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Despite major advances in our capacity to measure marine larval connectivity (i.e. the pattern of transport of marine larvae from spawning to
settlement sites) and the importance of these measurements for ecological and management questions, uncertainty in experimental estimates of
marine larval connectivity has been given little attention. We review potential uncertainty sources in empirical larval connectivity studies and de-
velop Bayesian statistical methods for estimating these uncertainties based on standard techniques in the mark-recapture and genetics literature.
These methods are implemented in an existing R package for working with connectivity data, ConnMatTools, and applied to a number of pub-
lished connectivity estimates. We find that the small sample size of collected settlers at destination sites is a dominant source of uncertainty in
connectivity estimates in many published results. For example, widths of 95% CIs for relative connectivity, the value of which is necessarily be-
tween 0 and 1, exceeded 0.5 for many published connectivity results, complicating using individual results to conclude that marine populations
are relatively closed or open. This “small sample size” uncertainty is significant even for studies with near-exhaustive sampling of spawners and
settlers. Though largely ignored in the literature, the magnitude of this uncertainty is straightforward to assess. Better accountability of this and
other uncertainties is needed in the future so that marine larval connectivity studies can fulfill their promises of providing important ecological
insights and informing management questions (e.g. related to marine protected area network design, and stock structure of exploited organisms).
In addition to using the statistical methods developed here, future studies should consistently evaluate and report a small number of critical fac-
tors, such as the exhaustivity of spawner and settler sampling, and the mating structure of target species in genetic studies.

Keywords: connectivity, larval dispersal, parentage analysis, self-recruitment, transgenerational marking.

Introduction
Larval dispersal plays a critical role in the population dynamics of

many marine species (Botsford et al., 2009). In particular, the

study of larval connectivity is central to marine spatial planning

(Sala et al., 2002; Botsford et al., 2003), the identification of

demographically separated fish populations (Garavelli et al.,

2014) and estimation of population abundance (Hess et al.,

2012). Until recently, it has been very difficult to quantify real

dispersal patterns due to the high prevalence of species producing

many small larvae with significant planktonic drift times

(Strathmann, 1990). Though larval dispersal modelling studies

have provided significant insight into probable large-scale pat-

terns of larval connectivity (Cowen et al., 2006), oceanographic

model limitations (Nickols et al., 2015), and lack of realistic larval
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behaviour (D’Aloia et al., 2015) prevent current dispersal models

from being used as a replacement for empirical connectivity esti-

mates. A number of groundbreaking genetic and micro-chemical

techniques have recently been developed to experimentally iden-

tify the sites of origin of a given set of settling larvae, and thereby

quantify empirically larval dispersal (Jones et al., 2005; Kaplan

et al., 2010). These studies have revolutionized our thinking with

respect to marine larval dispersal, demonstrating levels of self-

recruitment (i.e. settlement of larvae at their site of origin) that

were previously considered unlikely in marine species with a

planktonic larval phase (Jones et al., 2005). Nevertheless, as the

number of such studies has grown, an ever-widening variety of

self-recruitment levels has been recorded (D’Aloia et al., 2013;

Cuif et al., 2015), suggesting that no one paradigm of “open” or

“closed” can be applied to all marine species. Clearly much re-

mains to be learned regarding larval dispersal in marine systems.

With the advent of high-throughput techniques, such as

genotyping-by-sequencing, permitting intensive sampling of spe-

cies with large population sizes, empirical larval connectivity

studies are poised to play a major role in advancing marine sci-

ence and management.

Despite these advances, experimental studies of larval connect-

ivity remain extremely difficult. The process of “marking” (more

precisely defined in the methods) a certain number of larvae ema-

nating from a spawning site and counting up these marked indi-

viduals among settlers at a settlement site invariably involves

extensive fieldwork and subsequent laboratory analyses to obtain

a statistically viable sample. Given the difficulty of performing

these studies and the relatively small numbers of “marked” set-

tlers collected, it is important to understand the statistical power

of connectivity estimates derived from these data. As we will

demonstrate, uncertainty can enter into these studies in numer-

ous ways, but has been relatively ignored in the literature.

Though some studies have included specific uncertainty sources

in connectivity estimates (Almany et al., 2007; Berumen et al.,

2012), no study has taken a global look at the ensemble of uncer-

tainties underlying marine connectivity estimates. This global

view is essential to producing robust answers to the major ecolo-

gical and management questions that these studies have the po-

tential to help resolve.

The goal of this study is to carry out this global examination of

uncertainty in marine larval connectivity estimates. We will show

that some previously unevaluated, but simple to assess, uncer-

tainty sources are major contributors to the overall uncertainty in

connectivity estimates. The ConnMatTools R package, along with

sample code detailing the use of the package, is provided to quan-

tify these uncertainties and thereby better integrate future marine

larval connectivity studies into marine ecology and management.

Material and methods
Though all experimental larval connectivity studies are ultimately

mark-recapture studies, the details vary as to how larvae are

marked and later collected as settlers, and some of these details

are important for estimating uncertainty in connectivity. In most

cases, larvae are small and numerous and, therefore, one must

find a way to identify larvae spawned at a site and settling at an-

other without observing the path taken between the two.

Sometimes spatial differences in natural chemical signatures are

strong enough that they can be identified in calcifying structures

(e.g. otoliths in fish, statoliths in molluscs) of settlers and used to

determine their point of origin (Hamilton et al., 2008). In these

cases, all individuals spawned at a site are automatically marked

with the chemical signature, though accurately separating indi-

viduals from different sites will require sufficiently strong chem-

ical gradients between sites.

When natural chemical gradients are insufficient or poorly

known, larvae can be artificially marked. One such technique is

transgenerational isotope labelling (TRAIL) (Thorrold et al.,

2006), in which mature females are injected with a solution en-

riched in one or more stable isotopes. This artificial chemical sig-

nature is transferred to the calcifying structures of larvae

produced by injected females, the signal of which is later identi-

fied in collected settlers. Due to large population sizes, sampling

of mature females is often not exhaustive. As a consequence, the

dispersal rate of larvae from one site to another (i.e. the connect-

ivity one hopes to measure) must be inferred from the number of

marked individuals collected and the fraction of reproducers

marked.

Another technique for assessing connectivity is parentage ana-

lysis (Jones et al., 2010), wherein reproducers and settlers are gen-

otyped to uniquely identify (up to a certain statistical power)

parent–offspring pairs (POPs) and thereby assess connectivity.

Large population size often mandates incomplete genotyping of

reproducers, and, therefore, parentage analysis is in some ways

conceptually and mathematically similar to TRAIL when applied

to marine larval connectivity.

These three techniques (natural chemical markers, artificial

chemical markers, and parentage analysis) are currently the most

common and reflect well the range of issues associated with the

estimation of marine connectivity. All empirical approaches to

estimating connectivity generally share a common set of steps

that may be subject to uncertainty (Figure 1). We will examine

each of these steps, but developing appropriate statistical frame-

works is not natural if one follows the experimental order of the

steps. Rather, we begin with a subsection on the central inference

problem of estimating connectivity from an observed number of

marked settlers. Nuances to this basic methodology are developed

in subsequent subsections. Specifically, we examine estimation of

connectivity when marked settlers cannot be identified with

100% certainty, modifications to our methods when the size of

the settler pool is finite, differences between micro-chemical and

genetic parentage-based studies in terms of inference regarding

the number of “marked” larvae, estimation of production of

marked and unmarked eggs for stochastic egg production, and es-

timation of absolute connectivity values (e.g. local retention)

from relative connectivity values. The Methods end with a de-

scription of how we demonstrate the statistical frameworks de-

veloped by applying them to a sample of available connectivity

data.

Larval dispersal mark-recapture
If we assume that the fraction of “marked” eggs produced at the

site of larval origin is known with absolute certainty and marked

vs. unmarked settlers can be separated without any doubt (we

will reexamine both of these assumptions later on), given collec-

tion of k marked settlers out of a total sample of n settlers, then

the fraction, u, of all settlers at the destination site that originated

at the marked site is typically estimated as:
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u ¼ k

p�n (1)

where p is the fraction of larvae produced at the site of origin that

carry the mark. In this equation, p corrects the fraction of marked

individuals in the sample for the fact that not all eggs produced at

the site of origin carry the mark. Though Equation (1) is often

used to evaluate self-recruitment (i.e. when the marked site and

the site of settler collection are the same), it is general and can be

used to evaluate relative (to total settlement at a site) connectivity

between different sites.

Despite Equation (1) being widely used to calculate connectiv-

ity rates, it is problematic for a couple of reasons. For one, if p is

smaller than k=n, then the fraction will be bigger than 1, which is

impossible. This has not been formally recognized in the litera-

ture, but it is conceptually possible if this equation is applied

carelessly. Second, this equation assumes that the sample of set-

tlers is representative of the wider pool of settlers at the settle-

ment site, which may not be the case, particularly if sample size is

small. For example, if only 1 marked individual is found out of

10 settlers, one could wonder how likely it is that the true fraction

of marked individuals in the entire pool of settlers differs signifi-

cantly from 10%. Anyone who has tossed a coin multiple times

can attest to the fact that it sometimes takes many flips for the

sample average number of heads to approach the population

mean of 50%. The same is true for collecting settlers at a site.

Both of these issues can be addressed using standard

approaches from mark-recapture/site-occupancy studies

(MacKenzie et al., 2005). Marked individuals are found among a

sample of settlers collected at a destination site via two approxi-

mately binomial processes (Figure 2): first, the sample of settlers

is randomly selected among the pool of settlers, an unknown frac-

tion, u, of which originated at the marked site; second, the subset

of collected settlers that originated at the marked site are derived

from a random draw from the pool of eggs produced at the

spawning site, of which a known fraction, p, are marked (assum-

ing that marked and unmarked eggs are well mixed). Therefore,

the likelihood function for u given k marked settlers out of a

sample of n settlers is proportional to a binomial distribution

with probability pu:

L ujn; k; pð Þ / Pr kjn; puð Þ ¼ Binom kjn; puð Þ
¼ n

k

� �
puð Þkð1� puÞn�k

(2)

By way of Bayes’ Theorem, we can convert this likelihood into

a (posterior) probability density function for u:

Pr ujn; k; pð Þ ¼ Pr kjn; puð ÞPrðuÞÐ 1

0
Pr kjn; p#ð ÞPrð#Þd#

(3)

where PrðuÞ is the prior distribution for u. As one generally has

little prior information on the value of u, a “non-informative”

prior is most appropriate. Non-informative priors for binomial

models typically take the form of symmetric Beta distributions:

Pr uð Þ ¼ f ðu; a; bÞ / ua�1ð1� uÞb�1
, where a ¼ b ¼ 1 for a

Figure 1. Steps in marine larval connectivity empirical studies (left column), their associated uncertainties (middle column) and Methods
subsection with pertinent information for assessing each uncertainty (right column).
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uniform prior, and a ¼ b ¼ 1=2 for the Jeffreys or Reference

prior (Berger et al., 2015). If a uniform prior is used, the posterior

distribution for u is closely related to the Beta distribution and

can be evaluated analytically:

Pr ujn; k; pð Þ ¼ puð Þkð1� puÞn�k

1
p

Ð p

0
xkð1� xÞn�k

dx

¼ f ðpu; k þ 1; n� k þ 1Þ
1
p

Ð p

0
f ðx; k þ 1; n� k þ 1Þdx

(4)

Given the probability density functions in Equations (3) and

(4), one can calculate CIs and most probable values for u. We

will refer to the uncertainty in connectivity estimates derived

from these equations as the “small sample size uncertainty” as it

is closely related to the potential for biased sampling of the settler

pool due to a limited sample size.

Equations (2)–(4) are a special application of the general

Cormack-Jolly-Seber (CJS) mark-recapture model (Schwarz,

2001) to the case of a single recapture event. In the context of CJS

models, p and u are generally referred to as the “detection prob-

ability” and “apparent survival”, respectively. Unlike many appli-

cations of CJS models, having only a single recapture event does

not allow one to independently estimate p. Rather, p must be sep-

arately estimated and included as a fixed parameter in the model.

Uncertainty in p can, however, be included by, e.g. ensemble

averaging over possible values of p.

The logic applied above can be naturally extended to the case

of multiple different types of marked settlers, e.g. if adults in dis-

tinct source sites are marked with different artificial chemical sig-

natures. In this case, the binomial probability distribution in

Equationss (2)–(4) is replaced by a multinomial distribution:

Pr u1 . . . usjn; k1 . . . km; p1 . . . psð Þ

/ 1�
X

piui

� �n�
P

ki Y
piuið Þki Pr ðu1 . . . usÞ (5)

Appropriate non-informative priors for such models generally

take the form of Dirichlet distributions with uniform parameters

(Berger et al., 2015).

Uncertain identification of marked settlers
The connectivity estimation procedure described above can be ex-

tended to the case where marked-unmarked status of collected

settlers is not known with absolute certainty. If qj is the probabil-

ity that the jth collected settler is marked, then the likelihood

function for u is:

L ujp;q1 . . . qnð Þ / Pr q1 . . . qnjpuð Þ
¼
Yn

j¼1
½ 1� puð Þ 1� qj

� �
þ puqj � (6)

Equation (6) can be used to develop a Bayesian estimator for

the probability density function for u following the same logic as

in Equation (3).

One particularly common case where Equation (6) is applic-

able is when a “score” (i.e. a numerical value related to the likeli-

hood of being marked) is generated for each collected settler. For

micro-chemical studies, the score is typically an isotope concen-

tration or ratio from the core of the settler’s calcifying structure,

whereas for parentage analysis, the score is often a likelihood that

a settler was not produced by random combination of non-

genotyped individuals (i.e. the “log of the odds ratio” (LOD);

Gerber et al., 2003). If normalized probability densities for the

theoretical distributions of scores among marked and unmarked

individuals can be estimated, e.g. from laboratory marked and

unmarked individuals for TRAIL, or simulations based on

observed allelic frequencies for parentage analysis (Gerber et al.,

2003), then:

qj ¼
PMðxjÞ

PM xj

� �
þ PU ðxjÞ

(7)

and:

L ujp; x1 . . . xnð Þ / Pr x1 . . . xnjpuð Þ
/
Yn

j¼1
½ 1� puð ÞPU ðxjÞ þ puPM ðxjÞ� (8)

where xj is the score of the j’th sampled settler, and PMðxÞ and PU

ðxÞ are the probability density functions for scores of marked and

unmarked individuals, respectively. Estimates for u based on

Equation (8) will include uncertainty due to both sample size and

the potential for false identification of marked and unmarked in-

dividuals. In particular, estimates for u can be used to estimate

the probability that an individual settler is marked correcting for

prevalence of marked individuals in the sample and the potential

for false assignment:

~qj ¼
puPM xið Þ

1� puð ÞPU xið Þ þ puPM xið Þ
(9)

Equations (7)–(9) provide a straightforward approach to as-

sessing probability of an individual settler being marked when

scores are generated for each settler that is applicable to both

TRAIL and parentage-based connectivity studies. When used in

the context of parentage studies, these equations provide an alter-

native methodology for identifying POPs that is conceptually

similar to the approach to parentage analysis proposed by

Christie et al. (2013).

Finite settler pool
The probability distribution in Equations (2)–(4) is only exactly

valid in the limit of a well-mixed pool of settlers of infinite size.

However, in reality the settler pool is finite and the probability

Figure 2. Conceptual diagram of binomial processes determining
observed number of marked individuals in a given sample of settlers.
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distribution may need to be adjusted to take this into account. To

see this, consider the case where p ¼ 1 (i.e. all eggs produced at

the marked site are marked) and all settlers to a site are collected.

In this case, there is no uncertainty in u (it is simply k=n), but

Equation (3) would not predict this. This is due to the fact that

the probability of sampling a marked individual changes as one

removes individuals from a finite settler pool. Equations (2)–(4)

can be corrected to take this into account using hypergeometric

distributions, which are similar to binomials, except that true–

false values are sampled without replacement from a finite pool

of values, a known fraction of which are true. For example, if we

know there are a total of K marked individuals in the settler pool

of size N, then the probability of observing k marked individuals

in a sample of size n is:

Hyper kjn;N ;Kð Þ ¼
K
k

� �
N�K
n�k

� �
N
n

� � (10)

The probability of K marked settlers in the settler pool is bino-

mially distributed:

Binom K j ~K ; p
� �

¼
~K

K

� �
p

~K ð1� pÞ ~K�K
(11)

where ~K is the total number of individuals originating at the

source site in the settler pool at the destination site (a subset K of

which are marked). Combining these and summing over all pos-

sible values of K leads to the probability mass function for k,

which can then be inverted using Bayes’ Theorem to obtain the

probability mass function for ~K :

Pr ~K jk; n;N ; p
� �

¼
Pr ~K
� � P~K

K¼k

Binom K j ~K ; p
� �

�Hyper kjn;N ;Kð Þ

PL¼N

L¼k

Pr Lð Þ
P~L

K¼k

Binom K jL; pð Þ�Hyper kjn;N ;Kð Þ
(12)

where Pr ~K
� �

is the prior distribution for ~K , generally taken to

be a constant for a non-informative prior. Given ~K , relative con-

nectivity u ¼ ~K =N .

Micro-chemical vs. genetic mark transmission
How the fraction of marked eggs, p, relates to the number of adults

“marked” in a larval connectivity study is one potential important

difference between genetic and micro-chemical approaches to

measuring dispersal. In techniques that use micro-chemical signa-

tures (natural or artificial), mark transmission can only pass

through females. Therefore, assuming all females produce the same

number of eggs (a dubious assumption to be revisited), p ¼ pf , the

fraction of the mature female population that was marked.

By contrast, nuclear genetic material is transmitted by both

males and females, and, therefore, for parentage studies, the frac-

tion of eggs produced at the “marked site” for which at least one

of the parents was genotyped may also depend on the fraction of

the adult male population that is genotyped, pm. If probability of

two individuals mating is independent of whether or not one or

both has been genotyped (i.e. genotyped and non-genotyped

adults are well mixed at the site of egg production) and all indi-

viduals contribute equally to the number of eggs produced, then

the fraction of eggs with at least one genotyped parent is given by

(Harrison et al., 2012):

p ¼ 1� 1� pfð Þð1� pmÞ¼ pf þ pm � pf pm (13)

Using Equation (13), the probability distribution in Equation

(3) can be applied to this more complicated case of maternal and

paternal mark transmission. However, one can go further and test

the validity of the assumption of equal probability of mating by

comparing the number of settlers collected with one male, one fe-

male or two known parents. Again assuming equal probability of

mating, one would predict the fraction of marked eggs with one

known parent to be:

Fi ¼
pið1� pjÞ

1� 1� pfð Þð1� pmÞ
(14)

where i; j ¼ ff ;mgf (fm; f g) for a known female (male) parent.

Similarly, the fraction of marked eggs with two known parents

would be:

Fmf ¼
pmpf

1� 1� pfð Þð1� pmÞ
(15)

This comparison could be qualitative, or quantitative if suffi-

cient POPs are identified to permit inference of probability distri-

butions for pm and pf :

Pr pm; pf jkm; kf ; kmfð Þ / Prðpm; pf Þ
Y

i¼m;f ;mf

Fi
ki (16)

where km; kf ; and kmf are the number of settlers with

known male, female, and two-known parents in the sample and P

rðpm; pf Þ is the prior distribution for pm and pf . One could com-

pare the resulting posterior distributions for pm and pf with inde-

pendent experimental estimates of pm and pf (e.g. based on the

number of genotyped adults and an estimate of the total adult

population size) to assess the validity of the uniform probability

of mating hypothesis. Note that in principle simultaneous estima-

tion of u, pm; and pf is possible by substituting Equation (13) in

the likelihood in Equation (2), but this would require many

POPs and certainty that genotyped and non-genotyped reprodu-

cers are well mixed.

Estimating fraction of eggs marked
Though numerous studies have considered uncertainty in the

adult population size at the site of marking when calculating p,

the fraction of marked eggs, uncertainty in egg production itself

has rarely been taken into account. It is well know that egg pro-

duction in marine organisms varies as a function of age and size

(Gunderson, 1997). Furthermore, reproduction itself is a stochas-

tic process in many species, with not all individuals reproducing

at every mating opportunity. In some cases, there may be enough

information to correct for these processes when estimating the

fraction of marked eggs from the fractions of marked mature

males and females. For example, if reproduction is reasonably

synchronous and universal among mature individuals and size in-

formation is available for both marked and unmarked individuals

and egg production as a function of size is known and reasonably

deterministic, then one could simply calculate total marked and

unmarked egg production from the numbers and size-frequency

of marked and unmarked individuals.
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More often, precise estimation of the fraction of marked eggs

is impossible because insufficient information is available on the

size structure of marked and (more problematic) unmarked

individuals, and/or some of the processes underlying reproduc-

tion are fundamentally stochastic. However, the magnitude of

the uncertainty in the fraction of marked eggs can be estimated

if the magnitude of variation in individual reproductive out-

put is known. For the case of maternal mark transmission, if

w mature females are marked out of a total population of W ma-

ture females, then the fraction of marked eggs can be estimated

using:

p ¼
Pw

i¼1 eiPW
i¼1 ei

¼
Pw

i¼1 eiPw
i¼1 ei þ

PW
i¼wþ1 ei

(17)

where ei is the egg production of individual i, which is assumed

to be a random variable drawn from a distribution with known

mean �e and SD re . If w and W � w are sufficiently large, then by

the central limit theorem this can be approximated by:

p � X

X þ Y
(18)

where X and Y are normally-distributed (or gamma-distributed

to avoid negative numbers) random variables satisfying:

X � Nðw��e ;w�re
2Þ

Y � NððW � wÞ��e ; ðW � wÞ�re
2Þ

(19)

Though in principle the distribution for p could be calculated

analytically as the convolution of the distributions in Equation

(19) constrained by Equation (18), the result is quite complex. It

is easier to estimate the distribution for p numerically by drawing

random values from the distributions in Equation (19), and to in-

corporate these values for p into the overall uncertainty in con-

nectivity using a bootstrap approach (i.e. average the probability

distributions for u from each potential value of p). Often, there is

also uncertainty in the total number of mature females, W , and

this uncertainty can be integrated into overall uncertainty in p by

bootstrapping over potential values for W .

Note that in some cases w and W may not represent the num-

ber of individual fish, but rather the number of groups of fish,

each of which reproduces as a single unit. One example of this

would be colonial species that reproduce synchronously.

Equations (17)–(19) may be extended to the case of maternal

and paternal mark transmission by using Equation (17) as a re-

placement for pf in, e.g. Equation (13) and repeatedly randomly

sampling the distributions of individual egg production to esti-

mate the distribution of p. Whether or not a similar replacement

for pm also needs to be included will depend on reproductive

behaviour. One would expect that total sperm production would

be irrelevant for species that spawn in pairs as sperm are generally

not limiting, but may be important for species that spawn in ag-

gregation and for which males are in direct competition with one

another for fertilizing eggs.

Estimating connectivity indices
We have so far treated connectivity as being synonymous with

“relative connectivity”, i.e. the fraction of all settlers at a site that

originated at some specific site. When the larval production and

settlement study sites are the same, this is known as the self-

recruitment. This measure of connectivity is useful for assessing

the openness of populations, but it is only related to population

persistence under certain specific conditions regarding popula-

tion stability and homogeneity, and even then provides only an

assessment of relative persistence (Lett et al., 2015). Though the

majority of empirical larval connectivity studies have focused on

self-recruitment or relative connectivity, population persistence is

best assessed by estimating the connectivity matrix, the elements

of which indicate the settlement rate from one site to another

relative to total egg production at the spawning site (Burgess

et al., 2014); the diagonal elements of connectivity matrix are typ-

ically referred to as the “local retention”). Elements of the con-

nectivity matrix can be estimated from the fraction of settlers

originating at the marked site, u, if one has an estimate of the

total number of settlers at the destination site and the total egg

production at the site of origin:

c ¼ S�uPW
i¼1 ei

� S�u
X þ Y

(20)

where c is the element of the connectivity matrix corresponding

to larval transport from the spawning site where individuals are

marked to the site where settlers are collected, S is the total settle-

ment to the destination site, the ei are the egg productions of the

W mature individuals at the spawning site, and X þ Y are as in

Equations (18) and (19).

Equation (20) introduces new potential sources of uncertainty

in connectivity estimates. s total egg production appears in

Equations (17) and (18) for u and Equation (20) for the connect-

ivity matrix, uncertainty in u and X þ Y must be jointly esti-

mated (e.g. using a bootstrap procedure over possible values of X

and Y ). Uncertainty in total settlement at the destination site, S,

will depend on the experimental protocol used, but is typically in-

dependent of the uncertainty in u=X þ Y . As such, it can be esti-

mated separately and then combined with uncertainty in

u=X þ Y .

Application of methods to results from
existing literature
The majority of the methods described above are implemented in

the ConnMatTools R package (see Supplementary Materials S1,

S2 and S3). We used this package to assess the magnitude of

uncertainty in a non-exhaustive subsample of published larval

connectivity estimates. The studies considered (Table 1) include

micro-chemical and genetic parentage-analysis studies, as well as

examples of exhaustive and non-exhaustive marking and recap-

ture protocols. From each study, the fraction of eggs that were

marked, settler sample size, number of marked settlers observed

in the sample and any information available on exhaustivity of

adult and settler sampling were extracted and used to estimate

small sample size uncertainty in connectivity estimates, as well as

uncertainty related to inaccuracy in the estimate of the fraction of

eggs marked (where possible). For brevity, uncertainties for only

a subset of connectivity measurements are estimated for studies

including multiple connectivity measurements (e.g. different time

periods or sites). For each connectivity measurement, the 95% CI

was evaluated based on Equation (4) and, where appropriate,

Equation (4) was ensemble averaged over possible values of the

fraction of marked eggs, p, assuming a uniform distribution of
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probability for p between bounds provided in the original article

(there was generally not enough information to justify using a

more complex distribution).

Larval connectivity data collected by the authors for the hum-

bug damselfish (Dascyllus aruanus) of New Caledonia was also

used to examine the impact of different uncertainty sources that

could not be examined using the published literature due to a

lack of necessary data. Over the~3-month reproductive season of

this species and for 2 consecutive years (2011 and 2012), all adult

damselfish on 100 branching coral colonies out of a total of 508

colonies at a site in the centre of the southwest lagoon of New

Caledonia were repeatedly injected with a solution enriched in

Ba137. Beginning one month after initial injection,~100 settlers per

month were collected at this same site to identify marked individ-

uals. Details of the study mark and recapture protocols are avail-

able in (Cuif et al., 2015).

Uncertainty estimates for self-recruitment, as well as local re-

tention, were generated for these data from New Caledonia. The

number of marked and unmarked damselfish colonies at the New

Caledonia study site is known with certainty, but the reproductive

output of each colony is uncertain. As an illustration of the pos-

sible effects of uncertainty in reproductive output and absent

concrete data on variability in egg production, we estimated un-

certainty in p based on 1000 random draws from Equations (17)–

(19) assuming that each of the 508 colonies at the study site pro-

duced on average 1 unit of reproductive output with a SD equal

to the mean (i.e. SD ¼ 1). Cumulative uncertainty in local reten-

tion due to small sample size, fraction of eggs marked and total

egg production was estimated using a bootstrap approach, ran-

domly drawing 1000 potential values for relative connectivity

from the probability distribution in Equation (4) for each of the

1000 previously calculated potential values for p and total repro-

ductive output. Uncertainty due to the total number of settlers

was similarly integrated, randomly drawing a total settlement

value from a Gamma distribution with mean 305 and SD 36.7

(Cuif et al., 2015) for each potential value of total egg production

and relative connectivity.

Genotype data from damselfish in New Caledonia were used to

demonstrate the approach to parentage analysis described in

Equations (6)–(9). Once per reproductive season, genetic mater-

ial was obtained from adults on the same 100 branching coral col-

onies where TRAIL was used. Adults and larvae later collected as

part of the TRAIL study were genotyped at 17 microsatellite loci.

LOD values were calculated for putative POPs, as well as for

simulated true and false POPs based on allelic frequencies

observed in adult individuals, using the FAMOZ software package

(Gerber et al., 2003). Observed and simulated LOD values were

then compared to estimate the probability distribution for the

number of real POPs in the sample of recruits following

Equations (8) and (9). As this dataset has yet to be fully examined

and published, results from a non-random subsample of 200 re-

cruits are presented here purely to demonstrate the approach.

All connectivity uncertainty calculations (i.e. Table 2 and last

two columns of Table 1) were generated assuming a uniform

prior probability distribution for relative connectivity, u. Using a

uniform prior was simpler and assured alignment of most prob-

able values for u with what one would naively expect from

Equation (1). Nevertheless, methods for using both uniform and

non-uniform priors are implemented in the ConnMatTools R

package. Differences between results for uniform and non-

uniform priors were typically small.

Results
Applying Equation (4) to typical values for settler sample size and

number of marked individuals in the sample demonstrates that

small sample size is often a major source of uncertainty (Figure

3). For a sample size of 20 settlers (a low value, but not unheard

of for a single site and settlement period; e.g. Saenz-Agudelo

et al., 2011) and p ¼ 0:5, the widths of the 95% CI for relative

connectivity u are 0.27, 0.68, and 0.40 for most probable values

of u of 0, 0.5 and 1, respectively (Figure 3a). If sample size is

increased to 200 individuals, 95% CI widths reduce to 0.03, 0.24,

and 0.14, respectively (Figure 3b). Overall, 95% CI width de-

creases as the square root of settler sample size unless the most

probable value for relative connectivity is zero, in which case it

decreases linearly (Figure 4). Note that, even if Equation (1) pre-

dicts u ¼ 0 or u � 1, the probability density function is by defin-

ition constrained to the interval ½0; 1�, and will be peaked at 0 or

1 in these cases (Figure 3).

Sampling a large fraction of the (in reality finite) settler pool

can reduce small sample size uncertainty, but only if sampling is

close to exhaustive and the fraction of eggs marked, p, is also

nearly 100% (Figure 5). For either a total settler pool 20% greater

than the sample size (Figure 5, second dot from left on red curve)

or 90% of eggs marked (Figure 5, first dot from left on green

curve), the 95% CI width is ~40% of that for an infinite settler

pool. For a settler pool twice the sample size, 95% CI width is~60–

70% that of an infinite settler pool (p � 0:9). Absolute size of the

sample did not affect this relative result (results not shown),

though larger samples do have smaller levels of absolute uncer-

tainty. Results for an infinite settler pool are, therefore, a reason-

able and conservative estimate of uncertainty except if marking

and collection of eggs and settlers, respectively, are close to ex-

haustive (e.g. both approximately >80%).

The fraction of eggs carrying the “mark” of a known parent

can differ significantly depending on whether mark transmission

from parent to offspring is maternal (e.g. in TRAIL) or dual ma-

ternal and paternal (e.g. as typically assumed in parentage

Table 2. Local retention estimates integrating multiple different
uncertainty sources for settlement of humbug damselfish to focal
reef in southwest lagoon of New Caledonia in March 2012a

Uncertainty level Local retention estimatesb

Median [min; max of 95% CI]

No uncertainty 0.41
Fraction of marked eggsc 0.41 [0.35; 0.49]
Small sample size 0.41 [0.23; 0.58]
Frac. marked eggsc and Sample size 0.41 [0.23; 0.58]
and Egg productionc 0.41 [0.23; 0.59]
and Settler pool sized 0.41 [0.22; 0.64]
aFrom Cuif et al. (2015). 19.7% of colonies marked. 11 of 82 collected settlers
identified as marked.
bUnits¼ [settlers][breeding colony]�1[month]�1.
cEquations (17)–(20) were used to estimate uncertainty in total egg produc-
tion and fraction of eggs marked, p, assuming synchronous reproduction on
each of 508 branching coral colonies, 100 of which are marked, and an aver-
age of 1 unit of reproduction per colony with an SD equal to the mean (i.e.
also 1).
dThe total size of the settler pool was modelled following Cuif et al. (2015) as
a Gamma distributed random variable with mean of 305 and SD of 36.7.
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studies). Assuming that a small, but equal, fractions of males and

females are marked (e.g. genotyped), then the fraction of eggs

marked, p, is twice as large for dual mark transmission as it is for

pure maternal mark transmission (red curve in Figure 6). This

difference decreases linearly to zero as the fraction of adults

marked increases to 100%.

Uncertainty in published relative connectivity estimates
The importance of Equation (4) for relative connectivity esti-

mates in the literature varies considerably as a function of study

design (Table 1). In some cases, marking of reproducers and col-

lection of settlers are both exhaustive and there is no uncertainty

in connectivity estimates associated with sample size (Jones et al.,

2005; D’Aloia et al., 2013). In other cases, uncertainty related to

sample size can be considerable even if all eggs are marked. For

example, in the groundbreaking TRAIL article of Almany et al.

(2007), uncertainty in self-recruitment due to small sample size is

of the same order of magnitude for the two species examined des-

pite one being exhaustively marked and the other not (95% CI

width of 0.45 vs. 0.65, respectively) due to the smaller sample size

of the prior than the latter (15 vs. 77, respectively). Furthermore,

uncertainty in self-recruitment due to sample size is considerably

larger than that induced by uncertainty in p (as estimated by

Almany et al., 2007), and including both uncertainties only mar-

ginally changes the result based on small sample size uncertainty

alone. This is also true for several other studies we examined,

though uncertainty in p eventually becomes dominant given suffi-

ciently large sample size (e.g. Jones et al., 1999). It is important to

note that it was not clear in many studies if sampling of settlers

was exhaustive or not.

Results from Christie et al. (2010) are unique among studies

considered in that predicted connectivity based on Equation (1)

is >1 (e.g. 11.8 or 1180% self-recruitment back to Big Island of

Hawaii). Using Equation (4) will constrain connectivity to be �1,
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Figure 3. Probability distribution for relative connectivity, u, due to
small sample size uncertainty for settler samples of 20 (a) and 200
(b) individuals. The fraction of eggs marked p=0.5. Thick solid,
dashed and dot-dashed continuous curves are for 0%, 25% and 50%
of collected settlers being marked individuals (corresponding to
most probable values of relative connectivity of 0, 0.5 and 1,
respectively). The vertical solid, dashed and dot-dashed lines indicate
the bounds of the 95% CI for the curve with the corresponding line
style.

Figure 4. Log-log plot of settler sample size vs. 95% CI width for
relative connectivity based on Equation (4). Squares, circles and
triangles are results for most probable relative connectivity values of
0, 0.5, and 1, respectively. The fraction of eggs marked p¼ 0.5. Solid
lines are best log-linear fit with a slope of� 1/2 to data for each
relative connectivity value. The dashed line is best log-linear fit with
a slope of� 1 to squares (relative connectivity of 0).

Figure 5. The ratio of the 95% CI width for finite and infinite settler
pools as a function of the ratio between the total size of the settler
pool and the settler sample size. Curves with squares, circles and
triangles are for fraction of eggs marked p ¼ 1.0, 0.9, and 0.5,
respectively. The dashed horizontal line indicates a CI ratio of 1,
meaning finite and infinite settler pools lead to equivalent
uncertainties. The settler sample size was fixed at 200 individuals,
though results were very similar for other sample sizes. The number
of marked settlers found in the sample was adjusted so that the
most probable value for relative connectivity was 50% in all cases.
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but blind application of the method to this case is unwise. The

probability of observing a sample for which Equation (1) predicts

1180% self-recruitment when the true self-recruitment is neces-

sarily �100% is exceedingly small (�0.04% for 4 POPs identified

out of 566 settlers and p ¼ 0:0006). This suggests that this data

violate some of the assumptions underlying connectivity estima-

tion based on Equations (1)–(4). The authors suggest sweepstake

reproduction, i.e. that genotyped adults are much more successful

reproducers than the average adult (which would increase p), but

this would require consistent and significant sampling bias to-

wards the most successful reproducers across multiple distinct

sites. Other possibilities include false POPs and overestimation of

the adult population size. False POPs seem unlikely as the authors

genotyped five additional loci for putative POPs and found per-

fect agreement. Overestimation of the adult population size is a

possibility, though this would require the true adult population

size to be roughly 11.8 times smaller than experimentally esti-

mated to achieve self-recruitment�100% (~5.9 times smaller if

dual mark transmission, i.e. Equation (13), is appropriate, but

was not taken into account).

Uncertainty in local retention estimates
Local retention estimates for TRAIL data from March 2012 for

the humbug damselfish of New Caledonia demonstrate integra-

tion of multiple uncertainty sources into connectivity estimates.

As with uncertainties in published relative connectivity estimates,

uncertainty in local retention was dominated by uncertainty due

to the small settler sample size (unless true variability in egg pro-

duction between damselfish colonies is much larger than was

assumed), though uncertainty in the size of the total settler pool

also had a non-negligible impact for this dataset (Table 2).

Critically, local retention estimation was only possible for this

data because the total size of the settler pool was experimentally

assessed over the course of the study.

Estimation of the number of POPs
The distribution of LOD values for putative POPs for real dam-

selfish recruits from New Caledonia closely follows that of simu-

lated false POPs (compare gray bars and dashed red curve in

Figure 7a), indicating that the vast majority of the 200 recruits

examined do not come from a genotyped parent. The commonly

used method of identifying POPs based on a LOD threshold that

balances type I and type II error rates finds that there is one po-

tential POP with a LOD above the threshold. However, the type I

error rate is 0.78%, corresponding to 1.56 false POPs in a sample

of 200 recruits, so one would conclude that the likelihood of hav-

ing observed a true POP is small.
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Figure 7. Connectivity estimation based on comparison of observed
distribution of LODs to predicted distributions for true and false
POPs. In (a), gray bars indicate observed distribution of maximum
LOD values for each sampled recruit, the thick solid curve indicates
predicted LOD distribution for false POPs, and the thick dashed
curve indicates predicted LOD distribution for true POPs. The
vertical dotted line is the LOD threshold that balances type I and
type II errors for samples including equal numbers of true and false
POPs. The predicted probability distribution for relative
connectivity, u, is in (b), along with the 0%, 50% and 95% quantiles
of the distribution (vertical dashed lines).

Figure 6. The fraction of eggs derived from at least one genotyped
parent (p) as a function of the fraction of all adults genotyped,
assuming equal numbers of males and females genotyped and equal
probability of mating. The dashed diagonal line is the 1–1 line that
would occur if only females contributed genetic material (i.e. single
mark transmission). The gray line (descending from upper-left to
lower-right of graph) gives the fractional difference in dual versus
single mark transmission estimates for p (i.e. a value of 0 indicates
they are the same, 1 indicates dual mark transmission has a p that is
100% more than that for single mark transmission).
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The Bayesian approach to parentage analysis described in

Equations (6)–(9) confirms these results, but also allows one to

estimate a distribution for self-recruitment directly from the

LODs and quantify the likelihood of having observed a given

number of POPs in the sample. The 95% CI for self-recruitment

for this sample is (0% 2.7%) (Fig. 7b). This is close to, but signifi-

cantly lower than, the CI of (7% 20%) estimated for the same

population using TRAIL. This difference is likely attributable to

bias in the non-random sample of 200 recruits and/or differences

in the sampling protocol between TRAIL and genetics (e.g. geno-

typing once per year versus TRAIL marking each month of the

spawning season). Randomly drawing values for u from the dis-

tribution in Figure 7b, calculating for each u the probability each

larval fish in the sample is a true POP using Equation (9) and

then ensemble averaging the combined probability that there are

no true POPs in the sample over all values of u yields that there is

<1% probability of having a non-zero number of POPs in the

larval sample, consistent with results based on a LOD threshold

plus the type I error rate.

Discussion
The methods developed here, using a combination of mark-

recapture/site-occupancy Bayesian models, and bootstrapping

over potential values of independently-estimated model input

parameters, demonstrate the integration of multiple sources of

uncertainty in marine larval connectivity studies. We use these

methods to estimate uncertainty in two important connectivity

indices: self-recruitment and local retention. Statistical frame-

works for future developments in the field are also described,

such as using multinomial models to assess connectivity in

TRAIL studies with multiple micro-chemical markers or, in

parentage-analysis studies, using the relative observation rates of

settlers with one versus two known parents to assess population

reproductive structure or estimate the fraction of adults marked.

The methods developed here are likely to become essential as lar-

val dispersal studies are used increasingly in the context of marine

management, which often requires examining species with larger

population sizes and estimating connectivity for multiple sites

and time periods. In these cases, empirical studies of marine con-

nectivity will very likely involve non-exhaustive sampling of

adults and settlers and, therefore, require accurate assessment of

uncertainty. Furthermore, management decisions will ideally be

based on comparisons across multiple connectivity estimation

approaches (e.g. empirical and numerical), for which a compre-

hensive understanding of uncertainty is essential.

Surprisingly, uncertainty due to the small size of the sample of

settlers collected was the dominant source of uncertainty for con-

nectivity estimates for the majority of the published studies exam-

ined. For example, widths of 95% CI for relative connectivity (or

self-recruitment) due to small sample size uncertainty exceeded

0.5 for many published connectivity results. As relative connectiv-

ity must be between 0 and 1, this represents a very significant

amount of uncertainty, complicating using individual self-

recruitment results to conclude that marine populations are rela-

tively closed or open (however, consistency among a suite of esti-

mates or studies may still allow one to draw general conclusions

about openness in marine populations).

Small sample size uncertainty was dominant despite the con-

siderable uncertainty in the fraction of eggs marked in many

studies. Exhaustive marking of mature adults and collection of

settlers can remove this uncertainty, but uncertainty rapidly

approaches that of a theoretical infinite settler pool if either of

these experimental steps is not exhaustive. Collecting a larger

number of settlers also reduces small sample size uncertainty,

and, therefore, high-throughput genotyping techniques capable

of rapidly genotyping large numbers of individuals may help re-

duce this uncertainty in the future. Nevertheless, given the in-

creasingly complex questions asked of empirical larval dispersal

studies, small sample size is likely to remain an important source

of measurement uncertainty, happily, relatively easy to assess.

Critically, many studies do not provide enough detail to prop-

erly assess uncertainty in relative connectivity estimates and/or

permit calculating true elements of the connectivity matrix, such

as local retention. In many cases, it is unclear whether or not

spawners and settlers were exhaustively sampled. Target species

reproductive behaviour and output were often not discussed des-

pite their importance for estimating uncertainty in the fraction of

eggs marked and assessing the need for correcting this fraction

for dual mark transmission (in genetic studies). Total settlement

at the destination site was rarely assessed, making it impossible to

convert relative connectivity values into true elements of the con-

nectivity matrix. Systematically including in marine larval con-

nectivity studies indicators of exhaustiveness of settler collection

and a review of target species reproductive behaviour (see next

paragraph) is relatively easy and would considerably enhance the

utility of study results. Assessing reproductive output and the ab-

solute size of the settler pool often requires additional fieldwork,

but will produce more robust and useful connectivity estimates.

Equal probability of mating between genotyped and non-

genotyped individuals is an important underlying assumption of

many parentage-based larval connectivity studies. Whether this

assumption applies to a system depends on the structure of mat-

ing between individuals in the population and the sampling strat-

egy. For example, colonial damselfish typically only mate with

other individuals in the colony, so genotyping all individuals

from a damselfish colony should only produce larvae with two

known parents. In this case, only maternal mark transmission is

important, and the fraction of “marked” eggs is simply equal to

the fraction of genotyped adult females, as in TRAIL studies. On

the other hand, dual maternal and paternal mark transmission

may accurately represent aggregative spawners. Not knowing the

extent to which either of these two limiting cases applies to a

given study is potentially a large source of uncertainty in connect-

ivity estimates (as much as a factor of 2 error in p). Therefore,

understanding reproductive behaviour is essential to parentage-

based connectivity studies, and basic information regarding re-

productive behaviour should be included in future studies.

Overall, we hope that this study and the ConnMatTools R package

implementing the statistical methods developed here will contribute

to producing more robust and useful marine connectivity estimates in

the future. We feel strongly that this detailed approach to uncertainty

is needed if studies of marine larval connectivity are going to make an

important contribution to our understanding of marine population

dynamics and management of marine ecosystems.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the article.
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