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Abstract

A simple time-splitting pseudospectral method for the computation of the Dirac equation
with Perfectly Matched Layers (PML) is proposed. Within this approach, basic and widely
used FFT-based solvers can be adapted without much effort to compute Initial Boundary
Value Problems (IBVP) for the time-dependent Dirac equation with absorbing boundary
layers. Some numerical examples from laser-physics are proposed to illustrate the method.
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1. Introduction

This paper is concerned with the numerical computation of the time-dependent Dirac
equation, especially for physical problems involving delocalized wavefunctions. More specif-
ically, we are interested in the numerical solution to the Dirac equation on a truncated
domain with absorbing boundary layers, hence limiting the periodic conditions effects. In
this goal, we then propose a simple combination of a pseudospectral method with Per-
fectly Matched Layers (PMLs), allowing to consider delocalized wavefunctions, as for in-
stance observed when quantum relativistic particles are subject to strong fields. Thanks
to a relatively new and simple Fourier-based discretization of spatial differential operators,
it is possible to impose PML for solving the Dirac equation on a bounded domain. Al-
though, overall, the Fourier-based method still imposes periodic boundary conditions, the
outgoing/incoming waves are in fact mainly absorbed. We think that due to the simplicity
of the proposed method, most of existing Fourier-based codes could easily be modified to
include the proposed methodology. The Dirac equation is a relativistic wave equation which
has gain much attention these past 15 years due to the development of 2-d material, such as
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graphene [20, 21, 37], intense-laser-molecule interaction [18, 30, 40, 45], in particular for pair
production [25], or from heavy ion collisions modeling and simulation for quark-antiquark
production [29, 44, 50]. In the same time, there has been a tremendous progress in the
development of efficient and accurate computational methods for the solution to the Dirac
equation [4, 9, 10, 11, 14, 22, 23, 26, 27, 31, 39, 40, 46], modeling in particular molecules
subject to intense external laser fields. In this spirit, we have developed [25], a Schwinger-like
pair production procedure from the interaction of intense laser fields with heavy molecules
occuring at specific resonances [25, 24].

In this paper, we are more specificially interested in the interaction of relativistic interac-
tion of atoms, molecules or wavepackets with intense and short laser pulses. The key point is
that the laser field actually delocalizes the wavefunction, and the latter can actually interact
with the domain boundary. In order to avoid artificial reflection it is necessary to impose
absorbing boundary conditions [5], absorbing complex potentials or perfectly matched lay-
ers [43]. Theoretically, this approach allows to benefit from the spectral convergence and
simplicity of Fourier-based methods, more specifically pseudospectral, on bounded domains
reducing the periodic boundary condition effect thanks to artificial wave absorption at the
domain boundary. Perfectly Matched Layers are now widely used in many engineering and
physics simulations codes [1, 12, 13, 15, 16, 17, 19, 34, 35, 42, 48, 49, 51, 52] to model ex-
terior domains and to avoid any unphysical reflection at the boundary. PML for the Dirac
equation were developed in [43] and approximated with a real space method. The derivation
of high-order ABCs for the Dirac equation were proposed in [5]. We also refer to [6] for an
overview of PMLs and ABCs for quantum wave equations including the Dirac equation and
to [4, 7, 8, 9, 11, 14, 22, 26, 28, 32, 33, 38, 39, 41] for different approaches for solving the
Dirac equation in real or Fourier space.

The combination of pseudospectral methods and PMLs is possible thanks to the follow-
ing simple and original idea. For example in the x-direction, let us denote by ξx the dual
Fourier variable and by Fx (resp. F−1x ) the Fourier (resp. inverse Fourier) transform in
x. We consider a as a given x-dependent function. Then, for any function f , it is possi-
ble to formally rewrite a(x)∂xf(x) as F−1x

(
a(x)iξxF(f)(ξx)

)
(x) on an unbounded domain

(pseudodifferential operator representation [47]). Let us remark that the latter is a real
space function, although the derivative is approximated using the Fourier transform, and
the function (x, ξx) 7→ ia(x)ξx is nothing but the symbol of a(x)∂x. In practice the func-
tion a involves the stretching coordinates function modeling the PML on a bounded domain
allowing real space non-reflecting conditions at the domain boundary.

The time-dependent Dirac equation under consideration reads [36]

i∂tψ(t,x) = Hψ(t,x), (1)

where ψ(t,x) is the time and coordinate dependent four-spinor, and H is the Hamiltonian
operator. The latter is given by

H = α · [cp− eA(t,x)] + βmc2 + I4V (t,x), (2)

where the momentum operator is p = −i∇. More specifically, the Dirac equation that we
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consider reads [36]

i∂tψ(t,x) =

{
αx

[
−ic∂x − eAx(t,x)

]
+ αy

[
−ic∂y − eAy(t,x)

]
+αz

[
−ic∂z − eAz(t,x)

]
+ βmc2 + I4V (t,x)

}
ψ(t,x), (3)

where ψ(t,x) ∈ L2(R3) ⊗ C4 is the time and coordinate (x = (x, y, z)) dependent four-
spinor. In (3), A(t,x) represents the three space components of the electromagnetic vector
potential, V (t,x) = eA0(t,x) + Vnuc.(x) is the sum of the scalar and interaction potentials,
e is the electric charge (with e = −|e| for an electron), I4 is the 4 × 4 unit matrix and
α = (αν)ν=1,··· ,4, β are the Dirac matrices. In this work, the Dirac representation is used,
where

αν =

[
0 σν
σν 0

]
, β =

[
I2 0
0 −I2

]
. (4)

The σν are the usual 2× 2 Pauli matrices defined as

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
and σz =

[
1 0
0 −1

]
, (5)

while I2 is the 2× 2 unit matrix. Note that the light velocity c and fermion mass m are kept
explicit in Eq. (2), allowing to adapt the method easily to natural or atomic units (a.u.).

The paper is organized as follows. We recall the basics of PMLs for the Dirac equation in
Section 2. Section 3 is dedicated to the derivation of the pseudospectral approximation for
the Initial Boundary Value Problem (IBVP) time-dependent Dirac equation on a bounded
domain with PML. Numerical experiments are presented in Section 4. We finally conclude
in Section 5.

2. PML for the Dirac equation

The time-dependent Dirac equation is then considered on a bounded (truncated) physical
domain denoted by DPhy. We add a layer, that is called DPML, surrounding DPhy, and stretch
the coordinates in all the directions. The overall computational domain is next defined by:
D = DPhy ∪ DPML. We refer to [6] for the construction of PMLs for quantum wave equations
and more specifically to [43] for the derivation and analysis of PMLs for the Dirac equation.

The starting point is the stretching of the real coordinates in the complex plane. In [43],
the author uses the following variables

ν̃ = ν +
i

ω

∫ ν

L∗
ν

σ(s)ds,

where ω is the dual Fourier variable to t and the so-called absorbing function σ is such that
σ(ν) = 0 if s < L∗ν . Then, the partial derivative ∂ν , with ν = x, y, z, is shown to be formally
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transformed into

∂νψ(t, ·)→
∂t

∂t + σ̃ν(ν)
∂νψ(t, ·) =

1

2π

∫
R

ωeiωt

ω − iσ̃ν(ν)
∂νFtψ(ω, ·)dω, (6)

where Ft (resp. Fν) denotes the Fourier transform with respect to t (resp. ν) and

σ̃ν(ν) =

{
σ(|ν| − Lν), L∗ν 6 |ν| < Lν ,
0, |ν| < L∗ν .

Let us remark that the transformation (6) can also be formally rewritten as

∂νψ(t, ·)→
1

1 + σ̃ν(ν)∂−1t
∂νψ(t, ·).

In the following, we will rather consider the following change of variables [52] involving only
the space variable

ν̃ = ν + eiθ
∫ ν

L∗
ν

σ(s)ds,

where θ ∈ (0, π/2). We then define

Sν(ν) := 1 + eiθν σ̃(ν),

with ν = x, y, z. In the following, the partial derivatives are transformed into

∂ν →
1

Sν(ν)
∂ν =

1

1 + eiθν σ̃ν(ν)
∂ν , (7)

where σ̃ vanishes in DPhy and Sν is equal to 1. From now on, let us consider the transfor-
mation (7), and the associated new Hamiltonian

HPML = α · [cT · p− eA(t,x)] + βmc2 + I4V (t,x), (8)

where T = (S−1x (x), S−1y (y), S−1z (z))T . Several types of functions can be selected. An ex-
haustive study of the absorbing functions σ is proposed in [3] for Schrödinger equations

Type I: σ0(ν + δν)
2, Type II: σ0(ν + δν)

3, Type III: − σ0/ν,

Type IV: σ0/ν
2, Type V: − σ0/ν − σ0/δν , Type VI: σ0/ν

2 − σ0/δ2ν ,

for ν = x, y, z. The main difficulty from the pseudospectral point of view is the space-
dependence of the coefficients S−1ν which prevents the direct application of the Fourier trans-
form on the equation. A simple trick will however allow for combining the efficiency of the
pseudospectral method and the computation of the non-constant coefficient Dirac equation.
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3. PSeudospectral-PML (PS-PML) method

A splitting of the Dirac Hamiltonian is used below. Although operator splitting is not
fundamentally required in the proposed methodology, it allows to simplify the implementa-
tion of the method while keeping a good accuracy. Based on (2), we define the operators

A = −icS−1x (x)αx∂x, (9)

B = −icS−1y (y)αy∂y, (10)

C = −icS−1z (z)αz∂z, (11)

D = βmc2 + I4V (t,x)− eα ·A(t,x). (12)

From time tn to tn+1, we then successively solve [39] (the x-dependence in the wavefunction
argument for notational convenience)

i∂tψ
(1)(t) = Aψ(1)(t), ψ(1)(tn) = ψn, t ∈ [tn, tn1) (13)

i∂tψ
(2)(t) = Bψ(2)(t), ψ(2)(tn) = ψ(1)(tn1), t ∈ [tn, tn2) (14)

i∂tψ
(3)(t) = Cψ(3)(t), ψ(3)(tn) = ψ(2)(tn2), t ∈ [tn, tn3) (15)

i∂tψ
(4)(t) = Dψ(4)(t), ψ(4)(tn) = ψ(3)(tn3), t ∈ [tn, tn+1) (16)

and ψn+1 = ψ(4)(tn+1), (17)

where tni − tn = ∆t for i ∈ {1, · · · , 3}. In the next subsections, we detail the space-time
approximation of equations (13)-(16). Cylindrical coordinates could be used as well (see e.g.
[26]).

3.1. Pseudospectral approximation in space

We consider for convenience the 3-dimensional system in cartesian coordinates, for ν =
x, y, z in the domain D = [−ax, ax, ]× [−ay, ay]× [−az, az],

i∂tψ(t) = −icανS−1ν (ν)∂νψ(t), ψ(tn) = ψn, t ∈ [tn, tn+1)

and we use the same notation as in [2]. We first diagonalize αν = ΠνDνΠ
T
ν , where

Dν =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .
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The matrices Πν are defined as follows

Πx =
1
√

2


0 1 1 0
1 0 0 −1
1 0 0 1
0 1 −1 0

 ,

Πy =
1
√

2


0 −i −i 0
1 0 0 1
−i 0 0 i

0 1 −1 0

 ,

Πz =
1
√

2


1 0 0 −1
0 −1 −1 0
1 0 0 1
0 1 −1 0

 .

We set φ := ΠT
ν ψ, which then satisfies

i∂tφ(t) = −icDνS
−1
ν (ν)∂νφ(t), φ(tn) = ΠT

ν ψ
n, t ∈ [tn, tn+1).

We denote the set of grid-points by

DNx,Ny ,Nz =
{
xk1,k2,k3 = (xk1 , yk2 , zk3)

}
(k1,k2,k3)∈ONxNyNz

with

ONxNyNz =
{

(k1, k2, k3) ∈ N3/ k1 = 0, · · · , Nx − 1; k2 = 0, · · · , Ny − 1; k3 = 0, · · · , Nz − 1
}
.

Then, let us introduce the following mesh sizes

xk1+1 − xk1 = hx = 2ax/Nx,
yk2+1 − yk2 = hy = 2ay/Ny,
zk3+1 − zk3 = hz = 2az/Nz.

(18)

The corresponding discrete wavenumbers are defined by ξ := (ξp, ξq, ξr), where ξp = pπ/ax
with p ∈ {−Nx/2, · · · , Nx/2 − 1}, ξq = qπ/ay with q ∈ {−Ny/2, · · · , Ny/2 − 1} and ξr =
rπ/az with r ∈ {−Nz/2, · · · , Nz/2− 1}. In the sequel of the paper, we denote by φ(`), with
` ∈ {1, 2, 3, 4}, the `th component of the spectral approximation of φ = ΠT

ν ψ, with ν = x, y, z.

We also use the notation φ
(`)
k1

(t, y, z) = φ(`)(t, xk1 , y, z), φ
(`)
k2

(t, x, z) = φ(`)(t, x, yk2 , z) and

φ
(`)
k3

(t, x, y) = φ̃(`)(t, x, y, zk3). The partial Fourier coefficients are such that

φ̂(`)
p (t, y, z) =

Nx−1∑
k1=0

φ
(`)
k1

(t, y, z)e−iξp(xk1+ax),

φ̂(`)
q (t, x, z) =

Ny−1∑
k2=0

φ
(`)
k2

(t, x, z)e−iξq(yk2+ay),

φ̂(`)
r (t, x, y) =

Nz−1∑
k3=0

φ
(`)
k3

(t, x, y)e−iξr(zk3+az).
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We can then introduce the inverse partial Fourier pseudospectral approximations, in the x-,
y- and z-directions, respectively,

φ̃
(`)
k1

(t, y, z) =
1

Nx

Nx/2−1∑
p=−Nx/2

φ̂(`)
p (t, y, z)eiξp(xk1+ax),

φ̃
(`)
k2

(t, x, z) =
1

Ny

Ny/2−1∑
q=−Ny/2

φ̂(`)
q (t, x, z)eiξq(yk2+ay),

φ̃
(`)
k3

(t, x, y) =
1

Nz

Nz/2−1∑
r=−Nz/2

φ̂(`)
r (t, x, y)eiξr(zk3+az).

We finally define the approximate first-order partial derivatives by

∂xφ
(`)(tn,xk1,k2,k3) ≈

{
[[∂x]]φ

(`)
}
k1,k2,k3

:=
1

Nx

Nx/2−1∑
p=−Nx/2

iξp
(̂̃
φ
(`)

k2,k3

)
p
eiξp(xk1+ax),

∂yφ
(`)(tn,xk1,k2,k3) ≈

{
[[∂y]]φ

(`)
}
k1,k2,k3

:=
1

Ny

Ny/2−1∑
q=−Ny/2

iξq
(̂̃
φ
(`)

k1,k3

)
q
eiξq(xk2+ay),

∂zφ
(`)(tn,xk1,k2,k3) ≈

{
[[∂z]]φ

(`)
}
k1,k2,k3

:=
1

Nz

Nz/2−1∑
r=−Nz/2

iξr
(̂̃
φ
(`)

k1,k2

)
r
eiξr(xk3+az).

(19)

In the following, the index h will be used (e.g. in φnh = {φnk1,k2,k3}k1,k2,k3) to denote a spectral
approximation to a given wavefunction (e.g. φn). This discretization not only allows to select
the spatial step as large as wanted, but it also preserves the very high spatial accuracy, the
parallel computing structure and the scalability of the split method developed in [22].

3.2. Time-Splitting PSeudospectral method with PML (TSSP-PML)

As proposed before, we use a splitting of the TDDE into four time-dependent systems
(9), (10), (11) and (12). We denote by xh = (xh, yh, zh) the nodes of a real-space grid. At
iteration n, the approximate wave function is denoted by ψnh . The TSSP (Time-Splitting
pseudoSPectral) algorithm then reads

1. First step: integration of the generalized transport equation in Fourier space in the
x-direction. One sets φnh := ΠT

xψ
n
h , and the system

∂tφ+ cS−1x (x)Λx∂xφ = 0, φ(tn, ·) = ΠT
xψ(tn, ·),

is approximately solved by

φn1
h = φnh − c∆tS−1x (xh)Λx[[∂x]]φ

n
h,

where [[·]] is defined in (19). We then deduce ψn1
h = Πxφ

n1
h . This gives an approximation

of Eq. (13), where the corresponding operator is denoted by P(x)
h (∆t).
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2. Second step: integration of the generalized transport equation in Fourier space in
the y-direction

∂tφ+ cS−1y (y)Λy∂yφ = 0.

We set χn1
h := ΠT

y ψ
n1
h and we approximately solve (14) by using the following scheme

φn2
h = χn1

h − c∆tS
−1
y (yh)Λy[[∂y]]χ

n1
h .

We then obtain ψn2
h = Πyφ

n2
h .

3. Third step: setting χn2
h := ΠT

z ψ
n2
h , we apply the same procedure in the z-direction,

and compute ψn3
h . The corresponding operator is denoted by P(z)

h (∆t).

4. Fourth step: integration of the source from tn to tn+1

ψn+1
h = T exp

[
−i
∫ tn+1

tn

dτ
[
βmc2 − eα ·Ah(τ)

]]
× exp

[
−ie

∫ tn+1

tn

dτVh(τ)

]
ψn3
h , (20)

where Ah is the approximate electric potential. The corresponding operator is denoted
by Qnh(∆t).

This splitting scheme is fully explicit, and can be compactly expressed as a composition of
the four operators

ψn+1
h = P(x)

h (∆t)P(y)
h (∆t)P(z)

h (∆t)Qnh(∆t)ψnh .

In practice, a second-order splitting scheme should be implemented, i.e.

ψn+1
h = P(x)

h

(∆t

4

)
P(y)
h

(∆t

2

)
P(x)
h

(∆t

4

)
P(z)
h

(∆t

2

)
Qnh(∆t)

P(z)
h

(∆t

2

)
P(x)
h

(∆t

4

)
P(y)
h

(∆t

2

)
P(x)
h

(∆t

4

)
ψnh .

(21)

Thanks to the operator [[∂ν ]], it is possible to implement the real-space approximation of
the overall wave function on a bounded domain imposing in particular PMLs, resulting in
the TSSP-PML scheme.

4. Numerical simulation

We propose some numerical experiments illustrating the efficiency of the combined method
PML-TSSP method with a second-order operator splitting. We are mainly interested in the
evolution of wavepacket either subject to a static potential or of an external field. In our
simulations, we have used several libraries which are listed below.
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4.1. Technical details about the code and parallel computing aspects

The Fourier transforms are performed with the sequential and parallel version 3.3.4 of
fftw. Standard linear algebra libraries gsl (version 1.9) and blas were also used. Finally
openMPI 1.6.3 was used for message passing with non-blocking communication. The code was
implemented in C++ and the compiler is the version 4.7.0 of gcc. In the following, the first
three one-dimensional tests are realized by using matlab. The tests are performed by using
a C++-code with MPI-library. The method is implemented on the cluser mammouth-parallel
II from the RQCHP. The total processing power of this machine is 333 400 GFlops, and
possesses 39648 cores: 3216 processors AMD Opteron 12 cores at 2.1 GHz, and 88 processors
AMD Opteron 12 cores 2.2 GHz. The total memory is 57.6 TB and the computer-networking
communications is Infiniband QDR (4 GB/sec). Regarding the communication between
processes, by default mammouth II will select the closest processors in the same node, then
the processors from the nodes in the same topological ring, and finally through different
switch-levels. Notice that for a low number of processors, the communication between the
processes within the same node is done thanks to a shared memory. The detailed of the
Dirac equation solver without PML is presented in detailed in [4], Section 4. Let us recall
the main features of the code in 2-d. In the (x, z) coordinates, we proceed by alternating
the directions. We first decompose the domain by layers in the z-direction, then

• We successively perform the evolution (FFT) sequentially in the x-direction, and by
layer in the z-direction. Each processor manages one layer in z. A perfect scaling for
this step is expected as it does not require any transmission from one node to another.

• For all x, we perform the evolution in the z-direction using the parallel FFT (fftw).
The performance of this step is then fully dependent on the parallelization of the
one-dimensional FFT.

Notice that the presence of the PML does not deteriorate the efficiency of the overall method
compared to usual FFT-methods. In particular, the computational complexity is simple to
established, and is given by C after NT time iterations

C = O
(
NTfNxNz log(NxNz)

)
.

The scalability and performance of the TSSP method without PML is fully studied in [22],
where in particular it is shown a good speed-up of this method.

4.2. Numerical experiments

The second-order TSSP-PML method (21) is implemented, where the discrete operators
[[·]] given by (19) are used in the directions ν = x, z. We then choose Sν as follows, for
ν = x, z,

Sν(ν) =

{
1, |ν| < L∗ν ,

1 + eiθσ(|ν| − Lv), L∗ν 6 |ν| < Lν .
(22)
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Test 1 : wavepacket subject to an external laser field. In this first test, we consider
a wavepacket

ψ(x, y, z, 0) = N [1, 0, 0, 0]T × exp
(
− (x2 + y2 + z2)/∆2

)
exp(ikxx), (23)

subject to an external potential and propagating with a fixed wavenumber k = (5, 0), and
∆ = 128 in (23). The time step is given by ∆t = 4.56 × 10−4. The physical domain is
D = [−8, 8]2 and is discretized with Nx × Ny = 2562 grid points. We impose a linearly
polarized electric field such that Ax is identically null, and Az(t, x, z) is defined as follows

Az(t, x, z) = A0 cos(ωx) exp
(
− (Tf − t)2/2

)
,

with A0 = 100/137, ω = 100, a total of 20 cycles and Tf = 1.824. As an example, we report
in Fig. 1 the electric potential Az at time T = 0.456 and 1.824 and the initial data. In
Fig. 2, we compare the evolution of the density d(T, x, z) =

∑4
i=1 |ψi(T, x, z)|2 as a function

of time, with i) periodic boundary conditions, with PML of ii) type III and iii) type IV,
with σ0 = 10−2, θ = π/4 as well as iv) type V and VI with δν = Lν − L∗ν . The snapshots
correspond to times T = 0.456, 1.14, 1.368 and 1.824, for respectively the time iterations
1000, 2500, 3000 and 4000. The best absorption is obtained with the Type-VI absorbing
function, although the results are relatively close with all the absorbing functions. We report
in Fig. 3, the maximum of the density (in logscale) as a function of the time iterations for
6 different absorbing functions, showing that they all provide relatively good properties for
truncating the computational domain.

Test 2 : 3-nucleus system. In this test, a Gaussian wavepacket centered at (0, 0) Fig. 4
(Left), is injected in a 3-nucleus interaction potential Fig 4 (Middle)

V (x, z) = −
ZA√

(x− xA)2 + (z − zA)2 + 2
−

ZB√
(x− xB)2 + (z − zB)2 + 2

−
ZC√

(x− xC)2 + (z − zC)2 + 2

(24)

with ZA = ZB = ZC = 10a.u., (xA, zA) = (−1, 0), (xB, zB) = (1, 0) and (xC, zC) = (0,−1).
The overall computational domain is D = [−6, 6]2, with Nx × Ny = 1282 grid points and
∆t = 3× 10−3. We report on Fig. 4 (Right) the total density at time T = 3× 10−1 a.u., i.e.
d(T, x, z), for (x, z) ∈ D, where d(T, x, z) =

∑4
i=1 |ψi(T, x, z)|2, setting ψ = (ψ1, ψ2, ψ3, ψ4)

as the Dirac wave function. Without external excitation the wavepacket is then trapped by
the potential. We then plug an external laser field which drives the wavepacket: a linearly
polarized electric field is imposed such that Ax is identically null, and Az(t, x, z) is defined
as follows

Az(t, x, z) = A0 cos(ωx) exp
(
− (T − t)2/2

)
,

with A0 = 1000/137, ω = 1, and a total of 2 cycles. We report the z-component of the
external laser potential in Fig. 5 at final time. We also include a non-null wavenumber in
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Figure 1: Test 1 : initial density (top), Az(T, x, y) at times T = 0.456 (Bottom left) and 1.824 (Bottom
right).

the initial wavepacket, k = (10, 0), out of the ions influence. The wavepacket will eventually
be absorbed by the PML unlike the solution without PML.

At times t = 3 × 10−2, t = 6 × 10−2a.u., t = 3 × 10−1 and t = 3.6 × 10−1, we compare
3 solutions: 1) the solution of reference computed on [−18, 18] × [−18, 18], 2) the solution
without PML, and 3) the solution with Type V-PML and σ0 = 10−2, θ = π/4, and δ = 1.2.
At time t = 6× 10−2, the 3 solutions look identical, as the wavefunction has not reached the
boundary of the computational domain [−6, 6] × [−6, 6]. At t = T = 3 × 10−1, we however
clearly see that the wavefunction of reference has mainly leaved the region [−6, 6]× [−6, 6],
while the PML solution was almost totally absorbed and the solution without PML, was
maintained in the computational domain due to non-absobing boundary layers. This is also
illustrated on Fig. 7, where the `2-norm as function of time in the D is represented for the 3
solutions. We see that, unlike the solution without PML, the PML-solution makes decrease
the `2− norm, thanks to the absorbing layers. We also report in Fig. 7 (Left), we represent
the solution of reference at time T = 0.3a.u. in a bigger domain [−18, 18] × [−18, 18]. By
comparison, we see that on this example, the solution of reference has also a decreasing
`2 − norm in the zone D (

(
t, ‖dRef

|D (t, ·)‖2
)
), see Fig. 7 where the `2-norm is represented in

logscale as a function of time (Right). We also report the solution of reference in the domain
[−18.18]× [−18, 18] at time T = 0.36a.u.

Test 3 : evolution of wavepacket subject to a repulsive weakly nonlinear poten-

11



Figure 2: Test 1 : density at times T = 0.456, 1.14, 1.368 and 1.824 (first line) with periodic boundary
conditions (without PML). The second (respectively third) line reports the results for the density with TSSP-
PML, with a PML of Type-III (respectively Type-IV), setting σ0 = 10−2, θ = π/4. The fourth (respectively
fifth) line gives the same kind of results but for the Type-V (respectively Type-VI) PML, with σ0 = 10−2,
θ = π/4 and δν = Lν − L∗

ν .
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Figure 3: Test 1 : maximum of the density in logscale, as a function of the time iteration, for 6 different
types of PML.

Figure 4: Test 2 : (Left) Initial density. (Middle) 3-nucleus potential. (Right) Density at time T =
3× 10−1a.u. without external laser field.

Figure 5: Test 2 : z-component of the external laser potential: Az(T, x, z) for T = 3× 10−1a.u.
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Figure 6: Test 2 : From top to bottom: No PML, reference and Type V-PML solutions at time t =
3× 10−2a.u. t = 6× 10−2a.u., t = 3× 10−1a.u. and t = 3.6× 10−1a.u.,
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Figure 7: Test 2 : (Left) Solution of reference at time T = 6× 10−2a.u. in the domain [−18, 18]× [−18, 18].
(Right) `2-norm in logscale of the 3 solutions (No PML, Reference, Type V-PML) as a function of time in
D.
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tial. We consider the two-dimensional Dirac equation with a nonlinear potential

V (x, z, ψ) =
ZA√

(x− xA)2 + (z − zA)2 + 1
+

ZB√
(x− xB)2 + (z − zB)2 + 1

+ |ψ|2, (25)

with ZA = ZB = 2, (xA, zA) = (−1, 4) and (xB, zB) = (1, 4). Notice that the sign of the
potential makes it repulsive. The initial density with wave vector k = (2, 10) is represented
in Fig. 8. More specifically, the initial data is given by

ψ(x, y, z, 0) = N [1, 0, 0, 0]T × exp
(
− (x2 + y2 + z2)/∆2

)
exp(ikxx), (26)

where ∆ = 128 in (26) and N is a normalization coefficient, such that ‖ψ(·, 0)‖(L2(D))4 = 1.
The overall computational domain is D = [−8, 8]2, with Nx × Ny = 2562 grid points and
∆t = 4.56 × 10−4. We report on Fig. 9 the total density at time T = 0.912 a.u. in
logscale, i.e. log(d(T, x, z), for (x, z) ∈ D, where d(T, x, z) =

∑4
i=1 |ψi(T, x, z)|2, setting

ψ = (ψ1, ψ2, ψ3, ψ4) as the Dirac wave function. The nonlinearity is numerically treated
explicitly. The use of the logscale allows to fairly report the accuracy of the PML. In (22),
we take Lν = 8, L∗ν = 0.8Lν , θ = π/4 (similarly to the Schrödinger equation [3, 52]), and we
pick the Type-IV PML, i.e. σ : ν 7→ σ0/ν

2 (singular profile [3]). We represent the solution
with different values of σ0. These results show that the PML properly absorbs except for
σ0 = 5, with reflection magnitude as weak as 10−6 for σ0 = 10−2. Let us remark that other
PMLs could be considered as well [43], but we intend here to prove the feasibility of the
method for various PMLs. For completeness and by comparisons with results obtained in
Fig. 9, we also report in Fig. 10 the solution to the Dirac equation in D with zero Dirichlet
boundary condition by using the real-space quantum lattice Bolztmann method proposed
in [22] and illustrating the total wave reflection at the domain boundary when PMLs or
ABCs are not used. This simple example illustrates the fact without using PML and or even
low-order ABC a wavefunction is totally reflected. This is a standard issue when solving the
Dirac equation, in particular when studying laser-molecule interaction. We report in Fig.
11 (left), the maximum of the density as a function of time for σ0 = 10−3, 10−2, 10−1, 1, 5 in
logscale, with the PML of Type IV for θ = π/4. We clearly see that σ0 = 10−2 provides the
best absorption properties. We next compare in Fig. 12, for σ0 = 10−2, the reflection for
θ = π/16, θ = π/8, θ = π/4 and θ = π/2 showing the importance of properly selecting θ,
with best absorption at θ = π/16. We report in Fig. 11 (right), the maximum of the density
as a function of the time iteration for different values of θ = π/16, π/8, π/4, π/2 with Type
IV-PML. We again see an optimal performance with θ = π/16 but θ = π/8 or θ = π/4 also
provides some good results, meaning that the PML is relatively stable with θ. In the last
test, we compare in Fig. 13, the efficiency of the PML for four different absorbing functions
(Types I to IV), with respectively σ(ν) = σ0(ν + δν)

2, σ(ν) = σ0(ν + δν)
3, σ(ν) = −σ0/ν

and σ(ν) = σ0/ν
2. We see that the best results are obtained for the Type-IV PML, a similar

quality being also obtained for the Types V and VI PMLs (not reported here).
These tests clearly show the relevance of the combination of the TSSP method with

PMLs, as we simultaneously benefit from the efficiency and accuracy of FFTs and the high
absorption feature of PMLs to avoid reflections at the boundary.
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Figure 8: Test 3 : initial density in logscale (Left) and static potential (Right).

Figure 9: Test 3 : logarithm of the density at time T = 0.912 (from top-left to bottom-right) for the PML
with parameters σ0 = 1, σ0 = 10−1, σ0 = 10−2, σ0 = 10−3, σ0 = 5, and finally for a periodic boundary
condition (S = 1).
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Figure 10: Test 3 : logarithm of the density at time T = 0.912 with null Dirichlet boundary condition.
This test illustrates that artificial wave-reflecting occurs with real space methods (here a quantum lattice
Boltzmann method [22]) are implemented without PML or ABC.
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Figure 11: Test 3 : PML of type IV (Left) maximum of the density as a function of the time iteration with
5 different values of σ and for θ = π/4; (Right) maximum of the density as a function of the time iteration
for θ = π/16, π/8, π/4, π/2 and σ0 = 10−2.
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Figure 12: Test 3 : logarithm of the density at time T = 0.912 for σ0 = 10−2 and θ = π/16, θ = π/8,
θ = π/4 and θ = π/2.

Test 4 : convergence. In this last test, we propose a simple convergence benchmark. A
wavepacket with wavenumber k = (5, 0) is propagating in vacuum without external electric
field. We plot the initial density, and final solution with periodic solution on D = [−8, 8]2

in Fig. 14 (Left, Middle). We report the supremum of the solution for Nx = Ny = 32, 256,
320, 512, 640, 768 with the PML of Type-III, for σ0 = 10−2, θ = π/4, fixing the time step
to ∆t = 1.8× 10−3. We report the maximum of the density at final time T in logscale with
the different meshes {(

x, y, ln sup |d(T, x, z)|
)

: (x, z) ∈ [−8, 8]2
}
.

Moreover in Fig. 14 (Right), we observe an exponential convergence up to a certain precision.
Notice that what is reported is not the comparison with a solution of reference, but the
maximum of the solution over the physical domain, including the PML. In other words the
smaller the maximum, the better the absorption. The saturation error comes from the limit
of the PML accuracy and error in time (second-order splitting). This again shows the high
accuracy of the TSSP with PML.

5. Conclusion

In this paper, we have proposed a simple time-splitting pseudospectral method which
allows for the numerical computation of IBVP for the Dirac equation with non-reflecting
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Figure 13: Test 3 : logarithm of the density at time T = 0.912 for σ0 = 10−2, θ = π/4, δν = Lν − L∗
ν , and

absorption function σ of types I to IV.
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Figure 14: Test 3 : initial data (Left), periodic boundary conditions (Middle), convergence with the Type-III
PML (Right), for σ0 = 10−2, θ = π/4 and Nx = Ny = 32, 256, 320, 512, 640, 768.
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PML. Some numerical experiments have shown that the method preserves the accuracy of
the PML with static or time-dependent external potentials. Different absorbing functions
were considered and tested. The implementation strategy is developed for the TSSP ap-
proximation, but can be directly extended to other numerical schemes including implicit.
We think that Fourier-based codes solving the time-dependent Dirac equation can easily be
adapted to include the absorbing layers, hence drastically reducing the negative effect of
periodic conditions and simultaneously avoiding artificial wave reflections. We next plan to
analyze mathematically the stability and convergence of the method as well as the PML
accuracy for different types of absorbing functions.
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