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Abstract. The Optimized Schwarz Waveform Relaxation algorithm, a domain decomposi-
tion method based on Robin transmission condition, is becoming a popular computational
method for solving evolution partial differential equations in parallel. Along with well-
posedness, it offers a good balance between convergence rate, computational complexity
and simplicity of the implementation. The fundamental question is the selection of the
Robin parameter to optimize the convergence of the algorithm. In this paper, we propose
an approach to explicitly estimate the Robin parameter which is based on the approxima-
tion of the transmission operators at the subdomain interfaces, for the linear/nonlinear
Schrödinger equation. Some illustrating numerical experiments are proposed for the one-
and two-dimensional problems.

Key words: Optimized Schwarz Waveform Relaxation; domain decomposition method; Schrödinger
equation; dynamics; stationary states; Robin boundary condition; pseudodifferential operators; fast
convergence.

1 Introduction

Domain decomposition method (DDM) is a general strategy for solving high-dimensional
PDEs. Among DDMs, the Schwarz Waveform Relaxation (SWR) method is a popular algo-
rithm for the numerical computation of evolution equations [13–19], in particular wave-like
equations. SWR methods are characterized by the choice of the Transmission Conditions (TC)
at the subdomain interfaces: Classical SWR is based on Dirichlet TC, Robin SWR uses Robin
TC, Optimal SWR is related to transparent TC, and quasi-optimal SWR is based on accurate
absorbing TC. Optimized SWR usually refers to Robin SWR, where the Robin parameters are
optimized to ensure the fastest convergence possible of the algorithm. The latter then offers
a good balance between fast convergence rate and efficient IBVP solver. In this paper, we
are specifically interested in Optimized SWR methods. We now briefly describe the Schwarz
Waveform Relaxation algorithms and set the problem of the selection of an optimized choice
of the Robin parameter in the transmission conditions. Consider a d-dimensional evolution
partial differential equation Pφ = f in the spatial domain Ω⊆Rd, and time domain (t1,t2),
where t2 > t1>0. The initial data is denoted by φ0. We first split Ω into two open subdomains
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Ω±ε with smooth boundary, with or without overlap (Ω
+
ε ∩Ω

−
ε =∅ or Ω+

ε ∩Ω−ε 6=∅), with ε>0.
The SWR algorithm consists in iteratively solving IBVPs in Ω±ε ×(t1,t2), using transmission
conditions at the subdomain interfaces Γ±ε := ∂Ω±ε ∩Ω∓ε , where the imposed conditions are
established using the preceding Schwarz iteration data in the adjacent subdomain. The Robin-
Schwarz Waveform Relaxation algorithm can be seen as an approximate version of Optimal
SWR algorithm [7], where the transparent transmission operator is approximated by a Robin
transmission operator as follows, see also [1,21]: for k>1, and denoting φ± the solution in Ω±ε
we define 

Pφ±,(k) = f , in Ω±ε ×(t1,t2),
φ±,(k)(·,0) = φ±0 , in Ω±ε ,
T±φ±,(k) = T±φ∓,(k−1), on Γ±ε ×(t1,t2),

(1.1)

with a given initial guess φ±,(0), and T ± =∇n±±iλ±Γε
with λ±Γ±ε

∈R∗ or iR∗, and outward
normal vector n± to Γ±ε .

Our strategy to select the Robin parameter is based on existing results on the convergence
rate of SWR methods. As it is well-known [6, 7, 14], for quantum wave equations the fastest
convergence rate of SWR methods is obtained with transparent transmission conditions lead-
ing to the so-called Optimal SWR method. The latter is however usually very inefficient due
to their computational complexity [7]. In order to select the Robin parameter, we then first i)
approximate the symbol of the transparent transmission operator in the asymptotic regime, ii)
reconstruct the corresponding operator at the interface.
Although, the general idea is in principle applicable to a large class of PDE, we will focus in
this paper on the Schrödinger equation i) in real-time and ii) imaginary-time within the Nor-
malized Gradient Flow method (NGF) for computing the Schrödinger Hamiltonian point spec-
trum [6,7,10]. In the first work on OSWR for the one-dimensional Schrödinger equation [14,20],
the authors assume that the transmission conditions are of Robin type, and then optimize the
constant to get the fastest convergence from a convergence rate established for a fixed-point
contraction factor. In our work, the approach is different : we actually first construct the trans-
parent operator at the subdomain interfaces, then locally approximate this operator. Let us
also cite, some recent works by Besse and Xing [9, 11, 12], where the transparent operator is
approximated by using Padé approximants or Taylor’s expansions.

The paper is organized as follows. In Section 2, we present the detailed approach for
selecting the Robin parameter in one dimension for the Schrödinger equation, in real- and
imaginary-time. Some numerical experiments are then proposed to illustrate the different
ideas exposed in this section. We extend the method along with numerical experiments in
higher dimension in Section 3. We finally conclude in Section 4.

2 Optimized parameter in Robin-Schwarz Waveform Relaxation al-
gorithm: one-dimensional case

2.1 Selection of the Robin parameter

In this paper, we study the question on how to optimize the Robin parameter to fasten the
convergence rate and how to choose the interface locations in Schwarz waveform relaxation
domain decomposition methods. It was established in [7] that the convergence rate for the
SWR method is in particular depending on the location of the subdomain interfaces with re-
spect to the external potential; the interfaces should be located close to local maxima (resp.
minima) of positive (resp. negative) potentials. The location of the interfaces is then governed
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by a balance between workload on each subdomain, and potential local maxima, as the con-
vergence rate is basically determined by the least local contraction factor [7]. The approach
we propose is then slightly different from the one proposed in [20], where the optimization
of the parameter is obtained a posteriori, assuming the transmission conditions of Robin type.
The most common SWR method used in the literature is the optimized SWR method, where
the transmission condition is provided by a Robin operator T =∂x±iλ (in 1-d), where λ is an
optimized Robin parameter. This will provide a well-balanced choice between relatively fast
convergence, computational complexity and well-conditioned linear systems. The approach
that we propose is as follows. It is proven that the best convergence rate is obtained with
transparent transmission conditions, that is using the operator ∂x+iΛ±(t,x), where Λ± is a
transparent pseudodifferential operator involved in the Nirenberg factorization of the main
operator P at the subdomain interfaces, which is a second-order operator in space and first-
order in time, and such that

P(t,x,∂t,∂x)=(∂x+iΛ−)(∂x+iΛ+)+R, (2.1)

where R∈OPS−∞. In general, ∂x+iΛ± is a non-local (Dirichlet-to-Neumann) operator, mak-
ing the so-called Optimal SWR methods inefficient from a computational point of view. A
natural approach then consists in approximating the operator symbol λ±(τ,x)=σ(Λ±(∂t,x))
by a constant, setting τ as the co-variable to t. The approach that we propose here is based
on an a priori optimization of the parameter λ. We can formally construct λ± as a symbolic
asymptotic expansion [3] following

λ±∼
+∞

∑
j=0

λ±1/2−j/2, ( or λ±∼
+∞

∑
j=0

λ±1−j for order-2 in time P). (2.2)

The truncation at order p of the series defining λ± provides the following estimates for large
values of the frequency |τ|

λ+(±ε/2,τ)−λ+,p(±ε/2,τ)=
+∞

∑
j=p+1

λ+
1/2−j/2(±ε/2,τ)=O

( 1
(λ+

1/2(±ε/2,τ))p ). (2.3)

For the Schrödinger equation with P=i∂t+∂xx−V(x), let us recall that [7]

λ±1/2(τ,x)=∓
√
−τ−V(x). (2.4)

The next symbols are given by

λ±0 (τ,x)=0, λ±−1/2(τ,x)=0 and λ±−1(τ,x)=±
i

4
∂xV(x)
−τ−V(x)

. (2.5)

This leads to the following proposition.

Proposition 2.1. For ξi belonging to an interface Γ±ε , we approximate Λ±(ξi,∂t) by a constant
λ±ξi

as follows: at the discrete level in time, we choose |τnum.| :=1/∆t (∆t is the time step), for
any p∈N, and we fix

λ±ξi
=λ±(ξi,τnum.)=±

p

∑
j=0

λ+
1/2−j/2(ξi,τnum.).

In practice, we can take p61, in real-time, we then select:

λ±ξi
=λ±(ξi,τnum.)=∓

√
−τnum.+V(ξi). (2.6)
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In imaginary-time, we replace τ by −iτ, and consider

λ±ξi
=λ±(ξi,τnum.)=∓eiπ/4

√
−τnum.+iV(ξi). (2.7)

This choice of λ±ξi
gives a reasonable approximation of the exact transparent operator at the

interfaces in the asymptotic regime, thus providing a fast convergence of the OSWR algorithm.
In the nonlinear case P= i∂t+∂xx−V(x)−κ|φ|2, we have conjectured that a similar estimate
holds in the asymptotic regime as the solution is close to an (time-independent) eigenstate. We
then propose:

Proposition 2.2. At tn fixed and for φ(·,tn) close enough to an eigenstate, the Robin parameter
in OSWR algorithm for P=i∂t+∂xx−V(x)−κ|φ|2 in imaginary-time is fixed by

λ±ξi
=λ±(ξi,τnum.,tn)=∓eiπ/4

√
−τnum.+i(V(ξi)+κ|φ(ξi,tn)|2).

In fact, it is usually not necessary to include the nonlinearity in the choice of the Robin
parameter, whenever ε> 0. Indeed, it was conjectured [7] that the convergence rate of SWR
method in the nonlinear case is of the form [7]:

Lε(τ)≈
∣∣∣(τ−iV(−ε/2)−iκ|φs(−ε/2)|2

τ−iV(+ε/2)−iκ|φs(ε/2)|2

)1/2 ∣∣∣/|τ|p
×
∣∣∣exp

(
−2e−iπ/4

∫ ε/2

−ε/2

√
−τ+iV(y)+iκ|φs(y)|2dy

)∣∣∣,
or for large |τ|, as

Lε(τ)≈exp
(
−ε
√

2|τ|−
1√
2|τ|

∫ ε/2

−ε/2
V(y)+κ|φs(y)|2dy

)
/|τ|p,

with p∈N∗ and where φs is an eigenstate. In other words for ε> 0, the convergence rate is
mainly ensured by the exponential term (still present in the CSWR method) if κ|φs(±ε/2)|2
is large. If the latter is small then the effect of the nonlinearity in the Robin parameter, will
anyway not have a strong impact on the convergence for large |τ|. If ε=0, i.e. without overlap,
the contribution of the nonlinearity in the Robin parameter could however be non-negligible.

Let us remark that an ”optimized” value of the Robin parameter is intend to provide a
largest slope in the asymptotic regime, compared to other Robin parameters, but does not
necessarily ensure an overall faster convergence, as the above results are only valid in the
asymptotic regime, meaning here for |τ| large.

2.2 Arbitrary number of subdomains

We now discuss the case of a decomposition with an arbitrary number of subdomains m>2.
We propose the following decomposition (with possible overlap): Ω=∪m

i=1Ωi, such that Ωi =
(ξ−i ,ξ+i ), for 26 i6m−1, Ω1=(−a,ξ+1 ) and Ωm =(ξ−m ,+a) (see Fig. 1).

Moreover, the overlapping size is: ξ+i −ξ−i+1= ε>0, and |Ωi|= L+ε, where L is assumed to

be much larger than ε. We denote by φ
(k)
i , the solution in Ωi at Schwarz iteration k. We also

have ξ±i+1−ξ±i =L. We consider the following systems
P(x,∂t,∂x)φ

(k)
i =0, x∈Ωi,

φ
(k)
i (0,·)= ϕ0, x∈Ωi,(
∂x+iλ+

ξ+i

)
φ
(k)
i (t,ξ+i )=

(
∂x+iλ+

ξ+i

)
φ
(k−1)
i+1 (t,ξ+i ),(

∂x+iλ−
ξ−i

)
φ
(k)
i (t,ξ−i )=

(
∂x+iλ−

ξ−i

)
φ
(k−1)
i−1 (t,ξ−i ).

(2.8)
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Figure 1: Domain decomposition with possible overlapping.

We have denoted by P(x,∂t,∂x) the Schrödinger operator in real- or imaginary-time, while λ+
ξi

is the Robin parameter at ξ+i and λ−ξi
at ξ−i+1, where ξ+i −ξ−i+1 = ε. We then select the Robin

coefficients according to (2.7) (resp. (2.6)) in imaginary- (resp. real-) time. We refer to [8] for
details about the convergence of SWR methods with an arbitrary number of subdomains. The
selection of the Robin parameters λ±

ξ±i
is based on the exact same strategy as in Proposition 2.1.

2.3 Numerical experiments

In the one-dimensional case and for a > 0, we introduce Ωa = (−a,+a), Ω+
a,ε = (−a,ε/2) and

Ω−a,ε =(−ε/2,+a), where ε is a (small compared to a) parameter equal to the size of the over-
lapping region. Null Dirichlet boundary conditions are imposed at ±a. In the following tests,
the domains overlap on o nodes. The spatial mesh size ∆x is assumed to be constant and then
ε=(o−1)∆x, which is the length of the overlapping zone. Simple time/space finite difference
approximations are proposed to illustrate the methodology presented in this paper. Let us note
that the above strategy is independent of the spatial discretization of the equation.

At a given level and in real-time, we consider the following Crank-Nicolson scheme [4].
Denoting by φ±,n,(k) the approximate solution in Ω± at time tn with n > 0 and at Schwarz
iteration k>0, the Robin-SWR algorithm reads

i
φ±,n+1,(k)−φ±,n,(k)

∆t
= −∂2

x
φ±,n+1,(k)+φ±,n,(k)

2
+V(x)

φ±,n+1,(k)+φ±,n,(k)

2

+κ|φ±,n+1,(k)+φ±,n,(k)|2
φ±,n+1,(k)+φ±,n,(k)

8
=0, in Ω±a,ε,

(
∂n±+iλ±±ε/2

)
φ

n+1,(k)
±,ε/2 =

(
∂n±+iλ±±ε/2

)
φ
∓,n+1,(k−1)
ε/2 , on

{
±ε/2

}
.

(2.9)

for the given parameters λ±±ε/2∈R∗ and where n denotes the time index. The SWR convergence
rate is defined as the slope of the logarithm of the residual history according to the Schwarz
iteration number, that is {(k,log(E (k))) : k∈N}, with (for 2 subdomains)

E (k) :=
2

∑
i=1

∥∥ ‖φ(k)

i
∣∣(ξ−i+1,ξ+i )

−φ
(k)

i+1
∣∣(ξ−i+1,ξ+i )

‖∞
∥∥

L2(0,T)6δSc, (2.10)

δSc being a small parameter.
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In imaginary-time, we replace ∆t by i∆t in (2.9), and we normalize the solution at each
time iteration, i.e.

φ±,n+1,(k)←
φ±,n+1,(k)

‖φn+1,(k)‖L2(Ωa)

,

where φn+1,(k) denotes the reconstructed solution in Ωa, at time iteration n+1 and Schwarz
iteration k, and with λ∈iR∗. The NGF convergence criterion is given by

‖φ±,(k)(·,tn+1)−φ±,(k)(·,tn)‖L∞(Ωa)6δ, (2.11)

for some δ>0 small enough. The SWR convergence rate is defined as the slope of the logarithm
of the residual history with respect to the Schwarz iteration number, i.e. {(k,log(E(k))) : k∈N},
where (for 2 subdomains)

E(k) :=
2

∑
i=1

∥∥ ‖φcvg,(k)

i
∣∣(ξ−i+1,ξ+i )

−φ
cvg,(k)

i+1
∣∣(ξ−i+1,ξ+i )

‖∞
∥∥

L2(0,T(kcvg))
6δSc, (2.12)

and φ
cvg,(k)
i (resp. T(kcvg)) denotes the NGF converged solution (resp. time) in Ωi at Schwarz

iteration k, δSc being a small parameter. More details can be found in [7].

Test 1. We first consider the Schrödinger equation in real-time. We introduce Ω+
a,ε =(−a,5/2+

ε/2) and Ω−a,ε =(5/2−ε/2,+a), with ε>0 and a=10. Homogeneous Dirichlet boundary con-
ditions are imposed at ±a. The final real-time is set to T = 0.5. In the equation, we choose
V(x)=−50exp(−x2). In addition, the initial data is given by a Gaussian profile

φ0(x)=exp
(
−

1
5
(b+2a

4
−x
)2
)

exp(2ix).

In this first test-case, the numerical data are as follows: N = 400, and the overlapping region
covers 2 nodes, that is ε=∆x. The time step is fixed to ∆t=2×10−2. Initially, we take φ(0) as
the null function. We report in Fig. 2, the amplitude of the initial data and of the converged
solution and the interface location (Left), as well as a comparison of the convergence rate as
a function of the Schwarz iteration for different values of the Robin parameter (Right). This
result illustrates that defining λ according to the approximate symbol allows for an optimized
convergence of the Robin-SWR algorithm in real-time.

Test 2. We next consider the Schrödinger equation in imaginary-time, the following potential
V(x)=10x2+25cos2(πx/2). The initial data is given by φ0(x)= xexp(−x2/2)π−1/4. The two
subdomains are Ω+

a,ε=(−a,ε/2) and Ω−a,ε=(−ε/2,+a), with a=5. We take N=128 correspond-
ing to ∆x = 5/64. The overlapping region still covers two nodes (o = 2): ε = (o−1)∆x. The
time step is equal to ∆t= 2×10−2. The convergence parameter in (2.11) for the NGF is fixed
to δ= 10−9. We show in Fig. 3, the converged solution, and a comparison between different
values of the Robin parameters including the “optimized” one showing the largest slope.

We next add a quadratic nonlinearity of strength κ=50. We select the following initial data
φ0(x)=exp(−x2/2)π−1/4 (resp. φ0(x)= xexp(−x2/2)π−1/4). The results are plotted in Fig. 4
(resp. Fig. 5) corresponding to the groundstate (resp. first excited state). Although the slope of
the residual history in the asymptotic regime is larger for the “optimized” value of the Robin
parameters, it does not provide the fastest convergence (in term of number of Schwarz itera-
tions).
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Figure 2: (Left) Amplitude of the initial data and of the converged solution with location of the interface. (Right)
Comparison of the SWR convergence rate as a function of the Schwarz iterations with different values of λ.

Test 3. We now analyze the convergence of Robin-SWR on multi-subdomains, in imaginary-
time. The Robin parameter is evaluated at the interfaces by using (2.7). We consider the
same decomposition as proposed in Subsection 2.2 on Ω = (−5,5), which is decomposed
into m = 8 subdomains, with Ω+

i = (ξ−i ,ξ+i ) of length L = 5/4. In the equation, we choose
V(x)=5x2+25cos2(πx/2), and the initial data is given by φ0(x)= xexp(−x2/2). The numer-
ical data are as follows: N = 512, and the overlapping regions cover 2 nodes, that is ε = ∆x.
The time step is fixed to ∆t = 10−1. Initially, we take φ(0) as the null function. They are 8
subdomains, then 7 pairs of Robin parameters to evaluate at each interface, and denoted by
(λ+

ξi
,λ−ξi

) at (ξ+i ,ξ−i+1). We compare the convergence rate with the optimal values computed in
(2.7) to randomly chosen values λ±ξi

∈ (0,20) at each interface ξ+i and ξ−i+1. We report in Fig. 6
the amplitude of the initial data and of the converged solution and the interface location (Left),
as well as a comparison of the convergence rate vs. the Schwarz iteration for 6 different sets of
values of the Robin parameters (Right). This result illustrates that defining λ according to the
approximate symbol allows for an optimized convergence of the Robin-SWR algorithm.

Test 4. In this test, we compare the rate of convergence for different values of the optimized
Robin parameter in the nonlinear case and in imaginary-time. More specifically, we are going
to compare the rate of convergence, when we select
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Figure 3: (Left) Modulus the initial data and of the converged eigenstate with location of the interface. (Right)
Comparison of the SWR convergence rate as a function of the Schwarz iterations with different values of λ.
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Figure 4: (Left) Amplitude of the initial data and of the converged eigenstate with location of the interface. (Right)
Comparison of the SWR convergence rate as a function of the Schwarz iterations with different values of λ.
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Figure 5: (Left) Amplitude of the initial data and of the converged first eigenstate with location of the interface.
(Right) Comparison of the SWR convergence rate as a function of the Schwarz iterations with different values of λ.
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Random choice 4

Random choice 5
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Figure 6: Comparison of the SWR convergence rate as a function of the Schwarz iterations with different values of
λ±i on 8 subdomains.

• λ±Opt.1=∓eiπ/4√−τnum.,

• λ±Opt.2=∓eiπ/4
√
−τnum.+iV(ξ)

)
,

• λ±Opt.3=∓eiπ/4
√
−τnum.+i

(
V(ξ)+κ|φ(ξ,tn)|2

)
|,

with ξ = 1.25 with |τnum.| = 1/∆t. We expect that the third choice λ±Opt.3 would give the
best convergence rate, as long as the linear potential and the converged eigenstate are non-
null at the interface. Indeed, this last choice corresponds to the best approximation of the
transparent operator symbol in the asymptotic regime (where the numerical solution is close
to a (time-independent) eigenstate). We consider a nonlinear equation with linear potential
V(x) = 5(x−1/4)2+20cos2(πx/2) and a nonlinearity of strength κ = 100. The two subdo-
mains are Ω+

a,ε =(−a,ε/2) and Ω−a,ε =(−ε/2,+a), with a= 5. We take N = 128 corresponding
to ∆x= 5/128. The overlapping region covers two nodes (o= 2): ε=(o−1)∆x. The time step
is equal to ∆t = 10−2. The convergence parameter in (2.11) for the NGF is fixed to δ = 10−9.
We select the following initial data φ0(x)=exp(−x2/2)π−1/4. We report in Fig. 7, the residual
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history for the 3 different values of the optimized Robin parameter. A zoom of the residual
history in the asymptotic zone shows in Fig. 8 (Left) that the effect of the nonlinearity in the
Robin parameter is negligible for the reasons explained in Section 2 and recalled below. The
corresponding groundstate is represented in Fig. 8 (Right). The results are consistent with
the analysis of convergence of SWR methods: the fact that the ground state in non-zero at
the interface, theoretically makes λ±Opt.3 more relevant than λ±Opt.2. However, at the interface
the nonlinear term is very small compared to the linear potential and the dominant frequency
term, which explains that there is a negligible difference between the results obtained with
λ±Opt.2 and λ±Opt.3.

10 20 30 40

10 -15

10 -10

10 -5

Opt.1

Opt.2

Opt.3

Figure 7: Comparison of the SWR convergence rate as a function of the Schwarz iterations with different values of
optimized λ.
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Figure 8: (Left) Amplitude of the initial data and of the converged groundstate with location of the interface. (Right)
Zoom in the asymptotic region with different values of optimized λ.

Test 5. In this last one-dimensional test, we compare the rate of convergence of the OSWR
method in imaginary-time with λ±Opt.=∓eiπ/4

√
−τnum.+iV(ξ), where the interface is respec-

tively located at ξ=0 and ξ=1. We consider a nonlinear equation with a quartic potential plus
an optical lattice : V(x)=10(x−1)2(x+1)2+5cos2(πx/2) and a nonlinearity of strength κ=200.
The two subdomains are Ω+

a,ε=(−a,ε/2) and Ω−a,ε=(−ε/2,+a), with a=2. We take N=128 cor-
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responding to ∆x=5/128. The overlapping region covers two nodes (o=2): ε=(o−1)∆x. The
time step is equal to ∆t=10−2. We select the following initial data φ0(x)=exp(−x2/2)π−1/4.
We report in Fig. 9 the residual history for the 2 different interface locations. As expected,
the convergence is faster at the interface ξ = 0 compared to ξ = 1 since V(0)> V(1). This
illustrates the importance of properly locating the subdomain interfaces as function of the
linear/nonlinear potential extrema.
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Interface at =0
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Interface at =0

Interface at =1

Figure 9: (Left) Linear potential and 2 interface locations. (Right) Comparison of the SWR convergence rate for 2
interface locations.

3 Optimized parameter in Robin-Schwarz Waveform Relaxation al-
gorithm: multi-dimensional case

In this section, we generalize in two-dimensions the ideas developed in Section 2. Basically,
the principle is still the approximation by a constant of the operator Λ± at the subdomain
interfaces, where the latter is obtained by a preliminary construction of transparent opera-
tors, thanks to a Nirenberg factorization of the operator under consideration. Unlike the one-
dimensional case, this naturally requires non-trivial analytical work, which is now detailed.
Additional informations can also be found in [6]. Extending the method to a general dimen-
sion d is more complicate but possible. It requires some advanced differential geometry of
surfaces into the analysis.
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3.1 Selection of the Robin parameter

For two subdomains and any Schwarz iteration k> 1, the equation in Ω±ε reads, for any t2 >
t1>0, 

Pφ±,(k) = 0, on Ω±ε ×(t1,t2),

T±φ±,(k) = T±φ∓,(k−1), on Γ±ε ×(t1,t2),

φ±,(k)(·,0) = φ0 on Ω±ε .

(3.1)

The notation φ±,(k) stands for the solution φ± in Ω±ε ×(t1,t2) at Schwarz iteration k>0. Initially
φ±,(0) are two given functions defined in Ω±ε . For the transmission boundary conditions, the
operator T±=∂n±+λI (λ∈R∗+ or iR∗) leads to the Robin SWR DDM, and T±=∂n±+iΛ±, which
is a nonlocal Dirichlet-to-Neumann (DtN) pseudodifferential operator, is used for the Optimal
SWR imposed at any point of the interface Γ±ε with normal vector n±. The general approach
requires the preliminary construction of the symbol of Λ± by using a well-established strategy
[6], in the form of an asymptotic expansion in inhomogeneous elementary symbols. In order to
concretely illustrate the idea, we consider an explicit situation: the two-dimensional Schrödinger
equation in imaginary-time. In real-time, we have{

i∂tφ+4φ−V(x,y)φ = 0, (x,y)∈R2,t>0,
φ(x,y,0) = φ0, (x,y)∈R2,

(3.2)

with φ0∈ L2(R2). We will also consider the cubic Schrödinger operator, where P :=i∂t+4−
V(x,y)−κ|φ|2.

We now introduce i) a fictitious domain Ω with smooth boundary Γ, and ii) a change of
variables x(r,s), y(r,s) parameterizing Γ, where r and s are respectively the radial coordinate
and the curvilinear abscissa. We then rewrite (3.2) in generalized coordinates (r,s), i.e. (real-
time)  i∂tφ+∂2

r φ+
1
r
∂rφ+

1
r2∂2

s φ−Vr(r,s)φ=0, (r,s)∈R+×R+,t>0,

φ(r,s,0)=φ0
(
x(r,s),y(r,s)

)
, (r,s)∈R+×R.

We denote by Pr the Schrödinger operator written in (r,s)-coordinates. We limit the analysis
to two domains with smooth boundary, and defined as follows: 0∈Ω+

ε and Ω−ε ∪Ω+
ε =R2.

We also assume that Γ+
ε := ∂Ω+

ε and Γ−ε := ∂Ω−ε are parallel at distance ε>0. Let us denote by
κ±ε (s) the local curvature at Γ±ε . As in [2], we introduce the scaling factor h±ε (r,s)= 1∓rκ±ε (s)
and we define by Γ±ε,r the parallel surface to Γ±ε at distance r∈ [0,ε/2]. The curvature of Γ+

ε,r is
given by κ+ε,r(r,s)=(h+ε (r,s))−1κ+ε (s). Similarly, κ−ε,r(r,s)=−(1+(ε−2r)κ+ε,r)

−1κ+ε,r(r,s) since the
distance between Γ+

ε,r and Γ−ε,r is equal to ε−2r. Finally, we denote by sε the length of Γ+
ε , that is

sε =
∫

Γ+
ε

ds, so that the curvilinear abscissa varies between 0 and sε. To simplify the notations,
we define κ0(s) as the curvature at Γ+

ε=0, and h0 as the scaling factor h0(r,s)=1+rκ0(s). We also
have

κ±ε (s)=±h0
(
±ε/2,s

)−1
κ0(s), κ±ε,r(s)=±h0

(
±(ε/2−r),s

)−1
κ0(s) (3.3)

and

h±ε (r,s)=h0
(
±(ε/2−r),s

)
=1±(ε/2−r)κ0(s). (3.4)

12



In (r,s)-local coordinates at the subdomain interface, the Schrödinger operator formally reads in
imaginary-time

Pr :=−∂t+∂2
r +κ∂r+h−1∂s

(
h−1∂s

)
−Vr(r,s). (3.5)

In the definition of the operator Pr, the notations κ(r,s) and h(r,s) stand for κ±ε,r(s) and h±ε (r,s),
respectively, and have to be specified depending on the considered subdomain and frame-
work. At the interfaces, the operator Pr can be formally factorized as follows (see [6]).

Proposition 3.1. The operators Pr satisfies the following Nirenberg-like factorization

Pr =
(
∂r+iΛ+

r (r,s,t,∂s,∂t)
)(

∂r+iΛ−r (r,s,t,∂s,∂t)
)
+R,

whereR∈OPS−∞ is a smoothing operator. The operators Λ±r are pseudodifferential operators
of order 1 (in time). Furthermore, their total symbols λ±r :=σ(Λ±r ) can be expanded as

λ±r ∼
+∞

∑
j=0

λ±r,1−j, (3.6)

where λ±r,1−j are symbols corresponding to operators of order 1− j. To simplify the notations,
we omit here and hereafter the index r in the latter symbols (i.e. λ±1−j stands for λ±r,1−j).

We refer to [5] for the proof of this proposition in real-time, and where a detailed construc-
tion of Λ±r is iteratively established. In imaginary-time, the proof is basically identical by re-
placing τ by iτ. Let us remark that the definition of the operator Λ±r is subdomain-dependent
since it involves κ and h. Practically, the construction of Λ±r is obtained through the compu-
tation of a finite number of elementary inhomogeneous symbols. For instance, one gets the
following proposition, deduced from [5].

Proposition 3.2. Let us fix the principal symbol to

λ+
1 =−

√
−iτ−h−2ξ2−Vr . (3.7)

Then, the next symbol is given by

λ+
0 =−

i

2
κ+

i

4
(∂rh−2)ξ2

−iτ−h−2ξ2+ih−1(∂sh−1)ξ−Vr

−
i

4
h−2(∂sh−2)ξ3√

−iτ−h−2ξ2+ih−1(∂sh−1)ξ−Vr
3 .

(3.8)

Any higher order elementary operator can also be constructed. In this formalism, one gets
in each subdomain

λ−r =−λ+
r −iκ.

From (3.3) on Γ±ε,r, we have at r=0

κ(0,s)=±
(
1±εκ0(s)/2

)−1
κ0(s), h(0,s)=1±εκ0(s)/2. (3.9)

Unlike, the one-dimensional case, we can no more directly approximate the transparent opera-
tor by a constant, because of the dependence of λ± in ξ. We first need to implement an inverse
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Fourier transform in ξ, denoted by F−1
ξ

(
λ±(τ,·)

)
, before evaluating it at the subdomain inter-

face(s). This will provide an approximation of Λ± if we fix τ in the asymptotic regime. The
computations are long and painful but is done only once, and we refer to [6] for the details.
The analytical expression of approximate values of these quantities is presented in [6] avoiding
numerical FFTs, which is necessary for realistic problems. However, in 2d, we can simply ob-
tain numerically an expression by using one-dimensional FFTs, then providing an optimized
value of the Robin parameter.

Proposition 3.3. At (r,s)=(ri,si), we propose the following Robin parameters

• in imaginary-time, we take

λ+
(ri ,si)

=−F−1
ξ

(√
−iτnum.−h−2ξ2−Vr

)
(ri,si),

• and, in real-time, we consider

λ+
(ri ,si)

= −F−1
ξ

(√
−τnum.−h−2ξ2−Vr

)
)(ri,si).

Moreover, in both cases, we have

λ−
(ri ,si)

= −λ+
(ri ,si)
−iκ(si).

In practice, it is possible to get simple approximations to λ±
(ri ,si)

for large values of |τ|,
involving the local curvature. In imaginary-time, up to O(τ−1), and assuming that ξ2/τ1/2 is
small enough, we obtain

λ+
ri ,si
≈−
√
−iτ−

i

2ri
+

Vr(ri,si)

2
√
−iτ
−

∂nVr(ri,si)

4τ
−

1
8r2

i
√
−iτ
−

1
8r3

i τ
. (3.10)

In the nonlinear case, a natural choice consists in replacing Vr by Vr+κ|φs(ri,si)|2 in (3.10),
where φs is an (approximate) eigenstate. However, as already explained above the contribution
of the nonlinear term is a priori useless, except if there is no overlap.

3.2 Numerical experiments

We consider the computation on two-domains with the Robin-SWR method of the ground
state by using the imaginary-time method for the following two-dimensional nonlinear cubic
Schrödinger equation

iφt =−
1
2

∆φ+V(x,y)φ+κ|φ|2φ ,

where ∆= ∂2
x+∂2

y. We take κ=50 and the potential is the harmonic oscillator potential plus a
potential of a stirrer corresponding to a far-blue detuned Gaussian laser beam [10] (see Fig. 10)

V(x,y)=25(x2+y2)+4e−((x−1)2+y2) . (3.11)

In the numerical experiment, we take the initial guess in each Schwarz iteration as

φ0(x,y)=
1√
π

e−(x2+y2)/2 . (3.12)
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Figure 10: Two-dimensional linear potential.

The parameters of the equation and the initial guess are those of [10]. The equation is rewritten
and discretized in polar coordinates (r,s) (3.3), and the global domain is the disc ΩR1=4 =
{(r,s)∈ (0,4)×[0,2π)}. A standard semi-implicit Euler finite-difference scheme [10] is used to
approximate the equation. The total number of mesh points in the r-direction is 50+50−2=96,
and 25 points are used in the s-direction. Hence, the mesh step size in the r-direction is ∆r=
4/(99+0.5) and in the s-direction ∆s=2π/25. The coefficient 0.5 in the denominator of ∆r is
introduced to circumvent the singularity issue at the origin, i.e. 1/r. The interior and exterior
domains Ω±R0,ε have then 50 mesh points in the r-direction and where R0 = (50−2)∆r = 1.99
denotes the radius of the interior circular subdomain. The overlapping region is a circular ring
with 2 mesh points in the r-direction. Both Ω+

R0,ε and Ω−R0,ε are then “cut” into 25 elementary
segments in the s-direction. In the numerical test, we take ∆t=2.5×10−3 and set ε∆r=2∆r≈0.08.
We compare on Fig. 11 the rate of convergence of the Robin-SWR method for different values
of λ: 1, 5, 7.5, 15, 50 and 100, and an “optimized” λ+

Opt., corresponding to

λ+
Opt.=−

√
−i/∆t−Vr(interface)−κ|φ(t,interface)|2 .

The residual errors (11) are plotted with respect to the Schwarz iteration k, then showing clearly
a faster convergence for λ±Opt. compared to other choices.

5 10 15 20 25 30
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=50

Figure 11: Comparison of SWR method convergence for different values of λ.
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4 Conclusion

Thanks to an analytical approximation of the symbol of the transmission operators, it is pos-
sible to optimize the Robin parameters within the OSWR algorithms. The space- and time-
dependent Robin parameter is locally selected thanks to an approximation of the transpar-
ent operator at the subdomain interfaces. The simple idea was tested and validated on the
Schrödinger equation in real- and imaginary-time for one- and two-dimensional problems.
The application of this idea to realistic problems in quantum chemistry is currently in progress.
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