisy-le-Grand, France

Guillermo Cámara-Chávez

Universidade Federal de Ouro Preto, Computer Science Department, 35400-000 Ouro Preto,

Brazil

Silvio Jamil F. Guimarães

PUC Minas - ICEI - Computer Science Department - VIPLAB, 30535-065 Belo Horizonte,

Brazil and Université Paris-Est, ESIEE Paris, F-93162 Noisy-le-Grand, France

Hierarchical image segmentation provides a region-oriented scale-space, i.e., a set of
image segmentations at different detail levels in which the segmentations at finer levels

are nested with respect to those at coarser levels. However, most image segmentation

algorithms, among which a graph-based image segmentation method relying on a region
merging criterion was proposed by Felzenszwalb-Huttenlocher in 2004, do not lead to a

hierarchy. In order to cope with a demand for hierarchical segmentation, Guimarães et
al. proposed in 2012 a method for hierarchizing the popular Felzenszwalb-Huttenlocher

method, without providing an algorithm to compute the proposed hierarchy. This article

is devoted to provide a series of algorithms to compute the result of this hierarchical
graph-based image segmentation method efficiently, based mainly on two ideas: optimal

dissimilarity measuring and incremental update of the hierarchical structure. Experi-

ments show that, for an image of size 321 × 481 pixels, the most efficient algorithm
produces the result in half a second whereas the most naive one requires more than four

1

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

2 E. Cayllahua et al.

(a) Original image (b) Hierarchical segmentation depicted as

a saliency map

(c) Some levels of this hierarchical segmentation

Fig. 1: Illustration of a hierarchical image segmentation.

hours.

Keywords: Image segmentation; hierarchical analysis; quasi-flat zone; incremental algo-

rithm.

1. Introduction

A hierarchical image segmentation is a series of image segmentations at different

detail levels where the segmentations at higher detail levels are produced by merging

regions from segmentations at finer detail levels. Consequently, the regions at finer

detail levels are nested in regions at coarser levels. The level of a segmentation in

a hierarchy is also called an observation scale. An example of hierarchical image

segmentation is illustrated in Fig. 1.

Hierarchical image segmentation provides a multi-scale approach to image anal-

ysis. Hierarchical image analysis was pioneered by Ref. 23 and has received a lot of

attention since then, as attested by the popularity of Ref. 1. In Ref. 39, the global

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

Efficient algorithms for hierarchical graph-based segmentation 3

information is used to create the initial regions and then the region merging process

is treated as a series of optimization problems. Mathematical morphology is also

used in hierarchical image analysis with, e.g., hierarchical watersheds in Refs. 2, 21,

18, 5, 25, binary partition trees in Refs. 36, 35, regular and irregular pyramids in

Ref. 17, scale-set theory in Ref. 10, quasi-flat zones hierarchies in Ref. 19, tree-based

shape spaces in Ref. 41. Other methods for hierarchical image segmentation con-

sider multiscale combinatorial grouping and region merging procedures in Ref. 29

and in Refs. 34, 26, 43, respectively. Hierarchical image analysis has been used in

computer vision to solve practical problems such as occlusion boundary detection

in Ref. 16, image simplification in Refs. 10, 26, 38, object proposal in Ref. 29, visual

saliency estimation in Ref. 42, attribute profile for image classification in Ref. 28.

According to Guigues et al., a hierarchy should satisfy two important principles.

First, the causality principle which states that a contour present at an observation

scale k1 should also be present at any scale k2, such that k2 < k1. Second, the loca-

tion principle which states that contours should neither move nor deform from one

observation scale to another.10 Any hierarchy should comply with these principles

for multi-scale analysis.

In Ref. 11 (see Ref. 13 for its preliminary version), the quasi-flat zone hierar-

chy is used to perform a hierarchical image segmentation. This work relies on the

graph-based (GB) image segmentation algorithm proposed in Ref. 8. The GB al-

gorithm uses a merging predicate to decide if, at a certain scale parameter, two

adjacent regions of an image should be merged into a single one, and thus produces

a segmented image. In its original form, the algorithm does not directly lead to

a hierarchical image segmentation. This is confirmed in Ref. 11, the original GB

algorithm does not comply with the causality and location principles;8 first, when

increasing the scale parameter it produces a larger number of regions and thus vi-

olates the causality principle; second, it was also observed that the contours may

deform as the scale parameter varies and thus violate the location principle. This

motivated Guimarães et al. to formulate a dissimilarity measure based on the GB

region merging predicate.11 Based on this dissimilarity criterion and on the no-

tion of a quasi-flat zones hierarchy, Guimarães et al. have provided a hierarchical

graph-based image segmentation (HGB) method in Ref. 11.

Assessing the quality of the results of hierarchical segmentation methods is a

difficult task (see Refs. 33, 25, 27, 31, 30, 32) and it is assessed in Ref. 11 that the

HGB method produces satisfactory results. Nonetheless, a practical algorithm to

compute efficiently results of the HGB method is not provided in Ref. 11. The core

of the HGB method is based on solving a minimization problem whose solution is

the minimum observation scale at which adjacent regions in the image have to be

merged. To solve this minimization, the naive method consists of considering all

positive real values to find such minimum observation scale.

In this article, we study the HGB method focusing on two problems that make

difficult its implementation. A first difficulty is related to solving the minimization

problem involved in the HGB method for which no efficient algorithmic solution

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

4 E. Cayllahua et al.

is given in Ref. 11. We analyze this minimization process and propose three algo-

rithms that solve it. The first one solves the minimization by searching the result

in a sufficiently large space of possible values. We then reduce this search space

to avoid redundant computations, leading to two efficient algorithms. The second

problem is related to the quasi-flat zone computation. One approach can be to use

an efficient algorithm, as the one proposed in Ref. 20, to compute it at every itera-

tion of the HGB method. However, efficiency can be improved by only updating at

each iteration the existing quasi-flat zone hierarchy instead of recomputing it from

scratch. This is done with a procedure similar to the one proposed in Refs. 15, 40.

Overall, the most efficient proposed algorithm computes the result of HGB method

for an image of size 321 × 481 pixels in about half a second whereas it takes over

four hours with the most naive algorithm.

This article is an extension of the conference article presented in Ref. 4 that

proposes a series of algorithms to compute the HGB method. The new contributions

of this article are: introducing a general framework for solving the minimization

involved in the HGB method, giving the proofs of all the properties that were used

in Ref. 4, analysing the algorithm complexity for each of the algorithms and showing

more experimental results concerning the execution time on a full dataset.

The remainder of this article is organized as follows. Section 2 gives us the

basic notions for hierarchical graph-based image segmentation and, based on these

notions, also introduces the HGB method. Section 3 discusses the implementation

of the HGB method and presents the algorithms to solve the minimization problem

involved in the HGB method and the quasi-flat zone computation. Section 4 assesses

the efficiency comparison of all the algorithms presented in Section 3 measuring

their execution times. Section 5 concludes the article and also gives ideas about

future research directions.

2. Hierarchical graph-based image segmentation

This section aims at explaining the method of hierarchical graph-based image seg-

mentation (HGB) presented in Ref. 13. The hierarchy is constructed from an image

via a graph representation, based on the notion of a quasi-flat zone hierarchy.19 We

first give a series of necessary notions, quasi-flat zones hierarchies, and then explain

the HGB method.

2.1. Basic notions

2.1.1. Hierarchies

Given a finite set V , a partition of V is a set P of nonempty disjoint subsets of V

whose union is V . Any element of P is called a region of P. Given two partitions P

and P′ of V , P′ is said to be a refinement of P, denoted by P′ � P, if any region

of P′ is included in a region of P. A hierarchy on V is a sequence H = (P0, . . . ,P`)

of partitions of V , such that Pi−1 � Pi, for any i ∈ {1, . . . , `}.

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

Efficient algorithms for hierarchical graph-based segmentation 5

2.1.2. Graph and connected-component partition

A graph is a pair G = (V,E) where V is a finite set and E is a subset of {{x, y} ⊆
V |x 6= y}. Each element of V is called a vertex of G, and each element of E is called

an edge of G. A subgraph of G is a graph (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. If

X is a graph, its vertex and edge sets are denoted by V (X) and E(X), respectively.

Let x and y be two vertices of a graph G. A path from x to y in G is a sequence

(x0, . . . , xm) of vertices of G such that x0 = x, xm = y and {xi−1, xi} is an edge

of G for any i in {1, . . . ,m}. The graph G is connected if, for any vertices x and

y of G, there exists a path from x to y. Let A be a subset of V (G). The graph

induced by A in G is the graph whose vertex set is A and whose edge set contains

any edge of G made of two elements in A. If the graph induced by A is connected,

then we say that A is connected. The subset A of V (G) is a connected component

of G if it is connected for G and maximal for this property. Y of V (G), if Y

is a connected superset of X, then Y = X. We denote by C(G) the set of all

connected components of G. Note that C(G) is a partition of V (G), which is called

the connected-component partition induced by G.

2.1.3. Quasi-flat zone hierarchies

Given a graph G = (V,E), let w be a map from E into the set R of real numbers.

For any edge u of G, the value w(u) is called the weight of u (for w), and the

pair (G,w) is called an edge-weighted graph. We now explain how to make from an

edge-weighted graph a series of connected-component partitions, which constitutes

a hierarchy. Such a hierarchy is called a quasi-flat zone hierarchy of (G,w) and

the quasi-flat zone hierachy transform is a bijection beetween the hierarchies and

a subset of the edge weighted graphs (called the saliency maps). Hence, any edge-

weighted graph induces a quasi-flat zone hierarchy and any hierarchy H can be rep-

resented by an edge-weighted graph whose quasi-flat zone hierarchy is precisely H
(see Ref. 6 for more details). This bijection indeed allows us to handle quasi-zone

hierarchies through edge-weighted graphs. In other words, when an edge-weighted

graph is created from an input image, the bijection signifies that this initial graph

already possesses a quasi-flat zone hierarchy and that the procedure of hierarchical

image segmentation can be interpreted as a modification of the initial hierarchical

structure by changing edge weights on the graph.

Given an edge-weighted graph (G,w), let X be a subgraph of G and let λ be a

value of R. The λ-level edge set of X for w is defined by

wλ(X) = {u ∈ E(X) | w(u) < λ}, (1)

and the λ-level graph of X for w is defined as the subgraph wVλ (X) of X, such that

wVλ (X) = (V (X), wλ(X)). (2)

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

6 E. Cayllahua et al.

Then, the connected-component partition C(wVλ (X)) induced by wVλ (X) is called

the λ-level partition of X for w.

As we consider only finite graphs and hierarchies, the set of considered level

values is reduced to a finite subset of R that is denoted by E in the remaining parts

of this article. In order to browse the values of this set and to round real values to

values of E, we define, for any λ ∈ R:

pE (λ) = max{µ ∈ E ∪ {−∞} | µ < λ};
nE (λ) = min{µ ∈ E ∪ {∞} | µ > λ}; and

n̂E (λ) = min{µ ∈ E ∪ {∞} | µ ≥ λ}.

Let (G,w) be an edge-weighted graph and let X be a subgraph of G. The

sequence, denoted by QFZ(X,w), of all λ-level partitions of X for w ordered by

increasing value of λ, namely

QFZ(X,w) = (C(wVλ (X)) | λ ∈ E ∪ {∞}), (3)

is a hierarchy, called the quasi-flat zone hierarchy of X for w. Let H be the quasi-

flat zone hierarchy of G for w. Given a vertex x of G and a value λ in E, the region

that contains x in the λ-level partition of the graph G is denoted by Hλx.

Important notations and remarks. In the remaining parts of this article,

the symbol G denotes a connected graph, the symbol w denotes a map from E

into R, and the symbol T denotes a minimum spanning tree of (G,w). It has been

shown in Ref. 6 that the quasi-flat zone hierarchy QFZ(T,w) of T for w is the

same as the quasi-flat zone hierarchy QFZ(G,w) of G for w. This indicates that

the quasi-flat zone hierarchy for G can be handled by its minimum spanning tree.

2.2. Hierarchical graph-based segmentation method

In this article, we consider that the input is the edge-weighted graph (G,w) repre-

senting an image, where the pixels correspond to the vertices of G and the edges

link adjacent pixels. The weight of each edge is given by a dissimilarity measure

between the linked pixels such as the absolute difference of intensity between them.

Before explaining HGB method, we first describe the following observation scale

dissimilarity defined in Ref. 11, which is required by the method and whose idea

originates from the region merging criterion proposed in Ref. 8.

2.2.1. Observation scale dissimilarity

As mentioned above, the graph-based hierarchical image segmentation method

is based on the idea of renewing graph-edge weights, and this renewal is made

depending on the following region dissimilarity. Indeed, with the Felzenszwalb-

Huttenlocher image segmentation algorithm defined in Ref. 8, two regions of an

image are merged based on a region merging predicate. This predicate was later re-

formulated as an observation scale dissimilarity measure to produce the hierarchical

segmentation of an image as follows.

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

Efficient algorithms for hierarchical graph-based segmentation 7

Method 1: HGB method
Input : A minimum spanning tree T of an edge-weighted graph (G,w)

Output: A hierarchy H = QFZ(T, f)

1 for each u ∈ E(T) do f(u) := max{λ ∈ E} ;

2 for each u ∈ E(T) in non-decreasing order for w do

3 H := QFZ(T, f) ;

4 f(u) := pE (λ?H(u)) ;

5 end

6 H := QFZ(T, f) ;

Let R1 and R2 be two adjacent regions, the dissimilarity measure compares the

so-called inter-component and within-component differences.8 The inter-component

difference between R1 and R2 is defined by

∆inter(R1, R2) = min{w ({x, y}) |x ∈ R1, y ∈ R2, {x, y} ∈ E(T)},

while the within-component difference of a region R is defined by

∆intra(R) = max{w ({x, y}) |x, y ∈ R, {x, y} ∈ E(T)}.

It leads to the observation scale of R1 relative to R2, defined by

SR2(R1) = (∆inter(R1, R2)−∆intra(R1)) |R1|,

where |R1| is the cardinality of R1. Then, a symmetric metric between R1 and R2,

called the observation scale dissimilarity between R1 and R2, is defined by

D(R1, R2) = max{SR2(R1), SR1(R2)}. (4)

This dissimilarity is used to determine if two regions should be merged or not at a

certain observation scale in the following.

2.2.2. HGB Method

The HGB method is presented in Method 1. The input is an image represented by

a graph G with its associated weight function w, where the minimum spanning tree

T of G is taken indeed. From (T,w), HGB method computes a new weight function

f which leads to a new hierarchy H = QFZ(T, f). The resulting hierarchy H is

considered as the hierarchical image segmentations of the initial image. Thus, the

core of the method is the generation of the weight function f for T .

To compute the new map f , the HGB method first initializes all values of f

to infinity (see Line 1). Then, an observation scale value f(u) is computed for

each edge u ∈ E(T) in non-decreasing order with respect to the original weight w

(see Line 2). Note that each iteration in the loop requires computing the hierarchy

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

8 E. Cayllahua et al.

(a) Input graph

(b) Initialization (c) Iteration 1

(d) Iteration 2 (e) Iteration 3

(f) Iteration 4 (g) Iteration 5

Fig. 2: Illustration of Method 1 with E = {0, 1, . . . , 9}: (a) the input graph (T,w),

(b-g) the graph (T, f) at each iteration of Method 1 and (g) the resulting quasi-flat

zone hierarchy corresponding to graph (T, f).

H = QFZ(T, f) (see Line 3). Once H is obtained, the value λ?H(u) of a finite subset

E of R is obtained by the minimization:

λ?H({x, y}) = min
{
λ ∈ E | D

(
Hλx,Hλy

)
≤ λ

}
. (5)

We first consider the regions Hλx and Hλy at a level λ. Using the dissimilarity mea-

sure D, we check if D
(
Hλx,Hλy

)
≤ λ. Equation (5) states that λ?H({x, y}) is the

minimum value λ for which this assertion holds true. Observe that the minimiza-

tion involved in Equation (5) has a solution only if the maximum of E is greater

than the maximum possible dissimilarity value. In the following, we assume that

this assumption always holds true. Fig. 2 illustrates an example of application of

Method 1.

It should be probably mentioned that the non-hierarchical method proposed by

Felzenswalb et al. guarantees to obtain partitions that are neither too fine nor too

coarse for a given scale.8 On the other hand, the hierarchical method cannot pro-

vide simultaneously both of similar properties that are extended to hierarchies.11

However, the later method allows us to find maximal not-too-coarse hierarchies (see

Ref. 11 for more details).

As mentioned above, Guimarães et al. did not provide a practically efficient

algorithm to compute Method 1. In order to fill this gap, the problem is twofold.

Indeed, it is necessary to propose efficient (i.e., exact and fast) algorithms for (i)

solving the minimization involved in Equation (5); and (ii) computing the quasi-flat

zone hierarchy QFZ(T, f) at each iteration of Method 1 (Lines 3 and 6).

3. Algorithms for HGB method

In this section, we investigate algorithms to compute the results of HGB method.

After giving a naive algorithm in Section 3.1, we first introduce the common notions

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

Efficient algorithms for hierarchical graph-based segmentation 9

for solving efficiently the minimization involved at Line 4 of Method 1 in Section 3.2,

and we present two different ideas to improve the naive algorithm in Sections 3.3

and 3.4 using the notions of Section 3.2. In Section 3.5, we present non-incremental

and incremental algorithms to obtain the quasi-flat zone hierarchy of a weight map

as requested at Lines 3 and 6 of Method 1.

3.1. Naive minimization algorithm

We first present a naive algorithm, namely Algorithm 1, to compute the

value λ?H({x, y}) given a hierarchyH and an edge {x, y}. According to Equation (5),

it simply consists of considering the values of E in increasing order until finding a

value λ ∈ E such that D
(
Hλx,Hλy

)
≤ λ. We remark that, when E is a set of consec-

utive integers, for any λ in E, the result of nE (λ) and pE (λ) can be obtained with

the simple integer instruction λ+ 1 and λ− 1, respectively.

As said in Ref. 3, the size and the maximal edge-value of each region of H can

be computed on the fly at Line 3 of Method 1. Thus, once the regions Hλx and Hλy
are identified the dissimilarity between them can be computed in constant time.

Furthermore, if the hierarchy H is represented by its dendrogram, the regions Hλx
and Hλy can be obtained at each iteration of the main loop of Algorithm 1 in con-

stant time (more details about the implementation of such operation are provided in

the following Section 3.4). Therefore, the time complexity of Algorithm 1 is O(|E|).

Algorithm 1: HGB Naive minimization of Equation 5

Input : A hierarchy H, an edge {x, y}
Output: The value λ? such that λ? = λ?H({x, y})

1 λ? := min{λ ∈ E} ;

2 while D
(
Hλx,Hλy

)
> λ? do

3 λ? := nE (λ?) ;

4 end

3.2. Stable intervals and stable partitions

In this section, we propose a general framework to solve efficiently the minimization

problem presented in Equation (5). To this end, we establish (Property 3) that on

certain subdomains, called stable intervals, the solution depends only on the bounds

of the subdomain instead of all of its elements, reducing the computation of the

solution in such subdomain to a constant number of operations instead of a number

of operations which depends linearly on the size of the subdomain. Then, we state

(Theorem 5) that the problem on the whole domain can be solved by considering

any partition of the domain into stable intervals and by solving the problem in each

of these stable intervals. This theorem is the fundamental result which allows us for

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

10 E. Cayllahua et al.

proposing efficient minimization algorithms in Sections 3.3 and 3.4. More precisely,

in these following sections, partitions of the domain in stable intervals that can be

handled efficiently in a computerized procedure are presented.

Let λ1 and λ2 be any two real numbers in E ∪ {−∞} such that λ1 < λ2. We

denote by Kλ1, λ2KE the subset of E that contains every element of E that is both

greater than λ1 and not greater than λ2:

Kλ1, λ2KE = {λ ∈ E | λ1 < λ ≤ λ2}. (6)

We say that a subset I of E is an open-closed interval of E, or simply an interval,

if there exists two real values λ1 and λ2 such that I is equal to Kλ1, λ2KE.

Definition 1 (stable interval). Let f be any map from E(T) in E, let u = {x, y}
be any edge in E(T), and let I =Kλ1, λ2KE be any interval. We say that I is a stable

interval for (f, u) if, for any two values λ and λ′ in I, the two following statements

hold true:

(1) the regions containing x in the λ-level partition of (T, f) and in the λ′-level

partition of (T, f) are equal; and

(2) the regions containing y in the λ-level partition of (T, f) and in the λ′-level

partition of (T, f) are equal.

In other words, the interval I =Kλ1, λ2KE is a stable interval for (f, u) if, for any two

values λ and λ′ in I, we have Hλx = Hλ′

x and Hλy = Hλ′

y , where H is the quasi-flat

zone hierarchy of T for f . Hence, the following lemma can be straightforwardly

deduced from the definition of the dissimilarity measure D.

Lemma 2. Let f be any map from E(T) in E and let H be the quasi-flat zone

hierarchy of T for f , let u = {x, y} be any edge in E(T), and let I =Kλ1, λ2KE be a

stable interval for (f, u). Then, for any λ in I, we have: D(Hλx,Hλy) = D(Hλ2
x ,Hλ2

y).

The following property firstly shows a necessary and sufficient condition on

which the minimization problem presented in Equation (5) admits a solution when

its domain of definition is restricted to a stable interval. Moreover, when the problem

admits a solution over a certain stable interval, the following property provides an

expression of this solution that depends only on the bounds of the considered stable

interval.

Property 3. Let f be any map from E(T) in E, letH be the quasi-flat zone hierarchy

of T for f , let u = {x, y} be any edge in E(T), and let I =Kλ1, λ2KE be a stable

interval for (f, u). Then, the two following statements hold true:

(1) the set {λ ∈ I | D(Hλx,Hλy) ≤ λ} is nonempty if and only if D(Hλ2
x ,Hλ2

y) is not

greater than λ2 (i.e., D(Hλ2
x ,Hλ2

y) ≤ λ2); and

(2) if D(Hλ2
x ,Hλ2

y) ≤ λ2, then

min
{
λ ∈ I | D(Hλx,Hλy) ≤ λ

}
= max

{
nE (λ1) , n̂E

(
D(Hλ2

x ,Hλ2
y)

)}
. (7)

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

Efficient algorithms for hierarchical graph-based segmentation 11

Proof. In order to prove Property 3, we consider three distinct cases. For each of

these cases, we prove that {λ ∈ I | D(Hλx,Hλy) ≤ λ} is either empty or nonempty

and in the cases where it is nonempty, we establish that Equation (7) holds true.

For each of these three cases, the associated proofs are graphically illustrated in

Fig. 3.

Case 1: D(Hλ2
x ,Hλ2

y) ≤ λ1 Case 2: λ1 < D(Hλ2
x ,Hλ2

y) ≤ λ2

λ1 λ2

f (λ) = λ

D(H λ2
x ,H λ2

y)

g(λ) = D(H λ
x ,H λ

y)

D
(H

λ 2 x
,H

λ 2 y
)

λ1 λ2

f (λ) = λ

g(λ) = D(H λ
x ,H λ

y)

D
(H

λ 2 x
,H

λ 2 y
)

D(H λ2
x ,H λ2

y)

Case 3: D(Hλ2
x ,Hλ2

y) > λ2

λ1 λ2

f (λ) = λ

D
(H

λ 2 x
,H

λ 2 y
)

D(H λ2
x ,H λ2

y)

g(λ) = D(H λ
x ,H λ

y)

Fig. 3: Graphical illustrations for the proof of Property 3. The elements of E are

represented by dots on the horizontal axis of real values. The subdomain of E which

contains every element λ of I =Kλ1, λ2KE such that D(Hλx,Hλy) ≤ λ is represented

by the gray zones and, when this subdomain is not empty, the unique solution to

min
{
λ ∈ I | D(Hλx,Hλy) ≤ λ

}
is indicated by the circled dot.

(1) Let us first assume that D(Hλ2
x ,Hλ2

y) ≤ λ1. By Lemma 2, we deduce that, for

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

12 E. Cayllahua et al.

any λ ∈Kλ1, λ2KE, we have D(Hλx,Hλy) ≤ λ1. Hence, for any λ in I =Kλ1, λ2KE,

we have D(Hλx,Hλy) ≤ λ. Since λ2 belongs to I, in this case, the set {λ ∈
I | D(Hλx,Hλy) ≤ λ} is nonempty and we deduce that min{λ ∈ I | D(Hλx,Hλy) ≤
λ} is the minimum of I, which is precisely nE (λ1). Thus, we have min{λ ∈
I | D(Hλx,Hλy) ≤ λ} = nE (λ1). Furthermore, since D(Hλ2

x ,Hλ2
y) ≤ λ1, we

have n̂E
(
D(Hλ2

x ,Hλ2
y)

)
≤ n̂E (λ1). Therefore, since λ belongs to E, we de-

duce that n̂E
(
D(Hλ2

x ,Hλ2
y)

)
< nE (λ1). Hence, in the considered case, we

have min
{
λ ∈ I | D(Hλx,Hλy) ≤ λ

}
= max

{
nE (λ1) , n̂E

(
D(Hλ2

x ,Hλ2
y)

)}
.

(2) Let us now assume that λ1 < D(Hλ2
x ,Hλ2

y) ≤ λ2. Since λ2 belongs to I =

Kλ1, λ2KE, we deduce that, in this case, the set {λ ∈ I | D(Hλx,Hλy) ≤ λ} is

nonempty. By Lemma 2, for any λ ∈ I, we have D(Hλx,Hλy) = D(Hλ2
x ,Hλ2

y).

Then, for any λ in I such that λ ≥ D(Hλ2
x ,Hλ2

y), we have D(Hλx,Hλy) ≤ λ and,

for any λ in I such that λ < D(Hλ2
x ,Hλ2

y), we have D(Hλx,Hλy) > λ. Hence, in

this case, we deduce that min{λ ∈ I | D(Hλx,Hλy) ≤ λ} is the minimum value

of E which is not less than D(Hλ2
x ,Hλ2

y). Thus, in this case, we have min{λ ∈
I | D(Hλx,Hλy) ≥ λ} = n̂E

(
D(Hλ2

x ,Hλ2
y)

)
. Furthermore, since λ1 <

D(Hλ2
x ,Hλ2

y), we deduce that nE (λ1) ≤ n̂E
(
D(Hλ2

x ,Hλ2
y)

)
. Thus, in this case,

we also have min{λ ∈ I | D(Hλx,Hλy)} = max
{

nE (λ1) , n̂E
(
D(Hλ2

x ,Hλ2
y)

)}
.

(3) Let us finally assume that λ2 < D(Hλ2
x ,Hλ2

y). By Lemma 2, for any λ ∈ I, we

have D(Hλx,Hλy) = D(Hλ2
x ,Hλ2

y). Hence, for any λ in I, we have D(Hλx,Hλy) >

λ. Hence, in this case the set {λ ∈ I | D(Hλx,Hλy) ≤ λ} is empty.

From the statements given in cases (1), (2), and (3) above, we can affirm

that {λ ∈ I | D(Hλx,Hλy) ≤ λ} is nonempty if and only if D(Hλ2
x ,Hλ2

y) ≤
λ2, which completes the proof of Property 3.1. Furthermore, from the state-

ments given in cases (1) and (2), we deduce that, if D(Hλ2
x ,Hλ2

y) ≤ λ2, then

we have min
{
λ ∈ I | D(Hλx,Hλy) ≤ λ

}
= max

{
nE (λ1) , n̂E

(
D(Hλ2

x ,Hλ2
y)

)}
, which

completes the proof of Property 3.2.

Definition 4 (stable partition). Let f be any map from E(T) in E, let u =

{x, y} be any edge in E(T). Let I = (λ0, . . . , λ`) be a series of real values in E∪{−∞}
such that λ0 = −∞, λ` = max{λ ∈ E}, and, for any i in {1, . . . , `}, we have

λi > λi−1. Let PI = {Kλ0, λ1KE, . . . , Kλ`−1, λ`KE}. The series I (resp. the set PI) is

called a stable bound series (resp. a stable partition) of E for (f, u) if any element

of PI is a stable interval for (f, u).

Given a stable bound series I = (λ0, . . . , λ`), it can be easily seen that the

stable partition PI is a partition of E. Moreover, given the stable bound series

I = (λ0, . . . , λ`), we denote by ind(I) the set of indices {1, . . . , `}.
The following theorem, which is the main result of this section, shows that given

a stable bound series, the minimization problem defined by Equation (5) can be

solved by considering only the elements of this series rather than all elements of

the domain E. Hence, this result is a keystone to provide an efficient algorithm for

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

Efficient algorithms for hierarchical graph-based segmentation 13

computing λ?H({x, y}) with a reduced complexity compared to the naive algorithm

(Algorithm 1).

Theorem 5. Let f be any map from E in E, let H be the quasi-flat zone hierarchy

of G for f , let u = {x, y} be any edge in E, and let I = (λ0, . . . , λ`) be a stable

bound series of E for (f, u). Then, the following statement holds true:

λ?H({x, y}) = min{max{nE (λi−1) , n̂E
(
D(Hλi

x ,Hλi
y)

)
}

| i ∈ ind(I), D(Hλi
x ,Hλi

y) ≤ λi}. (8)

Proof. Let Ii =Kλi−1, λiKE, for any i in ind(I) = {1, . . . , `}. It can be easily seen

that PI = {I1, . . . , I`}. Since PI is a partition of E, we may affirm that:

min
{
λ ∈ E | D(Hλx,Hλy) ≤ λ

}
=

min
{

min
{
λ ∈ Ii | D(Hλx,Hλy) ≤ λ

}
| i ∈ ind(I),

{
λ ∈ Ii | D(Hλx,Hλy) ≤ λ

}
6= ∅

}
Since, for any i ∈ {1, . . . , `} the interval Ii =Kλi−1, λiKE is a stable interval, by

Property 1, we deduce that:

min
{
λ ∈ E | D(Hλx,Hλy) ≤ λ

}
= min{max{nE (λi−1) , n̂E

(
D(Hλi

x ,Hλi
y)

)
}

| i ∈ ind(I), D(Hλi
x ,Hλi

y) ≤ λi}

3.3. Minimization by range

Let f be any map from E to E, the range of f , denoted by range(f), is the set of

values that f can take as its argument varies over E: range(f) = {f(u) | u ∈ E}. We

denote by Rf the series (λ0, . . . , λ`) of ordered values in range(f)∪ {−∞,max{λ ∈
E}}:

(1) λ0 = −∞, and λ` = max{λ ∈ E};
(2) {λi | i ∈ {1, . . . , `− 1}} = range(f) \ {max{λ ∈ E}}; and

(3) for any i in {1, . . . `}, we have λi > λi−1.

Property 6. Let f be any map from E(T) in E and let u = {x, y} be any edge

in E(T). Then, the series Rf is a stable bound series for (f, u).

Proof. Since λ0 = −∞, since λ` = max{λ ∈ E}, and since, for any i ∈ {1, . . . `}
we have λi < λi−1, in order to establish Property 6, it is sufficient to prove that, for

any i in {1, . . . , `}, the interval Kλi−1, λiKE is a stable interval for (f, u). Let i be any

element in {1, . . . , `}. Let λ be any element in Kλi−1, λiKE. Let v be any edge of T

which belongs to fλi
(T). By Equation (1), we have f(v) < λi. By definition of Rf ,

there exists j ∈ {1, . . . , i− 1} such that f(v) = λj . Thus, we have f(v) < λ, which

implies, by Equation (1), that v also belongs to fλi(T). Furthermore, since λ ≤ λi,
for any edge e such that f(e) ≥ λi we also have f(e) ≥ λ. Hence, by Equation (1),

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

14 E. Cayllahua et al.

any edge which does not belong to fλi
(T) does not belong to fλ(T) either. Therefore,

we deduce that wλ(T) = wλi
(T). Thus, since H is the quasi-flat zone hierarchy of f ,

we also have Hλx = Hλi
x and Hλy = Hλi

y , by definition of a quasi-flat zone hierarchy.

Hence, the interval Kλi−1, λiKE is a stable interval for (f, u).

Corollary 7. Let f be any map from E(T) in E, let H be the quasi-flat zone

hierarchy of T for f , let u = {x, y} be any edge in E(T), and let Rf = (λ0, . . . , λ`).

Then, the following statement holds true:

λ?H({x, y}) = min{max{nE (λi−1) , n̂E
(
D(Hλi

x ,Hλi
y)

)
}

| i ∈ ind(Rf), D(Hλi
x ,Hλi

y) ≤ λi}. (9)

According to Corollary 7, we can compute λ?H({x, y}) by browsing the val-

ues of Rf in increasing order until a value λi such that D(Hλi
x ,Hλi

y) ≤ λi is

found and by setting the value of λ?H({x, y}) to the maximum between nE (λi−1)

and n̂E
(
D(Hλi

x ,Hλi
y)

)
. In order to make such process computable, it is necessary

to browse the range of f in increasing order. To this end, we propose to store the

values of f in a sorted linked list. Algorithm 2 provides a precise description of

this process. It can be observed that when the value pE (λ?H ({x, y})) is not yet

present in the range of f , the linked list representing this range is updated so that

it is ready for the next iteration of the main loop in Method 1. It has to be also

noted that in Method 1, the weight of every edge is initialized to the maximal

value of E. In other words, the linked list must be initialized in Method 1 with the

singleton {max{λ ∈ E}}.

Algorithm 2: HGB Minimization by range

Input : A hierarchy H, a weight map f such that H = QFZ(T, f), an edge

{x, y} of T , a linked list L of the values of Rf in increasing order

Output: The value λ? such that λ? = λ?H({x, y}), the updated linked list L

of the values of Rf ∪ {pE (λ?)} in increasing order

1 l := L.head; λ := l.value; λprev := −∞ ;

2 while D
(
Hλx,Hλy

)
> λ do

3 λprev := λ; l := l.next;λ := l.value;

4 end

5 λ? := max(nE (λprev) , n̂E
(
D(Hλx,Hλy)

)
;

6 if pE (λ?) 6= λprev then L.insert(pE (λ?));

As said at the end of Section 3.1, at each iteration of the while loop in Al-

gorithm 2, the dissimilarity between Hλx and Hλy can be obtained in constant

time. The instructions and tests of the while loop in Algorithm 2 are executed

at most |range(f)|+1 times and each of these instructions can be made in constant

time. Thus, Algorithm 2 runs in O(|range(f)|) time complexity. It has to be noted

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

Efficient algorithms for hierarchical graph-based segmentation 15

that |range(f)| is always less than the number of edges of T , which is equal to the

number of vertices of T minus one, since T is a tree. This number is, in general,

much less than the number of elements of E. Indeed, for reaching a good precision, E
can be chosen as the set of all possible values of the dissimilarity measure D. In

such case, the number of elements in E is in the order of |range(w)|× |V |. Hence, in

this case, the time-complexity is reduced from O(|range(w)|×|V |) with Algorithm 1

to O(|V |) with Algorithm 2.

3.4. Minimization by branch

In the previous section, we reduce the size of the search space of the minimization

defined in Equation (5) by considering the range Rf of the function f (i.e., a

characteristic function of the considered hierarchy H) instead of the set E of all

possible scales of the hierarchy H (see Corollary 7). In this section, we show that

this search space can be further reduced, leading to a third algorithm for computing

the value λ?H({x, y}), given any hierarchy H and any edge {x, y}.
In order to obtain this second reduction, we observe in Equation (5) that the

only regions of the hierarchy involved in the minimization are those containing x

and y. Therefore, while searching for the value λ?H({x, y}), it is unnecessary to

consider a scale of H (i.e., a value of Rf) at which the regions containing x and y

are the same as those at the preceding scale. In other words, rather than considering

the scales of Rf for which there is a global change in the hierarchy, one can focus

on the scales for which the change of the hierarchy is local to x and y, i.e., when

the change involves a region containing either x or y.

Let f be a any map from E to E and let H be the quasi-flat zone hierarchy

of f . Let x be any vertex of V and let us denote by BH(x) the set which contains

every region R of the hierarchy H such that x belongs to R. The set BH(x) is

called the branch of x in H. The level of a region R in H, denoted by levelH(R),

is the highest index of a partition that contains R in H. The (branch) range of H
for x, denoted by brange(f, x), is defined as the set that contains the level of

every region of the branch of x in H: brange(f, x) = {levelH(R) | R ∈ BH(x)}.
Let u = {x, y} be any edge of T . We denote by Ruf the series (λ0, . . . , λ`) of ordered

values in brange(f, x) ∪ brange(f, y) ∪ {−∞,max{λ ∈ E}}:

(1) λ0 = −∞, and λ` = max{λ ∈ E};
(2) {λi | i ∈ {1, . . . , `− 1}} = brange(f, x) ∪ brange(f, y) \ {max{λ ∈ E}}; and

(3) for any i in {1, . . . , `}, we have λi > λi−1.

Property 8. Let f be any map from E(T) in E and let u = {x, y} be any edge

in E(T). Then, the series Ruf is a stable bound series for (f, u).

Proof. Since λ0 = −∞, since λ` = max{λ ∈ E}, and since, for any i ∈ {1, . . . `}
we have λi < λi−1, in order to establish Property 8, it is sufficient to prove that,

for any i in {1, . . . , `}, the interval Kλi−1, λiKE is a stable interval for (f, u). Let i be

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

16 E. Cayllahua et al.

any element in {1, . . . , `}. Let λ be any element in Kλi−1, λiKE. By definition of Ruf ,

there exists j in {1, . . . , `} such that λj = level(Hλx) (resp. λj = level(Hλy)). By

definition of the level of a region, we deduce that λj ≥ λ. Hence, we have j ≥ i

which implies that λj ≥ λi. Since H is a hierarchy, we have Hλx ⊆ Hλi
x ⊆ H

λj
x (resp.

Hλy ⊆ Hλi
y ⊆ H

λj
y). By definition of λj , we have Hλx = Hλj

x (resp. Hλy = Hλj
y).

Therefore, we also have Hλx = Hλi
x (resp. Hλy = Hλi

y). Thus, Kλi−1, λiKE is a stable

interval for (f, u).

As a direct consequence of Property 8 and Theorem 5, we can state the fol-

lowing corollary which is the basis of a third algorithm for solving efficiently the

minimization problem given in Equation (5). The difference with Corollary 7 is that

the range of f (f being such that H = QFZ(T, f)) is replaced by the union of the

branch ranges of H for x and for y.

Corollary 9. Let f be any map from E in E, let H be the quasi-flat zone hierarchy

of G for f , let u = {x, y} be any edge in E, and let Ruf = (λ0, . . . , λ`). Then, the

following statement holds true:

λ?H({x, y}) = min{max{nE (λi−1) , n̂E
(
D(Hλi

x ,Hλi
y)

)
}

| i ∈ ind(Ruf), D(Hλi
x ,Hλi

y) ≤ λi}. (10)

Due to Corollary 9, to compute λ?H({x, y}), it is sufficient to browse in increasing

order the levels of the regions in the branches of x and of y until a value λi, such

that D(Hλi
x ,Hλi

y) ≤ λi, is found. Finally, the value λ?H({x, y}) is determined as the

maximum of n̂E
(
D(Hλi

x ,Hλi
y)

)
and nE (λi−1), where {λ0, . . . λ`} is equal to R{x,y}f .

In order to propose such an algorithm, we need to browse in increasing order the

levels of the regions in the branches of x and of y. This can be done with a tree data

structure, called a component tree, which represents the hierarchy. The component

tree is used for various image processing tasks and is well studied in the field of

mathematical morphology (see, e.g., Ref. 37 for its definition on vertex weighted

graphs, Ref. 7 for the case of edge-weighted graphs and quasi-flat zone, and Ref. 26

for their generalization to directed graphs). In classification, this tree is often called

the dendrogram of the hierarchy.

As any tree, the component tree of H can be defined as a pair made of a set

of nodes and of a binary (parent) relation on the set of nodes. More precisely, the

component tree of H is the pair TH = (N , parent) such that N is the set of all

regions of H and such that a region R1 in N is a parent of a region R2 in N
whenever R1 is a minimal (for inclusion relation) proper superset of R2. Note that

every region in N has exactly one parent except the region V which has no parent

and is called the root of the component tree ofH. Any region which is not the parent

of another one is called a leaf of the tree. It can be observed that any singleton of V

is a leaf of TH and that conversely any leaf of TH is a singleton of V .

In order to browse the branch of x in H from its component tree, it is enough

to follow the next steps: (1) start with the node C that is the leaf {x}, (2) consider

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

Efficient algorithms for hierarchical graph-based segmentation 17

the parent of C, and (3) repeat step (2) until the root is found. Furthermore, it

can be observed that the levelH attribute is increasing in the branch of x: for

any non-root node C in N , the level of the parent of C is never less than the

level of C. Hence, the branch browsing process also allows browsing the branch

range of H for x in increasing order. According to Corollary 9, in order to find the

value λ?H({x, y}), for any edge {x, y} of T and any hierarchy H, we have to consider

the union of the ranges of H for x and for y, sorted in increasing order. This can

be done by simultaneously browsing in the component tree TH the branches of x

and of y. Algorithm 3 provides a precise description of a complete algorithm to

find λ?H({x, y}) using such a simultaneous branch browsing.

Algorithm 3: HGB Minimization by branch

Input : The component tree T = (N , parent) of a hierarchy H, an edge

u = {x, y} of T , an array level that stores the level of every region

of H
Output: The value λ? such that λ? = λ?H({x, y})

1 Cx := {x}; Cy := {y}; λ := min(level[Cx], level[Cy]); λprev := −∞;

2 while D (Cx, Cy) > λ do

3 λprev := λ ;

4 λ := min(level[parent[Cx]], level[parent[Cy]]);

5 if level[parent[Cx]] = λ then Cx := parent[Cx];

6 if level[parent[Cy]] = λ then Cy := parent[Cy];

7 end

8 λ? := max(nE (λprev) , n̂E
(
D(Hλx,Hλy)

)
;

Individually, every instruction performed in Algorithm 3 has a constant time

complexity. Therefore, in order to establish the overall time complexity of Algo-

rithm 3, it is sufficient to bound the number of iterations of the main loop of

Algorithm 3 (Line 2). It can be seen that the instructions and tests of this loop are

executed at most |brange(f, x)| + |brange(f, y)| times. In the worst case, at every

level of the hierarchy the region containing x is merged with a singleton region.

Hence, as there are |V | vertices in G, in this case, the branch of x contains |V |
regions. Thus, the worst-case time complexity of Algorithm 3 is O(|V |). It can

be observed that the worst-case time complexity of Algorithm 3 is the same as

the one of Algorithm 2. However, in many practical cases, the component tree

of H is well balanced and each region of H results from the merging of two re-

gions of (approximately) the same size. Then, if the tree is balanced, the branch

of x contains O(log2(|V |)) nodes and the time-complexity of Algorithm 3 reduces

to O(log2(|V |)) which is a significant improvement compared to Algorithm 2. Such

improvement is verified in terms of execution times in Section 4.

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

18 E. Cayllahua et al.

(a) Input graph

(b) Initialization (c) Iteration 1

(d) Iteration 2 (e) Iteration 3

(f) Iteration 4 (g) Iteration 5

Fig. 4: Tree representations of the quasi-flat zone hierarchies of the graphs of Fig. 2;

(g) shows the output hierarchy computed by HGB Method.

3.5. Quasi-flat zone hierarchy algorithms

In this section, we focus on Lines 3 and 6 of Method 1, that is, on computing

the quasi-flat zone hierarchy of a weight map f . This computation is repeated at

every iteration of the method (i.e., for every edge of the tree T). Hence, finding

an efficient way to perform this task in the context of Method 1 presents a high

speedup potential.

The straightforward implementation of Lines 3 and 6 of Method 1 consists of

computing, at each iteration, the quasi-flat zone hierarchy of f using an efficient

algorithm such as the one presented in Ref. 20. Provided that the edges of T can be

sorted in linear time, which, in our case, can be done with a counting sort algorithm,

the time-complexity of this algorithm is quasi-linear O(|V |+α(|V |)) (where α is the

extremely slowly growing inverse of the single-valued Ackermann function). Hence,

in this case, the overall time-complexity of Lines 3 and 6 is O(|V |2 + |V |α(|V |))
since the quasi-flat zone hierarchy computation is repeated exactly |E(T)| = |V |−1

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

Efficient algorithms for hierarchical graph-based segmentation 19

times.

However, from one iteration of the main loop of Method 1 to the next one,

only the weight of one edge of the graph is updated and therefore most parts of

the component tree remain unchanged (see, for instance, Fig. 4). Therefore, an

important speedup can be obtained if we avoid to recompute from scratch the

whole component tree at each iteration. In order to avoid this recomputation, we

need to rely on an algorithm that only updates the part of the component tree

which is affected by the single weight update considered at the present iteration.

In this section, we propose such an algorithm that is referred to as an incremental

quasi-flat zone update algorithm.

The presented incremental quasi-flat zone update algorithm relies on works done

for parallel computation of component trees presented in Refs. 40, 15, 9, 3. In

these articles, the authors present algorithms to merge the component trees of

two disjoint (adjacent) image blocks in order to obtain the component tree of the

image consisting of these two blocks. We can adapt these algorithms (in particular

Algorithm 6 in Ref. 15) into an incremental quasi-flat zone update algorithm. At

each iteration of Line 3 in Method 1, the weight of the edge u is decreased from

its initial value max{λ ∈ E} to its final value resulting from the minimization

of Equation (5). This means that, before we decrease the weight of u = {x, y}, the

components containing x and y in the tree were disjoint (up to level max{λ ∈ E}).
We can adapt the algorithm proposed by Ref. 15, in order to merge these disjoint

parts of the tree and update the tree only on the components containing x and

y, thus avoiding the need to recompute the whole hierarchy at every iteration of

Method 1.

Algorithm 4 gives a precise description of this quasi-flat zone update algorithm

given the component tree T of a hierarchy H which is the quasi-flat zone hierarchy

of a weight map f , the edge u = {x, y} whose weight must be decreased, and

the value λ which corresponds to the decreased weight of u. The algorithm first

identifies the part of the tree which must be modified, namely the components

containing x and y at levels higher than λ (Line 1). Then, the tree representation

of the components containing x and y at higher level is built (Lines 2 to 14) by

either merging existing nodes (Line 10), creating new parenthood relation between

existing nodes (Lines 7 and 11), or creating new nodes (Line 2). To perform these

tasks, Algorithm 4 relies on four auxiliary functions.

• Given a vertex x of V and a level λ in E, findTransition(x, λ) returns a node n

which is the ancestor of the node representing {x} such that (i) level[n] ≤ λ,

and (ii) level[parent[n]] > λ. This operation is performed by traversing upward

the branch of T containing x, starting at the node n = {x} and ending when a

node n satisfying (i) and (ii) is found.

• Given two nodes c1 and c2 of T and a value λ in E, node(c1, c2, λ) creates a

node n at level λ which becomes the parent of c1 and of c2.

• Given two nodes c1 and c2 of T , attach(c1, c2) sets c1 to be the parent of c2.

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

20 E. Cayllahua et al.

• Given two nodes c1 and c2, merge(c1, c2) calls merge(c2, c1) if c2 has more

children than c1, otherwise it sets the parent of the children of c2 to be c1, and

it returns c1.

Algorithm 4: Incremental quasi-flat zone hierarchy update

Input : The component tree T = (N , parent) of the hierarchy H which is

the quasi-flat zone hierarchy of a map f , an array level that stores

the level of every node of T (i.e., every region of H), an edge

u = {x, y} of T , the value λ at which the weight of the edge u must

be decreased.

Output: The updated component tree T , which is the component tree of

the quasi-flat zone hierarchy of the updated map f (i.e., the

map f ′ such that f ′(v) = f(v) for any v 6= u and f ′(u) = λ)

1 c1 := findTransition(x, λ) ; c2 := findTransition(y, λ) ;

2 n := node(c1, c2,nE (λ)) ;

3 c1 := parent[c1]; c2 := parent[c2];

4 do

5 if level[c2] < level[c1] then swap(c1, c2);

6 if level[c1] < level[c2] then

7 attach(c1, n) ;

8 n := c1; c1 := parent[c1] ;

9 else

10 n′ := merge(c1, c2) ;

11 attach(n′, n) ;

12 n := n′; c1 := parent[c1]; c2 := parent[c2];

13 end

14 while p1 6= p2 ;

Algorithm 4 modifies the tree structure in the following manner: first, given an

edge u = {x, y} of decreased weight λ, it starts from the singleton components {x}
and {y}. Then, findTransition identifies the nodes c1 and c2 associated to the

components Hλx and Hλy , respectively. A node n is created to represent the union

of theses components (Line 2). Then, the do-while loop (Lines 5 to 14) traverses

simultaneously the branches containing x and y from the nodes c1 and c2, identify-

ing the ancestors of these nodes, and updating the parenthood relationships along

these branches. At each iteration, the two nodes are merged if they have the same

level (Line 10) or, if one has a level less than the other, the one of highest level

becomes the parent of the one of lowest level (Line 7). This is repeated until a

common ancestor is found. Consequently, only the components containing x and

y are involved in the update algorithm and we do not need to recompute a whole

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

Efficient algorithms for hierarchical graph-based segmentation 21

hierarchy at every iteration.

It can be seen that Algorithm 4 involves only constant time operations per-

formed on the nodes corresponding to the branch containing x and y. Therefore,

following the discussion at the end of Section 3.4, in the worst case, Algorithm 4

runs in O(|V |) time complexity and in the case where the tree T is balanced it runs

in O(log2(|V |)) time complexity. Hence, in the worst case, using Algorithm 4, the

overall time-complexity of Line 3 in Method 1 in Method 1 is O(|V |2), whereas in

the more favorable case where the tree remains balanced, this complexity reduces

to O(|V |log2|V |).

4. Assessments

The experiments reported in this section aim at measuring and comparing the exe-

cution times of all the variations of the algorithms proposed in the previous sections

for the HGB method. The experimental set-up is first presented in Section 4.1 and

then the experimental results are given in Section 4.2.

4.1. Experimental set-up

As we have three variations for the minimization step (Line 4 in Method 1), namely

Algorithms 1, 2 and 3, and two variations for the quasi-flat zone hierarchy com-

putation (Lines 3 and 6 in Method 1), namely the non-incremental one (based on

Ref. 20) and the incremental one (based on Algorithm 4), the total number of all

the combinations is six. Hence, in total, we study the execution times of these six

variations.

All the algorithms were implemented in C and executed on a computer with a

3.2 GHz CPU, 8GB RAM on Ubuntu Linux 16.04.

In order to cope with realistic situations, we use the Berkeley Segmentation

Dataset (BSDS) proposed by Ref. 1 for our experiments. This dataset consists of

500 natural images of size 321×481 pixels and is very popular in image segmentation

experiments.

A first assessment consists of measuring the execution times of the six presented

variations when applied to one of the images from the BSDS dataset. The chosen

image is shown in Fig. 5 (a) and the result of any of the six variations is shown

in Fig. 5 (b) in the form of a saliency map. This image was chosen because of its

textured aspect which leads to hierarchies with a high number of regions and scales,

hence exploiting the ability of the algorithms to deal with a high number of regions

and of levels (5218 levels). This experiment is designed in order to assess the gain

achieved from switching from the least efficient variation of Method 1 to the most

efficient one.

A second assessment is designed in order to assess the scalability of the most

efficient variation of Method 1 when applied to a whole dataset of images repre-

senting a wider variety of situations that can be encountered in computer vision

tasks. This second experiment consists of measuring the execution times taken by

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

22 E. Cayllahua et al.

(a) Input image (b) Hierarchical segmentation

Fig. 5: Image used for the algorithm assessment and the resulting HGB hierarchy

represented as a saliency map.

the fastest variation of Method 1 on the full BSDS dataset. The fastest variation

to compute the result of Method 1 is determined from the first assessment and

consists of using Algorithm 3 and Algorithm 4.

Reported execution times result from repeating ten times the execution of a

same method on a same image and considering the average time taken by these ten

executions.

4.2. Experimental results

Table 1 shows the execution times taken by each of the six variations of Method 1

when applied to the image shown in Fig. 5 (a). In the table, the first column labeled

QFZ algorithm refers to the type of algorithm used to construct the QFZ hierar-

chy: it can be either the non-incremental one based on Ref. 20 or the incremental

one, namely Algorithm 4, based on Refs. 15, 40. The second column refers to the

algorithm which is used for performing the minimization described in Equation (5):

it can be either the naive algorithm (Algorithm 1), the minimization by range al-

gorithm (Algorithm 2) or the minimization by branch algorithm (Algorithm 3).

The third column presents the overall execution times of the six variations which

include the time for computing quasi-flat zone hierarchies (fourth column) and for

computing the result of the minimization described by Equation (5) (fifth column).

As we can observe in Table 1, the total execution time using the non-incremental

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

Efficient algorithms for hierarchical graph-based segmentation 23

Table 1: Execution times from the image of Fig. 5(a) (321×481 pixels). The resulting

hierarchy contains 5218 levels.

QFZ Minimization Execution times (seconds)

Algorithm Algorithm Total QFZ Minimization

Non-

Incremental

Algorithm 1 14666.08 13186.31 1479.56

Algorithm 2 13392.51 13375.29 17.02

Algorithm 3 13166.25 13165.54 0.49

Incremental

Algorithm 1 1487.96 0.13 1487.75

Algorithm 2 15.42 0.13 15.21

Algorithm 3 0.49 0.10 0.32

QFZ hierarchy construction and any minimization algorithm leads into very pro-

hibitive times of over four hours. However, most of this time is consumed on the

QFZ hierarchy construction (over three hours). For the minimization step, Algo-

rithm 1 is the least efficient taking around 24 minutes. Then, Algorithm 2 using

the range minimization leads to 17 seconds of execution. Finally, Algorithm 3 is

the fastest algorithm for the minimization step with less than one second. When

we use the incremental QFZ hierarchy construction, the time spent on updating

the hierarchical tree takes only 0.1 seconds. This, together with Algorithm 3 for

the minimization step, leads to a total execution time of 0.49 seconds, which is

our most efficient variation. From these results, we can conclude that it is only

possible to compute the HGB method in user time with the help of both the incre-

mental QFZ hierarchy construction and the minimization by branch (Algorithm 3).

Observe that, at each iteration of the main loop of Method 1, the QFZ construction

takes approximatively 0.086 seconds in average with the non-incremental (original)

version, whereas, with the incremental version, the handling of the QFZ hierarchy

takes, at every iteration, 0.00000084 seconds in average.

Figure 6 shows the distribution of the execution times of our most efficient

variation of Method 1 applied to all images in the BSDS dataset. The average

execution time over the dataset is 0.47 seconds with a standard deviation of 0.09

seconds. This confirms that that our most efficient variation of Method 1, namely

the implementation of Method 1 with Algorithm 3 and Algorithm 4, runs in user

time whatever the considered image from the BSDS dataset.

5. Conclusions

In this article, we investigated the HGB method proposed in Ref. 13 with the

aim of developing exact and time-efficient algorithms for its implementation on

images. We focused on the two main steps of the HGB method for improving effi-

ciency: (i) the minimization involved in Equation (5), and (ii) the computation of

the quasi-flat zones hierarchies. Concerning (i), we presented a general framework

which allows reducing the search space involved in the minimization problem as

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

24 E. Cayllahua et al.

Fig. 6: Box and Whisker plot for execution times on BSDS dataset. On the hori-

zontal axis the times are given in seconds.

shown by Theorem 5. We considered two applications of this framework leading

to two algorithms which both improve the efficiency, in terms theoretical of time

complexity and of practical running times, compared to a naive algorithm for solv-

ing the minimization problem. Furthermore, due to the proposed framework, the

proof of correctness for each of these two algorithms (namely Corollaries 7 and 9)

is provided. In order to compute efficiently the quasi-flat zone hierarchy (ii), we

considered a non-incremental and an incremental algorithm based on Ref. 20 and

on Ref. 15, respectively. Even if the worst-case complexities of these two algorithms

are comparable, the running times of the HGB method are significantly decreased

when the incremental algorithm is used instead of the non-incremental one. Over-

all, on images from the standard BSDS dataset, the least efficient strategy that we

proposed computes the result of the HGB method in more than four hours whereas

the most efficient one takes about half a second.

Furthermore, we would like to emphasize that the framework presented in this

article leads to a better understanding of the minimization equation which is at

the heart of the HGB method. In particular, it opens doors towards modifications

of this equation which could allow us to significantly improve the quality of the

resulting hierarchies. Among others, in future works, we may be able to propose

fast and exact algorithms to compute the results of HGB method using different

dissimilarity measures than the one of Felzenszwalb-Huttenlocher. In this direction,

we may for instance consider the criteria presented in Ref. 22 or in Ref. 24 which

are more complex than the one of Felzenszwalb and Huttenlocher. First results in

this direction are encouraging (see Refs. 12, 14). Moreover, in order to robustify the

results in practice, we may also consider replacing the minimum of the solutions

in stable intervals by the maximum, the median or a percentile of the solutions in

the stable intervals. These interesting questions are beyond the scope of the present

article and represent interesting research topic for our future works.

Acknowledgements

The research leading to these results has received funding from the French Agence

Nationale de la Recherche, grant agreement ANR-15-CE40-0006 (CoMeDiC), the

Brazilian Federal Agency of Support and Evaluation of Postgraduate Education

(program CAPES/PVE: grant 064965/2014-01), the Peruvian agency Consejo Na-

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

Efficient algorithms for hierarchical graph-based segmentation 25

cional de Ciencia, Tecnoloǵıa e Innovación Tecnológica CONCYTEC (contract N

101-2016-. FONDECYT-DE). The first author would like to thank Brazilian agen-

cies CNPq and CAPES and Peruvian agency CONCYTEC for the financial support

during his thesis.

References

1. P. Arbelaez, M. Maire, C. Fowlkes and J. Malik, Contour detection and hierarchical
image segmentation, TPAMI (2011) 898–916.

2. S. Beucher, Watershed, hierarchical segmentation and waterfall algorithm, in ISMM
(1994) pp. 69–76.

3. E. Carlinet and T. Graud, A comparative review of component tree computation
algorithms, IEEE Transactions on Image Processing 23(9) (2014) 3885–3895.

4. E. J. Y. Cayllahua Cahuina, J. Cousty, Y. Kenmochi, A. De Albuquerque Araújo
and G. Cámara-Chávez, Algorithms for hierarchical segmentation based on the
Felzenszwalb-Huttenlocher dissimilarity, in International Conference on Pattern
Recognition and Artificial Intelligence (2018)

5. J. Cousty and L. Najman, Incremental algorithm for hierarchical minimum spanning
forests and saliency of watershed cuts, in International Symposium on Mathematical
Morphology and Its Applications to Signal and Image Processing (2011) pp. 272–283.

6. J. Cousty, L. Najman, Y. Kenmochi and S. Guimarães, Hierarchical segmentations
with graphs: Quasi-flat zones, minimum spanning trees, and saliency maps, JMIV
(2017) 1–22.

7. J. Cousty, L. Najman and B. Perret, Constructive links between some morphological
hierarchies on edge-weighted graphs, in ISMM (2013) pp. 135–146.

8. P. F. Felzenszwalb and D. P. Huttenlocher, Efficient graph-based image segmentation,
IJCV (2004) 167–181.

9. M. Götz, G. Cavallaro, T. Graud, M. Book and M. Riedel, Parallel computation of
component trees on distributed memory machines, IEEE Transactions on Parallel
and Distributed Systems (2018) 1–1.

10. L. Guigues, J. P. Cocquerez and H. Le Men, Scale-sets image analysis, IJCV (2006)
289–317.

11. S. Guimarães, Y. Kenmochi, J. Cousty, Z. Patrocinio Jr. and L. Najman, Hierarchizing
graph-based image segmentation algorithms relying on region dissimilarity - the case
of the Felzenszwalb-Huttenlocher method, Math. Morphol. Theory Appl. (2017) 1–22.

12. S. J. F. Guimarães and J. Patroćınio, Zenilton K.G., A graph-based hierarchical im-
age segmentation method based on a statistical merging predicate, in A. Petrosino
(ed.), Image Analysis and Processing - ICIAP 2013, Lecture Notes in Computer Sci-
enceVol. 8156 (Springer Berlin Heidelberg, 2013) pp. 11–20.

13. S. Guimarães, J. Cousty, Y. Kenmochi and L. Najman, A hierarchical image segmen-
tation algorithm based on an observation scale, in SSPR (2012) pp. 116–125.

14. S. J. F. Guimarães, Z. K. G. do Patroćınio Jr, Y. Kenmochi, J. Cousty and L. Najman,
Hierarchical image segmentation relying on a likelihood ratio test, in Image Analysis
and Processing–ICIAP 2015 (Springer International Publishing, 2015) pp. 25–35.

15. J. Havel, F. Merciol and S. Lefèvre, Efficient tree construction for multiscale image
representation and processing, JRTIP (2016) 1–18.

16. D. Hoiem, A. A. Efros and M. Hebert, Recovering occlusion boundaries from an image,
International Journal of Computer Vision 91(3) (2011) 328–346.

17. R. Marfil, L. Molina-Tanco, A. Bandera, J. Rodŕıguez and F. Sandoval, Pyramid
segmentation algorithms revisited, Pattern Recognition 39(8) (2006) 1430 – 1451.

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

26 E. Cayllahua et al.

18. F. Meyer, The dynamics of minima and contours, in ISMM (1996) pp. 329–336.
19. F. Meyer and P. Maragos, Morphological scale-space representation with levelings, in

Scale-Space Theories in Computer Vision (1999) pp. 187–198.
20. L. Najman, J. Cousty and B. Perret, Playing with Kruskal: algorithms for morpho-

logical trees in edge-weighted graphs, in ISMM (2013) pp. 135–146.
21. L. Najman and M. Schmitt, Geodesic saliency of watershed contours and hierarchical

segmentation, TPAMI (1996) 1163–1173.
22. R. Nock and F. Nielsen, Statistical region merging, IEEE Transactions on pattern

analysis and machine intelligence 26(11) (2004) 1452–1458.
23. T. Pavlidis, Structural Pattern Recognition (Springer, 1977).
24. B. Peng, L. Zhang and D. Zhang, Automatic image segmentation by dynamic region

merging, IEEE Transactions on Image Processing 20(12) (2011) 3592–3605.
25. B. Perret, J. Cousty, S. J. Guimares and D. S. Maia, Evaluation of hierarchical wa-

tersheds, IEEE Transactions on Image Processing 27(4) (2018) 1676–1688.
26. B. Perret, J. Cousty, O. Tankyevych, H. Talbot and N. Passat, Directed connected

operators: asymmetric hierarchies for image filtering and segmentation, TPAMI (2015)
1162–1176.

27. B. Perret, J. Cousty, J. C. R. Ura and S. J. F. Guimarães, Evaluation of morphological
hierarchies for supervised segmentation, in J. A. Benediktsson, J. Chanussot, L. Na-
jman and H. Talbot (eds.), Mathematical Morphology and Its Applications to Signal
and Image Processing (Springer International Publishing, Cham, 2015) pp. 39–50.

28. M. Pham, S. Lefèvre, E. Aptoula and L. Bruzzone, Recent Developments from At-
tribute Profiles for Remote Sensing Image Classification, in International Conference
on Pattern Recognition and Artificial Intelligence (2018)

29. J. Pont-Tuset, P. Arbeláez, J. T. Barron, F. Marques and J. Malik, Multiscale com-
binatorial grouping for image segmentation and object proposal generation, IEEE
Transactions on Pattern Analysis and Machine Intelligence 39(1) (2017) 128–140.

30. J. Pont-Tuset and F. Marqués, Supervised assessment of segmentation hierarchies, in
European Conference on Computer Vision (ECCV) (2012)

31. J. Pont-Tuset and F. Marques, Upper-bound assessment of the spatial accuracy of hi-
erarchical region-based image representations, in 2012 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (2012) pp. 865–868.

32. J. Pont-Tuset and F. Marques, Supervised evaluation of image segmentation and
object proposal techniques, IEEE Transactions on Pattern Analysis and Machine
Intelligence 38(7) (2016) 1465–1478.

33. J. F. Randrianasoa, C. Kurtz, P. Gancarski, E. Desjardin and N. Passat, Intrinsic
quality analysis of binary partition trees, in International Conference on Pattern
Recognition and Artificial Intelligence (ICPRAI) (2018)

34. Z. Ren and G. Shakhnarovich, Image segmentation by cascaded region agglomeration,
in IEEE Conference on Computer Vision and Pattern Recognition (June 2013) pp.
2011–2018.

35. P. Salembier and S. Foucher, Optimum graph cuts for pruning binary partition trees
of polarimetric sar images, IEEE Transactions on Geoscience and Remote Sensing
(2016) 5493–5502.

36. P. Salembier and L. Garrido, Binary partition tree as an efficient representation for
image processing, segmentation, and information retrieval, TIP (2000) 561–576.

37. P. Salembier, A. Oliveras and L. Garrido, Antiextensive connected operators for image
and sequence processing, TIP (1998) 555 – 570.

38. P. Soille, Constrained connectivity for hierarchical image decomposition and simplifi-
cation, TPAMI (July 2008) 1132–1145.

November 20, 2018 15:43 WSPC/INSTRUCTION FILE ws-ijprai

Efficient algorithms for hierarchical graph-based segmentation 27

39. J.-H. Syu, S.-J. Wang and L. Wang, Hierarchical image segmentation based on itera-
tive contraction and merging, TIP (2017) 2246 – 2260.

40. M. H. Wilkinson, H. Gao, W. H. Hesselink, J.-E. Jonker and A. Meijster, Concurrent
computation of attribute filters on shared memory parallel machines, TPAMI (2008)
1800–1813.

41. Y. Xu, E. Carlinet, T. Géraud and L. Najman, Hierarchical segmentation using tree-
based shape spaces, IEEE transactions on pattern analysis and machine intelligence
39(3).

42. Q. Yan, L. Xu, J. Shi and J. Jia, Hierarchical saliency detection, in 2013 IEEE Con-
ference on Computer Vision and Pattern Recognition (2013) pp. 1155–1162.

43. Q. Zhao, Segmenting natural images with the least effort as humans, in M. W. J.
Xianghua Xie and G. K. L. Tam (eds.), Proceedings of the British Machine Vision
Conference (BMVC) (BMVA Press, September 2015) pp. 110.1–110.12.

	Introduction
	Hierarchical graph-based image segmentation
	Basic notions
	Hierarchies
	Graph and connected-component partition
	Quasi-flat zone hierarchies

	Hierarchical graph-based segmentation method
	Observation scale dissimilarity
	HGB Method

	Algorithms for HGB method
	Naive minimization algorithm
	Stable intervals and stable partitions
	Minimization by range
	Minimization by branch
	Quasi-flat zone hierarchy algorithms

	Assessments
	Experimental set-up
	Experimental results

	Conclusions

