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AX-LINDEMANN-WEIERSTRASS WITH DERIVATIVES AND THE GENUS 0

FUCHSIAN GROUPS

GUY CASALE, JAMES FREITAG, AND JOEL NAGLOO

To Keiji Nishioka on his retirement.

ABSTRACT. We prove the Ax-Lindemann-Weierstrass theorem with derivatives for the uni-
formizing functions of genus zero Fuchsian groups of the first kind. Our proof relies on dif-
ferential Galois theory, monodromy of linear differential equations, the study of algebraic
and Liouvillian solutions, differential algebraic work of Nishioka towards the Painlevé ir-
reducibility of certain Schwarzian equations, and considerable machinery from the model
theory of differentially closed fields.

Our techniques allow for certain generalizations of the Ax-Lindemann-Weierstrass the-
orem which have interesting consequences. In particular, we apply our results to give a
complete proof of an assertion of Painlevé (1895). We also answer certain cases of the André-
Pink conjecture, namely in the case of orbits of commensurators of Fuchsian groups.

1. INTRODUCTION

In this paper our central work is to prove a series of functional transcendence results for
the automorphic functions jΓ associated with a Fuchsian group Γ of genus 0. We will also
refer to the automorphic function jΓ as a Hauptmodul or uniformizing function of Γ. Our
general results are most easily expressed in the language of model theory and algebraic
differential equations, but a special case of our functional transcendence results is what has
come to be called the Ax-Lindemann-Weierstrass theorem with derivatives for jΓ:

Theorem 1.1. Let C(V) be an algebraic function field, where V ⊂ An is an irreducible algebraic
variety defined over C. Let

t1, . . . , tn ∈ C(V)

take values in the upper half complex plane H at some P ∈ V and are geodesically independent 1.
Then the 3n-functions

jΓ(t1), j′Γ(t1), j′′Γ (t1) . . . , jΓ(tn), j′Γ(tn), j′′Γ (tn)

(considered as functions on V(C) locally near P) are algebraically independent over C(V).
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1We say that t1, . . . , tn are geodesically independent if ti is nonconstant for i = 1, . . . , n and there are no
relations of the form ti = γtj for i 6= j, i, j ∈ {1, . . . , n} and γ is an element of the commensurator of Γ.
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One can also describe Theorem 1.1 in more geometric terms. Let W ⊂ An(C) be an
algebraic variety which has a nonempty intersection with Hn. Theorem 1.1 precisely char-
acterizes those varieties W whose image under the automorphic function (and derivatives)
applied to each coordinate:

j̄Γ : (t1, . . . , tn) 7→ (jΓ(t1), j′Γ(t1), j′′Γ (t1) . . . , jΓ(tn), j′Γ(tn), j′′Γ (tn))

is contained in a proper algebraic subvariety of C3n. Intuitively, the function jΓ is highly
transcendental, so the varieties obtained in this way should be restricted to a very special
class. Indeed, Theorem 1.1 says that if j̄Γ(W) is an algebraic variety, then W must have
been defined by instances of relation of the form ti = γtj where γ is an element of the
commensurator of Γ, giving a very restrictive (countable) class of complex varieties coming
from the image of j̄Γ.

As we will explain in additional detail below, our methods also allow for more general
results, which are most naturally stated in the language of model theory. For instance,
statements incorporating other transcendental functions on additional coordinates (such
as Weierstrass ℘-functions and exponential functions on semi-abelian varieties) similar to
Theorem 1.6 of [49] will follow from our general result.

Theorem 1.1 is a generalization of Theorem 1.6 of [49] and Theorem 1.1 [48], in which
Pila established the special case with one group Γ = PSL2(Z) (in [49] without derivatives
and later in [48] with derivatives). Theorem 1.1 also overlaps nontrivially with a number
of recent results, which we detail next. Note that most of the following results do not in-
volve the derivatives of the automorphic functions in question and are mainly concerned
with arithmetic groups. Pila and Tsimerman [52] generalized Theorem 1.6 of [49] to the
uniformizing functions associated with the moduli spaces of higher dimensional abelian
varieties (their result specializes to Theorem 1.6 of [49] for purposes of comparing with
Theorem 1.1). In a different direction, Pila and Tsimerman [51] generalized Theorem 1.6 of
[49] to an Ax-Schanuel type statement for the j-function. In [66], Ullmo and Yafaev prove
an Ax-Lindemann-Weierstrass result for the uniformizing functions of cocompact Shimura
varieties (without derivatives), and so a statement of Theorem 1.1 without derivatives in
the case that Γ is arithmetic and cocompact is a consequence of their work. Later, Klinger,
Ullmo, and Yafaev [22] removed the assumption of cocompactness, and Gao [14] general-
ized the result to mixed Shimura varieties. Finally, Mok, Pila, and Tsimerman [34] have
established the (more general) Ax-Schanuel theorem with derivatives for the uniformizing
function of a Shimura variety.

The previous Ax-Lindemann-Weiestrass (ALW for short) results discussed above em-
ploy various techniques from group theory, complex variables, and number theory, but
each one also shares a common element in their approach: a tool called o-minimality orig-
inating in model theory. The theory of o-minimality is a natural generalization of real
algebraic geometry to include certain non-oscillatory transcendental functions. It was de-
veloped starting in the 1980s by model theorists [71], but in the early 2000s, o-minimality
was connected with various aspects of number theory in part through the work of Pila
and Wilkie [53] and Peterzil and Starchenko [44, 47, 46]. The counting theorem of Pila-
Wilkie has precursors coming from number theory before the connection to o-minimality
was made. See, for instance, the work of Bombieri and Pila [6] and the related manuscript
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of Sarnak [61]. Diophantine properties of definable sets in o-minimal structures had also
been previously investigated by Wilkie [74]. However, following the Pila-Wilkie theorem,
there has been an explosion of work. In [54], the Pila-Wilkie theorem was employed by
Pila and Zannier to give a new proof of the Manin-Mumford conjecture. The strategy
was immediately taken up by Masser and Zannier [30] to prove a a special case of Pink’s
relative Manin-Mumford conjecture, while Pila [50] gave new proofs of results of a Manin-
Mumford-André-Oort flavor.

The common line of reasoning in the results mentioned in the previous several para-
graphs is to embed the problem in an o-minimal context by proving that the a certain ana-
lytic function (restricted to an appropriate fundamental domain) is interpretable in Ran,exp,
an o-minimal structure in which the definable sets are given by inequalities built from
the algebraic functions, the exponential function, and real analytic functions restricted to
bounded sets. Following this, variants of the Pila-Zannier strategy or definable versions of
results from complex geometry [45] are used to detect and characterize algebraic relations.

Our approach is completely different, and does not employ the theory of o-minimality at
all. Rather, our proof relies on differential Galois theory, monodromy, the study of alge-
braic and Liouvillian solutions to linear differential equations, differential algebraic work
of Nishioka towards the Painlevé irreducibility of certain Schwarzian equations, and con-
siderable machinery from the model theory of differentially closed fields.

Recently there has been a surge in interest around functional transcendence statements
of the type in Theorem 1.1, in part due to their connection with a class of problems from
number theory called special points conjectures or problems of unlikely intersections; in [49]
the Ax-Lindemann-Weierstrass theorem is central to the proof of the André-Oort conjec-
ture for Cn. Each of the other functional transcendence results mentioned above can be
applied in certain special points settings. For instance, in [10] Daw and Ren give applica-
tions of the Ax-Schanuel conjecture proved in [34]. Our functional transcendence results
are no exception - we apply them to certain cases of a special points conjecture called the
André-Pink conjecture, following Orr [41, 42]. Numerous variations on the conjecture are
possible (depending for instance, on the definition of Hecke-orbits one takes), but we will
describe the specific setup next.

Let V be a connected Shimura variety with (connected) Shimura datum (G, X+) such
that V = Γ \ X+, for some congruence subgroup Γ ⊂ G(Q) that stabilizes X+. The André-
Pink conjecture predicts that when W is an algebraic subvariety of V and S is the orbit of
the commensurator of Γ, Comm(Γ), on a point ā = (a1, . . . , an), if W ∩ S is Zariski dense in
W, then W is of a very restrictive form, which we will refer to as Γ-special, which we describe
next.

Let jΓ : X+ → V be a uniformisation map. When γ ∈ Comm(Γ), it turns out that
(jΓ(t), jΓ(γt)) are algebraically dependent and lie on an irreducible curve given by the
vanishing of a polynomial in two variables which we will refer to as a Γ-special polynomial.
The Γ-special varieties are intersections of zero sets of Γ-special polynomials and relations
of the form xi = bi where bi is in the Comm(Γ)-orbit of ai. Orr [41, 42] proved various
special cases of the conjecture (for instance, when W is an algebraic curve). In [12] Freitag
and Scanlon used Pila’s ALW with derivatives theorem from [48] to prove the André-Pink
conjecture when ā is assumed to be a transcendental point and Γ is commensurable with
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PSL2(Z). In this paper, we generalize that result to allow for an arbitrary Fuchsian group
Γ.

The central idea employed is a beautiful technique which has its origins in the work of
Hrushovski [17] and Buium [7]. In order to understand intersections of algebraic varieties
with an arithmetically defined set of points (e.g. torsion points on an algebraic group,
Hecke orbits, etc.), replace the arithmetic set with a more uniformly defined algebraic ob-
ject, the solution set of some algebraic differential differential or difference equation.

We replace our arithmetic objects (the orbits of the commensurators of some discrete
groups, Γ) by the solution sets of certain differential equations satisfied by the uniformiz-
ing functions jΓ. An inherent restriction of the technique is that it generally only works for
diophantine problems in function fields, hence the assumption that ā is a tuple of transcen-
dentals. In pursuing our approach to the André-Pink conjecture, it becomes necessary to
prove more far reaching functional transcendence results than the ALW theorem as stated
above; our results are most naturally phrased in terms of the model theory of differential fields,
one of the main tools we use to establish our results. One of the chief advantages of this
approach is that it leads to an effective solution of our case of André-Pink, that is, we are
able to give bounds on the degree of the Zariski closure of the intersection of Comm(Γi)-
orbits with a variety V, which depend on algebro-geometric invariants of the variety V.
So, for instance, if the variety V is a non-special curve (or a variety which does not contain
a special curve), we can give a bound on the number of special points contained in the
curve.

At the relevant sections of our paper (e.g. 5) we will give equivalent formulations in
algebro-geometric language of the model-theoretic properties we describe next. We prove
that for any Fuchsian group Γ, the set defined by the differential equation satisfied by the
uniformizing function jΓ is strongly minimal and has geometrically trivial forking geome-
try. This result generalizes work of [12] which covers the cases when Γ is commensurable
with PSL2(Z). In particular, our work gives many new examples of geometrically trivial
strongly minimal sets in differentially closed fields. This also establishes an interesting
new connection between two important dividing lines on the logic and group theory: the
differential equation satisfied by jΓ is ℵ0-categorical if and only if the group Γ is not arith-
metic. Further, we characterize all instances of nonorthogonality between these sets (each
such instance comes from commensurability of two groups Γ1 and Γ2). These results also
have various interesting consequences related to determining the isomorphism invariants
of differentially closed fields, which we will not explore further in this article.

We should also mention that this work gives a complete proof of an assertion of Painlevé
[43, Page 519], concerning the irreducibility of the differential equations satisfied by jΓ for
Γ a Fuchsian group. Irreducibility is closely related to the strong minimality of a differen-
tial equation, a connection pointed out in detail by Nagloo and Pillay [36]. The original
definition of irreducibility applies to nonlinear differential equations and was given by
Painlevé [43, pages 490-496]. A definition (for functions) using more modern language
was given by Umemura, for instance see [40, pages 754-755]. There have been claims (usu-
ally non-specific) that Painlevé’s definition is not completely rigorous. For instance, see
the third paragraph of page 755 of [40] and page 772 of [69]. These claims seem to origi-
nate with Umemura [68], however the only specific complaint with Painlevé’s definitions
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which we find there is related to some subtleties around algebraic and analytic groups
(for instance, see pages three and eight). Similar points are made also in [67]. These com-
plaints seem mainly to affect some proofs of results from [43], but not directly the definition
of irreducibility.

In [38] and [39], Nishioka proved a weak form of Painlevé’s assertion; various tech-
niques from Nihsioka’s paper have inspired our work.

Acknowledgements. G.C and J.N take this opportunity to thank the organizers of the
CIRM meeting ‘‘Algebra, Arithmetic and Combinatorics of Differential and Difference
Equations” in May 2018, where this research collaboration started. We also thank the
anonymous referees for their comments and suggestions.

2. THE BASIC THEORY

2.1. Fuchsian groups and the associated Schwarzian equations. We direct the reader
to [21] and [25] for the basics on Fuchsian groups and the corresponding automorphic
functions. The appendices of [72] also give a very detailed introduction to the associated
Schwarzian equations.

Let H be the upper half complex plane and let H := H ∪ P1(R). Recall that SL2(R) and

PSL2(R) acts on H (and H) by linear fractional transformation: for

(

a b
c d

)

∈ SL2(R) and

τ ∈ H
(

a b
c d

)

· τ =
aτ + b

cτ + d
.

This action yields all the orientation preserving isometries of H.
Let Γ ⊂ PSL2(R) be a Fuchsian group, that is, assume that Γ is a discrete subgroup of

PSL2(R). A point τ ∈ H is said to be a cusp if its stabilizer group Γτ = {g ∈ Γ : g · τ = τ}
has infinite order. We also assume throughout that Γ is of first kind (i.e., its limit set is

P1(R)) and of genus zero2 (i.e., Γ \ H can be compactified to a compact Riemann surface
of genus 0, cf. paragraph after Example 2.1). For any point τ ∈ H, the group Γτ is finite
and cyclic. A point τ ∈ H is said to be elliptic of order ℓ ≥ 2 if |Γτ | = ℓ. Our assumptions
on Γ ensure that modulo Γ there are only finitely many orbits under Γ of elliptic points. If
m1, . . . , mr denotes the orders of the elliptic points as well as of those of the cusps (which
would be ∞’s), then Γ is said to have signature (0; m1, . . . , mr). The zero here reflects that
Γ has genus 0. The group then has the following presentation

Γ =
〈

g1, . . . , gr : gm1
1 = . . . = gmr

r = g1 · · · gr = I
〉

When one or more of the mi’s are infinity, one simply remove the relations containing the
infinite mi’s in the above presentation.

2The methods of proof and results of the current article can be generalized with additional effort to the case
of arbitrary genus. This will be tackled in a forthcoming work of the authors along with D. Blásquez-Sanz
around Ax-Schanuel Theorems for Fuchsian functions.
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Example 2.1. PSL2(Z) is a Fuchsian (triangle) group of type (0; 2, 3, ∞). Recall that tradi-
tionally we might consider the following generators of SL2(Z):

T =

(

1 1
0 1

)

, S =

(

0 −1
1 0

)

.

Nonetheless, by setting g1 = −S, g2 = −T−1S and g3 = T one has that

SL2(Z) =
〈

g1, g2, g3 : g2
1 = g3

2 = g1g2g3 = −I
〉

.

PSL2(Z) is obtained from the above using the natural projection π : SL2(R) → PSL2(R).

As is well known, Γ acts on the set CΓ of its cusps and the action of Γ on HΓ := H ∪ CΓ,
yields a compact Riemann surface Γ \ HΓ or equivalently a projective non-singular curve
X(Γ), which is of genus zero. The group Γ is said to be cocompact if CΓ = ∅. In other
words, if the quotient Γ \ H is already a compact space. By an automorphic function for Γ,
we mean a meromorphic function f on H which is meromorphic at every cusp of Γ and
which is invariant under the action of Γ:

f (g · τ) = f (τ) for all g ∈ Γ and τ ∈ H.

One has that the field of automorphic functions A0(Γ) for Γ (or equivalently the field of
meromorphic functions of Γ \ HΓ) is isomorphic to the field C(X(Γ)) of rational functions
on X(Γ). By an Hauptmodul or uniformizer jΓ(t) for Γ we mean an automorphic function
for Γ which generates A0(Γ) (and so C(jΓ) ≃ C(X(Γ))). We will also write jΓ for the
biholomorphism Γ \ HΓ → P1(C). Let us point out that the function jΓ is not unique. This
follows from the existence of nontrivial automorphisms of the curve X(Γ). Moreover, it is
well known that the function jΓ is unique once its values at three points have been specified.

The uniformizer jΓ also satisfies a third order ordinary differential equation of Schwarzian
type:

(⋆) S d
dt
(y) + (y′)2 · RjΓ(y) = 0

where S d
dt
(y) =

(

y′′

y′

)′
− 1

2

(

y′′

y′

)2
denotes the Schwarzian derivative (′ = d

dt ) and RjΓ ∈

C(y) depends on the choice of jΓ. Moreover, the ‘shape’ of the function RjΓ , depends on
knowing the fundamental half domain for the Γ-action on H: Let us assume that it is given
by a polygon P with r vertices b1, . . . , br and whose sides are identified by pairs and having
internal angles α1π, . . . , αrπ. Then

RjΓ(y) =
1

2

r

∑
i=1

1 − α2
i

(y − ai)2
+

r

∑
i=1

Ai

y − ai

where jΓ(bi) = ai and the Ai’s are real numbers that do not depend on jΓ and satisfy
some very specific algebraic relations (cf. [72, page 142]).

Example 2.2. A well-known example is Γ = PSL2(Z) and jΓ is the classical j-function. In
this case the equation is given with

Rj(y) =
y2 − 1968y + 2654208

y2(y − 1728)2
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Γ = PSL2(Z) is an example of a triangle group. In the appendix the case of the Fuchsian
triangle groups is explained in more details. We also direct the reader to [4] where more
examples of uniformizers - beyond those attached to triangle groups - are studied.

There is a long tradition of functional transcendence results around automorphic func-
tions. For instance, a very weak form of our results was conjectured by Mahler, and an-
swered by Nishioka:

Fact 2.3 ([37]). The Hauptmodul jΓ satisfies no algebraic differential equation of order two or less
over C(t, eut), for any u ∈ C. The same is true for all Γ-automorphic functions.

Using the Seidenberg’s embedding theorem and the composition rule of the Schwarzian
derivative, we also have

Lemma 2.4 (cf. [12]). Let K be an abstract differential field extension of C(t) generated by
y1, . . . , yn solutions of equation (⋆). Here C is a finitely generated subfield of C. Then there are
elements g1, . . . , gn ∈ GL2(C) such that

K ∼= C〈t, jΓ(g1t), . . . , jΓ(gnt)〉.

Proof. By Seidenberg’s embedding theorem, we may assume that y1, . . . , yn are meromor-
phic functions on some domain U contained in H. Since the jΓ is a non constant holo-
morphic function from H to C, there are holomorphic functions ψi : U → H, such that
yi(t) = jΓ(ψi(t)). Repeating the arguments in [12] - using the composition rule for S d

dt
(y)

and the fact that jΓ(ψi(t)) is a solution of the equation (⋆) - we get that S d
dt
(ψi(t)) = 0.

Hence ψi(t) = git for some gi ∈ GL2(C). �

Remark 2.5. Notice that the g1, . . . , gn are not arbitrary elements of GL2(C). Indeed, since
the yi(t)’s are meromorphic on U ⊂ H, it must be that gi : U → H. Also, for each i, from

the inverse g−1
i of gi we have well defined solutions jΓ(g−1

i t) and jΓ(gjg
−1
i t) of (⋆).

In this paper, depending on the context, we will freely alternate between thinking of
solutions of the Schwarzian equation (⋆) as points in an abstract differential field or as
meromorphic functions of the form jΓ(gt). The latter form will always mean that g is an
element of GL2(C) that maps (a subset of) H to H.

2.2. Arithmetic Fuchsian groups. We have already seen one important dividing line among
those Γ, which we consider, namely whether or not Γ is cocompact. Another, perhaps even
more important (for our work) property that Γ might possess is that of arithmeticity. We
will begin by reviewing some key definitions. A standard reference for this subsection is
[73]. Throughout Γ ⊂ PSL2(R) is a Fuchsian group of first kind of genus zero.

Let F be a field of characteristic zero and let A be a quaternion algebra over F: a cen-
tral simple algebra of dimension 4 over F. Since the characteristic of F is zero, there are
elements i and j in A and a, b ∈ F∗ such that

i2 = a, j2 = b, ij = −ji,

and A = F + Fi + Fj + Fij. As customary, we use the Hilbert symbol notation A =
(

a,b
F

)

.

For α = a0 + a1i + a2 j + a3ij ∈ A, we define its conjugation as α = a0 − a1i − a2 j − a3ij ∈ A.
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Then, the reduced trace tr(α) is defined to be α + α = 2a0 ∈ F and the reduced norm n(α)
is defined to be αα = a2

0 − a2
1a − a2

2b + a2
3ab ∈ F.

Example 2.6. For example, the 2 × 2 matrices over F is given by M2(F) =
(

1,1
F

)

and in this

case the norm is simply the determinant.

If F = R or a non-Archimedean local field, then up to isomorphism, there are only two
quaternion algebras: M2(F) or a division algebra. When F is a number field and v a place
of F, we say that A splits at v if the localization A ⊗F Fv is isomorphic to M2(Fv). Here Fv

denote the completion of F with respect to v. If on the other hand A ⊗F Fv is isomorphic to
a division algebra, we say A ramifies at v. It is known that the number of ramified places
is finite and the discriminant of A is defined as the product of the finite ramified places.

Assume now that F is a totally real number field of degree k + 1 and we denote by OF

its ring of integers. Assume further that A splits at exactly one infinite place, that is,

A ⊗Q R ≃ M2(R)×Hk

where H is Hamilton’s quaternion algebra
(

−1,−1
R

)

. Then, up to conjugation, there is a

unique embedding ρ of A into M2(R). In particular for any α ∈ A, one has that n(α) =
det(ρ(α)).

Let O be an order in A, namely a finitely generated OF-module that is also a ring with
unity containing a basis for A, that is O⊗OF

F ≃ A. Denote by O1 the norm-one group of

O, that is O1 = {α ∈ O : n(α) = 1}. Then the image ρ(O1) of O1 under ρ is a discrete
subgroup of SL2(R). We denote by Γ(A,O) the projection in PSL2(R) of the group ρ(O1).

Definition 2.7. The group Γ is said to be arithmetic if it is commensurable with a group of
the form Γ(A,O).

Perhaps the best known example of an arithmetic group is PSL2(Z). Recall that two
groups Γ1 and Γ2 are commensurable, denoted by Γ1 ∼ Γ2, if their intersection Γ1 ∩ Γ2 has
finite index in both Γ1 and Γ2.

If Γ is arithmetic, then the quotient Γ \ H is called a Shimura curve. In this article, by
abuse of terminology we will refer to Γ \ H as a Shimura curve of genus g if and only if
Γ \HΓ is of genus g, and we are interested solely in the case where g = 0. As is well known,
Shimura curves are generalizations of classical modular curves. We direct the reader to [3]
and [65] where the Schwarzian equations for many examples of these curves are derived
and studied.

We now look at the connection between arithmeticity of Γ and existence of correspon-
dences on P1(C)× P1(C) whose preimage under jΓ is also algebraic (cf. [33] and [62]). Let
Comm(Γ) be the commensurator of Γ, namely

Comm(Γ) = {g ∈ PSL2(R) : gΓg−1 ∼ Γ}.

By a Comm(Γ)-correspondence on P1(C)× P1(C) we mean a subset of the form

X(ΓgΓ) = {jΓ(τ)× jΓ(g · τ) : τ ∈ HΓ}

where g ∈ Comm(Γ). It turns out that X(ΓgΓ) is an absolutely irreducible curve and that it
depends only on the coset ΓgΓ and not on the choice of g (cf. [62] Chapter 7). We suppose
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that X(ΓgΓ) is given by the equation Ψg̃(X, Y) = 0, so that Ψg̃(jΓ, jΓ(gt)) = 0. We write g̃
to highlight that the equation depends on ΓgΓ and not g. With this notation, for g1, g2 ∈
GL2(C) we more generally say that jΓ(g1t) and jΓ(g2t) are in Comm(Γ)-correspondence if
Ψg̃(jΓ(g1t), jΓ(g2t)) = 0 for some ΓgΓ. One has the following result of Margulis:

Fact 2.8 ([27]). The group Γ is arithmetic if and only if Γ has infinite index in Comm(Γ) and as a
result there are infinitely many Comm(Γ)-correspondences.

The modular polynomials (also known as Hecke correspondences) are the classical ex-
amples (when Γ = PSL2(Z)). Returning to the Schwarzian equations we see that arith-
metic Fuchsian groups of genus 0 give examples of ODE’s with rich binary relations.

2.3. A touch of Model theory. We end this section by saying a few words about the con-
cepts in model theory and differential algebra that will be required in the next sections.
We will then be ready to state the main results in the paper. Throughout we work in a
differentially closed field of characteristic zero.

Definition 2.9. A definable set Y is said to be strongly minimal if it is infinite and every
definable subset is finite or co-finite.

Remark 2.10. Let Y be defined by an ODE of the form y(n) = f (t, y, y′ , . . . , y(n−1)), where
f is rational over C(t) (this is of course the case for the sets defined by the Schwarzian
equations). Then Y is strongly minimal if and only if for any differential field extension K
of C and solution y ∈ Y , tr.deg.KK 〈y〉 = 0 or n.

Strong minimality is fundamental to the model theoretic approach to differential algebra
(cf. [36]). It is also closely related to the Painlevé notion of irreducibility of the ODE with
respect to classical functions [70]. It turns out that there is a very general classification of
strongly minimal sets in differentially closed fields about which we will say a few more
words in Section 5.1. For now, we only mention the kind of strongly minimal set that is
relevant for equation (⋆):

Definition 2.11. Let Y be an F-definable strongly minimal set. Then Y is geometrically trivial
if for any differential field extension K of F, and for any distinct solutions y1, . . . , ym, if

the collection consisting of y1, . . . , ym together with all their derivatives y
(j)
i is algebraically

dependent over K then for some i < j, yi, yj together with their derivatives are algebraically
dependent over K.

So geometric triviality limits the complexity of the structure of the algebraic relations on
the definable set. However, given such a set, for the results which we pursue, much greater
precision is required. Throughout for simplicity, we will say that an ODE is strongly min-
imal and geometrically trivial just in the case that its solution set is strongly minimal as a
definable set. Our first theorem is the following:

Theorem 2.12. The Schwarzian equation (⋆) for the Hauptmodul jΓ of a genus 0 Fuchsian
group Γ of first kind is strongly minimal and geometrically trivial.

We will give the proof in subsection 5.1. This result was previously only known for
PSL2(Z) (the j-function see Example 2.2) as well as for arithmetic subgroups of PSL2(Z)
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(cf. [12]). Our proof, which handles all Schwarzian equations of genus zero Fuchsian
functions at once, also is the first which does not use o-minimality. The first proof for
PSL2(Z) (of [12]) relied on the main result of [48], where Pila employs the same strategy
from [49], relying on o-minimality and counting of points of bounded height. Later, [2]
also gave a proof of the special case of PSL2(Z) which relied on the Ax-Schanuel type
results of [51], where again, an o-minimal strategy was employed.

It is worth mentioning that Painlevé [43, Page 519] claimed that strong minimality (or
irreducibility as he called it) would hold for the equations we consider. In [39], Nishioka
proved a very weak form of that conjecture. Nevertheless, Nishioka’s paper contains tech-
niques that inspired our own proof.

We have also obtained a full description of the structure of the definable sets. One
can think of these results as a weak form of the Ax-Lindemann-Weierstrass Theorem with
derivatives for Γ.3

Theorem 2.13. Suppose that Γ is arithmetic and suppose that jΓ(g1t), ..., jΓ(gnt) are distinct
solutions of the Schwarzian equation (⋆) that are pairwise not in Comm(Γ)-correspondence.
Then the 3n functions jΓ(g1t), j′Γ(g1t), j′′Γ (g1t), . . . , jΓ(gnt), j′Γ(gnt), j′′Γ (gnt) are algebraically
independent over C(t).

Theorem 2.14. Suppose that Γ is non-arithmetic. Then there is a k ∈ N such that if
jΓ(g1t), ..., jΓ(gnt) are distinct solutions of the Schwarzian equation (⋆) satisfying

tr.deg.C(t)C 〈t, jΓ(g1t) . . . , jΓ(gnt)〉 = 3n,

then for all other solutions jΓ(gt), except for at most n · k,

tr.deg.C(t)C 〈t, jΓ(g1t) . . . , jΓ(gnt), jΓ(gt)〉 = 3(n + 1).

So, by the previous two theorems, we have that the set defined by the Schwarzian equa-
tion (⋆) is ℵ0-categorical if and only if the group Γ is non-arithmetic. It was a long-standing
open problem in the model theory of differential fields (recently resolved by [12]) to find
a non-ℵ0-categorical geometrically trivial strongly minimal set; the non-existence of such
sets was part of a strategy for certain diophantine problems suggested by Hrushovski [18,
see page 292]. Theorem 2.13 gives many new examples of geometrically trivial non-ℵ0-
categorical equations, and together with Theorem 2.14 also provides an interesting con-
nection between categoricity and arithmetic groups. We view the following question as
the next major challenge in the classification of geometrically trivial strongly minimal sets
in differentially closed fields:

Question 2.15. In DCF0, are there non-ℵ0-categorical strongly minimal sets that do not arise from

arithmetic Fuchsian groups?4

3The ALW statement we are pursuing allows for characterizing algebraic relations between functions which
don’t formally satisfy the same differential equation, but we will use to Theorems 2.13 and 2.14 to prove our
most general results, which imply the pertinent version of ALW.

4Later in the paper, it will be clear to model theorists that by “arise from” arithmetic Fuchsian groups,
we mean ”are non-orthogonal to the differential equation (⋆) or one of its other fibers”. An answer to the
question is of interest in part because if there were a strong classification of the geometrically trivial strongly
minimal sets in differential fields, some of the strategy laid out in [18] for certain diophantine problems might
be possible.
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Finally let us talk about the full Ax-Lindemann-Weierstrass Theorem with derivatives
for Γ. We closely follow the description of the problem as in [48]. Let V ⊂ An be an irre-
ducible algebraic variety defined over C such that V(C) ∩ Hn 6= ∅ and V projects dom-
inantly to each of its coordinates (each coordinate function is nonconstant). Let t1, . . . , tn

be the functions on V induced by the canonical coordinate functions on An. We say that
t1, . . . , tn are Γ-geodesically independent if there are no relations of the form

ti = gtj

where i 6= j and g ∈ Comm(Γ) acts by fractional linear transformations.

Theorem 2.16. With the notation (and assumption V(C) ∩ Hn 6= ∅) as above, suppose
that t1, . . . , tn are Γ-geodesically independent. Then the 3n functions

jΓ(t1), j′Γ(t1), j′′Γ (t1) . . . , jΓ(tn), j′Γ(tn), j′′Γ (tn)

(defined locally) on V(C) are algebraically independent over C(V).

We will prove Theorem 2.16 in section 6. Pila [48] had already proved the result for
PSL2(Z) (see also [12] where the same is established for arithmetic subgroups of PSL2(Z)).

3. A CRITERION FOR STRONG MINIMALITY OF A GENERAL FUCHSIAN EQUATION

We now aim to give a criterion that can be used to show that the Schwarzian equation
(⋆) is strongly minimal. This criterion is applicable to Schwarzian equations in the general
sense, namely to any equation of the form

(⋆′) S d
dt
(y) + (y′)2 · R(y) = 0.

So here we do not assume the rational function R to necessarily correspond to some Haupt-
modul. We only require that R is rational over C. By the Riccati equation attached to (⋆′)
we mean the equation

(⋆⋆)
du

dy
+ u2 +

1

2
R(y) = 0.

Condition 3.1. The Riccati equation (⋆⋆) has no solution in C(y)alg.

Theorem 3.2. Let (K, ∂) be any differential field extension of C and let us assume that
Condition 3.1 holds. If jR is a solution of the Schwarzian equation (⋆′) we have that

tr.deg.KK 〈jR〉 = 0 or 3.

In other words, if Condition 3.1 holds, then equation (⋆′) is strongly minimal.

Proof. For contradiction, assume that there is a finitely generated differential field exten-
sion F of C that witnesses non-strong minimality of the equation (⋆′) (i.e., an order 1 or 2
F-differential subvariety exists). Throughout, we write K = F(t) and let jR be a solution of

the Schwarzian equation (⋆′) such that tr.deg.KK 〈jR〉 = 1 or 2, respectively.5

5If f is a solution of equation (⋆′) generating a differential field extension of F of transcendence degree one
or two, taking jR to be a realization of a non-forking extension of the type of f over F to the field K = F(t)
gives such a solution jR of (⋆′).
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Furthermore, using Seidenberg’s embedding theorem we can assume that K is a subfield
of M (U) the field of meromorphic functions on an open domain U ⊂ C and that jR ∈
M (U).

Let P ∈ C[y] be a denominator of the rational function R(y). Let L = K[y, 1
P(y)

, y′, 1
y′ , y′′]

be the polynomial ring equipped with the derivation

• D = ∂ + y′ ∂
∂y + y′′ ∂

∂y′ +
(

3
2

y′′2

y′ − (y′)3R(y)
)

∂
∂y′′

making L a universal (K, ∂)-algebra generated by a non constant solution of the Schwarzian
equation. One also defines an action of psl2(C) by :

• X = ∂
• H = t∂ − y′ ∂

∂y′ − 2y′′ ∂
∂y′′

• Y = t2

2 ∂ − ty′ ∂
∂y′ − (2ty′′ + y′) ∂

∂y′′

It is easily verified that [X, H] = X, [H, Y] = Y, [X, Y] = H (the basis X̃ = X, Ỹ = 2Y
and H̃ = 2H is a Chevalley basis, i.e., satisfying [X̃, H̃] = 2X̃, [H̃, Ỹ] = 2Ỹ, [X̃, Ỹ] = H̃).
Furthermore, the equalities [D, X] = 0, [D, H] = D, [D, Y] = tD can be easily verified.

When K = C(t), the algebraic group PSL2(C) acts on L by

(3.1) h(t, y, y′ , y′′) =

(

h(t), y,
y′

h′(t)
,

y′′

(h′(t))2
− y′

h′′(t)

(h′(t))3

)

where h denotes the homography of the projective line associated to an element h of
PSL2(C). For F ∈ L, one defines (h)∗D · F = h ◦ D ◦ h−1(F) . Direct computations give that

(h)∗D = 1
h′(t)

D. This equality means that the set of meromorphic solutions of a Schwarzian

equation is stable by the action of PSL2(C) by precomposition. The previously given action
of psl2(C) is the infinitesimal action of PSL2(C).

When K ⊂ M (U) then a fixed element h ∈ PSL2(C) maps L onto an isomorphic subfield
in M (h−1(U)) but the whole group does not act on L. Now let I ⊂ L be the annihilator of
the solution jR and Z be the zero locus of I ∩O(U)[y, y′ , y′′] in U × C3, where O(U) is the
ring of holomorphic functions on U. We have that Z is an analytic variety, affine over U,
and that its K-fibers are algebraic varieties over K. We have the following lemma

Lemma 3.3. The dimension of the subalgebra b of psl2(C) stabilizing I equals the dimension of Z
over K.

Proof. Let p ∈ Z be a smooth point in the graph of (jR, j′R, j′′R). Then the evaluation of X,

H, Y and D at p give a basis of Tp(U × C3). If v is in Tp(Z) ⊂ Tp(U × C3) then there exists
V ∈ psl2 + CD whose value at p is v.

We first show that V · I ⊂ I. To see this, notice that for P ∈ I we have that D · (V · P) =
V · (D · P) + f D · P, for some f ∈ C(t). Here we use the equalities [D, X] = 0, [D, H] = D,
[D, Y] = tD. Since by definition D · P ∈ I, we have that the ideal J generated by I and
V · I is stable by D. Moreover all elements of J vanish at p thus on the whole graph of
(jR, j′R, j′′R). By maximality V · I ⊂ I.

The stabilizer of I in CX +CH +CY +CD has the dimension of TpZ and thus that of Z.
Because D is tangent to Z, the dimension of Z over K is the dimension of the stabilizer of I
in psl2. �
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Our assumption tr.degKK 〈jR〉 = 1 or 2 gives that the stabilizer, denoted by b, is a non-
trivial proper subalgebra of psl2(C). Every such a proper subalgebra is contained in a
2-dimensional Lie subalgebra of psl2 = sl2. Furthermore, the group PSL2(C) acts on psl2
by the adjoint representation and under this action all Lie subagebras of psl2 of dimension
2 are conjugate to one another (cf. [20, Section 16]).

Let g ∈ PSL2(C) be an element conjugating a dimension two subalgebra containing b to
the algebra generated by X and H. Then g acts as an homography on P1(C) and transforms
K ⊂ M (U) to Kg ⊂ M (g−1(U)).

The induced isomorphism of L to Lg = Kg[y, 1
P(y) , y′, 1

y′ , y′′] sending y to y, y′ to y′g′(t)

and y′′ to y′′g′(t)2 − y′g′′(t) preserves D up to multiplication by an element of K (see equa-
tion 3.1) and induced the adjoint action on psl2. The transcendence degree of jR over K
is the transcendence degree of jR ◦ g over Kg but now we have ensured that the stabiliser
is included in the Lie algebra generated by X and H. Let us forget that we change the
field and assume b is included in the triangular Borel subalgebra, that is in the Lie algebra
generated by X and H.

In L, we have that − y′′

y′2
vanishes when we apply the induced X and H. So the image

of − y′′

y′2
in L/I belongs to the kernel of the action of b: namely, the algebraic closure of

C[y, 1
P(y)

] in L/I. Let z be this algebraic function. Direct computation shows that in L/I,

− y′′

y′2
satisfies the following re-writing of equation (⋆′)

(−
y′′

y′2
)′

1

y′
+

1

2
(−

y′′

y′2
)2 + R(y) = 0

meaning that z
2 is an algebraic solution of

du

dy
+ u2 +

1

2
R(y) = 0

in C(y)alg. This contradicts Condition 3.1. �

The next section is devoted to proving that Condition 3.1 holds for Equation (⋆).

4. THE GENERAL PROOF OF STRONG MINIMALITY

4.1. Liouvillian solutions, algebraic solutions, and Picard-Vessiot theory.

Definition 4.1. Fix a differential field K extending C(y) such that the derivation on K ex-

tends d
dy . We say that K is Liouvillian if there is a tower of field extensions C(y) ⊂ K0 ⊂

K1 ⊂ . . . ⊂ Kn = K such that for each i = 1, . . . , n, Ki/Ki−1 is generated by an element ai

such that one of the following holds:

(1) a′i ∈ Ki−1.

(2)
a′i
ai
∈ Ki−1.

(3) ai ∈ K
alg
i−1.
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If K is a field of meromorphic functions, then in case 1, ai =
∫

f for some f ∈ Ki and in

case 2, ai = e
∫

f for some f ∈ Ki. So, occasionally we will refer to these cases as integrals
or exponentials of integrals.

Consider the differential equation

(4.1) z′′ + pz′ + qz = 0

where p, q are rational functions in C(y). The classification of its Liouvillian solutions has
been extensively studied, and in [24], an algorithmic solution to determining the Liouvil-
lian solutions was given.

Let z be a solution to equation 4.1, and let v = e
1
2

∫

pz. It follows by direct computation
that

(4.2) v′′ + (b −
1

4
a2 −

1

2
a′)v = 0

Because the previous transformation only involves scaling by a Liouvillian element, the
Liouvillian solutions of equation 4.2 are in bijective correspondence with the Liouvillian
solutions to equation 4.1, and so without loss of generality, we may now assume that the
order two equation in which we are interested is given in the following normal form:

(4.3) z′′ = r(y)z

where r(y) ∈ C(y).

Theorem 4.2. [24, page 5] With regard to the Liouvillian solutions of a second order linear differ-
ential equation with coefficients in C(y), there are four mutually exclusive options:

(1) The differential equation 4.3 has a solution of the form e
∫

w where w ∈ C(y).

(2) The differential equation 4.3 has a solution of the form e
∫

w where w ∈ C(y)alg is an
algebraic function of degree two over C(y).

(3) All of the solutions of 4.3 are algebraic over C(y).
(4) No solution of 4.3 are Liouvillian.

The connection with Riccati equations is as follows. If we define u = z′

z where z is a
solution to equation 4.3, then via direct computation we have that

u′ + u2 − r(y) = 0.(4.4)

Notice that z = ce
∫

u for some constant c ∈ C and in particular z1 = e
∫

u is also a solution
to 4.3. So using Theorem 4.2 we have the following lemma.

Lemma 4.3. The Riccati equation 4.4 has an algebraic solution over C(y) if and only if the second
order linear differential equation 4.3 has a Liouvillian solution.

Now, the verification of Condition 3.1 follows from showing that equation 4.3 has no
Liouvillian solutions. For this, we will need the following well-known result.

Theorem 4.4. [24, page 8, case 4] Let G be the Picard-Vessiot group of 4.3. There are no Liouvil-
lian solutions to equation 4.3 if and only if G = SL2(C).

In the next subsection we will prove that, in the special case of a Fuchsian group Γ, the
Picard-Vesiot group of the order two linear equation associated to the Riccati equation (⋆⋆)
is SL2(C).
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4.2. Monodromy and the PV-group. At this point, let us recall that the the Schwarzian
equation (⋆) we focus on is given with

RjΓ(y) =
1

2

r

∑
i=1

1 − α2
i

(y − ai)2
+

r

∑
i=1

Ai

y − ai
,

where the αi’s, Ai’s and ai’s are obtained from the fundamental domain for Γ-action on H.
As discussed in the previous subsection, if the Riccati equation corresponding to (⋆)

(4.5)
du

dy
+ u2 +

1

2
RjΓ(y) = 0.

were to have an algebraic solution f ∈ C(y)alg, then as in the previous subsection z = e
∫

f

is a Liouvillian solution of the linear equation

(4.6)
d2z

dy2
+

(

1

4

r

∑
i=1

1 − α2
i

(y − ai)2
+

r

∑
i=1

Ai/2

y − ai

)

z = 0.

This equation is an example of the most general (normal) form of a Fuchsian equation of
second order:

Definition 4.5. Consider the linear equation d2z
dy2 + a1

dz
dy + a2z = 0, where a1, a2 are rational

functions in C(y).

(1) A point p ∈ C is called regular if the functions ai have no pole at p, otherwise p
is called singular. To determine whether the point y = ∞ is regular, one simply
substitutes y = z−1 in the equation and verifies whether z = 0 is regular for the
new equation.

(2) A point p ∈ C (resp. p = ∞) is called regular singular if it is singular and for each

i = 1, 2, the limit limy→p(y − p)iai(y) (resp. limy→∞yiai(y)) exists and is finite.

(3) The equation is called Fuchsian if all points of P1(C) are regular or regular singular.

It is well-known (cf. [9, Chapter 7]) that if the equation is Fuchsian then the coefficients
a1 and a2 are of the form

ai(y) =
Bi(y)

∏
s
j=1(z − β j)i

where Bi(y) is a polynomial of degree ≤ i(s − 1).

Remark 4.6. We have already seen in the previous section how to obtain the normal form
of the a second order linear equation (see equation 4.2)

As it turns out, the problem of existence of Liouvillian solutions for Fuchsian equations
of second order is a classical one. We direct the reader to [16] and [60] for some historical
perspectives. We will only review parts of the theory that is relevant to this paper. Our
focus will be the work of Poincaré on the relationship between the monodromy group of the
Fuchsian equation 4.6 and ‘its’ Fuchsian group Γ. It is this work - partly rediscovering
Schwarz’s uniformization of P1(C) by the jΓ’s - that lead Poincaré to introduce the theory
of Fuchsian groups and functions, and to attack the problem of the uniformization of other
Riemman surfaces.
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From now on, we assume that the equation

(4.7)
d2z

dy2
= r(y)z

is Fuchsian and denote by S its set of singular points. For z ∈ P1(C) \ S, let f1 and f2 be
analytic solutions in a neighborhood of z. We also assume that f1 and f2 are a basis of
solutions, i.e., that they are linearly independent over C. Given any γ ∈ π1(P

1(C) \ S; z),
we can analytically continue f1 and f2 along γ and obtain new solutions f̃1 and f̃2 of 4.7.
So there exists a matrix Mγ ∈ GL2(C) such that

(

f̃1

f̃2

)

= Mγ ·

(

f1

f2

)

The mapping ρ : π1(P
1(C) \ S; z) → GL2(C), taking γ 7→ Mγ is a group homomorphism

called the monodromy representation. Its image M is called the monodromy group of
equation 4.7. From the monodromy group, one can determine the Picard-Vessiot group of
the equation:

Fact 4.7. [9, Chapter 7] Let G be the Picard-Vessiot group of the Fuchsian equation 4.7. Then,

(1) G ⊆ SL2(C);
(2) if M is its monodromy group, then G is the Zariski closure of M.

Note that in particular from (1), for the Fuchsian equation 4.6, the monodromy group
M is a subgroup of SL2(C). We will now explain how in the case of equation 4.6, the
monodromy group M is related to the Schwarzian equation. The following well-known
fact - which can be easily verified - will be needed.

Fact 4.8. Let t(y) = j−1
Γ (y) be a branch of the inverse of y = jΓ(t). Then t(y) satisfies the

following equation

(4.8) S d
dy
(t) = RjΓ(y).

Furthermore, the functions

z1 =
t

( dt
dy )

1
2

z2 =
1

( dt
dy )

1
2

form a basis of solutions of the Fuchsian equation 4.6

d2z

dy2
+

1

2
RjΓ(y)z = 0.

Notice that in particular
z1(y)
z2(y)

= t(y). This allows us to define from M the projective

monodromy of the equation 4.8. Namely, if Mγ =

(

a b
c d

)

∈ SL2(C) is monodromy

matrix (as above), then

t∗ =
at + b

ct + d
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is again a solution of the equation 4.8. The collection of matrices M̂γ : t 7→ t∗ is called the

projective monodromy group M̂ of the equation 4.8. Of course M̂ is the image of M under
the natural projection π : SL2(R) → PSL2(R). The following proposition is attributed
to Poincaré in various sources but we know of no reference for a proof of it and thus
reproduce it here.

Proposition 4.9. The projective monodromy group of the equation 4.8 is Γ. As a consequence, the
monodromy group of the Fuchsian equation 4.6 is π−1(Γ).

Proof. Throughout t(y) = j−1
Γ (y) is a branch of the inverse of jΓ locally defined on some

small domain U and M̂ is the projective monodromy group.
We have

g ∈ M̂ \ {I} ⇐⇒ gt(y) is another branch of the inverse of jΓ (defined on some

larger domain U′).

⇐⇒ y = jΓ(t(y)) = jΓ(gt(y))

⇐⇒ g ∈ Γ \ {I}.

We have used here that jΓ is a globally defined single-valued function. �

Proposition 4.10. There are no Liouvillian solutions of the Fuchsian equation 4.6. Consequently,
Condition 3.1 holds for the Riccati equation 4.5.

Proof. We have that π−1(Γ), the monodromy group of the Fuchsian equation 4.6, is Zariski
dense in SL2(C). Hence by Fact 4.7, the Picard-Vessiot group is G = SL2(C). By Theorem
4.4 there are no Liouvillian solutions for the equation. �

We thus obtain the first part of Theorem 2.12; namely the Schwarzian equation (⋆) is
strongly minimal.

5. GEOMETRIC TRIVIALITY AND ALGEBRAIC RELATIONS

5.1. The classification of strongly minimal sets. In this section we will discuss some
general model-theoretic results regarding strongly minimal sets in differentially closed

fields. In particular, we will explain some consequences of the (unpublished6) work of
Hrushovski and Sokolović on the classification of strongly minimal sets. We will, from
these considerations, obtain geometric triviality of the Schwarzian equations satisfied by
the uniformizing functions in the earlier sections. Let us denote by U the differentially
closed field of characteristic zero that we work in. We assume that U is saturated and that
C (defined by y′ = 0) is its field of constants. Notice incidentally that C is itself a strongly
minimal definable set. Indeed, it is the only definable strongly minimal subfield of U. In
what follows strongly minimal sets are understood to be defined over some finitely gener-
ated differential subfield K of U.

The zero set of any irreducible order one differential polynomial in a single variable (by
irreducible, we will always mean as a polynomial) is also strongly minimal. Higher order

6A complete proof, can be found in [56, Corollary 3.10] and in the arguments in the paragraphs leading up
to Proposition 4.10 of [58]. A good guide/summary of the proof can also be found in [36, Section 2.1].
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linear differential equations are never strongly minimal (one can define linear subspaces
using elements of a fundamental set of solutions). For higher order non-linear equations,
it seems that it is in general difficult to establish strong minimality. However, if the strong
minimality of an equation is established, one can often employ a variety of model theoretic
tools to establish even stronger results.

Other important examples of strongly minimal sets are given by the following

Fact 5.1 ([8],[19]). Let A be an abelian variety defined over U. We identify A with its set A(U) of
U-points. Then

(1) A has a (unique) smallest Zariski-dense definable subgroup, which we denote by A♯.

(2) If A is a simple abelian variety that does not descend to C, then A♯ is strongly minimal.

The subgroup A♯ is called the Manin kernel of A (cf. [28]). The trichotomy theorem, gives
a classification of strongly minimal sets up to non-orthogonality, a notion we will explain
following the statement of the theorem.

Theorem 5.2 ([19],[56]). Let Y be a strongly minimal set. Then exactly one of the following
holds:

(1) Y is nonorthogonal to the strongly minimal set C,

(2) Y is nonorthogonal to A♯ for some simple abelian variety A over U which does not
descend to C,

(3) Y is geometrically trivial.

Definition 5.3. Let Y and Z be strongly minimal sets. Denote by π1 : Y × Z → Y and π2 :
Y ×Z → Z the projections to Y and Z respectively. We say that Y and Z are nonorthogonal if
there is some infinite definable relation R ⊂ Y × Z such that π1|R and π2|R are finite-to-one
functions.

The sets Y and Z are defined over some finitely generated differential subfield K of U,
and so for any differential field F containing K, it makes sense to ask whether a relation R
as above can be defined over F.

Definition 5.4. We say that Y is weakly orthogonal to Z over F if no such relation R can be
defined over F.

The following facts from the model theory of differential fields are well-known (see for
instance, [29]).

Fact 5.5. Let Y and Z be strongly minimal sets.

(1) Nonorthogonality is an equivalence relation on strongly minimal sets.
(2) Nonorthogonality classes of strongly minimal differential equations refine various basic

invariants of the equations. For instance, if Y, Z are nonorthogonal then order(Y) =
order(Z). Recall that the order of a definable set Y is given by order(Y) = sup{tr.deg.KK 〈y〉 :
y ∈ Y}, where K is any countable differential field over which Y is defined.

(3) If Y and Z are nonorthogonal, then they fall into the same category of Theorem 5.2.
(4) Strongly minimal sets that fall in cases (2) and (3) of Theorem 5.2 are said to be locally

modular (and in case (1) the sets are non-locally modular).
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(5) Orthogonality has a natural interpretation in terms of transcendence. Suppose that Y and
Z are orthogonal strongly minimal sets defined over K. Let a, b be solutions of Y, Z, respec-
tively. Let F be any differential field extending K. Then

tr.deg.F(F〈a, b〉) = tr.deg.F(F〈a〉) + tr.deg.F(F〈b〉).

Conversely, if the inequality does not hold for some a ∈ Y and b ∈ Z over F, then Y is not
weakly orthogonal to Z over F.

Nonorthogonality of Manin Kernels has been further classified in terms of isogeny classes
of abelian varieties.

Fact 5.6. If A and B are two simple abelian varieties which do not descend to C, then A♯ and B♯

are non-orthogonal if and only if A and B are isogenous.

For relations R which witness nonorthogonality between trivial strongly minimal sets,
there is an important and very general descent result:

Fact 5.7. [55, Corollary 2.5.5] Two geometrically trivial strongly minimal sets are nonorthogonal
if and only if they are non weakly orthogonal. That is, the relation R witnessing nonorthogonality of
X and Y can be defined over the differential field generated by the parameters used in the equations
defining X and Y.

Proposition 5.8. Let Y be a strongly minimal set of order > 1 and suppose that Y is defined over
C. Then Y is geometrically trivial.

Proof. 7 First note that since order(Y) 6= 1, Y is necessarily orthogonal to the constants C.
So by Theorem 5.2, to show that Y is geometrically trivial, we only need to show that it is
orthogonal to all Manin kernels. We argue by contradiction.

Suppose that Y is nonorthogonal to A♯ for some simple abelian variety A over U which
does not descend to C. Let (A, λ) be a principal polarization of A. We can use the fact that
moduli spaces of principally polarized abelian varieties exist over any base field (cf. [35,
Chapter 7]). So let (V, ϕ) be a moduli space for (A, λ) over C. For some b in (V, ϕ), we
have that (A, λ) = (Vb, ϕb).

Using uniform definability of Manin kernels [36, Lemma 2.25], we have a formula φ(x)

over C asserting that Y is non-orthogonal to V♯
x and such that φ(b) is true in U. If φ(c)

holds, then, by Fact 5.6, it must be the case that Vb and Vc are isogenous. But there are
only countably many abelian varieties isogenous to Vb. Hence the definable set {a ∈ U :
φ(a) is true in U} is countable and so must be finite. In other words c is algebraic over (and
so in) C. But this contradicts the assumption that A does not descend to C. �

Corollary 5.9. For Γ a Fuchsian group, equation (⋆) defines a geometrically trivial strongly mini-
mal set.

We have hence established the entirety of Theorem 2.12.

7We thank Dave Marker for a sketch of this proof.
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5.2. Transcendence and orbits of the commensurator of Γ.

Theorem 5.10. Let (K, ∂) be a differential extension of (C(t), ∂
∂t) with no new constants.

Let Γ be a Fuchsian group and j1, j2 be two solutions of the equation

S d
dt
(y) + (y′)2 · RΓ(y) = 0.

If

tr.deg.KK(j1, j′1, j′′1 , j2, j′2, j′′2 ) < 6

then j1 or j2 is algebraic over K or there is a nonzero polynomial P(y1, y2) over C such that
P(j1, j2) = 0.

The group PSL2(C) acts on pairs of solutions by precomposition. We will prove that the
ideal of differential relations between (j1, j2) is stable under this action.

Proof. From Theorem 3.2, it follows that if tr.deg.KK(j1, j′1, j′′1 , j2, j′2, j′′2 ) < 6 then it is either
0 or 3. But it follows from Fact 2.3 and Lemma 2.4 that if both j1 and j2 are not algebraic
over K then tr.deg.KK(j1, j′1, j′′1 , j2, j′2, j′′2 ) = 3. By Fact 5.7, we can assume that K = C(t) and

so throughout K = C(t) and ∂ = ∂
∂t .

We proceed as in the proof of Theorem 3.2. For i = 1, 2 consider K(yi, y′i, y′′i ), equipped
with the derivation

• Di = ∂ + y′i
∂

∂yi
+ y′′i

∂
∂y′i

+
(

3
2

y′′2i

y′i
− (y′i)

3RΓ(yi)
)

∂
∂y′′i

One defines an action of psl2(C) by :

• Xi = ∂
• Hi = t∂ − y′i

∂
∂y′i

− 2y′′i
∂

∂y′′i

• Yi =
t2

2 ∂ − ty′i
∂

∂y′i
− (2ty′′i + y′i)

∂
∂y′′i

We have that [Xi, Hi] = Xi, [Hi, Yi] = Yi, [Xi, Yi] = Hi, and [Di, Xi] = 0, [Di, Hi] = Di,
[Di, Yi] = tDi.

As explained in the proof of Theorem 3.2, the above action of psl2(C) is the infinitesimal
action of PSL2(C) on C(t, yi, y′i, y′′i ). We “verticalize” this action by considering Xv

i = Xi −

Di, Hv
i = Hi − tDi and Yv

i = Yi −
t2

2 Di. Now CXv
i + CHv

i + CYv
i is a realization of psl2(C)

acting K-linearly and commuting with Di.
The ideal of the polynomial differential relations between j1 and j2 over K is an ideal

in K[y1, y′1, . . . , y2, y′2, . . .]. Let J be the differential ideal generated by the third order dif-
ferential equations satisfied by j1 and by j2 and K[y1, y′1, . . . , y2, y′2, . . .] → K(y1, y′1, y′′1 )⊗K

K(y2, y′2, y′′2 ) be the quotient by J followed by localizations.
As j1 and j2 do not satisfy any lower order differential equations this ideal is the preim-

age of an ideal I of L = K(y1, y′1, y′′1 )⊗K K(y2, y′2, y′′2 ) stable by

(5.1) D(2) = ∂ + y′1
∂

∂y1
+ y′2

∂

∂y2
+ y′′1

∂

∂y′1
+ y′′2

∂

∂y′2

+

(

3

2

y′′21

y′1
− (y′1)

3RΓ(y1)

)

∂

∂y′′1
+

(

3

2

y′′22

y′2
− (y′2)

3RΓ(y2)

)

∂

∂y′′2
.
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The ideal I is the kernel of the evaluation in (j1, j2) with values in a field of mero-
morphic function thus it is prime. From geometric triviality, the subfield of constants of

F = Frac(L/I) with respect to the derivation D(2) is C.

We claim that I is stable under the diagonal action of psl2.

The algebra L/I is an algebraic extension of K(y1, y′1, y′′1 ) and of K(y2, y′2, y′′2 ), and as
usual, D1, X1, H1, Y1, D2, X2, H2, Y2 and their ”verticalization” will also denote their unique
extensions to L/I.

Lemma 5.11. On L/I we have D1 = D(2) = D2.

Proof. Restrict the derivation D(2) of L/I to its subalgebra L1. The definition of D(2) gives
that this restriction is D1. Now, the extension to the algebraic extension L/I of L1 is unique

then D(2) = D1. Same argument gives D(2) = D2. �

So we will just write this derivation as D.

Lemma 5.12. There exists a ∈ C such that, on L/I, X1 = X2, H1 = H2 + a(X2 − D) and

Y1 = Y2 + a(H2 − tD) + a2

2 (X2 − D).

Proof. Using Fact 5.7, we have that any algebraic relations between j1 and j2 (together with
derivatives) can be defined over C. Hence I is generated by I ∩C(y1, y′1, y′′1 )⊗C(y2, y′2, y′′2 ).

Then, on L/I, both X1 and X2 coincide with ∂
∂t , this proves X1 = X2.

The two triples Xv
1 , Hv

1 , Yv
1 and Xv

2 , Hv
2 , Yv

2 are two bases of the derivations of F =
Frac(L/I) over K. Let A be the matrix with coefficient in F such that (Xv

1 , Hv
1 , Yv

1 ) =
(Xv

2 , Hv
2 , Yv

2 )A. From the bracket with D one gets 0 = [D, (Xv
1 , Hv

1 , Yv
1 )] = (Xv

2 , Hv
2 , Yv

2 )D(A).
So the coefficients of A are constant.

Now the two triples are basis of two realisations of psl2(C) with the same structure
constants, then A is an automorphism of the Lie algebra psl2(C). All automorphisms of
psl2(C) are inner (see [59, Proposition 14.21]), thus there exists a g ∈ PSL2(C) such that

Ad(g) = A. This automorphism fixes X1, hence there exists a ∈ C such that g =

(

1 a
0 1

)

.

Then

(Xv
1 , Hv

1 , Yv
1 ) = (Xv

2 , Hv
2 , Yv

2 )





1 a a2

2
0 1 a
0 0 1





This proves the lemma. �

In F, y2 is an algebraic function over C(t, y1, y′1, y′′1 ) satisfying X2(y2) = H2(y2) =
Y2(y2) = 0. Hence, using Lemma 5.12, one easily computes that

(5.2) X1(y2) = 0,

(5.3) H1(y2) = −aD(y2),

(5.4) Y1(y2) = (−at −
a2

2
)D(y2) = (t +

a

2
)H1(y2).
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We will prove that this system of partial differential equations over C(t, y1, y′1, y′′1 ) has
an algebraic solution if and only if a = 0. For contradiction, assume not. We expand

y2 as a Puiseux series in 1/z with z =
y′′1
y′21

, that is we think of y2 as being an element of

C(t, y1, y′1)
alg
〈〈

1
z

〉〉

:

y2 = ∑
λ≤n

Aλ(t, y1, y′1)z
λ.

In the coordinates t, y1, y′1, z, one has

• X1 = ∂
∂t ,

• H1 = t ∂
∂t − y′1

∂
∂y′1

,

• Y1 =
t2

2
∂
∂t − ty′1

∂
∂y′1

− 1
y′1

∂
∂z ,

• D = ∂
∂t − y′1

∂
∂y1

+ z(y′1)
2 ∂

∂y′1
−
(

1
2 z2y′1 + RΓ(y1)y

′
1

)

∂
∂z .

The induced continuous action of X1 on C(t, y1, y′1)
alg
〈〈

1
z

〉〉

gives

(5.5) X1(y2) = ∑
λ≤n

∂Aλ

∂t
zλ,

The equations 5.2 and 5.5 give for all λ, ∂Aλ
∂t = 0. Then by direct computation one gets

(5.6) H1(y2) = ∑
λ≤n

−y′1
∂Aλ

∂y′1
zλ,

(5.7) Y1(y2) = ∑
λ≤n

−ty′1
∂Aλ

∂y′1
(z)λ − λAλ

1

y′1
zλ−1,

(5.8) D(y2) = ∑
λ≤n

RΓ(y1)y
′
1λAλzλ−1 + y′1

∂Aλ

∂y1
zλ +

(

(y′1)
2 ∂Aλ

∂y′1
−

1

2
y′1λAλ

)

zλ+1.

Lemma 5.13. If y2 is an algebraic solution of 5.2, 5.3, 5.4 then H1(y2) = 0.

Proof. If a = 0 there is nothing to prove. Assume it is not. We have already seen that
∂Aλ
∂t = 0. Let q ∈ Q be such that Aq 6= 0. One can assume that q is maximal among the

elements q′ ∈ q + Z such that Aq′ 6= 0. From 5.4, one gets −ty′1
∂Aq

∂y′1
= (t + a

2)
(

−y′1
∂Aq

∂y′1

)

and then
∂Aq

∂y′1
= 0. Now 5.3 gives (y′1)

2 ∂Aq

∂y′1
− 1

2 y′1qAq = 0, this implies q = 0 so that n = 0

and the range of λ is −N.
The equation 5.4 can be written as: ∀ k ∈ N,

(5.4 (k))
a

2

∂A−k−1

∂y′1
= k

A−k

y′1

Let k0 be the maximal integer such that for all strictly positive k smaller than k0, A−k =
0. The equality 5.4 (0) gives that A−1 does not depend on y′1. Then 5.4 (1) is an equality
between a derivative of an algebraic function in y′1 and and rational function with a simple
pole at 0. This implies that the latter is identically zero: k0 is greater than 2.
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Now if k0 is finite then 5.4 (k0 − 1) is
∂A−k0

∂y′1
= 0 and 5.4 (k0) is

∂A−k0−1

∂y′1
=

A−k0

y′1
. As a

derivative of an algebraic function can not have simple pole, A−k0
= 0 which contradicts

the existence of k0.
Then 5.6 proves the lemma. �

If a 6= 0 Lemma 5.13 and the equation 5.3 show that D(y2) = 0. But the subfield of
constants of D in F is C and y2 is not contant. This contradicts the assumption on a and
one gets a = 0.

Now, on F, X1 = X2, H1 = H2 and Y1 = Y2. These three derivations are linearly
independent and their kernel is denoted by N. Formulas for these derivations give y1 ∈ N
and y2 ∈ N.

The sequence of extensions C ⊂ N ⊂ F is such that tr.deg.C N ≥ 1, tr.deg.N F ≥ 3 and
tr.deg.CF = 4 then the transcendence degree of N over C is 1. This proves that I contains
some nonzero P ∈ C[y1, y2]. It is not difficult to see that P generates I as a D-ideal. �

Remark 5.14. It is not hard to see that Theorem 5.10 also holds for all general Schwarzian
equations (⋆′) provided that they are strongly minimal (and so geometrically trivial). In-
deed the above proof did not use the fact that Fuchsian groups are involved. In particular,
Theorem 5.10 holds if Condition 3.1 is true of the corresponding Riccati equations.

It now remains to understand the kind of polynomials P ∈ C[y1, y2] that can occur.
Notice that if P(jΓ(g1t), jΓ(g2t)) = 0 gives an algebraic relation between two solutions

jΓ(g1t) and jΓ(g2t), then there trivially is an algebraic relation between jΓ(t) and jΓ(g2g−1
1 t),

namely P(jΓ(t), jΓ(g2g−1
1 t)) = 0. So it suffices to characterize interalgebraicity with jΓ(t).

Lemma 5.15. For g1 /∈ Comm(Γ), jΓ(t) is algebraically independent from jΓ(gt) over C.

Proof. Let g /∈ Comm(Γ). For a contradiction, assume first that P is an algebraic relation
over C holding between jΓ(t) and jΓ(gt). Then for all a ∈ H, we have that P(jΓ(a), jΓ(ga)) =
0. For γ ∈ Γ, consider the point bγ = γ · a. Letting a = bγ, we have that P(jΓ(bγ), jΓ(gbγ)) =
0.

But, since jΓ(bγ) = jΓ(a), we have that P(jΓ(a), jΓ(gbγ)) = 0. Now, by the Γ-invariance
of jΓ, we have that for any γ1 ∈ Γ, P(jΓ(γ1a), jΓ(γ1gγa)) = 0. But jΓ(γ1a) = jΓ(a), we have
that

P(jΓ(a), jΓ(γ1gγa)) = 0

f or all γ1, γ ∈ Γ. However, jΓ is precisely Γ-invariant, and for g /∈ Comm(Γ), there are
infinitely many left coset representatives of Γ among the double coset ΓgΓ. Then there are
infinitely many distinct points y for which P(jΓ(a), y) = 0 holds, contradicting the fact that
P = 0 gives an algebraic relation.

�

Lemma 5.16. [62, Section 7.2] For g ∈ Comm(Γ), jΓ(t) is algebraically dependent with jΓ(gt)
over C.

Definition 5.17. By Lemma 5.16, when g ∈ Comm(Γ), there is an irreducible polynomial
Ψg̃(x, y) ∈ C[x, y] such that Ψg̃(jΓ(t), jΓ(gt)) = 0. We call Ψg̃ a Γ-special polynomial, and the
zero set of such a polynomial a Γ-special curve.
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Now from Theorems 2.12 and 5.10 and Lemmas 5.15 and 5.16, one gets the weak form
of the Ax-Lindemann-Weierstrass Theorems 2.13 and 2.14.

Theorem 5.18. Let K be a differential extension of (C(t), ∂
∂t ) and jΓ(g1t), ..., jΓ(gnt) be dis-

tinct solutions of the Schwarzian equation (⋆) that are not algebraic over K nor pairwise
related by Γ-special polynomials. Then the 3n functions

jΓ(g1t), j′Γ(g1t), j′′Γ (g1t), . . . , jΓ(gnt), j′Γ(gnt), j′′Γ (gnt)

are algebraically independent over K.

Proof. For contradiction, assume that the 3n functions

jΓ(g1t), j′Γ(g1t), j′′Γ (g1t), . . . , jΓ(gnt), j′Γ(gnt), j′′Γ (gnt)

are algebraically dependent over K. Define the field K̃ as

K̃ = K
(

jΓ(g2t), j′Γ(g2t), j′′Γ (g2t) . . . , jΓ(gnt), j′Γ(gnt), j′′Γ (gnt)
)

= K 〈jΓ(g2t), . . . , jΓ(gnt)〉 .

By strong minimality of equation (⋆), it must be that jΓ(g1t) ∈ K̃alg and by geometric
triviality of (⋆), we have that

jΓ(g1t) ∈ K 〈jΓ(git)〉
alg

for some i = 2, . . . , n. Using Theorem 5.10 we get that

jΓ(g1t) ∈ C(jΓ(git))
alg

and so

jΓ(t) ∈ C(jΓ(gig
−1
1 t))alg

Now using Lemma 5.15, it must be the case that g = gig
−1
1 ∈ Comm(Γ). So for the Γ-special

polynomial Ψg̃, we get

Ψg̃(jΓ(t), jΓ(gig
−1
1 t)) = 0

and hence

Ψg̃(jΓ(g1t), jΓ(git)) = 0.

This contradicts our assumption that jΓ(g1t) and jΓ(git) are not related by any Γ-special
polynomials. �

6. ORTHOGONALITY AND THE AX-LINDEMANN-WEIERSTRASS THEOREM

In the previous sections, we have understood the structure of the solution set of

S d
dt
(y) + (y′)2 · RjΓ(y) = 0.

Define

χ
Γ, d

dt
(y) = S d

dt
(y) + (y′)2 · RjΓ(y).(6.1)

In this section, we consider equations of the form χ
Γ, d

dt
(y) = a for a an element in some

differential field extension of Q, and produce a similar analysis.
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6.1. Strong minimality and algebraic relations on other fibers. First, we prove the so-
lution set of the equation χ

Γ, d
dt
(y) = a is strongly minimal and characterize the algebraic

relations between solutions. Essentially, the analysis from [12, Section 5.1] adapts to this
case, but for the sake of completeness, we will provide a brief explanation here.

Let a ∈ K be an element in some differential field extension of Q. By Seidenberg’s em-
bedding theorem, we can, without loss of generality, assume a = a(t) is given by a mero-

morphic function over some domain U, and the derivation is given by d
dt . After sufficently

shrinking the domain, there is some meromorphic function ã(t) satisfying S d
dt
(ã) = a such

that

χ
Γ, d

dt
(jΓ(ã(t))) = a(t).

The following Lemma follows by the Schwarzian chain rule and is nearly identical to
[12, Lemma 5.1]:

Lemma 6.1. Let K be a differentially closed d
dt -field containing a. There exists ∂ ∈ K d

dt such that
χΓ,∂(y) = 0.

Proof. The equation S d
dt
(ã) = a, with unknown ã, can be considered as a differential equa-

tion over C〈a〉. By Seidenberg’s theorem this field can be assumed to be a field of mero-
morphic functions on some domain U ⊂ C and by the usual Cauchy theorem, one can
build a solution, holomorphic on some domain U′ ⊂ U.

By the differential Nullstellensatz there exists ã ∈ K a solution of S d
dt
(ã) = a. Then

∂ = 1
ã′

d
dt . �

Theorem 6.2. The sets defined by χ
Γ, d

dt
(y) = a are strongly minimal and geometrically trivial.

If a1, . . . , an satisfy χ
Γ, d

dt
(ai) = a and are dependent, then there exist i, j ≤ n and a Γ-special

polynomial P such that P(ai, aj) = 0.

The proof of Theorem 6.2 is quite similar to that of [12] Proposition 5.2, but we include
it here for completeness.

Proof. We first explain why χ
Γ, d

dt
(y) = a is strongly minimal; it suffices to show that over

some differentially closed field which contains the coefficients of the equation, that every
differentially constructible set is finite or cofinite. Using properties of differentially closed
field, one can find in K ã as above.

By Lemma 6.1, K is a ∂-differential field and the sets χ
Γ, d

dt
(y) = a and χΓ,∂(y) = 0

coincide. Now strong minimality follows by Theorem 3.2 and the fact that d
dt -differentially

constructible sets are ∂-differentially constructible (over K).
Algebraic dependencies among elements of the set χ

Γ, d
dt
(y) = a give algebraic depen-

dencies among elements of the set χΓ,∂(y) = 0, and thus by Theorem 5.18 must be given
by Γ-special polynomials. �

The final piece of our analysis of the fibers of χ shows that there are no algebraic relations
between different fibers.
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Theorem 6.3. For a 6= b, the strongly minimal sets defined by χ
Γ, d

dt
(y) = a and by χ

Γ, d
dt
(y) = b

are orthogonal.

Theorem 6.3 is more general than [12] Theorem 5.4, but the proof there cannot be adapted
to the case of non-arithmetic fuchsian groups.

Proof. Throughout, we respectively use M (U) and D(p, r) for the field of meromorphic
functions on a domain U ⊂ C, and the open complex disk centered at p ∈ C with ra-

dius r. As both χ−1
Γ, d

dt

(a) and χ−1
Γ, d

dt

(b) are strongly minimal and geometrically trivial, if

χ−1
Γ, d

dt

(a) 6⊥ χ−1
Γ, d

dt

(b), then there is a finite-to-finite correspondence between the sets, de-

fined over Q〈a, b〉. Using Seidenberg’s embedding theorem, we regard a, b as meromor-
phic functions on a domain U ⊂ C. Recall that ã denotes a meromorphic function such

that S d
dt
(ã) = a. The function b̃ is defined similarly.

Using the holomorphic inverse function theorem, we claim that without loss of general-
ity, it is enough to prove the result for the case a = 0. Indeed, since jΓ(ã(t)) is interalgebraic

with jΓ(gb̃(t)) for some g ∈ GL2(C), we have that jΓ(t) is interalgebraic with jΓ(gb̃(ã−1(t))
(since b̃ is defined up to composition with linear fractional transformations, we can assume

that there is a common regular point for ã and b̃ and work locally around this point). Let-

ting c̃ = b̃ ◦ ã−1 and c = S d
dt
(c̃), we see that χ−1

Γ, d
dt

(0) 6⊥ χ−1
Γ, d

dt

(c) and by geometric triviality

this occurs over Q〈c〉.
So we assume that a = 0. Let p be a regular point for b̃(t) and let D1 = D(p, ǫ) be

a disc of regular points of b̃(t). Also let γ be a linear fractional transformation sending

D2 = D(p, 1
2 ǫ) to H.

Since χ−1
Γ, d

dt

(0) 6⊥ χ−1
Γ, d

dt

(b), we have that for some g ∈ GL2(C), the solution jΓ(gb̃(t)) is

algebraic over Q〈b, jΓ(γt)〉 ⊂ M (D1)(jΓ ◦ γ, j′Γ ◦ γ, j′′Γ ◦ γ) ⊂ M (D2). But notice that for

any domain U such that D2 ⊆ U ⊆ D1, if jΓ(gb̃(t)) is algebraic over M (U), then jΓ(γt)
will also be algebraic over M (U). This follows from the fact that M (D1) ⊆ M (U), and

jΓ(gb̃(t)) is interalgebraic with jΓ(γt) over Q 〈b〉 ⊂ M (D1). But jΓ(t) cannot be extended
algebraically on a neighborhood of H, hence U = D2.

The disc D2 is thus the maximal among domains U such that jΓ(gb̃(t)) is algebraic over

M (U). But such a domain satisfies gb̃(D2) = H, that is the image of D2 by the reg-

ular holomorphic map b̃ is the disc g−1H. A corollary of Schwarz’s lemma gives that

biholomorphisms from a disc to a disc are restrictions of homographies. Hence b̃ is an
homography h ∈ PSL2(C) and so b = 0. �

We can finally turn to the proof of the Ax-Lindemann-Weierstrass Theorem 2.16.

Proof of Theorem 2.16. Recall that V ⊂ An and for each i = 1, . . . , n, the variety V is as-

sumed to project dominantly onto A1 under projection to the ith coordinate. Thus, the ith

coordinate function is nonconstant, and it is possible to equip the field generated by the

ith coordinate functions with various differential structures, which will be essential to the
technique in our proof.



AX-LINDEMANN-WEIERSTRASS WITH DERIVATIVES AND THE GENUS 0 FUCHSIAN GROUPS 27

Lemma 6.4. There is a derivation δ on C(V) such that for each of the coordinate functions ti for
i = 1, . . . , n, δ(ti) 6= 0.

Proof. Let z1, . . . , zk be a transcendence basis of C(V) over C and α1, . . . , αk be Q-linearly
independent complex numbers. As C(V) is an algebraic extension of C(z1, . . . , zk) the

derivation δ = ∑i αizi
∂

∂zi
extends a derivation of C(V) and the field of constants in C(V)

is an algebraic extension of the field of constant in C(z1, . . . , zk). The latter is C. As the

projection of V on the ith coordinate is dominant, δ(ti) 6= 0. �

The transcendence degree over C(V) of the 3n functions

jΓ(t1), j′Γ(t1), j′′Γ (t1) . . . , jΓ(tn), j′Γ(tn), j′′Γ (tn)

is identical to that of the 3n functions

jΓ(t1), δ(jΓ(t1)), δ2(jΓ(t1)), . . . , jΓ(tn), δ(jΓ(tn)), δ2(jΓ(tn).)

Now, for any ti, since jΓ(ti) is not an algebraic function, it follows by strong minimality
that jΓ(ti) is a generic solution to a δ-differential equation of the form χΓ,δ(y) = ai with
ai = Sδ(ti) ∈ C(V).

If the 3n functions are not algebraically independent, then there exist i, j such that the
functions

j(ti), δ(j(ti)), δ2(j(ti)), j(tj), δ(j(tj)), δ2(j(tj))

are algebraically dependent over K, the δ-field extension of C(V) generated by j(tk) for

those k in some subset of {1, . . . , n} \ {i, j}. Moreover one can choose8 K such that j(ti) and
j(tj) are not algebraic over K.

But then by strong minimality of the equations χΓ,δ(y) = ai and χΓ,δ(y) = aj (Theorem
6.2), there is a finite-to-finite correspondence between χΓ,δ(y) = ai and χΓ,δ(y) = aj defined
over K. By Theorem 6.3, it must be that ai = aj and ti and tj are Γ-geodesically dependent.
A contradiction. �

6.2. Orthogonality and commutators. In this section, we analyze the algebraic relations
between solutions of

S d
dt
(y) + (y′)2 · RjΓ1

(y) = 0(6.2)

S d
dt
(y) + (y′)2 · RjΓ2

(y) = 0(6.3)

when Γ1 is not necessarily commensurable with Γ2. If Γ1 is commensurable with Γ2, then
it is well known that jΓ1

is interalgebraic with jΓ2
over C. Moreover this is not the whole

story: we say that Γ1 is commensurable with Γ2 in the wide sense if Γ1 is commensurable to
some conjugate of Γ2. When such is the case and Γ1 is commensurable with g−1Γ2g then
again one has that jΓ1

is interalgebraic with jΓ2
◦ g over C.

Notice that if Γ1 is commensurable with Γ2 in the wide sense, then Comm(Γ1) is conju-
gate to Comm(Γ2).

8Fix a subset of the coordinates such that there is an algebraic dependence as described above. Then there
is some minimal such set. Picking i, j to be any two coordinates of this minimal set, the subset is the collection
of coordinates in the remainder of the minimal set.
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Theorem 6.5. Suppose that Γ1 is not commensurable with Γ2 in the wide sense. Then the sets
defined by equations 6.2 and 6.3 are orthogonal. In particular, for any differential field K

tr.deg.KK
(

jΓ1
(t1), j′Γ1

(t1), j′′Γ1
(t1), jΓ2

(t2), j′Γ2
(t2), j′′Γ2

(t2)
)

=

tr.deg.KK
(

jΓ1
(t1), j′Γ1

(t1), j′′Γ1
(t1)

)

+ tr.deg.KK
(

jΓ2
(t2), j′Γ2

(t2), j′′Γ2
(t2)

)

.

Proof. Let XΓ1
and XΓ2

be the set defined by equations 6.2 and 6.3 respectively. Assume for
contradiction that XΓ1

6⊥ XΓ2
. Since XΓ1

and XΓ2
are trivial strongly minimal sets, we have

that nonorthogonality is witnessed over C (i.e., the sets are non weakly orthogonal). So for

any solution y1 ∈ XΓ1
there is a solution y2 ∈ XΓ2

such that y1 ∈ C 〈y2〉
alg. By invoking

Fact 2.3, we have that jΓ1
(t) ∈ C 〈jΓ2

(gt)〉alg for some g ∈ GL2(C). Let us write

P(jΓ1
(t), jΓ2

(gt), j′Γ2
(gt), j′′Γ2

(gt), t) = 0

for this algebraic relation over C. For any γ1 ∈ Γ1, using the fact that jΓ1
(γ1t) = jΓ1

(t), we
have that

P(jΓ1
(t), jΓ2

(gγ1t), j′Γ2
(gγ1t), j′′Γ2

(gγ1t), γ1t) = 0.

So this implies that for any γ1 ∈ Γ1, we get that jΓ1
(t) ∈ C 〈jΓ2

(gγ1t)〉alg. In particular

C 〈jΓ2
(gt)〉alg = C 〈jΓ2

(gγ1t)〉alg
for all γ1 ∈ Γ1. By Theorem 5.18, it must be the case that

gγ1g−1 ∈ Comm(Γ2) for all γ1 ∈ Γ1, that is it must be that gΓ1g−1 ⊆ Comm(Γ2).
Now, to get our contradiction, we consider three cases (without loss of generality):

(1) Assume Γ1 is arithmetic and Γ2 is nonarithmetic. In this case, χΓ1
is notℵ0-categorical,

while χΓ2
is ℵ0-categorical (this follows from Theorem 5.18). This case could also

be handled in a more elementary manner similar to our technique in the third case.
(2) Assume that both Γ1, Γ2 are arithmetic groups. We have, by the above arguments,

that gΓ1g−1 is contained in Comm(Γ2). We will be done if we show that gΓ1g−1

and Γ2 are commensurable in the strict sense. This follows by arguments of [32,
see page 4], where the following fact is shown: for any two arithmetic Fuchsian
groups G1 and G2, if G1 is contained in the commensurator of G2 then G1 and G2

are commensurable in the strict sense.
(3) Assume that both Γ1 and Γ2 are non-arithmetic. By the above argument, we have

that gΓ1g−1 ≤ Comm(Γ2) for some g ∈ GL2(C). By a symmetric argument, we
have some h ∈ GL2(C) such that hΓ2h−1 ≤ Comm(Γ1). Replacing one of Γi with
a suitable conjugate, we may assume that Γ1 ≤ Comm(Γ2) and Γ2 ≤ Comm(Γ1).
From this, we will show that Γ1 and Γ2 are commensurable. By Margulis’ Theo-
rem, Γi is finite index in Comm(Γi). We need only show that Γ2 is finite index in
Comm(Γ1).

We have that Γ1 is contained in Comm(Γ2), Γ1 contains only finitely many left
coset representatives of Γ2. Since Γ1 is finite index in its own commensurator, the
conclusion follows.

�

Remark 6.6. The following stronger result should hold: The sets defined by χ
Γ1, d

dt
(y) = a1

and by χ
Γ2, d

dt
(y) = a2 are orthogonal if Γ1 is not commensurable with Γ2 in the wide sense.

However, we have not been able to prove it yet.
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7. EFFECTIVE FINITENESS RESULTS AROUND THE ANDRÉ-PINK CONJECTURE

The André-Pink conjecture predicts that when W is an algebraic subvariety of a Shimura
variety and S is a Hecke orbit, if W ∩ S is Zariski dense in W, then W is weakly special. For
details, definitions, and proofs of certain special cases of the conjecture see [41, 42, 13].

In the setting of the present paper the conjecture concerns the intersection of an algebraic
variety W ⊂ An with the image, under jΓ applied to each coordinate, of the orbit under
Comm(Γ)n of some point in ā ∈ H.

Given a Fuchsian group Γ and a point a ∈ C, we denote, by IsoΓ(a), the collection of
points b ∈ C such that P(a, b) = 0 for some Γ-special polynomial P. Equivalently, for some

(all) ã, b̃ ∈ H such that jΓ(ã) = a and jΓ(b̃) = b, there is γ ∈ Comm(Γ) such that γã = b̃.
Given a Fuchsian group Γ and a point ā = (a1, . . . , an) ∈ An(C), let IsoΓ(ā) denote the

product of the orbits of the points a1, . . . , an under Γ-special polynomials, that is

IsoΓ(ā) =
n

∏
i=1

IsoΓ(ai).

We call a polynomial p(x1, . . . , xn) (Γ)-(a1, . . . , an)-special if

(1) p(x̄) = xi − bi where bi ∈ IsoΓ(a), or
(2) For some i, j, IsoΓ(ai) = IsoΓ(aj), and p(x̄) is a Comm(Γ)-special polynomial in

xi, xj.

An irreducible subvariety of Cn will be called (Γ)-(a1, . . . , an)-special if it is given by a
finite conjunction of (Γ)-(a1, . . . , an)-special polynomials. If an irreducible variety V is (Γ)-
(a1, . . . , an)-special, then it follows that V has a Zariski dense set of points from IsoΓ(ā).
Our first result of this section shows that the converse holds, at least when ā is a tuple of
transcendental numbers (perhaps with algebraic relations between them).

Theorem 7.1. Fix a complex algebraic variety V ⊂ An(C), a genus zero Fuchsian group Γ of the
first kind, and a point ā = (a1, . . . , an) ∈ An(C) such that for all but at most one i ∈ {1, . . . , n},

ai /∈ Qalg. Then V ∩ IsoΓ(ā)
Zar

is a finite union of (Γ)-(a1, . . . , an)-special varieties.

Proof. The (perhaps reducible) variety V ∩ IsoΓ(ā)
Zar

consists of finitely many components
W1, . . . , Wk, and so we need only show that the varieties Wi are (Γ)-(a1, . . . , an)-special.
Working component by component, it suffices to show that for an arbitrary irreducible
variety V, if IsoΓ(ā) is Zariski dense in V, then V is (Γ)-(a1, . . . , an)-special.

Without loss of generality, assume that all of the coordinates of ā, except perhaps a1, are

transcendental over Q. We also assume a1 ∈ Qalg without loss of generality - otherwise
just ignore arguments about this coordinate in the proof.

Embed Q(a2, . . . , an) into the field of meromorphic functions on some connected subset
of H such that a2, . . . , an are non-constant.

Let ã2, . . . , ãn be as in the proof of Theorem 6.2 - that is, jΓi
(ãi) = ai for i = 2, . . . , n. In the

differential closure K of the field generated by the ai over Q we have, by Theorem 6.2, that

{x ∈ K | χΓ(x) = χΓ(ai)} = IsoΓ(ai),

so χΓ(ai) = χΓ(aj) if and only if IsoΓ(ai) = IsoΓ(aj).
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Consider the collection of i ∈ {1, . . . , n} such that V projects dominantly onto the coordi-
nate corresponding to xi. Then if IsoΓ(ā) is dense in V, and we let b2, . . . , bn be a collection
of generic solutions of χΓ(bi) = χΓ(ai) and let b1 be a generic constant, we have that the
tuple b̄ is dependent over C, but as b2, . . . , bn satisfy equations which are strongly mini-
mal and trivial, it must be that two of the coordinates are nonorthogonal. But now we are
done, since all instances of nonorthogonality are given by Theorem 6.2, since none of the
coordinates 2, . . . , n can be nonorthogonal to b1, a constant. �

Remark 7.2. The assumption in Theorem 7.1 that all but at most one of the elements in
the tuple ā are transcendental is an inherent restriction of the method we employ, which
is similar to the technique employed in various applications of differential algebra to dio-
phantine problems. We replace an arithmetic (discrete) object by the solution to a system of
differential equations, then reduce the general case to an analytic statement using a strong
version of Seidenberg’s embedding theorem. Generally speaking, the technique works
when the discrete set satisfies some interesting differential equation, which one is able to

understand. But the only derivation on Qalg is the trivial one, and so such a coordinate can
not . For other instances of applications of this general idea, see [15, 17, 57, 7].

It would be interesting to see if the methods here might be combined with methods solv-
ing other special cases of the conjecture (e.g. [41]) to remove the transcendence restrictions
of Theorem 7.1.

Remark 7.3. The technique by which we prove Theorem 7.1 has natural limitations de-
scribed in Remark 7.2, but it also has an interesting natural advantage over other tech-
niques. Because we replace an arithmetic object, whose definition is very non-uniform, with
a differential algebraic variety, results from differential algebraic geometry can be used to
give effective bounds the degree of the Zariski-closure of the solutions set.

A general purpose Bezout-type theorem for algebraic differential equations (generaliz-
ing a theorem of Hrushovski and Pillay) was established in [11]. In what follows, τℓA

n

denotes the ℓth-prolongation space of An and for a differential field K, we define

(X, S \ T)♯(K) = {a ∈ X(K) : (a, a′ , . . . , a(ℓ)) ∈ S \ T(K)}.

Theorem 7.4. Let X be a closed subvariety of An, with dim(X) = m, and let S, T be closed
subvarieties (not necessarily irreducible) of τℓA

n for some ℓ ∈ N. Then the degree of the Zariski

closure of (X, S \ T)♯(C) is at most deg(X)ℓ2mℓ
deg(S)2mℓ−1. In particular, if (X, S \ T)♯(C) is a

finite set, this expression bounds the number of points in that set.

Next, we aim to put our differential relations in a form such that we may apply Theorem
7.4. Recall our Schwarzian differential equation:

(⋆) S d
dt
(y) + (y′)2 · RjΓ(y) = 0

where S d
dt
(y) = y′′′

y′ − 3
2

(

y′′

y′

)2
denotes the Schwarzian derivative (′ = d

dt ) and RjΓ ∈

C(y) depends on the choice of jΓ. For the purposes of this section, all that matters is the
degree of the rational function RjΓ (the coefficients, which are complex numbers, will not
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be important in stating or proving our results). If the Γ-action on H has a fundamental half
domain given by a r-sided polygon P (note that this is the case for any Fuchsian group of
the first kind as r is equal to the number of generators of Γ [21]), then

RjΓ(y) =
1

2

r

∑
i=1

1 − α2
i

(y − ai)2
+

r

∑
i=1

Ai

y − ai
,

where the coefficients are complex numbers depending on specific characteristics of the
domain. The crucial point for our results is that the degree of RjΓ (by which we mean the
maximum of the degree of the numerator and the denominator) is given by 2r where r is
the number of generators of Γ.

Clearing the denominator of the rational function and the Schwarzian in equation (⋆),
we obtain:

(Q(⋆)) 0 = (y′′′y′ −
3

2
(y′′)2)

r

∏
i=1

(y − αi)
2 +

(y′)4





1

2

r

∑
i=1



(1 − αi) ∏
j∈[r], j 6=i

(y − ai)
2



+
r

∑
i=1



Ai(y − ai) ∏
j∈[r],j 6=i

(y − aj)
2









As a polynomial, the previous equation has degree 2r + 2.

Theorem 7.5. Fix a complex algebraic variety V ⊂ An(C), a genus zero Fuchsian group Γ of the

first kind, and a point ā = (a1, . . . , an) ∈ An(C) such that for all i ∈ {1, . . . , n}, ai /∈ Qalg. Then

V ∩ IsoΓ(ā)
Zar

is a finite union of (Γ)-(a1, . . . , an)-special varieties, and the sum of the degrees of
the varieties in this union is at most

((2r + 2)n · deg(V))23n−1.

Proof. We need only put the equations appearing in Theorem 7.1 in a form suitable to

apply Theorem 7.4. We can write the Schwarzian differential equations as ∇−1
3 (S) on each

coordinate, where S is the locus of (Q(⋆)) in τ3(A1). On each coordinate, this equation has
degree 2r, so the intersection of these relations with V is a variety in τ3(An) of degree at
most (2r + 2)n deg(V). Now the degree bound follows from Theorem 7.4 with X = An,
l = 3, and V as given above. �

Remark 7.6. One can also establish (by the same means as in the previous proof) a version
of Theorem 7.5 with one coordinate algebraic rather than transcendental (the bound is
slightly better in this case). The bounds of Theorem 7.5 can also be improved (using more
elaborate arguments) by applying the results of [5], a process carried out in [5] in the case
that Γ is the modular group.
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de Paul Painlevé. Tome I, Éditions du Centre National de la Recherche Scientifique, Paris, 1973, 825 pp.
[44] Y. Peterzil and S. Starchenko, Uniform definability of the Weierstrass functions and generalized tori of

dimension one, Sel. math., New ser. 10 no. 4 (2005) 525-550.
[45] Y. Peterzil and S. Starchenko, Complex analytic geometry and analytic-geometric categories, J. Reine

Angew. Math. (Crelle’s Journal) 626 (2009) 39-74.
[46] Y. Peterzil and S. Starchenko, Tame complex analysis and o-minimality, Proceedings of the International

Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies
Vols. II-IV: Invited Lectures. 2010.

[47] Y. Peterzil and S. Starchenko, Definability of restricted theta functions and families of abelian varieties,
Duke Math. J. 162 no. 4 (2013) 731-765.

[48] J. Pila, Modular Ax-Lindemann-Weierstrass with derivatives, Notre Dame J. Form. Log. 54 (2013) 553-565.
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Lyon, 2010.
[61] P. Sarnak, Torsion points on varieties and homology of abelian covers, unpublished manuscript, 1988.

http://arxiv.org/abs/1709.08958
http://arxiv.org/abs/1711.02189


34 G. CASALE, J. FREITAG, AND J. NAGLOO

[62] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Bull. Amer. Math. Soc. 79
(1973) 514-516.

[63] K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan. 29 (1977) 91-106.
[64] K. Takeuchi, Commensurability classes of arithmetic triangle groups : Dedicated to Professor Y. Kawada

on his 60th birthday, J. Fac. Sci. Univ. Tokyo Sect. IA Math. Vol.24 (1977) 201-212.
[65] F. Tu, Schwarzian differential equations associated to Shimura curves of genus zero, Pacific J. Math. 269

no. 2 (2014) 453-489.
[66] E. Ullmo and A. Yafaev, Hyperbolic Ax-Lindemann theorem in the cocompact case, Duke Math. J. 163 no.

2 (2014) 433-463.
[67] H. Umemura, Algebro-geometric problems arising from Painlevé’s work Algebraic and Topological The-
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[73] M. Vignéras, Arithmétique des algébres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer,

Berlin, 1980.
[74] Wilkie, Alex J., Diophantine properties of sets definable in o-minimal structures, The Journal of Symbolic

Logic 69.3 (2004): 851-861.

APPENDIX A. STRONG MINIMALITY FOR THE SPECIAL CASE OF TRIANGLE GROUPS

In this appendix, we discuss an alternate method of proving strong minimality of the
Schwarzian equation in the special case of triangle groups. As before, we assume that Γ

is a Fuchsian group of first kind and of genus zero. The group Γ is said to be a Fuchsian
triangle group of type (k, l, m) if its signature is (0; k, l, m) (see Section 2). We will without
loss of generality always assume that 2 ≤ k ≤ l ≤ m ≤ ∞. We write Γ(k,l,m) for the Fuchsian

triangle group of type (k, l, m).
The fundamental domain in H of Γ(k,l,m) is the union of a hyperbolic triangle with angles

π
k , π

l and π
m at the vertices vk, vl and vm respectively, together with its image via hyperbolic

reflection of one side connecting the vertices. Notice that since k, l, m relates to the angle of
an hyperbolic triangle, if Γ(k,l,m) is a triangle group then

1

k
+

1

l
+

1

m
< 1.

Also, the vertices vk, vl and vm are the fixed points of the generators g1, g2 and g3 respec-
tively.

Definition A.1. The function j(k,l,m) will denote the (unique) Hauptmodul Γ(k,l,m) \HΓ(k,l,m)
→

P1(C) sending vk, vl , vm to 1, 0, ∞ respectively.
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With this definition (cf. [1, Chapter 5]) we have that j(k,l,m) satisfies the Schwarzian

equation (⋆) with

Rj(k,l,m)
(y) =

1 − l−2

y2
+

1 − k−2

(y − 1)2
+

k−2 + l−2 − m−2 − 1

y(y − 1)
.(A.1)

Notice that with Definition A.1, the Hauptmodul j(2,3,∞) for PSL2(Z) is not the classical
j-funtion. Rather, one has that j = 1728j(2,3,∞) (see Example 2.2).

Finally let us mention that there is a full classification, up to PSL2(R)-conjugation, of
the arithmetic triangle groups

Fact A.2. Up to PSL2(R)-conjugation, there are finitely many arithmetic triangle groups; 76
cocompact and 9 non-cocompact [63]. Among these, there are 19 distinct commensurability classes
represented [64].

In the special case of triangle groups, proving that the Riccati equation 4.4 has no alge-
braic solutions (and thus establishing the strong minimality of the associated order three
nonlinear Schwarzian differential equations) can be accomplished without any appeal to
Picard-Vesiot theory but instead by using classical work around the hypergeometric equa-
tion. Already, in [39, see page 601], Nishioka shows that equation 4.5 has no algebraic
solutions in the case the Γ is a cocompact triangle group (which corresponds to the case
that none of k, l, m are ∞). Hence Condition 3.1 and thus Theorem 3.2 holds in the case
of cocompact triangle groups. We will, via a very similar argument, show the same result
holds in the case that Γ is not cocompact. To emphasize, these results are a special case
of our general result on Fuchsian groups, but we feel their inclusion is worthwhile in part
because the method, which deals more directly with the order two linear equation 4.1 and
Riccati equation 4.5, might generalize to Schwarzian equations of the form of equation (⋆’)
which do not necessarily come from a group action of Γ on H. This restriction appears to
be more inherent in our main approach of the previous section.

Let

λ =
1

l
(A.2)

µ =
1

k
(A.3)

ν =
1

m
(A.4)

where the integers 2 ≤ k ≤ l ≤ m ≤ ∞ are as above. We have already seen λ + µ + ν < 1.
Now let α, β and γ be any complex numbers such that, λ = 1 − γ, µ = γ − α − β, and
ν = α − β.

Now, we know that the second order equation 4.1 corresponding to equation (⋆) with ra-
tional function A.1 (equation (5) of [39]) is reducible if and only if one of α, β, γ− α, γ− β is
an integer. Since [39] covers the cocompact case, we can assume without loss of generality
that m = ∞, equivalently ν = 0. Thus, in the above notation, α = β. Now,

α =
1 − 1

l −
1
k

2
.
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In this case, by the triangle requirement, 1
l +

1
k < 1, so α is never an integer.

Further, we have

γ − α =
1 − 1

l +
1
k

2
.

This quantity is never an integer, since 1
l +

1
k < 1. Thus, in the non-cocompact case, we

have that the corresponding equation 4.1 is always irreducible, which, by the correspon-
dence explained in 4 implies that there are no rational solutions to equation 4.4 in this
case.

Now, under the assumption of irreducibility of equation 4.1, we have that there is an

algebraic (but irrational) solution of 4.4 if and only if two of λ − 1
2 , µ − 1

2 , ν − 1
2 are integers

[31, pages 96-100]. This is impossible for any triangle group as at most one of these is an
integers as long as λ + µ + ν < 1.

Thus, we have shown, in a more direct way, that Condition 3.1 and thus Theorem 3.2
also holds in the case of non-cocompact triangle groups.

Remark A.3. At first glance the above arguments only seem to show that the differential
equations for the unformizers j(k,l,m) are strongly minimal. However, all other uniformizers
are rational functions (over C) of the j(k,l,m)’s. From this, strong minimality follows for the
other equations as well.
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