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Purpose: Acquisition time is amajor limitation in recovering
brain whitematter microstructure with diffusionmagnetic
resonance imaging. The aim of this paper is to bridge the gap
between growing demands on spatio-temporal resolution
of diffusion signal and the real-world time limitations. The
authors introduce an acquisition scheme that reduces the
number of samples under adjustable quality loss.
Methods: Finding a sampling scheme that maximizes sig-
nal quality and satisfies given time constraints is NP-hard.
Therefore, a heuristic method based on genetic algorithm
is proposed in order to find sub-optimal solutions in accept-
able time. The analyzed diffusion signal representation is
defined in the qτ space, so that it captures both spacial and
temporal phenomena.
Results: The experiments on synthetic data and in vivo diffu-
sion images of the C57Bl6 wild-typemouse corpus callosum
reveal superiority of the proposed approach over random
sampling and even distribution in the qτ space.
Conclusion: The use of genetic algorithm allows to find ac-
quisition parameters that guarantee high signal reconstruc-
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tion accuracy under given time constraints. In practice, the
proposed approach helps to accelerate the acquisition for
the use of qτ -dMRI signal representation.
K E YWORD S
diffusionmri, acquisition design, stochastic optimization

1 | INTRODUCTION
Brain whitematter (WM)microstructure recovery with diffusionMagnetic Resonance Imaging (dMRI) requires long
acquisition which is unattainable in clinical practice. Dense scanning schemes studied by researchers [3, 8, 57, 58, 59]
typically take few hours of imaging time, whereas even one-hour durations are barely acceptable for practitioners.
Nonetheless, recent in vivo studies of theWMmicrostructure [2, 7, 16] call for more fine-grained investigation of both
space- and time-dependent diffusion. In this work, we aim to bridge the gap between growing demands on spatio-
temporal (qτ ) resolution of dMRI signal and the real-world time limitations. The above problem can be addressed in at
least twoways— either through decreasing the time needed for collectingmeasurements [10, 20, 36, 53] or through
reducing the number of samples [1, 2, 25, 31, 47, 50]. In this study, we use the latter approach.

Time dependence in dMRI has been argued to be an important tool for tissuemicrostructure analysis [9, 34, 38, 39,
51, 55], accounting either for intra- [3, 4, 5, 45] or extra-cellular diffusion [11, 16, 27, 40, 42]. Nonetheless, a majority of
current methods of reconstructing the Ensemble Average Propagator (EAP) [12, 35, 56] do not take into account time
decay [17, 26, 44, 57, 58, 59]. Under these circumstances, unified spatio-temporal signal representations (qτ -dMRI),
such as those proposed by Fick et al. [24, 25], are gainingmomentum. We believe that this is themoment to grasp such
momentum and propose, for the first time, the qτ -based acquisition design solutions.

The main goal of our study is to find a sampling scheme that maximizes accuracy of a signal representation and
satisfies given time constraints. Similar studies were performed for Diffusion Kurtosis Imaging (DKI) [31, 47] or the
composite hindered and restrictedmodel of diffusion (CHARMED) [1, 2, 50] including gradient waveform optimization
[18, 19]. In this paper, we optimize for the accuracy of qτ -dMRI signal reconstruction. Additionally, we want our
approach to be usable on real-world applications, considering that different acquisition protocols are recommended
for differentWMmicrostructuremodels [52]. For this, we discretize the spatio-temporal search space by performing
a dense pre-acquisition of dMRI signal with uniform coverage of the unit sphere, as suggested by Caruyer et al. [13].
Despite discretization, the problem is computationally difficult. It requires selecting an optimal subset of Diffusion
Weighted Images (DWIs), which is NP-hard, as wewill show in Section 3.

Taking into account that the time complexity of our problem grows exponentially with the domain size, such that
global optima cannot be found deterministically within few hours or even few days, we apply a stochastic search engine
instead. We use Standard Genetic Algorithm (SGA) [33, 46, 49] for this purpose, which allows us to find approximate
solutions in acceptable time.

Our experiments comprise of two granularity levels with respect to the domain size. The coarse-grained level allows
us to present the effectiveness of the proposed approach by comparing our results with the global optimum foundwith
lengthy exhaustive search. The fine-grained level outcomes provide us with crucial information about the structure of
the optimized acquisition schemes.

We validate our approach on both synthetic diffusionmodel and real data comprising in vivo diffusion images of the
C57Bl6 wild-typemouse corpus callosum.
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2 | THEORY

In a nutshell, our spatio-temporal signal representation is a cross-product of a 3D space of diffusion gradient directions
and a 1D range of diffusion times, hence 4D. This section briefly introduces the mathematical formulation of the
suggested representation. For more details we refer to Fick et al. [21, 25, 26].

2.1 | Four-dimensional Ensemble Average Propagator
Let us first define the qτ -diffusion signal space and its relationship to the 4D Ensemble Average Propagator (EAP)
[12, 56]. In dMRI, the EAPP (R; τ) describes the probability density that a particle undergoes a displacementR ∈ R3

after diffusion time τ > 0. The EAP is estimated from a set of DWIs, which are obtained by applying two sensitizing
diffusion gradientsG ∈ R3 of pulse length δ > 0, separated by separation time∆ > 0. Assuming that no diffusion
takes place during the pulses (δ → 0), the EAP is related to the dMRI signal through the Inverse Fourier Transform (IFT)
[56] defined as

P (R; τ) =

∫
R3
E(q, τ)ei2πq·Rdq, (1)

where the signal attenuation E(q, τ) = S(q, τ)/S0, and S(q, τ) is the signal measured at the diffusion encoding
position q ∈ R3 and diffusion time τ = ∆ − δ/3, whereas S0 is the baseline image acquired without diffusion
sensitization, i.e. q = 0. We denote q = |q| andG = |G|, such that q = qu andG = Gv for some 3D unit vectors
u,v ∈ S2. The wave vectorq in Equation (1) is defined asq = γδG/2π, where γ is the nuclear gyromagnetic ratio and
G is the applied diffusion gradient vector.

2.2 | qτ -space signal representationwith GraphNet regularization
We reconstruct the continuous EAP from a finite set of DWIs by representing the discretely measured attenuation
E(q, τ) in terms of the basis coefficients c of a “Multi-Spherical” 4D qτ -Fourier basis [21]. The qτ -basis is formed by
the cross-product of a 3D q-space basisΦi(q) [44] and 1D diffusion time basis Tj(τ) [25]. The approximated signal
attenuation Ê(q, τ, c) is given as

Ê(q, τ, c) =

Nq∑
i=1

Nτ∑
j=1

cijΦi(q)Tj(τ) with c = [cij ] ∈ RNq×Nτ , (2)

where Nq and Nτ are the maximum expansion orders of spatial and temporal bases, respectively, and cij are the
weights of the contribution of the ijth basis function to Ê(q, τ, c). As Φ is a Fourier basis over q, the EAP can be
recovered for each voxel as P̂ (R; τ, c) = IFTq

[
Ê(q, τ ; c)

]
.

To estimate c from a noisy and sparsely sampledE(q, τ), we useGraphNet regularization [29], as advised by Fick et
al. [25]. Note that the commonly assumed Rician noise perturbing the dMRI signal can be approximated with Gaussian
distribution for SNR> 5 [30]. In our GraphNet approach, we use the Laplacian regularization term to compensate for
the Gaussian noise and the l1-norm regularization to impose sparsity over the basis coefficients. Mathematically, the
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above are formulated as follows

argmin
c

∫∫ [
E(q, τ)− Ê(q, τ, c)

]2
dqdτ + λ

∫∫ [
∇2Ê(q, τ, c)

]2
dqdτ + α ‖c‖1

subject to Ê(0, τ, c) = 1 and Ê(q, 0, c) = 1. (3)

The parameters λ, α > 0 stand for the smoothness and sparsity regularization weights, respectively. We optimize them
using five-fold cross-validation.

Having introduced our 4D dMRI signal representation, let us now focus on the acquisition design, which is themain
contribution of this paper. Note that our optimizationmethodology is not strictly related to qτ -dMRI. In fact, one can
replace it with any other approach as long as it allows to recover the original dMRI signal from the subsampled DWIs.

3 | METHODS
We aim to find a sampling scheme that satisfies a given time constraint under adjustable quality loss. For this, we first
perform a dense acquisition of dMRI signal. Then, among those densely acquired samples, we seek a fixed-sized subset
for which our qτ -dMRI signal representation reaches the highest accuracy taking the dense acquisition as reference.
In the following subsections, we first formulate this goal mathematically as an optimization problem and study its
complexity. Later on, we address the problemwith a Genetic Algorithm (GA). Then, we define the accuracymeasures
and describe the experiments.

3.1 | Optimal Acquisition Design
LetN > 0 be the number of DWIs in a dense pre-acquisition. As amatter of fact, each DWI corresponds with a certain
(q, τ) pair, although for themoment it is more convenient to think of them as an enumerated set of samples. Among
those, we want to select a subset of up to nmax < N samples, such that the reconstruction accuracy of the dMRI
signal is maximized. To this end, we define the objective function F : {0, 1}N → R in the space of binary vectors
x = (x1, ..., xN ) ∈ {0, 1}N . The assignment xi = 1 for a given i = 1, ..., N indicates that the i-th sample from the pool
of DWIs is included in the subset of interest, whereas xi = 0 determines its exclusion. Formally, our goal is to solve the
following optimization problem

arg min
x
F (x) =

1

M

M∑
j=1

‖E(j) − Ê(j)
x ‖22

subject to
N∑
i=1

xi ≤ nmax with 1 ≤ nmax ≤ N − 1,

(4)

whereM > 0 is the number of voxels in each DWI, E(j) is the normalized signal attenuation captured in the j-th
voxel with the qτ measurements, and Ê(j)

x is the corresponding signal obtained by fitting the qτ -dMRI representation
(defined in Equation 3) to the subsamples indicated by x. Note that the normalization ofE(j) is necessary to equalize
signal intensities obtainedwith different (q, τ) parameters.

From now on, wewill omit the voxel indexing (j)while referring toE and Êx for simplicity. Our goal thus comes
down in one sentence: minimize the residuals betweenE and Êx using up tonmax samples.

The problem posed in Equation (4), despite its simple formulation, is in fact very difficult to solve analytically. In
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Combinatorics, it is known under the name Knapsack Problem (KP) and is proved to be NP-hard [32]. Let us remind that
the objective of KP is to pick a finite set of items that maximize the total value of the knapsack, while respecting its
capacity limitation. In our case, the goal is to select a subset of qτ -indexed samples that maximize accuracy of dMRI
signal recovery, while satisfying given time constraints. Assuming that acquisition time of each DWI is constant, we
express the time budget as themaximum number of qτ -indexed samples in a subset,nmax.

The only knowndeterministic solver ofKP is the exhaustive search procedure comprisingN !/(nmax!·(N−nmax)!)

evaluations of the objective function F , which is unacceptable for large N . Thus, we address the problem with a
stochastic search engine. For this purpose, we choose SGA [28, 33] due to its reported high performance in large KP
instances [14, 37, 41, 43, 54]. Formally, the time complexity of SGA is polynomial, although practically it is difficult to
estimate, since certain input parameters, including the number of iterations, need to be chosen experimentally [33].

3.2 | Objective function & performancemeasures
As defined in Equation (4), the objective of our optimizationmechanism is to minimize the residuals betweenE and ÊX .
We use this quantity as a primarymeasure of the dMRI signal reconstruction accuracy. Additionally, we are interested
in verifying howwell the spatio-temporal indices are preservedwhile using our scheme. To this end, we study a set of
commonly usedmetrics [26, 44], namely

• Return ToOrigin Probability:

RTOP(τ) = P (0; τ) [1/m3]

• Return To Axis Probability:

RTAP(τ) =

∫
R
P (Rr‖; τ)dR [1/m2]

• Return To Plane Probability:

RTPP(τ) =

∫
R

∫
{r∈S2:r·r‖=0}

P (Rr⊥; τ)dr⊥dR [1/m]

• Mean Squared Displacement:

MSD(τ) =

∫
R

∫
S2
P (Rr; τ)R2drdR [m2]

for a given displacementR = Rr, as defined in Section 2. Let usmention that two of the abovemetrics, i.e. RTAP and
RTPP, assume thatWM ismodeled by parallel cylinders with the vectors r‖ parallel and r⊥ perpendicular to the cylinder
axis.

Granularity levels:
The acquisition schemes that we study are 800-dimensional binary feature vectors. Dealing with such high-dimensional
data involves the risk of bias towards a dense pre-acquisition scheme or over-fitting to dMRI signal noise. In order to
avoid these pitfalls, we consider the following two granularity levels:



6 PATRYK FILIPIAK ET AL.

• Optimization by shells—where each of the shells in our multishell dense acquisition is either taken as a whole or
discarded completely. In this scenario, the task is to subsample among 5 available τ values and 8 availableG values,
whichmimics the experiment described by Alexander et al. [1, 2]. Particularly, for the budget size nmax = 100, the
search space is reduced to 658,008 possible solutions, hence we are able to find the global optimum of the problem
by performing exhaustive search and use it as a reference (cf. Figure 1). Our proposed optimizer uses a set of 100
candidate solutions per iteration in this scenario, which is a commonly used setting for SGA [6].

• Optimization by measures — where solutions are picked from all the 800 variants of densely acquired samples.
Considering relatively high complexity of this scenario, we chose experimentally the population size of our SGA
optimizer to be 1000 candidate solutions per iteration.

3.3 | Experiments setup
In the experiments, we analyze both synthetic and real diffusion data using the protocol described below.

Dense pre-acqusition:
Our initial dense pre-acquisition covered 40 shells, each of which comprised 20 directions and one b0-image, i.e.
40 × 20 = 800 DWIs plus 40 non-weighted images. We used combinations of 8 gradient strengthsG ∈ {50, 100,
150, 200, 250, 300, 350, 400} [mT/m] (magnitudes available in pre-clinical scanners) and 5 separation times∆ ∈ {10.8,
13.1, 15.4, 17.7, 20.0}[ms] to parametrize our (q, τ) acquisition space. The corresponding b-values ranged from 41 to
5248 s/mm2 . The gradient duration δ = 5ms remained constant throughout the experiments. In each of the 8× 5 = 40

shells, we followed the uniform distribution of directions suggested by Caruyer et al. [13].

Time constraints:
We considered four variants of time limits expressed as budget sizesnmax ∈ {100, 200, 300, 400} out of 800DWIs. The
remaining 40 b0-images were excluded from the optimization domain, as they were used by default in every acquisition
scheme.

Other approaches:
Wecompared ourmethodwith two alternative sampling schemes. One of them, called random, used the uniform random
distribution of qτ samples in the index space {1, ..., N}. In the second one, referred to as even, we picked each i-th
sample for i = bkN/nmaxc and k = 1, ..., nmax. Considering that the samples were ordered byG and∆, the even
subsampling scheme ensured nearly equal number of samples per shell, i.e. bnmax/40c or dnmax/40e.

3.4 | Diffusion data
Weused the following two data sets:

Synthetic data:
As first data set, we generated time-dependent diffusion data using our Python-based [22, 23] implementation of the
two-compartment model with the intra-cellular fractionmodeled with a set ofWatson dispersed cylinders [12, 60] and
the extra-cellular one modeled with a temporal zeppelin [11]. TheWatson distribution is an antipodally symmetric
distribution, centered around the principal orientation µ, describing a density controlled by concentration parameter
κ > 0, which is inversely related to the dispersion of cylinders [12, 60]. Ronen et al. [48] modeled the axon dispersion in
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the corpus callosumwith a spherical Gaussian distribution and found out that typical values of its standard deviation
vary between 10 and 25 degrees, which translates to the interval 3 < κ < 16. In another study, Zhang et al. [60] used
the values of κ ∈ {0, 0.25, 1, 4, 16}. In our experiment, we chose κ = 4 from the intersection of both sets.

Table 1 summarizes all the model’s parameters that we took from Burcaw et al. [11], Alexander et al. [2], and Zhang
et al. [60].

[Table 1 about here.]

Apart from the original noiseless signal, we also studied the two variants of the signal with incorporated Rician
noise, having respective Signal-to-Noise Ratio (SNR) set to 20 (13dB) and 10 (10dB).

Real data:
In the second data set, we used in vivo diffusion images of the corpus callosum of C57Bl6wild-typemouse. All animal
experiments were performed in accordance with the EUDirective 2010/63/EU for animal experiments. Obtaining the
initial dense pre-acquisition took approximately 2h10min on an 11.7 Tesla Bruker scanner (Bruker Biospec 117/16 USR
horizontal bore, 750mT/m gradients, Paravision 6.0.1, Ettlingen, Germany). The data consists of 96× 160× 12 voxels
covering a field of view 110× 110× 500 µm3 each. The average SNR of the images is 10dB± 2. Wemanually created a
brain mask and corrected the data from eddy currents andmotion artifacts using FSL’s eddy.

4 | RESULTS
Exhaustive search:
As wementioned earlier, we defined the coarse-grained optimization by shells scenario in such a way that it could be
solved with exhaustive search and serve as a reference. The running time of a parallel code for this approach was
about one week. Let us mention that using the same exhaustive search implementation for the optimization by measures
scenario would takemore then 10200 centuries.

Figure 1 illustrates all the 658,008 feasible acquisition schemes in the optimization by shells scenario for the in
silico experiment with nmax = 100. The schemes are arranged from best to worst. The top-left plot shows themean
squared errors (MSEs) of signal reconstruction, whereas the top-right one depicts the normalized Hamming distances
from the global optimum ± 1 standard deviation. In order to visualize the analyzed (G,∆) parameter space, the
percentiles pc = 0%, 1%, 10%, 50%, 90% are annotated on both plots, showing respectively the global optimum, the
top 1% solutions, the top 10% solutions, etc. The cumulative averages of acquisition schemes, corresponding with
these percentiles, are shown in the heat maps at the bottom. The colors reflect the likelihood of a given (G,∆) pair
in the scheme. The heat maps (a) and (b) represent, respectively, the global optimum and its proximity. The interval
of percentiles between pc = 10% and pc = 90%, as shown in the heat maps (c)–(e), contains a spectrum of feasible
acquisition schemes with similarMSEs and almost equally large Hamming distances from the global optimum.

Note the arrangements of high likelihood (red-colored squares) in Figure 1(a). There is one red field in the area of
highest G-values located in themiddle of the∆ range. Then, there are four other red fields spread evenly across G- and
∆ parameter spaces. The pattern gradually disappears as wemove away from the global optimum. Starting from about
10th percentile, the differences in intensities on the heat map slowly fade.

[Figure 1 about here.]
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In silico experiments:
As shown in Figure 2, convergence of SGA in the optimization by shells scenario is apparently reached before the 30th
iteration. Based on that observation, we cautiously chose the termination condition for all experiments to be the fixed
threshold of 40 iterations, thus leaving a safetymargin of 10 iterations.

[Figure 2 about here.]
Figure 3 (left-column plots) and Table 2 summarize the results of the tested subsampling schemes— ours, random,

and even— for the in silico experiment, averaged over 30 runs. In the rows of Table 2, we present respectively the
noiseless case and the two variants with incorporated Rician noise having SNR = 20 (13dB) and 10 (10dB).Within each
case, we consider four time budget limitsnmax ∈ {100, 200, 300, 400}. The scores are expressed with normalized root
mean squared errors (NRMSEs) and the corresponding standard deviations (STDs). The STD is omitted in the even
schemewhich is deterministic and thus its STD=0.

[Figure 3 about here.]
As Table 2 shows, our approach outperforms the other two in all studied cases, in both granularity levels, reaching

lowest error values and standard deviations. It is alsoworth noticing that the addition of Rician noise induces overfitting
of the qτ -dMRI signal representation fornmax > 200. As a consequence, our approach handles better the noisy data in
the optimization by shells scenario, having 20 times less free parameters, than the optimization by measures.

We compared all the pairs of results, i.e. ours vs. random and ours vs. even, in both granularity levels, using paired
two-sample Student’s t-tests with the Bonferroni adjusted significance levelα = 10−5 and the number of degrees of
freedom 2n− 2 = 58. In each case, our approachwas statistically significantly better than the other two schemes.

[Table 2 about here.]
In order to study the stability of our proposedmethod, we distilled a single best acquisition scheme found in each of

the 30 runs of SGA.Next, we arranged these solutions byMSEs and selected the top 10%out of them. Figure 4 illustrates
the averages of those schemes. Note the perfect similarity between the best schemes found by SGA, presented in
Figure 4(a), and the global optimum depicted in Figure 1(a). Furthermore, the concentrations of high likelihood (red
squares) in Figure 4 tend to form shapes that are especially visible in the optimization by shells scenario. The latter
suggests that SGA repeatedly converges to the same or highly similar solutions in each run, thus giving stable outputs.

[Figure 4 about here.]

In vivo experiments:
Figure 3 (right-column plots) and Table 3 present the results for the C57Bl6 wild-type mouse corpus callosum (CC).
Table 3 details the three regions of interest, i.e. genu, body, and splenium, and the time budgetsnmax ∈ {100, 200, 300,
400}. Our method outperforms the other two significantly, which we verified using the same type of Student’s t-test as
above. However, unlike in silico experiment, there is no superiority of optimization by shells over optimization by measures
here. In fact, the residuals in both scenarios are comparable, with slightly lower averages in optimization by measures for
smallnmax, whereas optimization by shells gives lower averages for largenmax.

[Table 3 about here.]
Analogously to the in silico experiment, we illustrate the averaged top 10% acquisition schemes obtained with SGA

in the form of heat maps depicted in Figure 5. Here also the gradually smoothing patterns are present as in Figure 4.
[Figure 5 about here.]



PATRYK FILIPIAK ET AL. 9

Spatio-temporal indices:
Figures 6 and 7 present the reconstruction of spatio-temporal indices RTOP, RTAP, RTPP,MSD± 1 standard deviation
withnmax = 100, obtained for in silico and in vivo experiments respectively. The black lines show the reference curves
obtained from the densely acquired signal, whereas the color lines represent even (blue), random (green), and ours (red)
subsampling schemes. In addition, Supporting Information Figures S1 and S2 present the diffusion tensor related curves
of mean, axial and radial diffusivity, and fractional anisotropy for in silico and in vivo experiments respectively.

As it is seen in Figure 6, all the indices are well preserved under subsampling by the three tested schemes in the
noiseless case of in silico experiment. However, the discrepancies between the reconstructed and the reference curves
readily increase with the addition of noise. Also, index dispersion grows as SNR decreases and diffusion time increases.

The differences between the reconstructed and the reference curves are similar in the in vivo experiment presented
in Figure 7. Generally, all the tested schemes give comparable outputs, although the results of our approach are less
dispersed in this case. The highest accuracy is reached at the splenium region, while there are considerable errors in the
body.

[Figure 6 about here.]
[Figure 7 about here.]

5 | DISCUSSION
It is beyond doubt that acquisition timematters, especially in long-lasting protocols like dMRI. In this paper, we propose
amethod to shorten acquisition timewith reduced signal loss by optimizing the sampling scheme in the (q, τ) parameter
space. Additionally, wewant our scheme to preserve temporal changes in diffusion signal, hencewe study the qτ -indices
presented in Section 3.

In practice, our approach helps to accelerate the acquisition for the use of qτ -dMRI signal representation. It is
crucial, since the latter allows to extrapolate the signal outside qτ -samples.

5.1 | Our approachmaximizes signal reconstruction accuracy
The accuracy of WM microstructure recovery grows monotonically with an increase of dMRI acquisition density,
although the contributions of particular DWIs to themeasured signal attenuation are not equal. This indicates the need
for identifying a variable-density for acquiring the dMRI signal. Our method, described in Section 3, seeks a fixed-sized
set of samples that provide themost accurate signal reconstruction with respect to the reference data obtainedwith
the dense acquisition scheme. In other words, our approach allows to reach high accuracy within a controllable time
budget.

As we can see, by comparing Figures 1 and 4, our approach is able to find nearly-optimal solutions in less then
30 iterations of the proposed algorithm (cf. Figure 2). The accuracy of dMRI signal reconstruction obtainedwith our
technique is significantly better than random or even subsampling of the densely acquired signal, as we can observe in
Tables 2 and 3, as well as Figure 3

5.2 | Scheme optimization is most profitable in short acquisition times
In our experiments, we studied the four time budgetsnmax ∈ {100, 200, 300, 400} out of 800 densely acquired samples.
Both, in silico (cf. Table 2 and Figure 3) and in vivo experiments (cf. Table 3 and Figure 3), showed that superiority of
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our technique wasmost evident in the cases with tightest time constraints nmax = 100, which is 1/8 of the original
time span. For nmax ≥ 200, the differences in residuals of the dMRI signal reconstruction among the three tested
approaches decreased gradually. Also, overfitting of the qτ -dMRI signal emerged asnmax grew. This means that the
less imaging timewe had, themorewe benefited from the acquisition scheme optimization. On the other hand, when
small speed-ups were concerned (e.g. 1/2 of the original time span), our optimization seemed unnecessary. Theway
to go in such cases was as simple as to remove gradient directions from the dMRI scanning protocol evenly, i.e. every
second one for 1/2 time save, every third one for 1/3, and so on.

5.3 | The optimized schemes form repetitive patterns
In agreement with Caruyer et al. [13], we believe there can be no single all-purpose optimal acquisition scheme. The
imaging parameters depend on numerous factors including the needs of a givenWMmicrostructure recoverymethod,
the time constraints, and the physical limitations of a scanner. That is whywe propose a data-drivenmechanismwhich is
able to adapt to varying imaging conditions bymaximizing the accuracy of the signal reconstructed with qτ -dMRI.

Alexander [1] and Caruyer et al. [13] postulated that an angular coverage of gradient directions across the sphere
should be “as uniform as possible” in order to ensure orientational invariance of a scheme. The results of our study
partly comply with those remarks. Note that the additional parameters which controlled the distribution of gradient
directions introduced in the optimization by measures scenario improved the reconstruction accuracy in the noiseless
cases only, compared to the coarse-grained optimization by shells. Apparently, the ad hoc alterations that we made
possible after freeing the space of gradient directions were of little importance for the signal reconstruction accuracy.
We thus conclude that studying our problem at such a fine-grained level might be an overhead in real-world applications.
On the other hand, there is a possibility that choosing a different (i.e. non-uniform) scheme for the dense pre-acquisition
would lead to slightly different conclusions in this regard, which leaves a room for further improvement of the proposed
technique.

Apparently, setting up the parametersG and∆ is more difficult than handling gradient directions. An analogue
of the simplistic “as uniform as possible” strategy, that we had called the even scheme in our experiments, turned out
insufficient in this case. Tables 2 and 3 show that the above approach gavemediocre results, roughly comparable to the
naive random subsampling scheme.

The heat maps presented in Figures 4 and 5 shed some light on the optimized schemes obtained with our approach.
The distribution of parameters forms clusters of points in the (G,∆) space, especially in the optimization by shells
scenario. In the optimization by measures, both in silico and in vivo, the dominance of lowG-values emerges as nmax
increases.

In the similar experiment described by Alexander [1], the distribution of pulse lengths∆ was close to uniform,
although it camewith the dominance of largest G-values which is not the case in our study. The above discrepancy is
most probably caused by the differences in objective functions. Alexander’s work targeted particular biomarkers like
axon density and radius inWM, whereas we maximize reconstruction accuracy of a dMRI signal using our qτ signal
representation. This in turn brings us again to the earlier remark that the notion of acquisition scheme optimality is
highly problem-dependent.

5.4 | Globally optimal acquisition schemesmay be beyond reach
It is proved that the SGA optimization engine, that we use here, will always converge to global optimumwhen given
enough time [15]. Nevertheless, the question “how much time is enough?” is generally unanswerable, as it requires
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thorough analysis of each problem in hand.
For better understanding of our parameter space, we illustrate the full spectrum of feasible acquisition schemes at

the top row of Figure 1. The solutions are arranged from best to worst, i.e. from the lowestMSE of signal reconstruction
on the left-hand side boundary to the highest one on the right. Such arrangements is convenient to visualize the accuracy
of potential solutions, althoughwemust point out that it disregards the space topology. On the top-left plot in Figure 1,
there is a narrowvalley in the proximity of global optimumand the high peek on the other side of the plot. Between them,
there is a large interval of low steepness. Such a curve shape suggests that the globally best solution can be difficult
to find using randomized approaches, since it is not surrounded by a considerable neighborhood of nearly-optimal
ones. Indeed, the curve of the normalized Hamming distance to the global optimum (in the feature space), depicted
at the top-right plot in Figure 1, grows rapidly with the quantiles pc. Tomakematters worse, the low steepness in the
middle of the top-left plot indicates a possibly large number of local minima or plateau areas which in turn would hinder
the numerical optimization techniques like GAs. Both those observations suggest that with an increase of problem
complexity, chances of finding global optimawill decrease rapidly.

Our experiments showed that SGAwas able to find the global optimum in the optimization by shells scenario with
synthetic diffusion data andnmax = 100 (cf. Figures 1 and 4). However, it is very likely that in difficult problems like
optimization by measures, we found sub-optimal solutions instead.

5.5 | Our approach preserves spatio-temporal indices when reducing acquisition time
As it is seen in Figures 6 and 7, the four analyzed spatio-temporal indices are preservedwhen using our approach. The
even subsampling scheme produces comparably good averages, however the curves are much more dispersed. On
the other hand, the random subsampling scheme often gives closer approximations, albeit disregarding the shape of
the curve producing a linear fit. Our approach better reproduces the shape of the reference curves although with
an increased bias. Additionally, our method performs better on the diffusion tensor indices, particularly Fractional
Anisotropy, presented in Supporting Information Figures S1 and S2.

Theobservedagreementwith the reference qτ indices,whichwerenot included in theobjective function introduced
in Section 3, suggests that our method is able to generalize well. With nmax = 100, we avoided overfitting to noise
that was present in the densely pre-acquired signal. On the other hand, it might be interesting to extend the objective
function, by addingmultiple criteria covering, for instance, mean squared displacement or fractional anisotropy.

We also find it promising that the spatio-temporal signal representation itself turned out to harmonize efficiently
with our approach. Note that all the plots of qτ indices presented here illustrate the results for the tightest time budget
nmax = 100. This implies again that a great deal of acquisition time can be savedwithout much compromise on dMRI
signal accuracy.

The studied diffusion times, 10-20ms, cover the range of∆ values that were feasible for the pulsed-gradient spin
echo mode due to the T2 decay time. Note that the qτ indices computed with our approach smoothly interpolate
between sampled diffusion times. Also, our qτ -dMRI signal representation is able to extrapolate the index values
outside themeasured time interval, although the accuracy in such cases requires further investigation.

6 | CONCLUSIONS
We proposed the spatio-temporal dMRI acquisition design that greatly reduces the number of qτ samples under
the adjustable quality loss. Despite the fact that selecting a sampling scheme that maximizes brain white matter
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reconstruction accuracy and satisfies given time constraints is NP-hard, our stochastic optimizationmechanism based
on genetic algorithm found sub-optimal solutions efficiently.

The experiments on both synthetic diffusion data and in vivo images of theC57Bl6wild-typemouse corpus callosum
revealed superiority of our technique over random subsampling and even distribution in the qτ space. Our approach
performed best under the tightest among all the considered time constraints, leading to reduction of acquisition time
to 1/8 of the original time span. Additionally, we observed repetitive patterns in our optimized schemes that gave
us crucial insight about the space of acquisition parameters. The latter is really promising for future identification of
optimal sampling density.

In this study, we assumed availability of a densely acquired dMRI signal for reference, although it is not often the
case. Nonetheless, we believe that our preliminary work will allow to uncover the optimal sampling density in the (q, τ)

space for optimal recovery of the EAP, and thus the optimal range of acquisition parametersG and∆.
Future work should target the reproducibility of our approach among different subjects and scanners. For instance,

the risk of peripheral nerve stimulation while using high gradient magnitudes should be taken into account. Also,
different areas ofWM tissue need to be studied, including for instance crossing fibers. Finally, the optimizer itself might
be improved to ensure faster convergence and adaptability, and thus achieve lower average quality loss of solutions.
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L I S T OF F I GURES
1 Exhaustive search results of the optimization by shells for the in silico experiment with nmax = 100.

The plots at the top present all the 658,008 feasible acquisition schemes arranged from best to worst,
illustrating themean squared errors (MSEs) of signal reconstruction (top-left plot) and the normalized
Hamming distances from the global optimum± 1 standard deviation (top-right). In order to visualize the
analyzed (G,∆) parameter space, the percentiles pc = 0%, 1%, 10%, 50%, 90% are annotated on both
plots, showing respectively the global optimum, the top 1% solutions, the top 10% solutions, etc. The
corresponding cumulative averages of acquisition schemes are depicted in the heat maps at the bottom.
The colors reflect the likelihood of a given (G,∆) pair in the scheme. The heat maps for pc ≤ 0% and
pc ≤ 1% represent, respectively, the global optimum and its proximity. The interval between pc = 10%

and pc = 90% contains a huge spectrumof schemeswith similarMSEs and almost equally large distances
from the global optimum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 The convergence of our method is reached before the 30th iteration of the algorithm. The plots present
the convergence curves averaged over 30 runs of SGA in the optimization by shells scenario for the in
silico experiment with the Rician noise, SNR=20db (the upper plot), and the C57Bl6 wild-type mouse
corpus callosum body (the lower plot). The time budgetsnmax ∈ {100, 200, 300, 400} are color-coded. . 19

3 Our approach significantly outperforms the other two subsampling schemes (with p-value< 10−5) in
both granularity levels: optimization by shells (top-row plots) and optimization by measures (bottom-row
plots), reaching lower means and standard deviations. The plots present the residuals of the dMRI
signal reconstruction for the in silico experiment with the dispersion controlled by the concentration
parameter κ = 4 and SNR=20 (13dB) (left-column plots) and the body part of C57B16wild-typemouse
corpous callosum (right-column plots), for the time budgetsnmax ∈ {100, 200, 300, 400}. The results
are expressed as normalized root mean squared errors (NRMSEs) of signal reconstruction with standard
deviations (STDs) aggregated over 30 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 The concentrations of high likelihood (red squares) tend to form consistent shapes that are especially
visible in the optimization by shells scenario. The plots present the averages of the top 10% acquisition
schemes found by SGA in the optimization by shells scenario (top row) and the optimization by measures
scenario (bottom row) for the in silico experiment with the time budgetsnmax ∈ {100, 200, 300, 400}.
The colors reflect the likelihood of a given (∆, G) pair in the scheme. . . . . . . . . . . . . . . . . . . . . 21

5 The concentrations of high likelihood (red squares) tend to form consistent shapes that are especially
visible in the optimization by shells scenario. The plots present the averages of the top 10% acquisition
schemes found by SGA in the optimization by shells scenario (top row) and the optimization by measures
scenario (bottom row) for the body region of the C57Bl6 wild-typemouse corpus callosum, and the time
budgets nmax ∈ {100, 200, 300, 400}. The colors reflect the likelihood of a given (∆, G) pair in the
scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 All the tested schemes give comparable index curves for the in silico experiment. The plots present
the reconstruction of spatio-temporal indices RTOP, RTAP, RTPP, MSD ± 1 standard deviation with
nmax = 100. The black plots show reference curves obtained from the densely acquired signal, the color
plots represent even (blue), random (green), and ours (red) subsampling schemes. As expected, the RTOP,
RTAP, and RTPP indices are decreasing, whereasMSD is increasing with diffusion time. . . . . . . . . . . 23
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7 Our approach ensures the least dispersed outputs. The plots present the reconstruction of spatio-
temporal indices RTOP, RTAP, RTPP,MSD± 1 standard deviation with nmax = 100, obtained for the
three regions of C57Bl6 wild-typemouse corpus callosum (CC). The black plots show reference curves
obtained from the densely acquired signal, the color plots represent even (blue), random (green), and ours
(red) subsampling schemes. As expected, the RTOP, RTAP, and RTPP indices are decreasing, whereas
MSD is increasing with diffusion time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

S1 Our approach ensures the least dispersed outputs. The plots present the reconstruction of Mean
Diffusivity, Axial Diffusivity, Radial Diffusivity, and Fractional Anisotropy indices± 1 standard deviation
with nmax = 100 in the optimization by measures, obtained for the in silico experiment either with or
without Rician noise. The black plots show reference curves obtained from the densely acquired signal,
the color plots represent even (blue), random (green), and ours (red) subsampling schemes. . . . . . . . . . 25

S2 Our approach ensures the least dispersed outputs. The plots present the reconstruction of Mean
Diffusivity, Axial Diffusivity, Radial Diffusivity, and Fractional Anisotropy indices± 1 standard deviation
withnmax = 100, obtained for the three regions of C57Bl6 wild-typemouse corpus callosum (CC). The
black plots show reference curves obtained from the densely acquired signal, the color plots represent
even (blue), random (green), and ours (red) subsampling schemes. . . . . . . . . . . . . . . . . . . . . . . . 26
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Exhaustive search results

F IGURE 1 Exhaustive search results of the optimization by shells for the in silico experiment withnmax = 100. The
plots at the top present all the 658,008 feasible acquisition schemes arranged from best to worst, illustrating themean
squared errors (MSEs) of signal reconstruction (top-left plot) and the normalized Hamming distances from the global
optimum± 1 standard deviation (top-right). In order to visualize the analyzed (G,∆) parameter space, the percentiles
pc = 0%, 1%, 10%, 50%, 90% are annotated on both plots, showing respectively the global optimum, the top 1%

solutions, the top 10% solutions, etc. The corresponding cumulative averages of acquisition schemes are depicted in the
heat maps at the bottom. The colors reflect the likelihood of a given (G,∆) pair in the scheme. The heat maps for
pc ≤ 0% and pc ≤ 1% represent, respectively, the global optimum and its proximity. The interval between pc = 10%

and pc = 90% contains a huge spectrum of schemes with similarMSEs and almost equally large distances from the
global optimum.
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Convergence of SGA

F IGURE 2 The convergence of our method is reached before the 30th iteration of the algorithm. The plots present
the convergence curves averaged over 30 runs of SGA in the optimization by shells scenario for the in silico experiment
with the Rician noise, SNR=20db (the upper plot), and the C57Bl6 wild-typemouse corpus callosum body (the lower
plot). The time budgetsnmax ∈ {100, 200, 300, 400} are color-coded.



20 PATRYK FILIPIAK ET AL.

100 200 300 4000

50

100

150

200

250

300

OP
TI

M
IZ

AT
IO

N 
BY

 S
HE

LL
S

NR
M

SE
 x

10
33

In silico experimen−
(concentration κ= 4, SNR=20)

ours
random
even

100 200 300 4000

50

100

150

200

250

300

C57Bl6 wild-type mouse
Corpus Callosum body

ours
random
even

100 200 300 400
Number of sub-samples

(nmax)

0

50

100

150

200

250

OP
TI

M
IZ

AT
IO

N 
BY

 M
EA

SU
RE

S

NR
M

SE
 1

10
−3

ours
random
even

100 200 300 400
Number of sub-samples

(nmax)

0

50

100

150

200

250 ours
random
even

F IGURE 3 Our approach significantly outperforms the other two subsampling schemes (with p-value< 10−5) in
both granularity levels: optimization by shells (top-row plots) and optimization by measures (bottom-row plots), reaching
lowermeans and standard deviations. The plots present the residuals of the dMRI signal reconstruction for the in silico
experiment with the dispersion controlled by the concentration parameter κ = 4 and SNR=20 (13dB) (left-column
plots) and the body part of C57B16wild-typemouse corpous callosum (right-column plots), for the time budgets
nmax ∈ {100, 200, 300, 400}. The results are expressed as normalized root mean squared errors (NRMSEs) of signal
reconstruction with standard deviations (STDs) aggregated over 30 runs.
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F IGURE 4 The concentrations of high likelihood (red squares) tend to form consistent shapes that are especially
visible in the optimization by shells scenario. The plots present the averages of the top 10% acquisition schemes found by
SGA in the optimization by shells scenario (top row) and the optimization by measures scenario (bottom row) for the in
silico experiment with the time budgetsnmax ∈ {100, 200, 300, 400}. The colors reflect the likelihood of a given (∆, G)

pair in the scheme.
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F IGURE 5 The concentrations of high likelihood (red squares) tend to form consistent shapes that are especially
visible in the optimization by shells scenario. The plots present the averages of the top 10% acquisition schemes found by
SGA in the optimization by shells scenario (top row) and the optimization by measures scenario (bottom row) for the body
region of the C57Bl6 wild-typemouse corpus callosum, and the time budgetsnmax ∈ {100, 200, 300, 400}. The colors
reflect the likelihood of a given (∆, G) pair in the scheme.



PATRYK FILIPIAK ET AL. 23

F IGURE 6 All the tested schemes give comparable index curves for the in silico experiment. The plots present the
reconstruction of spatio-temporal indices RTOP, RTAP, RTPP,MSD± 1 standard deviation withnmax = 100. The black
plots show reference curves obtained from the densely acquired signal, the color plots represent even (blue), random
(green), and ours (red) subsampling schemes. As expected, the RTOP, RTAP, and RTPP indices are decreasing, whereas
MSD is increasing with diffusion time.
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F IGURE 7 Our approach ensures the least dispersed outputs. The plots present the reconstruction of
spatio-temporal indices RTOP, RTAP, RTPP,MSD± 1 standard deviation withnmax = 100, obtained for the three
regions of C57Bl6 wild-typemouse corpus callosum (CC). The black plots show reference curves obtained from the
densely acquired signal, the color plots represent even (blue), random (green), and ours (red) subsampling schemes. As
expected, the RTOP, RTAP, and RTPP indices are decreasing, whereasMSD is increasing with diffusion time.
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SUPPORT ING INFORMATION F IGURE S1 Our approach ensures the least dispersed outputs. The plots
present the reconstruction ofMeanDiffusivity, Axial Diffusivity, Radial Diffusivity, and Fractional Anisotropy indices±
1 standard deviation withnmax = 100 in the optimization by measures, obtained for the in silico experiment either with
or without Rician noise. The black plots show reference curves obtained from the densely acquired signal, the color
plots represent even (blue), random (green), and ours (red) subsampling schemes.
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SUPPORT ING INFORMATION F IGURE S2 Our approach ensures the least dispersed outputs. The plots
present the reconstruction ofMeanDiffusivity, Axial Diffusivity, Radial Diffusivity, and Fractional Anisotropy indices±
1 standard deviation withnmax = 100, obtained for the three regions of C57Bl6 wild-typemouse corpus callosum
(CC). The black plots show reference curves obtained from the densely acquired signal, the color plots represent even
(blue), random (green), and ours (red) subsampling schemes.
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intra-cellular fraction extra-cellular fraction
parameter’s name value ref. parameter’s name value ref.
fraction weight 0.3 [11] fraction weight 0.7 [11]
principal orientation µ azim.: π/2, elev.: 0 principal orientation µ azim.: π/2, elev.: 0
parallel diffusivity λ‖ 1.7× 10−9 m2/s [2] parallel diffusivity λ‖ 1.7× 10−9 m2/s [2]
cylinder diameter d 1.0× 10−6 m [2] bulk diffusivity constant λ∞ 6.5× 10−10 m2/s [11]
concentration parameter κ 4 [60] characteristic coefficientA 7.41× 10−12 m2 [11]

TABLE 1 Parameters used for generating the in silico diffusion data with the values taken from the referenced
literature. Only the principal orientation was chosen arbitrary. TheWatson distribution is an antipodally symmetric
distribution, centered around the principal orientation µ, describing a density controlled by concentration parameter
κ > 0, which is inversely related to the dispersion of cylinders.
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time NRMSE± STD [×10−3
]

noise budget optimization by shells optimization bymeasures
nmax ours random even ours random even
100 17.3± 0.72 43.7± 22.70 23.5 14.9± 0.14 23.3± 3.23 28.1

noiseless 200 13.2± 0.26 21.8± 4.85 15.7 12.7± 0.13 15.8± 0.71 21.9
signal 300 12.1± 0.15 18.5± 4.35 16.4 12.2± 0.07 14.5± 0.53 14.0

400 11.8± 0.06 16.2± 2.55 13.1 11.7± 0.08 14.0± 0.46 14.3
100 165.6± 1.06 225.4± 40.15 192.1 166.6± 0.41 184.4± 2.49 186.6

SNR=20 200 161.5± 0.39 196.8± 29.45 190.4 162.7± 0.21 177.9± 3.03 183.8
(13dB) 300 158.6± 0.15 184.3± 18.75 171.1 160.5± 0.18 173.2± 1.75 172.4

400 157.3± 0.18 174.5± 9.16 169.6 159.0± 0.22 170.2± 2.12 171.9
100 275.6± 1.51 329.0± 28.08 304.5 273.6± 0.64 298.5± 4.64 304.7

SNR=10 200 266.8± 0.48 301.1± 20.03 299.5 268.4± 0.43 288.8± 3.41 297.8
(10dB) 300 263.7± 0.28 291.2± 16.55 281.3 266.5± 0.97 283.6± 3.47 283.0

400 262.1± 0.51 283.7± 13.34 279.7 264.6± 0.18 279.4± 2.24 280.3

TABLE 2 Our approach significantly outperforms the other two subsampling schemes (with p-value< 10−5) in
both granularity levels (by shells and bymeasures), reaching lowermeans and standard deviations. The tables present the
residuals of the dMRI signal reconstruction for the in silico experiment and the time budgetsnmax ∈ {100, 200, 300,
400}. The results are expressed as normalized root mean squared errors (NRMSEs) of signal reconstruction with
standard deviations (STDs) aggregated over 30 runs. The STD is omitted in the even schemewhich is deterministic and
thus its STD=0.
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region time NRMSE± STD [×10−3
]

of budget optimization by shells optimization bymeasures
interest nmax ours random even ours random even

100 110.2± 0.45 131.6± 14.98 120.1 106.9± 0.33 118.9± 1.95 120.8
CC 200 103.7± 0.17 112.7± 4.18 112.1 102.8± 0.14 109.8± 1.10 114.1
genu 300 101.7± 0.14 108.3± 3.11 106.9 101.5± 0.09 106.4± 0.78 106.5

400 100.6± 0.05 104.9± 1.75 105.4 100.8± 0.13 104.1± 0.52 104.1
100 127.6± 0.85 172.2± 44.30 144.2 122.9± 0.54 142.1± 3.28 155.3

CC 200 116.1± 0.45 136.2± 9.83 132.7 116.6± 0.19 128.4± 1.76 149.7
body 300 111.9± 0.36 124.8± 6.41 122.0 113.4± 0.20 121.4± 1.73 124.1

400 109.9± 0.22 118.9± 3.13 119.1 111.5± 0.10 116.8± 1.16 119.9
100 107.0± 1.09 133.3± 19.75 123.1 104.4± 0.37 117.9± 2.80 131.1

CC 200 101.4± 0.41 111.2± 4.82 109.6 100.9± 0.11 108.4± 1.32 141.0
splenium 300 99.9± 0.42 105.7± 2.23 106.8 99.6± 0.09 104.2± 0.75 104.4

400 99.0± 0.42 103.2± 1.46 103.7 98.6± 0.12 101.9± 0.53 103.8

TABLE 3 Our approach significantly outperforms the other two subsampling schemes (with p-value< 10−5) in
both granularity levels (by shells and bymeasures), reaching lowermeans and standard deviations. The tables present the
residuals of the dMRI signal reconstruction for the three regions of C57Bl6 wild-typemouse corpus callosum (CC) and
the time budgetsnmax ∈ {100, 200, 300, 400}. The results are expressed as normalized root mean squared errors
(NRMSEs) of signal reconstruction with standard deviations (STDs) aggregated over 30 runs. The STD is omitted in the
even schemewhich is deterministic and thus its STD=0.


