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Introduction

Inverse scattering has undergone intense investigation over the last quarter century, in particular due to the growth and flourishing of qualitative methods which provide robust and computationally effective alternatives to more traditional approaches based on successive linearizations or PDE-constrained optimization, see [START_REF] Cakoni | A qualitative approach to inverse scattering theory[END_REF][START_REF] Cakoni | Inverse scattering theory and transmission eigenvalues[END_REF][START_REF] Kirsch | The factorization method for inverse problems[END_REF] for expository material and references. Qualitative identification methods usually consist in sampling a spatial region of interest with points z at which an imaging function φ is evaluated; this is in particular the case for (generalized) linear sampling methods and factorization methods. The latter are moreover backed by firm and comprehensive mathematical justifications.

An alternative basis for qualitative identification is provided by the concept of topological derivative (TD). The TD of an objective functional J quantifies the leading perturbation to J induced by the nucleation of a trial object of vanishingly small radius δ at a given location z in the background (i.e. defect-free) medium. On taking J as a misfit functional of the kind typically used for inversion by PDE-constrained optimization, the value of the TD of J at z, herein denoted T (z), provides a basis for a sampling approach (by choosing φ(z) := T (z)). The underlying heuristic idea is that T (z) is intuitively expected to take pronounced negative values at the correct location of a sought defect, consistently with the notion of minimizing J . This heuristic thus involves both the magnitude (expected to be largest) and the sign (expected to be negative) of T (z) for z near the defect support.

The idea of TD was initially introduced and formalized as a computational aid for topology optimization problems [START_REF] Eschenauer | Bubble method for topology and shape optimization of structures[END_REF][START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF], and has thereafter also proved effective for revealing hidden objects in a variety of inverse scattering situations, see e.g. [START_REF] Ammari | Stability and resolution analysis for a topological derivative based imaging functional[END_REF][START_REF] Bellis | Qualitative identification of cracks using 3d transient elastodynamic topological derivative: formulation and fe implementation[END_REF][START_REF] Bonnet | Inverse acoustic scattering using high-order topological derivatives of misfit functional[END_REF][START_REF] Bonnet | Sounding of finite solid bodies by way of topological derivative[END_REF][START_REF] Dominguez | Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection[END_REF][START_REF] Guzina | Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics[END_REF][START_REF] Guzina | From imaging to material identification: a generalized concept of topological sensitivity[END_REF][START_REF] Laurain | Topological sensitivity analysis in fluorescence optical tomography[END_REF][START_REF] Louër | Topological sensitivity for solving inverse multiple scattering problems in three-dimensional electromagnetism. part i: One step method[END_REF]. In particular, despite the asymptotic character of the mathematical concept of TD, numerous available computational results show its ability to qualitatively identify spatially-extended objects. The objective functional J underpinning T (z) in practice often expresses the misfit between data and its model prediction in a leastsquares sense, which has the advantage of making TD-based imaging workable for any available data. Moreover, the practical evaluation of z → T (z) only requires the incident field and an adjoint field [START_REF] Céa | The shape and topological optimization connection[END_REF], so is both straightforward and moderately expensive from a computational standpoint.

The definition and formulation of T (z) for given physical setting and objective functional is a mathematically rigorous operation. By contrast, its subsequent application towards imaging defects by using the previously-described heuristics is still supported mainly by computational evidence and lacks a comprehensive mathematical foundation. Theoretical investigations about TD-based imaging have begun only recently. The imaging of a single small scatterer in an acoustic medium is mathematically studied in [START_REF] Ammari | Stability and resolution analysis for a topological derivative based imaging functional[END_REF], where proofs of stability with respect to medium or measurement noises are also given; this framework has since then been extended to elastodynamics [START_REF] Ammari | Localization, stability, and resolution of topological derivative based imaging functionals in elasticity[END_REF] and electromagnetism [START_REF] Wahab | Stability and resolution analysis of topological derivative based localization of small electromagnetic inclusions[END_REF]. The high-frequency limiting behavior of a TD imaging functional is analyzed in [START_REF] Guzina | Why the high-frequency inverse scattering by topological sensitivity may work[END_REF]. The qualitative identification of spatially extended objects, which is the main focus of this work, was first considered in [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF] for a rather idealized setting involving L 2 misfit cost functionals incorporating far-field data and scatterers characterized by a inhomogeneous refraction index. It was shown in that context that the magnitude component of the heuristic interpretation is valid without limitations, whereas the guaranteed correctness of the sign component is subject to an inequality (involving the operating frequency and the obstacle size and contrast) that essentially requires the scatterer to be "moderate enough".

In this work, we continue the line of investigation initiated in [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF] by considering situations where (i) the medium properties are characterized by a tensor-valued coefficient appearing in the principal, second-order term of the governing differential operator (rather than a refraction index affecting the zeroth-order term) and (ii) data is collected at a finite distance (rather than in the far field). The (uniform) host medium and the scatterer may both be anisotropic. Our main aim is to establish conditions under which the usual heuristic for TD imaging is valid. Towards this aim, we formulate the forward scattering problem as a volume integral equation, and take advantage of a recently-proposed reformulation of such volume integral equation [START_REF] Bonnet | A modified volume integral equation for anisotropic elastic or conducting inhomogeneities. unconditional solvability by neumann series[END_REF] which allows to express T (z) separately in terms of the material contrast and a contrastindependent normalized integral operator; this in particular facilitates the handling of material anisotropy. Some of our main findings are similar in nature to those of [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF]; in particular the sign component of the TD heuristic is again found to be valid within a "moderate enough scatterer" condition, here expressed in terms of the norm of the normalized integral operator. We emphasize that this condition is less stringent than a requirement that the Born approximation be valid. Our other main contribution consists of an asymptotic study of the decay of |T (z)| when the sampling region spanned by z is large relative to the obstacle diameter while the measurements are taken far from the sampling region. The expected decay of z → |T (z)| is as a result observed for far-field data (leading-order asymptotics), as expected from e.g. [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF], but also on the next-order asymptotic contribution.

The article is organized as follows. In the next section we formulate the direct and inverse scattering problem for anisotropic media for near field data, and introduce the topological derivative as the first order coefficient in the asymptotic expansion of the cost function in terms of the size of the trial inhomogeneities. The excitation and measurement surfaces may not be the same and partial aperture data is allowed under some assumptions. Only the fields inside the bounded region circumscribed by the excitation or measurement surface (whatever bounds the larger region) matter in our analysis, hence the discussion presented here includes the case when the scattering problem is formulated in the whole space or in a bounded region, with obvious changes in the fundamental solution. Section 3 is dedicated to the derivation of explicit expressions for the topological derivative, where a new volume integral equation for anisotropic media recently obtained in [START_REF] Bonnet | A modified volume integral equation for anisotropic elastic or conducting inhomogeneities. unconditional solvability by neumann series[END_REF] plays an essential role in obtaining a symmetric factorization of TD. We consider two cases: isotropic scatterers in Section 4 and anisotropic scatterer in Section 5. The study of the former is more complete, namely we provide the justification of the sign heuristic of TD restricted to scatterers of moderate strength in terms of scatterer size, its material contrast and the operating frequency, as well as show the decaying property of TD for sampling points far from the unknown inhomogeneity for spherical near field measurements configuration far enough form the scatterer. The case of anisotropic scatterers is more complicated and partial results on the justification of TD sign heuristic are obtained in specialized cases such as for anisotropic scatterers embedded in isotropic background and scatterers of one-sign contrasts.

Formulation of the scattering problem and topological derivative

We start by setting up some notation conventions which will be used throughout the paper. In expressions such as A•x or B : C, symbols '•' and ' : ' denote single and double inner products, e.g. (A • x) i = A ij x j and B : C = B ij C ij , with Einstein's convention of summation over repeated indices implicitly used throughout and component indices always referring to an orthonormal frame. The (Euclidean) norm of a vector or tensor x is denoted by |x|, whereas • indicate norms in function spaces or operator norms. Hat symbols over vectors denote corresponding unit vectors, e.g. x := x/|x|.

Direct scattering problem

We consider an unbounded, homogeneous reference propagation medium whose constitutive properties can be described by the real-valued symmetric tensor A ∈ R 3×3 sym , so that (in the absence of any sources in the medium) a propagating wave described by the complex-valued function u satisfies

-div A•∇u -κ 2 u = 0 (1) 
(see [START_REF] Dassios | Time harmonic acoustic scattering in anisotropic media[END_REF] for details on scattering in anisotropic media). The medium hosts an unknown inhomogeneity with compact support B ⊂ R 3 whose material properties are characterized by A ∈ R 3×3 sym . Both A and A are positive definite. The perturbed medium can then be characterized by

A B ∈ L ∞ (R 3 ; R 3×3 sym ) such that A B := A in B, A B := A in R 3 \ B
Let Γ s and Γ m denote two closed surfaces, which respectively support probing excitations and measurements. We denote by R m and R s the bounded domains enclosed by Γ m and Γ s . We will consider the following possibilities for the source / measurement configuration:

(i) R m = R s , i.e. Γ m = Γ s ; (ii) R m R s , i.e. Γ m is inside Γ s ; (iii) R s R m , i.e. Γ s is inside Γ m .
In all cases, B R, the region of interest R being defined by R := R s ∩ R m , i.e. both Γ s and Γ m surround the unknown inhomogeneity. This work will make frequent use of single-layer potentials created by superpositions of sources on Γ s or Γ m . Let the single-layer potential operator S rα :

H -1/2 (Γ α ) → H 1 (R) (α = m, s) be defined by S rα ϕ(x) = Γα Φ κ (x -y)ϕ(y) dy x ∈ R, α = m, s, (2) 
where Φ κ (x -y) is the fundamental solution for the background medium, satisfying

-div A•∇Φ κ (x -y) -κ 2 Φ κ (x -y) = δ(x -y) x ∈ R 3 \ {y} (3) 
together with the outgoing radiation condition at infinity. For a generic wave u, the radiation condition involved in problems (1) and ( 2) is (see [START_REF] Dassios | Time harmonic acoustic scattering in anisotropic media[END_REF])

r•A -1 •r 1/2 r•A -1 •∇u(r) -iκu(r) = O(|r| -2 ) |r| → ∞, (4) 
and reduces to the usual Sommerfeld condition if the medium is isotropic. An explicit expression of Φ κ is given in [START_REF] Dassios | Time harmonic acoustic scattering in anisotropic media[END_REF] by equation [START_REF] Bonnet | Sounding of finite solid bodies by way of topological derivative[END_REF]. For any density ϕ, the field w

:= S rα ϕ solves (1) in R 3 \ Γ α .
Towards the identification of B, the medium is excited by source densities g ∈ H -1/2 (Γ s ), creating incident fields u that are given by single-layer potentials

u(x) = S rs g(x), x ∈ R 3 .
In the perturbed medium, this excitation gives rise to the total field u g B such that

-div A B •∇u g B -κ 2 u g B = g δ Γs
and radiation condition (here, since the incident field is radiating, the total field is radiating too). By linear superposition, we have

u g B (x) = Γs u B (x; s)g(s) ds x ∈ R 3
where u B (•; s) solves

-div A B •∇u B -κ 2 u B = δ(• -s) and radiation condition. (5) 
In the present framework (where sources and measurements are not assumed to be in the far field), point sources and their superposition as potentials replace plane waves and their superposition as Herglotz wave functions used in e.g. [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF].

Cost functional

We assume the knowledge on Γ m of a measurement of u obs = u obs (•; s) of the field u B (•; s) for each source location s ∈ Γ s and formulate the problem of identifying B in terms of the minimization of a cost functional. Letting D denote the support of a trial inhomogeneity, the least-squares cost functional

J (D) := 1 2 Γs Γm u D (m; s) -u obs (m; s) 2 dm ds, (6) 
is the most common basis for such optimization-based identification. For reasons that will appear later, we will consider the modified form

J E (D) := 1 2 Γs Γs Eu D (s ; s) -Eu obs (s ; s) 2 ds ds (7)
of the cost functional [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF], where E :

H 1/2 (Γ m ) → H 1/2 (Γ s
) is a bounded linear operator (to be specified later) which produces an "equivalent measurement" Eu obs and its model prediction Eu D that are defined on the source surface Γ s (so E acts on the first variable of the two-point functions u D , u obs ). Moreover, to facilitate the theoretical analysis that follows, we idealize the situation further by assuming the data to be noise-free, i.e. u obs (•; s) = u B (•; s). For computations of topological derivative inversion with noisy data in the far-field case for the isotropic media see e.g. [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF][START_REF] Guzina | Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics[END_REF].

Asymptotic of the cost functional

In this approach, the medium is "sampled" by means of trial inhomogeneities B δ (z) of support B δ (z) = z + δB and size δ > 0, centered at a given point z ∈ Ω and endowed with specified material constants A z . Without loss of generality, z can be chosen as the center of B δ , i.e. such that B

x dV x = 0.

We then set D = B δ = B δ (z) in the cost functional [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF]. Denoting by u δ := u B δ the total field arising in this situation and remembering the error-free assumption made for the measurement, we then define the cost function J(δ) = J(δ; z) in terms of J by

J(δ) = J E (B δ ) = 1 2 Γs Γs Eu δ (s ; s) -Eu B (s ; s) 2 ds ds (8) 
The topological derivative T (z) of J at z is then defined as the leading coefficient in the following expansion of J(δ) -J(0) in powers of δ:

J(δ) = J(0) + δ 3 T (z) + o(δ 3 ). ( 9 
)
In view of ( 8) and ( 9), the topological derivative T (z) can be evaluated by identification from [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF][START_REF] Guzina | Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics[END_REF]:

- Γs Γs Eu s δ (s ; s) Eu s B (s ; s) ds ds = δ 3 T (z) + o(δ 3 ), (10) 
where u s B := u B -u and u s δ := u δ -u are the scattered fields associated with u B and u δ , respectively.

Explicit expression of the topological derivative

We now have all the ingredients to develop from [START_REF] Cakoni | A qualitative approach to inverse scattering theory[END_REF] an expression of the topological derivative T (z) that is convenient for its analysis as an identification tool.

Representation of scattered fields

Recalling known results on the solution's asymptotics (which incidentally explain the expected O(δ 3 ) leading order in [START_REF] Cakoni | A qualitative approach to inverse scattering theory[END_REF], see e.g. [START_REF] Ammari | Stability and resolution analysis for a topological derivative based imaging functional[END_REF][START_REF] Colton | Integral Equation Methods in Scattering Theory[END_REF][START_REF] Guzina | Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics[END_REF]), and given our choice of incident fields, the scattered field for the trial inhomogeneity B δ is given at any x = z by the expansion

u s δ (x; s) = δ 3 W (x; s) + o(δ 3 ), W (x; s) := ∇Φ κ (x -z)•M z •∇Φ κ (z -s), (11) 
where

M z := M (B, A z ) ∈ R 3×3
sym denotes the polarization tensor of the normalized trial inhomogeneity [START_REF] Ammari | Stability and resolution analysis for a topological derivative based imaging functional[END_REF][START_REF] Cedio-Fengya | Identification of conductivity imperfections of small diameter by boundary measurements. continuous dependence and computational reconstruction[END_REF]. Moreover, the scattered field for the true inhomogeneity has the representation

u s B (x; s) = W κ [h](x), (12) 
where W κ is the volume potential defined for any density g ∈ L 2 comp (R 3 ; C 3 ) by

W κ [g](x) = R 3 ∇Φ κ (x -y)•g(y) dy (13)
and the density h = ( A-A)•∇u B (•, s) ∈ L 2 (B; C 3 ) solves the singular volume integral equation (VIE)

T h = ( A -A)•∇u in B, with T := I -( A -A)•∇W κ (14) 
(note that supp( A-A) = B). The singular integral operator T :

L 2 (B; C 3 ) → L 2 (B; C 3
) is known to be invertible with bounded inverse. Solving equation ( 14), using [START_REF] Céa | The shape and topological optimization connection[END_REF] and recalling the definition of u, we obtain

u s B (x; s) = B ∇Φ κ (x -y)• M B ∇Φ κ (• -s) (y) dy ( 15 
)
with the solution operator M B defined for any g ∈ L 2 (B; C 3 ) by M B g := h with h solving T h = ( A -A) • g. We refer the reader to [START_REF] Bonnet | A modified volume integral equation for anisotropic elastic or conducting inhomogeneities. unconditional solvability by neumann series[END_REF] for more details on how these expressions are obtained.

Source-to-measurement operators and their factorization

Let the measurement operators F B and F z associated with the true and trial scattered fields be defined such that γ m u B = F B g and γ m u δ = F z g + o(δ 3 ), where γ m denotes the Dirichlet trace operator on Γ m and g ∈ H -1/2 (Γ s ) is any excitation applied on Γ s . In view of representations [START_REF] Cakoni | Inverse scattering theory and transmission eigenvalues[END_REF] and ( 15), we have

F z = H zm δ 3 M B H zs + o(δ 3 ), F B = H Bm M B H Bs ( 16 
)
where the operators H zα :

H -1/2 (Γ α ) → C 3 and H Bα : H -1/2 (Γ α ) → L 2 (B; C 3 ) are defined by H zα ϕ = ∇S rα ϕ(z), H Bα ϕ = ∇S rα ϕ | B =: ∇S Bα ϕ α = m, s.
in terms of the single-layer potential operator [START_REF] Ammari | Stability and resolution analysis for a topological derivative based imaging functional[END_REF]. Here H zα :

C 3 → H 1/2 (Γ α ) and H Bα : L 2 (B; C 3 ) → H 1/2 (Γ α )
denote the conjugate transpose which we will refer to as adjoint (note that the duality pairing H -1/2 , H 1/2 is with respect to the L 2 pivot space). The measurement operators F B , F z are thus expressed by [START_REF] Dominguez | Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection[END_REF] as non-symmetric factorizations, a feature previously noticed in e.g. [START_REF] Audibert | Qualitative methods for heterogeneous media[END_REF][START_REF] Audibert | The generalized linear sampling method for limited aperture measurements[END_REF][START_REF] Hu | Near-field imaging of scattering obstacles with the factorization method[END_REF]. Following [START_REF] Audibert | Qualitative methods for heterogeneous media[END_REF], symmetric factorizations can be obtained with the help of the following lemma:

Lemma 1. Assume that κ 2 is not a Dirichlet eigenvalue for the Laplace operator in R.

If the source/measurement configuration is such that either Γ m = Γ s or Γ m ⊂ R s (cases (i) and (ii) of the Introduction), we have

S ms S -1 mm H Bm = H Bs .
where S ms := γ m S rs while S mm := γ m S rm is the single-layer integral operator on Γ m .

Proof. We proceed by proving the (equivalent) adjoint equality H Bm (S mm ) -1 S ms = H Bs . This equality also reads ∇S Bm S -1

mm S ms = ∇S Bs in view of the definition of H Bα and since S mm = S mm . For any given density ψ s ∈ H -1/2 (Γ s ), S Bm S -1 mm S ms ψ s and S Bs ψ s are Helmholtz solutions in R m ⊂ R s and R s , respectively. Taking the trace on Γ m for both fields, we obtain γ m S Bm S -1 mm S ms ψ s = S ms ψ s = γ m S Bs ψ s . Hence the two Helmholtz solutions, having the same trace on Γ m , coincide in R m . Their gradients therefore also coincide in R m , and the lemma follows by taking the adjoint. Note that due to the lemma assumptions S Bm S -1 mm S ms ψ s is not a Helmholtz solution outside R m , since R s contains the surface Γ m supporting the density S -1 mm S ms ψ s . This is the reason for the our assumptions.

Therefore, defining the linear bounded operator E := S ms S -1 mm from H 1/2 (Γ m ) to H 1/2 (Γ s ) and recalling factorizations ( 16), Lemma 1 implies the symmetric factorizations

EF z = H zs M B H zs , EF B = H Bs M B H Bs
or, equivalently:

Eu s B (s ; s) = B ∇Φ κ (s -y)• M B ∇Φ κ (• -s) (y) dy, Eu s δ (s ; s) = δ 3 ∇Φ κ (s -z)•M z •∇Φ κ (z -s) + o(δ 3 ).
For an explicit example of the symmetry restoring-operator E, see Appendix A.3.

We are finally ready to give for the topological derivative an explicit expression, which is the main object of study in what follows.

Topological derivative

Inserting the above expressions of Eu s B and Eu s δ in [START_REF] Cakoni | A qualitative approach to inverse scattering theory[END_REF], the topological derivative is found to be given by the formula

T (z) = - Γs Γs B ∇Φ κ (s -z)•M z •∇Φ κ (z -s) ∇Φ κ (s -y)• M B ∇Φ κ (• -s) (y)
dy ds ds , which will serve as the main basis for our analysis. This formula can be recast in a more concise, and structure-revealing, form as

T (z) = - B G(z, y) : MG (z, y) dy = - G, MG L 2 (B;C 3×3 ) (17) 
where f, g → f, g denotes the sesquilinear form associated with the L 2 (B) scalar product (for scalar-or tensor-valued functions as needed), the (two-point, tensor-valued) function G is defined by

G(z, y) := Γs ∇Φ κ (s -z) ⊗ ∇Φ κ (s -y) ds, i.e. G ij (z, y) = Γs ∂ i Φ κ (s -z) ∂ j Φ κ (s -y) ds,
and M is the L 2 (B; C 3×3 ) → L 2 (B; C 3×3 ) operator given by

M ijk := (M z ) ik (M B ) j
In addition, G(z, x) is alternatively given by

G ij (z, y) = ∂ 2 ∂z i ∂y j L(z, y), (18) 
with the two-point function L defined by

L(z, y) := Γ Φ κ (s -z) Φ κ (s -y) ds.
The function L would moreover appear in the counterpart of ( 17) associated with inhomogeneities characterized solely by a contrast in their refraction index, studied in [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF].

Remark 1. The above expressions are also valid if the scattering problem is formulated in a bounded region instead of the entire space. In this case Φ κ (•, •) denotes the fundamental solution of the (bounded) background medium satisfying the relevant homogeneous boundary condition. Proof. Let Ω R denote the ball of radius R, with R large enough to have m, s ∈ Ω R , and set Ω R,ε (s

) := x ∈ Ω R , |x -s| > ε with ε < |m -s|. We have - Ω R,ε (s) div A B •∇u B (•; s) + κ 2 u B (•; s) u B (•; m) dV = 0
and the above integral is well-defined since u B (•; s) is smooth, and u B (•; m) summable, in Ω R,ε (s). Applying the first Green identity to the above identity and taking the limit ε → 0 in the resulting equality (using that u B (•; s) = Φ κ (• -s) + u s B (•; s) together with the smoothness of u s B (•; s) in a neighborhood of s) yields

Ω R,ε (s) ∇u B (•; s)•A B •∇u B (•; m) -κ 2 u B (•; s)u B (•; m) dV = u B (s; m) + ∂Ω R n•A•∇u B (•; s) u B (•; m) dS.
The above equality also holds with the roles of m and s reversed. Subtracting these two equalities provides

0 = u B (s; m) -u B (m; s) + ∂Ω R n•A•∇u B (•; s) u B (•; m) -n•A•∇u B (•; m) u B (•; s) dS.
The lemma finally follows from the fact that the above integral over ∂Ω R vanishes in the limit R → ∞ due to the radiation condition (4) satisfied by both u B (•; s) and u B (•; m).

Lemma 2 implies that the measurement residuals (assuming noise-free data) verify

u D (m; s) -u obs (m; s) = u D (s; m) -u B (s; m), m ∈ Γ m , s ∈ Γ s
Consequently, when Γ m surrounds Γ s , the foregoing analysis leading to [START_REF] Eschenauer | Bubble method for topology and shape optimization of structures[END_REF] still applies by the simple expedient of reversing the roles of Γ s and Γ m in the cost functionals ( 6) and [START_REF] Bonnet | A modified volume integral equation for anisotropic elastic or conducting inhomogeneities. unconditional solvability by neumann series[END_REF] and setting E := S sm V -1 ss for the symmetry-restoring operator E. Accordingly, the topological derivative is in this case given by

T (z) = - Γm Γm B ∇Φ κ (m -z)•M z •∇Φ κ (z -m) ∇Φ κ (m -y)• M B ∇Φ κ (• -m) (y) dy dm dm ,
Now we are ready to study the behavior of T (z) for various locations of sampling point z. We will begin, in Section 4, with the simpler case of isotropic media.

Cases of partial aperture

The foregoing development, which is undertaken assuming both surfaces Γ s and Γ m to be closed (and either nested or equal), can be extended to the cases where the outside surface is open, i.e. either Γ s is open, Γ m is closed and Γ s ⊂ (R 3 \R m ) or Γ m is open, Γ s is closed and Γ m ⊂ (R 3 \R s ). In the former case, Lemma 1 still holds true, with its proof unchanged except for the fact that the image space in identity S ms V -1 mm H Bm = H Bs is H 1/2 (Γ s ), which requires that both members of the adjoint equality be evaluated on densities ψ s ∈ H -1/2 (Γ s ). Hence the symmetry-restoring operator E remains defined by E := S ms S -1 mm , and the resulting expression (17) still holds. In the latter case, the reciprocity Lemma 2 again allows reversion to the former case as explained in Section 3.4.

Isotropic scatterers

In this case, we have A = aI, A = ãI, A z = a z I, where a, ã and a z are strictly positive material constants. We introduce for convenience the non-dimensional material parameters

β := ã a -1, β z := a z a -1, q := β β + 2 , q z = β z β z + 2 , (19) 
which verify -1 < β, β z < ∞ and -1 < q, q z < 1. As we will see in the following, for isotropic scatterers the topological derivative expression is easier to analyze.

Simplified expression of the topological derivative

The singular integral operator T introduced in ( 14) is then given by

T = I -aβ∇W κ = β 2q (I -qR κ ), with R κ := I + 2a∇W κ
(with the second equality easily checked by inspection). The solution operator M B introduced in ( 15) is then given by

M B = 2aq(I -qR κ ) -1 .
Moreover, the polarization tensor, being defined from the zero-frequency transmission problem where B is excited by a remote constant gradient, is given by

M z •g = 2aq z B I -q z R 0 -1 g dV for any g ∈ C 3
with R 0 := I + 2a∇W 0 , and where the volume potential W 0 is defined as in [START_REF] Cedio-Fengya | Identification of conductivity imperfections of small diameter by boundary measurements. continuous dependence and computational reconstruction[END_REF] except that Φ κ is replaced with the zero-frequency fundamental solution Φ 0 , given by Φ 0 (r) = 1/(4πa|r|). Since q z R 0 < 1 for any q z > -1 [START_REF] Bonnet | A modified volume integral equation for anisotropic elastic or conducting inhomogeneities. unconditional solvability by neumann series[END_REF] and R 0 defines a real symmetric L 2 (B; R 3 ) → L 2 (B; R 3 ) operator, the operator I -q z R 0 is symmetric and positive definite, implying that the polarization tensor can be recast in the form

M z = 2aq z D T z •D z
(with D z the real-valued Choleski square root of the real symmetric positive definite matrix (2aq z ) -1 M z ). If the trial inhomogeneity is spherical (i.e. if B is the unit ball), we have

M z = 4πaβ z β z + 3 I = 8πaq z 3 -q z I, i.e. D z = 4π 3 -q z I. (20) 
We now take advantage of the above representation of M z in the expression (17) of T (z), which becomes

T (z) = -4a 2 qq z K, RK L 2 (B;C 3×3 ) (21) 
with K(z, y) := D T z •G(z, y) and

R ijk := δ ik I -qR κ -1 j . (22) 
As a result of ( 21) and ( 22), we can deduce that, under an assumption on the strength of the scatterer, the sign heuristic underpinning topological derivative-based identification is true. More specifically, with the stated notations and assumptions on the scattering by isotropic media with contrast in the main operator (as opposed to [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF] where the contrast is only in the lower order term), we have proven the following theorem.

Theorem 1. For any true isotropic scatterer (B, β), where β is defined by [START_REF] Guzina | From imaging to material identification: a generalized concept of topological sensitivity[END_REF], and wave number κ that satisfy

qR κ = |q| R κ < 1, ( 23 
)
the topological derivative satisfies the sign condition

sign(T (z)) = -sign(qq z ), ( 24 
)
where q and q z are given by [START_REF] Guzina | From imaging to material identification: a generalized concept of topological sensitivity[END_REF].

Condition ( 23) can be considered as restricting the justification of the sign heuristic to "moderate" scatterers (the moderate character depending on a combination of the scatterer size, its material contrast and the operating frequency). We call the scatterers that satisfies condition ( 23) moderate, since it is less restrictive than the weak scattering condition implicit in the Born approximation (see Sec. 5.4) As discussed in [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF], to use z → T (z) as an identifying function for the inhomogeneity, it should decay as z moves far away from the boundary of the unknown inhomogeneity in addition to verifying the sign heuristic property. But as opposed to [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF], here we deal with near field data and hence we need to understand how T (z) decays for z "far" from the boundary of the inhomogeneity B and still remaining within a "reasonable" distance from the measurement curve Γ m . To address this issue, next we carry out this two-scale asymptotic calculations for a spherical configuration of the measurement/source surface.

Decay properties of the topological derivative

Here we limit ourselves to the case when the trial inhomogeneity is spherical (i.e. if B is the unit ball) and when the excitations and measurements surfaces Γ s = Γ m = R Ŝ are both the sphere of radius R centered at the origin. For the purpose of these calculations, we assume without loss of generality that a = 1, hence Φ κ defined by ( 3) is now the free space fundamental solution of the Helmholz equation given by

Φ κ (s -y) := 1 4π e iκ|s-y| |s -y| . ( 25 
)
In this particular setting, as noted above, the topological derivative becomes

T (z) = - 16πqq z 3 -q z B G(z, y) : [RG] (z, y) dy ( 26 
)
where

R ijk := δ ik I -qR κ -1 j , R κ := I + 2a∇W κ , W κ [g](x) = B ∇Φ κ (x -y)•g(y)
dy and the 3 × 3 tensor valued function G(z, x) is given by

G(z, y) = R Ŝ ∇ z Φ κ (s -z) ⊗ ∇ y Φ κ (s -y) ds = 1 16π 2 Ŝ (1 + iκ|s -z|) |s -z| 2 (1 -iκ|s -y|) |s -y| 2 e -iκ|s-z| e iκ|s-y| ( s -z ⊗ s -y) R 2 dŝ. ( 27 
)
We want to study the decaying behavior of T (z) for z far away from the target inhomogeneity B. In the far field it was shown in [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF] (for a slightly different problem) that the topological derivative decays at reversed proportional to the square of the distance of z for B. However, here we expect that such behavior depends on how far the probing region is from the source/measurement surface. To better understand this interplay, for a fixed z outside B we set the reference length to be d z := dist(z, B) and note that |y -z|, y ∈ B is O(d z ). Let η > 0 be a small parameter and take a constant 0 < α < 1. Here η characterizes the ratio between the size of B and the radius R of the measurement/source sphere (Figure 1). Thus

|y| |s| = |y| R = O(η), y ∈ B, s ∈ R Ŝ. ( 28 
)
We express the facts that the "region of action" (i.e. the probing region and inhomogeneity) is far from the source/measurement surface, and that z stays "far from" the inhomogeneity, by assuming that respectively, uniformly for y ∈ B. Loosely speaking our scaling is such that d z /R = η α and diam(B)/d z = η 1-α (see Figure 1). We now perform "far field" asymptotic expansions for functions involved in (27) as η → 0, retaining only the terms of order O(1) and O(η α ) (note that the terms O(1) are those that appear in the far field expansion [START_REF] Bonnet | A modified volume integral equation for anisotropic elastic or conducting inhomogeneities. unconditional solvability by neumann series[END_REF]).

|y -z| |s| = |y -z| R = O(η α ) and |y| |y -z| = O(η 1-α ), (29) 
To this end, making use of the following simple formula

|s -z| -|s -y| = |s -z| 2 -|s -y| 2 |s -z| + |s -y| = |y -z| |y -z| + 2(s -y) • (y -z) |s -z| + |s -y| , letting c := ŝ • (y -z),
and noting that

s -y R = ŝ(1 + O(η)) = ŝ(1 + o(η α )),
we arrive at the following asymptotic expressions

|s -y| 2 = R 2 + O(η) = R 2 + o(η α ), |s -z| 2 = R 2 1 + 2c |y -z| R + o(η α ) which yield 1 -iκ|s -y| |s -y| 2 = 1 -iκR R 2 (1 + o(η α )) (30) 1 + iκ|s -z| |s -z| 2 = 1 R 2 1 + iκR -(2 + iκR)c |y -z| R + o(η α ). (31) 
Next, we have

|y -z| + 2(s -y) • (y -z) = R |y -z| R + 2c + o(η α ) |s -z| + |s -y| = R 2 + c |y -z| R + o(η α )
which from the above yields the following expansion for the exponents in the exponential terms in ( 27)

-iκ (|s -z| -|s -y|) = -iκ|y -z|c 1 + 1 -c 2 2c |y -z| R + o(η α ) .
Hence, we obtain the following expression for the exponential term

e -iκ(|s-z|-|s-y|) = e -iκc|y-z| 1 -iκ |y -z| 2 R 1 -c 2 2 + o(η α ) (32) 
Now plugging (30), ( 31) and (32) in (27), using

s -z ⊗ s -y = ŝ ⊗ ŝ + (ŝ ⊗ ẑ -cŝ ⊗ ŝ) |y -z| R + o(η α )
and collecting the coefficients in front of O(1) and O(η α ) terms, we finally obtain (recall that |y -z|/R = O(η α ), see ( 29)),

G(z, y) = 1 16π 2 Ŝ A(z, y)ŝ⊗ŝ+ |y -z| R A(z, y)ŝ⊗ẑ+B(z, y)ŝ⊗ŝ ds+o(η α ) (33) with A(z, y) = 1 + iκR R 1 -iκR R e -iκc|z-y| B(z, y) = 1 -iκR R 1 + iκR R -iκ 1 -c 2 2 |y -z| -c - 2 + iκR R c
where we recall again that c := ŝ • (y -z). The integration over the unit sphere Ŝ after parametrizing it as

x = √ 1 -c 2 cos ϕ, y = √ 1 -c 2 sin ϕ, z = c with c ∈ [-1, 1
] and ϕ ∈ [0, 2π] involves integrals of the form

I k := 1 -1 e iκ|y-z|c c m dc 0 ≤ m ≤ 4
which from the Jacobi-Anger expansion can be written as linear combinations of

2(-i) n j n (κ|y -z|) := 1 1 e iκ|y-z|c P n (c)dc, 0 ≤ n ≤ 4
where j n are spherical Bessel function of order n and P n are the Lagrange polynomials. By straightforward but careful calculations, we arrive at the following expression after using the classical identity (j n-1 +j n+1 )(t) = (2n+1)j n (t)/t (see e.g [14, equation (2.34)])

G(z, y) = 1 + κ 2 R 2 12πR 2 j 0 (κ|y -z|)I + j 2 (κ|y -z|)(I -3 b ⊗ b) - κR + i 4πR 2 j 1 (κ|y -z|) b ⊗ b + (iκR + 2) j 2 (κ|y -z|) κ|y -z| (I -3 b ⊗ b) |y -z| R + o(η α ),
wherein b := yz. Notice that, for fixed R large enough with respect to the inhomogeneity B, i.e. respecting (28) that ensures our asymptotic works, we see from the behavior of Bessel functions

j n (x) = O(|x| -1 ) for x → ∞, that G(z, y) = O(|y -z| -1 )
for y ∈ B and z far from B (but still respecting (29)). Plugging G(z, y) in ( 26) and using the fact that R < C in the operator norm, by invoking the Cauchy-Schwarz inequality, we can assert that the topological derivative T (z) decays as O(d -2 z ) for large enough d z := dist(z, B) (i.e. at the same rate as in the case of the far-field for the problem considered in [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF]). We summarize our result in the following theorem.

Theorem 2. For a given unknown isotropic inhomogeneity (B, β), where β is defined by [START_REF] Guzina | From imaging to material identification: a generalized concept of topological sensitivity[END_REF], we assume that the excitations and measurements surfaces Γ s = Γ m = R Ŝ are both the sphere of radius R centered at the origin. Furthermore, suppose that dist(z, B)/R = η α and diam(B)/dist(z, B) = η 1-α for some small dimensionless parameter η > 0 and 0 < α < 1. Then

T (z) = O 1 (dist(z, B)) 2 as dist(z, B) → ∞.
Note that in the above calculations we consider Γ s = Γ m = R Ŝ merely for convenience. The same asymptotic behavior is valid for more general reasonable excitations and measurements surfaces, for example the boundary of a star shaped domain.

Remark 2. The decaying property of the topological derivative T (z) does not depend on the choice of α ∈ (0, 1) which quantifies the fact that R is much larger than the probing region. Note that in (33) the only term that could possibly affect the αindependent decaying of G(z, y) for large |y-z|, is the term in B(z, y) containing |y-z|.

In our calculations we paid special attention to it; thanks to recursive formulas for Bessel functions, this term disappears. However, we think that the choice of 0 < α < 1 may play a role if the scattering problem is considered in a bounded region with prescribed boundary data, in which case the derivation of the topological derivative still holds true with Φ κ (s -y) in ( 25) replaced by the Green's function of the bounded region.

Remark 3 (Zero-frequency limit). When κ = 0, we have qR 0 < 1 for any physically admissible q, so that (24) holds for any configuration B, q. However, we now also have |K(z, y)| = O(1) (i.e. K(z, y) does not decay as the sampling point z is moved away from B), implying that the support of B can no longer be (even roughly) estimated on the basis of the function z → T (z).

In Appendix A.2 it is shown that G(z, y) is real-valued for the configuration discussed here. The above calculations simplify in the case of the far field limit, i.e. R → ∞, but nevertheless yielding exactly the same decaying property of the topological derivative, see Appendix A.1

Anisotropic scatterer

The objective here is to set up for the more general case of anisotropic media a formula for T (z) that has the same general structure as [START_REF] Hu | Near-field imaging of scattering obstacles with the factorization method[END_REF], and then use it for deducing results on the sign of the topological derivative. To recast the topological derivative in a form allowing to understand its sign, we need a reformulation of the solution operator. To this end, we recall that in [START_REF] Bonnet | A modified volume integral equation for anisotropic elastic or conducting inhomogeneities. unconditional solvability by neumann series[END_REF], the solution operator M B is found to have the representation

M B = 2A 1/2 • I -Q•R κ -1 •Q•A 1/2
where A 1/2 is the positive square root of the positive definite constitutive matrix A, the multiplication operator Q is defined by the matrix

Q = (β + 2I) -1 β, β := A -1/2 •( A -A)•A -1/2 (34)
in terms of the above-defined anisotropic relative contrast β, and the operator R κ , which depends only on the background medium, is defined by

R κ = I + 2A 1/2 •∇W κ •A 1/2
Moreover, there exists a matrix q ∈ R 3×3 and a diagonal matrix σ such that Q can be factorized as

Q = q T •σ 2 •q, (35) 
with the nonzero entries of σ 2 (also diagonal) being ±1 according to the sign of the corresponding eigenvalue of Q. Using this decomposition of Q in M B , we can show that

M B = 2(A 1/2 •q T )•σ• I -σ•q•R κ •q T •σ -1 •σ•(q•A 1/2 ) ( 36 
)
We next consider two different cases.

Isotropic background and trial materials, spherical trial inhomogeneity

Consider the special (and practically useful) case where an anisotropic inhomogeneity embedded in an isotropic background medium is to be identified on the basis of the topological derivative defined in terms of a spherical trial inhomogeneity whose constitutive material is isotropic. In this case, formula [START_REF] Eschenauer | Bubble method for topology and shape optimization of structures[END_REF] for T (z) can be written with M z given by ( 20) and M B given by (36) with A = aI, i.e.

M B = 2aq T •σ• I -σ•q•R κ •q T •σ -1 •σ•q,
and we find

T (z) = -4a 2 q z G•q•σ, R G•q•σ L 2 (B;C 3×3 ) (37) 
with the L 2 (B; C 3×3 ) → L 2 (B; C 3×3 ) operator R this time defined by

R ijk = δ ik I -σ•q•R κ •q T •σ -1
j . We are ready to obtain the resulting properties of the topological derivative. Indeed, if the true anisotropic refractive index contrast has a sign (i.e. if σ = σI with σ = 1 or σ = i), (37) becomes

T (z) = -4a 2 q z σ 2 K, RK L 2 (B;C 3×3 )
where K(z, y) := G(z, y) • q. Consequently, the sign heuristic is true for any true scatterer (B, β) and wave number κ that satisfy

q•R κ •q < 1.
Hence we have the following result:

Theorem 3. Given the true anisotropic scatterer (B, β) with β defined by (34), we assume that the background is isotropic A = aI and the contrast A -A has a definite sign, in the sense that in the factorization (35) σ 2 = σ 2 I with σ 2 = ±1. Then, if we consider a spherical isotropic trial inhomogeneity (i.e. B the unit ball and A z = a z I) and a wave number κ such that q

•R κ •q < 1, (38) 
the topological derivative satisfies the following sign condition sign(T (z)) = -sign(σ 2 q z ),

where the trial contrast q z is defined by [START_REF] Guzina | From imaging to material identification: a generalized concept of topological sensitivity[END_REF].

Again here the assumption (38) can be considered as restricting the justification of the sign heuristic to moderately strong scatterers depending on a combination of the scatterer size, its material contrast and the operating frequency. The one-sign contrast type restriction is not unusual in the justification of a variety of qualitative methods such as linear sampling and factorization methods.

The general anisotropic case

We now consider the more general case where A and A z may be anisotropic and the trial inhomogeneity shape B is arbitrary. First we conveniently reformulate the polarization tensor. To this end, for the trial inhomogeneity B δ and its normalized counterpart B, we likewise set

Q z = (β z + 2I) -1 β z with β z := A -1/2 •(A z -A)•A -1/2 , R 0 = I + 2A 1/2 •∇W 0 •A 1/2 ,
with the zero-frequency fundamental solution Φ 0 entering the volume potential W 0 now given by

Φ 0 (r) = 1 4π det(A) 1 |A -1/2 •r| .
Using these definitions, we have

M z •g = B 2A 1/2 • I -Q z •R 0 -1 •Q z •A 1/2 g dV (39) 
for any g ∈ C 3 . Therefore, introducing the factorization 35), an identity similar to (36) holds for M z :

Q z = q T z •σ 2 z •q z of Q z as in (
M z •g = B 2(A 1/2 •q T z )•σ z • I -σ z •q z •R 0 •q T z •σ z -1 •σ z •(q z •A 1/2 ) • g dV.
Besides, the L 2 (B; C 3 ) → L 2 (B; C 3 ) operators q z and R 0 are bounded and verify q z < 1 and R 0 = 1 [START_REF] Bonnet | A modified volume integral equation for anisotropic elastic or conducting inhomogeneities. unconditional solvability by neumann series[END_REF]. Consequently, the mapping

h ∈ C 3 → B I -σ z •q z •R 0 •q T z •σ z -1 •h dV ∈ C 3
defines a positive definite matrix (hence having a Choleski square root D z ) and M z can be recast as

M z = 2(A 1/2 •q T z )•σ z •D T z •D z •σ z •(q z •A 1/2 ).
In this case, formula [START_REF] Eschenauer | Bubble method for topology and shape optimization of structures[END_REF] for T (z) can be written with M z given by ( 20) and M B given by (36), to obtain

T (z) = (40) - D z •σ z •q T z •A 1/2 •G•A 1/2 •q•σ , R D z •σ z •q T z •A 1/2 •G•A 1/2 •q•σ L 2 (B;C 3×3 )
with the L 2 (B; C 3×3 ) → L 2 (B; C 3×3 ) operator R again defined as in (37).

The above expression allows us to study the sign of the topological derivative in some special cases and obtain a result of the type as in Theorem 3. More specifically, if both the true and trial anisotropic conductivities have a sign (i.e. if σ = σI and σ z = σ z I with σ, σ z = 1 or i), (40) becomes

T (z) = -σ 2 σ 2 z K, RK L 2 (B;C 3×3 ) .
with K(z, y) := D z •q T z •A 1/2 •G(z, y)•A 1/2 •q. Consequently, the sign heuristic is valid for any true scatterer (B, β) and wave number κ that satisfy q•R κ •q < 1, There are other cases when we can conclude the same sign property. For example, in the case where A z = A B , i.e. q z = q and σ z = σ does not seem to provide a clear result as to the sign of T (z).

Polarization tensor for an ellipsoidal trial inhomogeneity

We show here that the integral (39) can be evaluated in closed form if B is an ellipsoid, to obtain

M z = |B| I + (A z -A)•S •A -1 -1 •(A z -A) = 2|B|A 1/2 • I -Q z + 2Q z •A 1/2 •S •A -1/2 -1 •Q z •A 1/2
where S is the constant Eshelby-like tensor such that ∇W 0 [g] = -S • A -1 • g for any g ∈ C 3 (with this definition of S mirroring that usually made for elastic inhomogeneities). Moreover, we have S = (1/3)I if B is the unit ball.

Moderate scatterer vs. Born approximation

We finish by briefly comparing the domain of validity of the TD heuristics (Theorems 1 and 3) to that of the Born approximation (BA). For the present physical model defined by ( 1) and (4), the BA consists in writing h ≈ ( A-A)•∇u, i.e. u B ≈ u, for the solution h of ( 14 1), which in turn implies q = o(1) and then q • R κ • q = o(1), a condition that is more restrictive than the moderate scatterer limitation q • R κ • q < 1 of Theorem 3 or its isotropic counterpart. Similar conclusions were previously reached in [START_REF] Bellis | Acoustic inverse scattering using topological derivative of far-field measurements-based l 2 cost functionals[END_REF] for the case of far-field data and refraction index perturbations.

Conclusion

We derive an explicit expression of the topological derivative, T (z), for the scattering by anisotropic media embedded in anisotropic background, with anisotropic trial inhomogeneity of arbitrary shape and near field measurements. Taking advantage of a recently-proposed reformulation of such volume integral equation [START_REF] Bonnet | A modified volume integral equation for anisotropic elastic or conducting inhomogeneities. unconditional solvability by neumann series[END_REF], we provide a symmetric factorization for T (z) where the middle operator contains the material contrast. For the case of isotropic media and background, and isotropic trial inhomogeneity we rigorously prove the sign heuristic for T (z). For such configuration, in the particular case of spherical near field measurements far enough form the probing region, we show that T (z) = O 1 (dist(z,B)) 2 if the location of trial inhomogeneity z, is far enough from the unknown scatterer. In the case of anisotropic media, we are able to rigorously prove the sign heuristic for T (z) only in some particular case under the general assumption of media with one-sign contrast. Although we are not able to deduce the sign heuristic for the topological derivative for all the combinations of general anisotropic configuration, we remark that our expressions provide a convenient form for the analysis of the topological derivative, which can possibly be generalized to other type of scattering modalities.

3. 4 .Lemma 2 .

 42 Reversed nesting of source/measurement surfaces Lemma 1 requires Γ s to surround, or coincide with, Γ m . The following reciprocity property allows to include the case Γ s ⊂ R m (i.e. Γ m surrounding Γ s , case (iii) of Introduction) in our analysis: For any inhomogeneity B and any m, s ∈ R 3 such that m = s and m, s ∈ B, the function u B (•; s) defined by problem (5) satisfies u B (m; s) = u B (s; m).

Figure 1 :

 1 Figure 1: A sketch of the probing region. The thick line, i.e. d z , indicates the reference length scale, which is much smaller than R, more precisely d z /R = η α , but much bigger then diam(B), more precisely diam(B)/d z = η 1-α . Here η = diam(B)/R.

  ), inducing a O( T -I ) error on the representation (12) of u s B . Now, since ∇W κ ≥ C > 0 uniformly in κ and B [7, Lemma 3], the weak scatterer condition T -I = o(1) implicit in the BA implies A-A = o( A ), i.e. β = o(
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Appendix A. Explicit formulas for special cases

We present here some explicit examples in the case where Γ s = R Ŝ, Ŝ being the unit sphere, for which explicit analytical results can be derived. The background medium is assumed to be isotropic as described in Section 4.

Appendix A.1. Far field limit In the far-field limit when R → ∞ and for fixed κ, thanks to the the asymptotic expressions

we obtain

up to order o(|s| -1 ). This, together with D being real-valued, implies that K(z, y) := D T z • G(z, y) is real-valued in the far-field limit and that |K(z, y)| = O(|z -y| -1 ), yielding the decaying property of the topological derivative stated in Theorem 2.

Appendix A.2. Real-valuedness of G(z, y)

(κ|r|) and recalling a classical expansion of h

(1) 0 and the Legendre addition theorem, we have

(where Y m n are L 2 ( Ŝ)-orthonormal spherical harmonics). The two-point function L can then be evaluated explicitly:

The function L is therefore real-valued, since the j n are, and [START_REF] Guzina | Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics[END_REF] implies that G is also real-valued (this observation is corroborated by numerical evaluations using highaccuracy numerical quadrature based on Lebedev points on Ŝ). If κ = 0 (in which case Φ 0 and ∇Φ 0 are of course real-valued), a similar derivation can be done with h

(1) n (κR) replaced with R -n-1 and j n by a homogeneous n-th degree harmonic polynomial (which in particular, unlike j n , is not a decaying function of its argument).

Appendix A.3. Symmetry-restoring operator E

If Γ is a sphere of radius R, the "symmetry-restoring" operator E can be given an explicit expression. First, for given density ϕ ∈ H -1/2 (Γ), the single-layer potential w := Sϕ solves (see e.g. [START_REF] Colton | Integral Equation Methods in Scattering Theory[END_REF])

When Γ is a sphere, the above problem can be solved by separation of variables. Expanding ϕ and γw = Sϕ (where γ is the Dirichlet trace operator on Γ) according to

we find w m n = S m n ϕ m n , S m n = -iκ(κR) 2 j n (κR)h (1) n (κR) Therefore, since S = S, we have

n (κR) h