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CONTINUITY THEOREM FOR NON-LOCAL FUNCTIONALS INDEXED
BY YOUNG MEASURES AND STOCHASTIC HOMOGENIZATION

OMAR ANZA HAFSA, JEAN-PHILIPPE MANDALLENA, AND GÉRARD MICHAILLE

Abstract. We establish a continuity theorem for non-local functionals indexed by Young
measures that we use to deal with homogenization of stochastic non-diffusive reaction differ-
ential equations. Non-local effects induced by homogenization of such stochastic differential
equations are studied.
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1. Introduction

Let T ą 0, let N ě 1 be an integer and let Ω Ă RN be a bounded domain. Let X be a polish
subspace of a suitable metric space (see §2.1 for more details) and let YpΩ;X q be the class
of Young measures on Ωˆ X . Let us set

H1
0 :“

!

u P H1
ps0, T r;L2

pΩ;Rqq : up0, ¨q “ 0
)

and for each µ P YpΩ;X q and each u P H1
0, let us consider the following two classes of

functions:

H1
0,µ :“

!

U P H1
`

s0, T r;L2
µpΩˆ X ;Rq

˘

: Up0, ¨, ¨q “ 0
)

;

Sµpuq :“

"

U P H1
0,µ :

ż

X
Upt, x, ξqdµxpξq “ upt, xq for dtb dx-a.a. pt, xq Ps0, T rˆΩ

*

,

where tµxuxPΩ denotes the desintegration of µ on Ω ˆ X . In this paper we are concerned
with non-local functionals Φµ : H1

0 ! R defined by

Φµpuq :“ inf
!

φµpUq : U P Sµpuq
)

with µ P YpΩ;X q, where φµ : Sµpuq! R is given by

φµpUq :“

ż

s0,T rˆΩˆX
ξ
`

t, x, Upt, x, ξq, 9Upt, x, ξq
˘

dtb dµpx, ξq `

ż

ΩˆX
θpUpT, x, ξqqdµpx, ξq

with θ : R! r0,8r a convex function of 2-polynomial growth (see (C1), (C2), (C3) and (C4)
in §2.1 for more details). Let us set F :“ tΦµ : µ P YpΩ;X qu. Our main result is to prove
that the map

µ 7! Φµ

is continuous from YpΩ;X q endowed with the narrow convergence to F endowed with the
Γ-convergence (see Theorem 2.7 and also Corollaries 2.8 and 2.9), i.e.,

µε
nar
−! µñ Γ- lim

ε!0
Φµε “ Φµ.

The interest of this result comes from the convergence, when ε goes to zero, of non-diffusive
reaction differential equations of the type

pRεq

$

’

&

’

%

´
Buε
Bt
pt, xq “

Bψε
Bs
pt, x, uεptqq for dtb dx-a.a. pt, xq Ps0, T rˆΩ

uεp0, ¨q “ 0

with ψε : r0, T s ˆ RN ˆ R! R and ε ą 0. In fact, under suitable assumptions (see §2.3 for
more details) every (Rε) admits a unique solution uε P H1

0 which is also a minimizer of Φµε

with:

µε “ dxb δfεpxq;

fεpxqpt, y, s, 9sq “ ψεpt, x, sq ` ψ
˚
ε pt, x,´ 9sq;

θpsq “
1

2
|s|2,
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where ψ˚ε denotes the Legendre-Fenchel conjugate of ψε with respect to the third variable
(see Proposition 2.11). When there exists µ P YpΩ;X q such that dxb δfεpxq

nar
−! µ, Theorem

2.7 implies that any cluster point of tuεuε with respect to the weak convergence in H1
0 is a

minimizer of Φµ with the same θ : R! r0,8r given above (see Corollary 2.12).

This latter result point out the appearance of non-local effects induced by homogenization of
non-diffusive reaction equations of type (Rε) and, in some way, can be seen as a generalization
of previous non-local results obtained by Mascarenhas (see [Mas93]) and Toader (see [Toa99]).
The fact that non-local effects appear when dealing with homogenization of equations of type
(Rε) is illustrated by studying stochastic homogenization of such equations in the framework
of a Poisson point process (see Theorem 4.6 and also Theorems 4.3 and 4.4). In particular,
we show that the weak limit of solutions of stochastic non-diffusive reaction differential
equations of type (Rε) is characterized by two integro-differential equations (see §4.3).

The plan of the paper is as follows. In Section 2 we state the main result of the paper (see
Theorem 2.7) and direct consequences of this result (see Corollaries 2.8 and 2.9) together
with results related to homogenization of non-diffusive reaction equations (see Proposition
2.11, Corollary 2.12 and Proposition 2.13). Propositions 2.11 and 2.13 are proved in Section
2 while the proof of Theorem 2.7 is given in Section 3. Section 4 is devoted to stochastic
homogenization. In §4.1, as a consequence of Theorem 2.7, we state and prove a non-local
stochastic homogenization theorem (see Theorem 4.2) that we apply in §4.2, in the case
of a Poisson point process, to homogenization of stochastic integral functionals as well as
to homogenization of stochastic non-diffusive reaction equations (see Theorems 4.3, 4.4 and
4.6). Theorems 4.3 and 4.4 and Theorem 4.6 are respectively proved in §4.2 and §4.3. Finally,
in the appendix, we recall some standard results on Young measures (see Appendix A) and
inf-convolution and parallel sum (see Appendix B).

Notation. Throughout the paper, for any function w, 9w denotes the partial derivative of w
with respect to t, i.e., 9w “ Bw

Bt
.

2. Main results

2.1. A continuity theorem for a class of non-local functionals indexed by Young
measures. Let N ě 1 be an integer and let T ą 0. Let α, β Ps0,8r be such α ď β and let
γ : r0,8r! r0,8r be such that limr!0 γprq “ 0. In what follows, we denote by Mα,β,γ the
class of functions ξ : r0, T s ˆ RN ˆ Rˆ R! R satisfying the following three conditions:

(C1) ξpt, x, ¨, ¨q is convex for all pt, xq P r0, T s ˆ RN ;
(C2) αp|ps, 9sq|2 ´ 1q ď ξpt, x, s, 9sq ď βp|ps, 9sq|2 ` 1q for all pt, xq P r0, T s ˆ RN and all

ps, 9sq P Rˆ R;
(C3) |ξpt1, x1, s, 9sq´ξpt2, x2, s, 9sq| ď γp|t1´t2|`|x1´x2|q for all pt1, x1q, pt2, x2q P r0, T sˆRN

and all ps, 9sq P Rˆ R.

From now on, to simplify notation we will sometimes write S to denote the couple ps, 9sq P R2.
From (C1), (C2) and (C3) it is easy to see that there exists L ą 0 such that

|ξpt1, x1, S1q ´ ξpt2, x2, S2q| ď γp|t1 ´ t2| ` |x1 ´ x2|q ` L|S1 ´ S2|p1` |S1| ` |S2|q (2.1)

for all ξ PMα,β,γ, all pt2, x2q P r0, T s ˆ RN and all pS1, S2q P R2 ˆ R2.
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Proposition 2.1. Under (C1), (C2) and (C3) the space Mα,β,γ is a compact metric space
with respect to the metric d : Mα,β,γ ˆMα,β,γ ! r0,8r defined by

dpξ1, ξ2q “

8
ÿ

n“0

1

2n`1
inf

!

1, }ξ1 ´ ξ2}8,n

)

, (2.2)

where } ¨ }8,n is the uniform norm on r0, T s ˆBnp0q, i.e., for each ξ PMα,β,γ,

}ξ}8,n “ sup
!

|ξpt, x, Sq| : t P r0, T s and px, Sq P Bnp0q
)

with Bnp0q Ă RN`2 being the pN ` 2q-dimensional closed ball centered at 0 with radius n.
Moreover, the evaluation map E : Mα,β,γ ˆ r0, T s ˆ RN ˆ R2 ! R defined by Epξ, t, x, Sq “
ξpt, x, Sq is continuous.

Proof of Proposition 2.1. For each n P N, we consider the normed space pXn, } ¨ }8,nq
with Xn defined by

Xn :“
!

ξ|r0,T sˆBnp0q : ξ PMα,β,γ

)

,

where ξ|r0,T sˆBnp0q denotes the restriction of ξ to r0, T s ˆBnp0q. Then pMα,β,γ, dq is homeo-

morphic to the product
ś

nPNXn. On the other hand, by using (C2) and (2.1), from Ascoli’s
compactness theorem we see that pXn, } ¨ }8,nq is compact for all n P N. By Tychonov’s
compactness theorem it follows that pMα,β,γ, dq is compact.
Let pξ, t, x, Sq ˆ r0, T s ˆ RN ˆ R2 and let tpξj, tj, xj, Sjquj Ă Mα,β,γ ˆ r0, T s ˆ RN ˆ R2 be
such that |ptj, xj, Sjq ´ pt, x, Sq| ! 0 and dpξj, ξq ! 0. Then, there exists n0 P N such that
pt, x, Sq P r0, T s ˆ Bn0p0q and ptj, xj, Sjq P r0, T s ˆ Bn0p0q for all j ě 1. Let j0 ě 1 be such
that

dpξj, ξq ă
8
ÿ

n“n0

1

2n`1
for all j ě j0. (2.3)

Then, for every j ě j0 we have inf
 

1, }ξj ´ ξ}8,n0

(

“ }ξj ´ ξ}8,n0 . Indeed, fix any j ě j0. If

inf
 

1, }ξj ´ ξ}8,n0

(

“ 1 then inf
 

1, }ξj ´ ξ}8,n
(

“ 1 for all n ě n0 because }ξj ´ ξ}8,n0 ď

}ξj ´ ξ}8,n for all n ě n0. Hence

dpξj, ξq ě
8
ÿ

n“n0

1

2n`1
,

which contradicts (2.3). Using (2.1) we deduce that
ˇ

ˇEpξj, tj, xj, Sjq ´ Epξ, t, x, Sq
ˇ

ˇ ď
ˇ

ˇξjptj, xj, Sjq ´ ξjpt, x, Sq
ˇ

ˇ`
ˇ

ˇpξj ´ ξqpt, x, Sq
ˇ

ˇ

ď γp|tj ´ t| ` |xj ´ x|q ` L|Sj ´ S|p1` |Sj| ` |S|q

`}ξj ´ ξ}8,n0

ď γp|tj ´ t| ` |xj ´ x|q ` LCn0 |Sj ´ S| ` 2n0`1dpξj, ξq

for all j ě j0 with Cn0 :“ supt1` |Sj| ` |S| : j ě j0u Ps0,8r. Letting j ! 8 we deduce that
|Epξj, tj, xj, Sjq ´ Epξ, t, x, Sq|! 0. Hence E is continuous. �
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Let Ω Ă RN be a bounded domain. In what follows, we set

H1
0 :“

!

u P H1
ps0, T r;L2

pΩ;Rqq : up0, ¨q “ 0
)

.

Let X be a polish subspace of pMα,β,γ, dq and let YpΩ;X q be the class of Young measures
on Ω ˆ X . For each µ P YpΩ;X q and each u P H1

0 we consider the following two classes of
functions:

H1
0,µ :“

!

U P H1
`

s0, T r;L2
µpΩˆ X ;Rq

˘

: Up0, ¨, ¨q “ 0
)

;

Sµpuq :“

"

U P H1
0,µ :

ż

X
Upt, x, ξqdµxpξq “ upt, xq for dtb dx-a.a. pt, xq Ps0, T rˆΩ

*

,

where tµxuxPΩ denotes the desintegration of µ on Ω ˆ X . Let θ : R ! r0,8r be a convex
function of 2-polynomial growth, i.e.,

(C4) θpyq ď cp1` |y|2q for all y P R and some c Ps0,8r.

Remark 2.2. Under (C4) as θ is convex we can assert that there exists C ą 0 such that

|θpy1q ´ θpy2q| ď C |y1 ´ y2| p1` |y1| ` |y2|q (2.4)

for all y1, y2 P R.

To every u P H1
0 and every µ P YpΩ;X q we associate the integral functional φµ : Sµpuq! R

defined by

φµpUq :“

ż

s0,T rˆΩˆX
ξ
`

t, x, Upt, x, ξq, 9Upt, x, ξq
˘

dtb dµpx, ξq `

ż

ΩˆX
θpUpT, x, ξqqdµpx, ξq (2.5)

and we consider the functional Φµ : H1
0 ! R given by

Φµpuq :“ inf
!

φµpUq : U P Sµpuq
)

. (2.6)

Remark 2.3. By Proposition 2.1, the evaluation map E is continuous, and so the map
pt, x, ξq 7! ξpt, x, Upt, x, ξq, 9Upt, x, ξqq is pBps0, T rq b BpΩq b BpX q,BpRqq-measurable. It
follows that the integral functional φµ is well defined.

Remark 2.4. From (C2) and (C4) it is easy to see that

α

ż

s0,T rˆΩˆX

´

|pU, 9Uq|2 ´ 1
¯

dtb dµpx, ξqďφµpUqďβ

ż

s0,T rˆΩˆX

´

|pU, 9Uq|2 ` 1
¯

dtb dµpx, ξq

`c

ż

ΩˆX

`

1` |UpT, xq|2
˘

dµpx, ξq

for all U P Sµpuq with u P H1
0, where α, β, c Ps0,8r are given by (C2) and (C4).

Let us set F :“
 

Φµ : µ P YpΩ;X q
(

.
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Remark 2.5. From Remark 2.4 it is easy to see that every F P F satisfies the following
growth conditions:

α

ż

s0,T rˆΩ

`

|pu, 9uq|2 ´ 1
˘

dtb dx ď F puq ď β

ż

s0,T rˆΩ

`

|pu, 9uq|2 ` 1
˘

dtb dx

`c

ż

Ω

`

1` |upT, xq|2
˘

dx

for all u P H1
0.

Let us recall the definition of Γ-convergence (see [DM93, Bra06] for more details).

Definition 2.6 (Γ-convergence). Given tFεuε Ă F and F P F we say that tFεuε Γ-converges

to F at u P H1
0 as ε! 0, and we write

´

Γ- lim
ε!0

Fεq
¯

puq “ F puq, if the following two assertions

hold:

Γ-lower bound at u: for every every tuεuε Ă H1
0, if uε

H1

Ýá u then

lim
ε!0

Fεpuεq ě F puq;

Γ-upper bound at u: there exists tvεuε Ă H1
0 such that vε

H1

Ýá u and

lim
ε!0

Fεpvεq ď F puq.

When
´

Γ- lim
ε!0

Fεq
¯

puq “ F puq for all u P H1
0 we say that tFεuε Γ-converges to F as ε ! 0,

and we write Γ- lim
ε!0

Fε “ F.

The main result of the paper is the following. (This result is a new and more complete version
of [MV02, Theorem 3] in the specific case of the one-dimensional distributional derivative.)

Theorem 2.7. Under (C1), (C2), (C3) and (C4) the map µ 7! Φµ is continuous from
YpΩ;X q endowed with the narrow convergence to F endowed with the Γ-convergence, i.e.,
for every µ P YpΩ;X q and every tµεuε Ă YpΩ;X q, if µε

nar
−! µ then

Γ- lim
ε!0

Φµε “ Φµ.

2.2. From local to non-local functionals. It is easy to see that if µ “ dx b δfpxq with
f : Ω! X a pBpΩq,BpX qq-measurable function, then for any u P H1

0 one has

φµpUq “

ż

s0,T rˆΩ

fpxq
`

t, x, upt, xq, 9upt, xq
˘

dtb dx`

ż

Ω

θpupT, xqqdx

for all U P Sµpuq. Hence

Φµpuq “

ż

s0,T rˆΩ

fpxq
`

t, x, upt, xq, 9upt, xq
˘

dtb dx`

ż

Ω

θpupT, xqqdx (2.7)

for all u P H1
0. In what follows, when µ “ dx b δfpxq we use the notation “Φf” instead of

“Φµ”. As a direct consequence of Theorem 2.7 we have
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Corollary 2.8. Assume that (C1), (C2), (C3) and (C4) hold and, for each ε ą 0, consider
a pBpΩq,BpX qq-measurable function fε : Ω ! X . If there exists µ P YpΩ;X q such that
dxb δfεpxq

nar
−! µ then

Γ- lim
ε!0

Φfε “ Φµ.

In corollary 2.8, although the functionals Φfε are local, i.e., are integral functionals, the
Γ-limit Φµ is in general non-local (here infimum of integral functionals). However, since

dx b δfεpxq
nar
−! dx b δfpxq if and only if tfεuε converges in measure to f (see [ABM14,

Proposition 4.3.8] and also [Val90, Proposition 6]), we have

Corollary 2.9. Assume that (C1), (C2), (C3) and (C4) hold and, for each ε ą 0, consider
a pBpΩq,BpX qq-measurable function fε : Ω ! X . If there exists a pBpΩq,BpX qq-measurable
function f : Ω! X such that tfεuε converges in measure to f , i.e.,

lim
ε!0

LN
´

 

x P Ω : dpfεpxq, fpxqq ą η
(

¯

“ 0 for all η ą 0,

where d is the metric defined by (2.2), then

Γ- lim
ε!0

Φfε “ Φf .

2.3. Non-diffusive reaction differential equations. For each ε ą 0, let ψε : r0, T s ˆ
RN ˆ R! R be a pBpr0, T sq b BpRNq b BpRq,BpRqq-measurable function such that:

(A1) ψεpt, x, ¨q P C
1pRq for dtb dx-a.a. pt, xq Ps0, T rˆΩ;

(A2) ψεpt, x, ¨q is convex for dtb dx-a.a. pt, xq Ps0, T rˆΩ;
(A3) there exist c1, C1 ą 0 (which does not depend on ε) such that

c1p|s|
2
´ 1q ď ψεp¨, ¨, sq ď C1p|s|

2
` 1q

for all s P R;
(A4) there exists δ : r0,8r! r0,8r (which does not depend on ε) with limr!0 δprq “ 0

such that

|ψεpt1, ¨, ¨q ´ ψεpt2, ¨, ¨q| ď δp|t1 ´ t2|q

for all t1, t2 P r0, T s;
(A5) there exists L ą 0 (which does not depend on ε) such that

ˇ

ˇ

ˇ

ˇ

Bψε
Bs
p¨, ¨, s1q ´

Bψε
Bs
p¨, ¨, s2q

ˇ

ˇ

ˇ

ˇ

ď L|s1 ´ s2|

for all s1, s2 P R,

and consider the non-diffusive reaction differential equation defined in H1ps0, T r;L2pΩ;Rqq
by

pRεq

$

’

&

’

%

´
Buε
Bt
pt, xq “

Bψε
Bs
pt, x, uεpt, xqq for dtb dx-a.a. pt, xq Ps0, T rˆΩ

uεp0, ¨q “ 0.

Remark 2.10. Under (A1), (A2), (A3), (A4) and (A5), it is well known that every (Rε) has a
unique solution uε P H0

1 (for a proof, see for instance [AHM18, Theorem 2.3]).
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The following proposition makes clear the link between non-diffusive reaction differential
equations and integral functionals of type (2.7).

Proposition 2.11. If (A1), (A2), (A3), (A4) and (A5) hold then, for every ε ą 0, the non-
diffusive reaction differential equation (Rε) admits a unique solution uε P H1

0. Moreover,
there exist α, β ą 0 and γ : r0,8r! r0,8r with limr!0 γprq “ 0 such that every uε minimizes
the functional Φfε : H1

0 ! R given by

Φfεpuq “

ż

s0,T rˆΩ

fεpxq
`

t, x, upt, xq, 9upt, xq
˘

dtb dx`

ż

Ω

θpupT, xqqdx

with fε : Ω!Mα,β,γ (here X “Mα,β,γ) and θ : R! r0,8r respectively defined by

fεpxqpt, y, s, 9sq :“ ψεpt, x, sq ` ψ
˚
ε pt, x,´ 9sq (2.8)

and

θpsq :“
1

2
|s|2, (2.9)

where ψ˚ε denotes the Legendre-Fenchel conjugate of ψε with respect to the third variable.

Proof of Proposition 2.11. For ε ą 0 and define Ψε : r0, T s ˆ L2pΩ;Rq! R by

Ψεpt, vq :“

ż

Ω

ψεpt, x, vpxqqdx.

(Note that Ψεpt, ¨q is convex by (A2).) Then (Rε) is equivalent to the following differential
inclusion defined in H1

0 by

pDεq ´ 9uεpt, ¨q P BΨεpt, uεpt, ¨qq for dt-a.a. t Ps0, T r,

where BΨεpt, ¨q denotes the subdifferential of Ψεpt, ¨q. According to Fenchel’s extremality
condition (see [ABM14, Proposition 9.5.1]), we see that pDεq is equivalent to

Ψεpt, uεpt, ¨qq `Ψ˚
ε pt,´ 9uεpt, ¨qq ` xuεpt, ¨q, 9uεpt, ¨qy “ 0 for dt-a.a. t Ps0, T r,

where Ψ˚
ε denotes the Legendre-Fenchel conjugate of Ψε with respect to the second variable.

But, by Legendre-Fenchel’s inequality, Ψεpt, vq `Ψ˚
ε pt,´wq ` xw, vy ě 0 for dt-a.a. t Ps0, T r

and all v, w P L2pΩ;Rq. Consequently, noticing that d
dt
}uεpt, ¨q}

2
L2pΩ;Rq “ 2xuεpt, ¨q, 9uεpt, ¨qy

and defining Fε : H1
0 ! r0,8s by

Fεpuq :“

ż T

0

´

Ψεpt, upt, ¨qq `Ψ˚
ε pt,´ 9upt, ¨qq `

1

2

d

dt
}upt, ¨q}2L2pΩ;Rq

¯

dt,

it follows that pDεq is equivalent to Fεpuεq “ 0. (More precisely, we see that pDεq is equivalent
to Fεpuεq ď 0.) Thus, uε solves (Rε) if and only if uε minimizes Fε.
On the other hand, as ψε satisfies (A3) and (A4), so is its Legendre-Fenchel conjugate ψ˚ε
with other constants ĉ1, Ĉ1 ą 0, instead of c1, C1 ą 0, but with the same function δ. Thus
fεpxq P Mα,β,γ for all x P Ω (with suitable constants α, β ą 0 and a suitable function γ)
where, for each pt, y, s, 9sq P r0, T s ˆ RN ˆ Rˆ R, fεpxqpt, y, s, 9sq is given by (2.8).
Finally, for each u P H1

0, as up0, ¨q “ 0, by using Legendre-Fenchel’s calculus, it is easy to
see that

Fεpuq “

ż

s0,T rˆΩ

fεpxqpt, x, upx, tq, 9upt, xqqdxb dt`

ż

Ω

θpupT, xqqdx,
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where θ : R! r0,8r is given by (2.9), which means that Fε “ Φfε . �

As a direct consequence of Proposition 2.11 and Corollary 2.8 we obtain the following result.

Corollary 2.12. Assume that the assumptions of Proposition 2.11 are satisfied and, for
each ε ą 0, let uε P H1

0 be the solution of (Rε). If there exists µ P YpΩ;X q such that
dx b δfεpxq

nar
−! µ, where fε : Ω !Mα,β,γ is given by (2.8), then any cluster point of tuεuε

with respect to the weak convergence in H1
0 is a minimizer of Φµ : H1

0 ! R defined by (2.6)
with θ : R! r0,8r given by (2.9).

Thus, the results obtained in [Mas93, Toa99] concerning non-local effects induced by homog-
enization can be seen as a particular case of Corollary 2.12 (see §5.2 for more details). Note
that if we further assume that

(A6) for every ε ą 0, ψε does not depend on t, and there exists ψ : RN ˆR! R such that
for dx-a.e. x P RN , ψpx, ¨q P C1pRq, ψpx, ¨q is convex and ψpx, sq “ limε!0 ψεpx, sq
for all s P R,

then the non-local effects disappear. More precisely, we have the following proposition which
states a stability result for sequences of non-diffusive reaction differential equations of type
(Rε).

Proposition 2.13. Under the assumptions of Proposition 2.11, if moreover (A6) holds then
(up to a subsequence) the sequence tuεuε of solutions of (Rε) weakly converges in H1

0 to the
solution u of the following non-diffusive reaction differential equation:

pRq

$

’

&

’

%

´
Bu

Bt
pt, xq “

Bψ

Bs
px, upt, xqq for dtb dx-a.a. pt, xq Ps0, T rˆΩ

up0, ¨q “ 0.

Proof of Proposition 2.13. For each ε ą 0, let Ψε,Ψ : L2pΩ;Rq! R be defined by
$

’

’

’

&

’

’

’

%

Ψεpvq :“

ż

Ω

ψεpx, vpxqqdx

Ψpvq :“

ż

Ω

ψpx, vpxqqdx.

(Note that, by (A6), ψε does not depend on t.) We first prove that

M- lim
ε!0

Ψε “ Ψ, (2.10)

where the symbol “M- lim ” denotes the Mosco-limit1. For any ε ą 0 and any λ ą 0, let
Ψλ
ε ,Ψ

λ : L2pΩ;Rq ! R be the λ-Moreau-Yosida approximation of Ψε and Ψ. By using an

1Let X be a Hilbert space, let h : X ! R and, for each ε ą 0, let hε : X ! R. We say that thεuε

Mosco-converges to h, and we write M- limε!0 hε “ h, if the following two assertions hold:
M-lower bound: for every v P X and every tvεuε Ă X, if vε Ýá v then limε!0 hεpvεq ě hpvq;
M-upper bound: for every v P X there exists twεuε Ă X such that wε ! v and limε!0 hεpwεq ď hpvq.
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interchange argument of infimum and integral (see [AHM03]) it easily seen that
$

’

’

’

&

’

’

’

%

Ψλ
ε pvq “

ż

Ω

ψλε px, vpxqqdx

Ψλ
pvq “

ż

Ω

ψλpx, vpxqqdx,

(2.11)

where ψλε and ψλ denotes the λ-Moreau-Yosida approximation of ψε and ψ with respect to
the second variable. From (A1), (A2) and (A6) we deduce that Ψ and Ψε are closed, convex
and proper. Consequently, to prove (2.10) it is equivalent to show that

lim
ε!0

Ψλ
ε pvq “ Ψλ

pvq for all λ ą 0 and all v P L2
pΩ;Rq (2.12)

(see [Att84, Theorem 3.26]). Taking (2.11) and (A3) into account, by Lebesgue’s dominated
convergence theorem, we see that for establishing (2.10) it suffices to prove that

lim
ε!0

ψλε px, sq “ ψλpx, sq for dx-a.e. x P RN , all λ ą 0 and all s P R. (2.13)

But (A1), (A2) and (A6) implies that for dx-a.e. x P RN , ψεpx, ¨q and ψ are closed, convex
and proper, and so (2.13) holds if and only if

M- lim
ε!0

ψεpx, ¨q “ ψpx, ¨q for dx-a.e. x P RN . (2.14)

Fix x P RN and fix any ε ą 0. From (A1) and (A3) we deduce that there exists C ą 0 (which
does not depend on ε) such that

|ψεpx, s1q ´ ψεpx, s2q| ď C|s1 ´ s2|p1` |s1| ` |s2|q (2.15)

for all s1, s2 P R. Let s P R and let tsεuε Ă R. On one hand, by (A6) we have

lim
ε!0

ψεpx, sq “ ψpx, sq, (2.16)

which gives the M-upper bound of (2.14). On the other hand, from (2.15) it follows that

ψεpx, sεq ď ψεpx, sq ´ C|sε ´ s|p1` |sε| ` |s|q

for all ε ą 0, and so, by using (2.16), if sε ! s in R then limε!0 ψεpx, sεq ě ψpx, sq, which
gives the M-lower bound of (2.14). Thus (2.10) is proved.
For each ε ą 0, let Gε, G : L2ps0, T r;L2pΩ;Rqq! R be defined by

$

’

’

’

’

&

’

’

’

’

%

Gεpvq :“

ż T

0

Ψεpvpt, ¨qqdt

Gpvq :“

ż T

0

Ψpvpt, ¨qqdt.

From (2.10) we deduce that
M- lim

ε!0
Gε “ G (2.17)

(see [ABM14, Lemma 17.4.8]). Hence (see [ABM14, Theorem 17.4.3])

M- lim
ε!0

G˚ε “ G˚, (2.18)



CONTINUITY THEOREM FOR NON-LOCAL FUNCTIONALS INDEXED BY YOUNG MEASURES 11

with G˚ε , G
˚ : L2ps0, T r;L2pΩ;Rqq ! R denoting the Legendre-Fenchel conjugate of Gε and

G, where, by using Legendre-Fenchel’s calculus, one has
$

’

’

’

’

&

’

’

’

’

%

G˚ε pvq “

ż T

0

Ψ˚
ε pvpt, ¨qqdt

G˚pvq “

ż T

0

Ψ˚
pvpt, ¨qqdt

with Ψ˚
ε ,Ψ

˚ : L2pΩ;Rq! R denoting the Legendre-Fenchel conjugate of Ψε and Ψ. For each
ε ą 0, let Fε, F : H1

0 ! R be defined by
$

’

’

&

’

’

%

Fεpvq :“ Gεpvq `G
˚
ε p´ 9vq `

1

2
}vpT, ¨q}2L2pΩ;Rq

F pvq :“ Gpvq `G˚p´ 9vq `
1

2
}vpT, ¨q}2L2pΩ;Rq .

Arguing as in the proof of Proposition 2.11 we can assert that:

for each ε ą 0, v solves (Rε) if and only if Fεpvq ď 0; (2.19)

v solves (R) if and only if F pvq ď 0; (2.20)

Let tuεuε Ă H1
0 be a sequence of solutions of (Rε). Taking Remark 2.5 into account, we

see that (up to a subsequence) there exists u P H1
0 such that uε

H1

Ýá u, i.e., uε
L2

Ýá u and

9uε
L2

Ýá 9u. Then, by (2.19), one has Fεpuεq ď 0 for all ε ą 0. Letting ε! 0 we obtain

lim
ε!0

Fεpuεq ď 0. (2.21)

On the other hand, from (2.17) and (2.18) we deduce that:

Gpuq ď lim
ε!0

Gεpuεq; (2.22)

G˚p´ 9uq ď lim
ε!0

G˚ε p´ 9uεq. (2.23)

As, for any ε ą 0, uε P H1
0 and u P H1

0 we have uεp0, ¨q “ 0 and up0, ¨q “ 0, and so uεpT, ¨q “
şT

0
9uεpt, ¨qdt and upT, ¨q “

şT

0
9upt, ¨qdt. Since 9uε

L2

Ýá 9u it follows that uεpT, ¨q
L2

Ýá upT, ¨q, and
consequently

}upT, ¨q}L2pΩ;Rq ď lim
ε!0

}uεpT, ¨q}L2pΩ;Rq . (2.24)

From (2.22), (2.23) and (2.24) we deduce that F puq ď limε!0 Fεpuεq. Hence F puq ď 0 by
(2.21). From (2.20) we conclude that u solves (R). �

3. Proof of the continuity theorem

In this section we prove Theorem 2.7.
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Proof of Theorem 2.7. Let µ P YpΩ;X q and let tµεuε Ă YpΩ;X q be such that µε
nar
−! µ.

According to the left inequality in Remark 2.5, to prove that

Γ- lim
ε!0

Φµε “ Φµ (3.1)

it is equivalent to show that every subsequence of tΦµεuε contains a further subsequence which
Γ-converges to Φµ (see [DM93, Proposition 8.17]). Let us consider a subsequence that we still
denote by tΦµεuε. Taking the left inequality in Remark 2.5 into account, by compactness,
we can assert that, up to subsequence, tΦµεuε Γ-converges (see [DM93, Corollary 8.12]), i.e.,
Γ- limε!0 Φµε “ Ψ. So, to establish (3.1) it is sufficient to prove that

Ψpuq “ Φµpuq for all u P H1
0. (3.2)

For this, we only need to show that for each u P H1
0 the following two assertions hold:

(G1) there exists a subsequence tΦµσpεquε and tvεuε Ă H1
0 such that vε

H1

Ýá u and

lim
ε!0

Φµσpεqpvεq ď Φµpuq;

(G2) for every tuεuε Ă H1
0, if uε

H1

Ýá u then

lim
ε!0

Φµσpεqpuεq ě Φµpuq,

where tΦµσpεquε is given by (G1).

Indeed, let u P H1
0. According to Definition 2.6, from (G1) and (G2) we see that tΦµσpεquε

Γ-converges to Φµ at u as ε ! 0, i.e., pΓ- limε!0 Φµσpεqqpuq “ Φµpuq. On the other hand,
as tΦµσpεquε is a subsequence of tΦµεquε we have Γ- limε!0 Φµσpεq “ Γ- limε!0 Φµε , and so
Γ- limε!0 Φµσpεq “ Ψ. Hence, in particular, pΓ- limε!0 Φµσpεqqpuq “ Ψpuq. It follows that
Ψpuq “ Φµpuq, which proves (3.2).

Let us fix u P H1
0.

Proof of (G1). By using the direct method of the calculus of variations, we can assert that
there exists U P Sµpuq such that U is a minimizer of Φµpuq, i.e., Φµpuq “ φµpUq. We then
have:

upt, xq “

ż

X
Upt, x, ξqdµxpξq; (3.3)

9upt, xq “

ż

X

9Upt, x, ξqdµxpξq, (3.4)

where tµxuxPΩ denotes the desintegration of µ on ΩˆX . As C1
c ps0, T r;CcpΩˆX qq is strongly

dense in H1
0,µ, for each δ Ps0, 1s there exists Uδ P C

1
c ps0, T r;CcpΩˆ X qq such that:

ż

s0,T rˆΩˆX
|Uδpt, x, ξq ´ Upt, x, ξq|

2 dtb dµpx, ξq ă δ; (3.5)

ż

s0,T rˆΩˆX

ˇ

ˇ 9Uδpt, x, ξq ´ 9Upt, x, ξq
ˇ

ˇ

2
dtb dµpx, ξq ă δ. (3.6)
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In particular, one has:

Uδ
L2

! U ; (3.7)

9Uδ
L2

! 9U. (3.8)

For each δ Ps0, 1s and each ε ą 0, let uδ,ε P H1
0 be given by

uδ,εpt, xq :“

ż

X
Uδpt, x, ξqdµ

ε
xpξq, (3.9)

where tµεxuxPΩ denotes the desintegration of µε on Ωˆ X . Then

9uδ,εpt, xq :“

ż

X

9Uδpt, x, ξqdµ
ε
xpξq. (3.10)

(In what follows, we systematically use the fact that Uδ, U
2
δ , 9Uδ, and 9U2

δ are test functions
for the narrow convergence in YpΩ;X q because these are bounded Carathéodory integrands
on Ωˆ X .)
Since µε

nar
−! µ, there exists a mapping δ 7! ηδ with ηδ ! 0 as δ ! 0 such that for all

ε Ps0, ηδs, one has:
ˇ

ˇ

ˇ

ˇ

ż

s0,T rˆΩˆX
|Uδpt, x, ξq|

2dtb dµεpx, ξq ´

ż

s0,T rˆΩˆX
|Uδpt, x, ξq|

2dtb dµpx, ξq

ˇ

ˇ

ˇ

ˇ

ă 1; (3.11)

ˇ

ˇ

ˇ

ˇ

ż

s0,T rˆΩˆX
| 9Uδpt, x, ξq|

2dtb dµεpx, ξq ´

ż

s0,T rˆΩˆX
| 9Uδpt, x, ξq|

2dtb dµpx, ξq

ˇ

ˇ

ˇ

ˇ

ă 1. (3.12)

Fix any δ Ps0, 1s and any ε Ps0, ηδs. Using (3.9) and (3.11) we see that
ż

s0,T rˆΩ

|uδ,εpt, xq|
2dtb dx “

ż

s0,T rˆΩ

ˇ

ˇ

ˇ

ˇ

ż

X
Uδpt, x, ξqdµ

ε
xpξq

ˇ

ˇ

ˇ

ˇ

2

dtb dx

ď

ż

s0,T rˆΩˆX
|Uδpt, x, ξq|

2dtb dµεpx, ξq

ď 1`

ż

s0,T rˆΩˆX
|Uδpt, x, ξq|

2dtb dµpx, ξq.

But, taking (3.5) and the left inequality in Remark 2.4 into account and recalling that
U P Sµpuq, we have

ż

s0,T rˆΩˆX
|Uδpt, x, ξq|

2dtb dµpx, ξq ď 2δ ` 2

ż

s0,T rˆΩˆX
|Upt, x, ξq|2dtb dµpx, ξq

ď 2

ˆ

1`
1

α
φµpUq ` T |Ω|

˙

,

and so, setting R :“ 3` 1
α
φµpUq ` T |Ω|, it follows that

ż

s0,T rˆΩ

|uδ,εpt, xq|
2dtb dx ď R for all δ Ps0, 1s and all ε Ps0, ηδs. (3.13)
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In the same manner, by considering (3.10), (3.12) and (3.6) instead of (3.9), (3.11) and (3.5),
we obtain

ż

s0,T rˆΩ

| 9uδ,εpt, xq|
2dtb dx ď R for all δ Ps0, 1s and all ε Ps0, ηδs. (3.14)

For each δ Ps0, 1s, consider the mapping ε 7! λδpεq given by

λδpεq :“

"

ηδ if ε ą ηδ
ε if ε ď ηδ.

(Note that λδpεq! 0 as ε! 0.) From (3.13) and (3.14) we deduce that

tuδ,λδpεqupδ,εqPs0,1sˆs0,8r Ă BRp0q, (3.15)

where BRp0q denotes the closed ball in H1
0 centered at 0 with radius R. As µε

nar
−! µ we have

µλδpεq
nar
−! µ for all δ Ps0, 1s, and so

uδ,λδpεq
L2

Ýá

ż

X
Uδp¨, ¨, ξqdµxpξq for all δ Ps0, 1s. (3.16)

Taking (3.7) and (3.3) into account, from the above it follows that
ż

X
Uδp¨, ¨, ξqdµxpξq

L2

Ýá

ż

X
Up¨, ¨, ξqdµxpξq “ u. (3.17)

By the same arguments, using (3.8) and (3.4) instead of (3.7) and (3.3), we obtain:

9uδ,λδpεq
L2

Ýá

ż

X

9Uδp¨, ¨, ξqdµxpξq for all δ Ps0, 1s; (3.18)

ż

X

9Uδp¨, ¨, ξqdµxpξq
L2

Ýá

ż

X
Up¨, ¨, ξqdµxpξq “ 9u. (3.19)

Combining (3.16) with (3.18) and (3.17) with (3.19) we see that

uδ,λδpεq
H1

Ýá
ε!0

ż

X
Uδp¨, ¨, ξqdµxpξq

H1

Ýá
δ!0

u. (3.20)

According to (3.15) and the fact that in BRp0q the weak convergence is metrizable, we can
rewrite (3.20) as follows:

dw- lim
δ!0

dw- lim
ε!0

uδ,λδpεq “ u, (3.21)

where dw denotes the metric associated with the weak convergence in BRp0q.
On the other hand, by using similar arguments together with (2.1) and (2.4), we can assert
that

lim
δ!0

lim
ε!0

φµλδpεqpUδq “ φµpUq. (3.22)

According to (3.21) and (3.22), by diagonalization there exists a mapping ε 7! δε with δ ! 0
as ε! 0 such that:

dw- lim
ε!0

uδε,λδε pεq “ u, i.e., uδε,λδε pεq
H1

Ýá u; (3.23)

lim
ε!0

φµλδε pεq
pUδεq “ φµpUq. (3.24)
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Since φµpUq “ Φµpuq and, for each ε ą 0, φµλδε pεq
pUδεq ě Φµλδε pεq

puδε,λδε pεqq because Uδε P

C1
c ps0, T r;CcpΩ ˆ X qq Ă H1

0,µλδε pεq
and

ş

X Uδεp¨, ¨, ξqdµ
λδεpεq
x pξq “ uδε,λδεpεq , from (3.24) we

deduce that

lim
ε!0

Φµλδε pεq
puδε,λδεpεqq ď Φµpuq. (3.25)

Taking (3.23) and (3.25) into account and setting σpεq :“ λδεpεq and vε :“ uδε,λδεpεq we have
σpεq! 0 as ε! 0 and:

vε
H1

Ýá u;

lim
ε!0

Φµσpεqpvεq ď Φµpuq,

and the proof of (G1) is complete. �

Proof of (G2). Let tuεuε Ă H1
0 be such that uε

H1

Ýá u. Without loss of generality we can
assume that

lim
ε!0

Φµσpεqpuεq “ lim
ε!0

Φµσpεqpuεq ă 8, and so sup
εą0

Φµσpεqpuεq ă 8. (3.26)

Fix any ε ą 0. By using the direct method of the calculus of variations, we can assert that
there exists Uε P Sµσpεqpuεq such that Uε is a minimizer of Φµσpεqpuεq, i.e.,

Φµσpεqpuεq “ φµσpεqpUεq (3.27)

with φµσpεq : Sµσpεqpuεq ! R given by (2.5). From (3.26) and the left inequality in (C2) we
deduce that

sup
εą0

›

›

›
pUε, 9Uεq

›

›

›

L2
dtbµσpεq

ps0,T rˆΩˆX ;R2q
ă 8. (3.28)

Let gε :s0, T rˆΩˆ X !s0, T rˆΩˆ X ˆ R2 be defined by

gεpt, x, ξq :“ pt, x, ξ, Uεpt, x, ξq, 9Uεpt, x, ξqq

and let νε :“ g7εdtbµσpεq. It is clear that νε P Yps0, T rˆΩ;X ˆR2q whose projection measure
is dtb dx. We claim that tνεuε is tight (see Definition A.2). Indeed, given η ą 0, as tµσpεquε
is tight, there exists a compact set K Ă X such that

sup
εą0

µσpεq
`

Ωˆ pX zKq
˘

ă
η

2T
. (3.29)

From (3.28) and Markov’s inequality we can assert that there exists R ą 0 such that

sup
εą0

dtb µσpεq pEε,Rq ă
η

2
(3.30)

with

Eε,R :“
!

pt, x, ξq Ps0, T rˆΩˆ X : pUεpt, x, ξq, 9Uεpt, x, ξqq P R2
zBRp0q

)

,
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where BRp0q Ă R2 denotes the 2-dimensional closed ball centered at the origin with radius
R. On the other hand, we have

νεps0, T rˆΩˆ pX ˆ R2
qzpK ˆBRp0qqq ď dtb µσpεqps0, T rˆΩˆ pX zKqq ` dtb µσpεqpEε,Rq

“ TµσpεqpΩˆ pX zKqq ` dtb µσpεqpEε,Rq
for all ε ą 0, and consequently

sup
εą0

νεps0, T rˆΩˆ pX ˆ R2
qzpK ˆBRp0qqq ă η,

which proves the claim. Let hε : Ωˆ X ! Ωˆ X ˆ R defined by

hεpx, ξq :“ px, ξ, UεpT, x, ξqq

and let λε :“ h7εµσpεq. It is clear that λε P YpΩ;X ˆRq. In the same manner we can establish
that tλεuε is tight. From Prokhorov’s compactness theorem (see Theorem A.3) we deduce
that there exist ν P Yps0, T rˆΩ;XˆR2q and λ P YpΩ;XˆRq such that, up to a subsequence,
one has:

νε
nar
−! ν; (3.31)

λε
nar
−! λ. (3.32)

Let πs0,T rˆΩˆX :s0, T rˆΩˆ X ˆ R2 !s0, T rˆΩˆ X (resp. πΩˆX : Ωˆ X ˆ R! Ωˆ X ) be
the canonical projection from s0, T rˆΩˆX ˆR2 (resp. ΩˆX ˆR) to s0, T rˆΩˆX (resp.
Ωˆ X ). From (3.31) and (3.32) it is easy to see that:

π7
s0,T rˆΩˆXν “ w- lim

ε!0
π7
s0,T rˆΩˆXνε “ dtb µ;

π7ΩˆXλ “ w- lim
ε!0

π7
s0,T rˆΩˆXλε “ µ,

where “w- lim” denotes the weak limit associated with the weak σpC 1b, Cbq topology (see
[ABM14, Definition 4.2.2]). By using desintegration’s theorem (see Theorem A.5) it follows
that:

ν “ dtb µb νt,x,ξ; (3.33)

λ “ µb λx,ξ, (3.34)

where tνt,x,ξupt,x,ξqPs0,T rˆΩˆX and tλx,ξupx,ξqPΩˆX are families of probability measures on R2

and R respectively. We will need the following lemma whose proof is given below.

Lemma 3.1. For each pt, x, ξq Ps0, T rˆΩ ˆ X , let us denote by Upt, x, ξq, V pt, x, ξq and
WT px, ξq the 1th moments of νt,x,ξ and λx,ξ, i.e.,

Upt, x, ξq :“

ż

R2

sdνt,x,ξps, 9sq; (3.35)

V pt, x, ξq :“

ż

R2

9sdνt,x,ξps, 9sq; (3.36)

WT px, ξq :“

ż

R
sTdλx,ξpsT q. (3.37)

Then V “ 9U , U P Sµpuq and WT “ UpT, ¨, ¨q.
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According to (3.27) and the definitions of tνεuε and tλεuε, we see that

lim
ε!0

Φµσpεqpuεq “ lim
ε!0

φµσpεqpUεq

ě lim
ε!0

ż

s0,T rˆΩˆX
ξ
`

t, x, Uεpt, x, ξq, 9Uεpt, x, ξq
˘

dtb dµσpεqpx, ξq

` lim
ε!0

ż

ΩˆX
θpUεpT, x, ξqqdµσpεqpx, ξq

“ lim
ε!0

ż

s0,T rˆΩˆXˆR2

ξpt, x, Sqdνεpt, x, ξ, Sq

` lim
ε!0

ż

ΩˆXˆR
θpsT qdλεpx, ξ, sT q. (3.38)

But, recalling (3.31) and (3.32), by Theorem A.4(i) have:

lim
ε!0

ż

s0,T rˆΩˆXˆR2

ξpt, x, Sqdνεpt, x, ξ, Sq ě

ż

s0,T rˆΩˆXˆR2

ξpt, x, Sqdνpt, x, ξ, Sq; (3.39)

lim
ε!0

ż

ΩˆXˆR
θpsT qdλεpx, ξ, sT q ě

ż

ΩˆXˆR
θpsT qdλpx, ξ, sT q. (3.40)

Moreover, by using (C1), (3.33) and (3.34), Jensen’s inequality and Lemma 3.1, we obtain
the following two inequalities:

ż

s0,T rˆΩˆXˆR2

ξpt, x, Sqdνpt, x, ξ, Sq“

ż

s0,T rˆΩˆX

ˆ
ż

R2

ξpt, x, Sqdνt,x,ξpSq

˙

dtb dµpx, ξq

ě

ż

s0,T rˆΩˆX
ξ

ˆ

t, x,

ż

R2

Sdνt,x,ξpSq

˙

dtb dµpx, ξq

“

ż

s0,T rˆΩˆX
ξ

ˆ

t, x,

ż

R2

sdνt,x,ξps, 9sq,

ż

R2

9sdνt,x,ξps, 9sq

˙

dtb dµpx, ξq

“

ż

s0,T rˆΩˆX
ξ
´

t, x, Upt, x, ξq, 9Upt, x, ξq
¯

dtb dµpx, ξq; (3.41)

ż

ΩˆXˆR
θpsT qdλpx, ξ, sT q “

ż

ΩˆX

ˆ
ż

R
θpsT qdλx,ξpsT q

˙

dµpx, ξq

ě

ż

ΩˆX
θ

ˆ
ż

R
sTdλx,ξpsT q

˙

dµpx, ξq

“

ż

ΩˆX
θ pWT px, ξqq dµpx, ξq

“

ż

ΩˆX
θ pUpT, x, ξqq dµpx, ξq, (3.42)
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where U P Sµpuq by Lemma 3.1. Consequently, combining (3.39) with (3.41) and (3.40) with
(3.42), and using (3.38) we conclude that

lim
ε!0

Φµσpεqpuεq ě

ż

s0,T rˆΩˆX
ξ
´

t, x, Upt, x, ξq, 9Upt, x, ξq
¯

dtb dµpx, ξq

`

ż

ΩˆX
θ pUpT, x, ξqq dµpx, ξq

“ φµpUq

ě Φµpuq,

and (G2) is proved. �

This finishes the proof of Theorem 2.7 (the proof of Lemma 3.1 is given below). �

Proof of Lemma 3.1. The proof is divided into six steps.

Step 1: We prove that:

U P L2
ps0, T r;L2

µpΩˆ X ;Rqq; (3.43)

V P L2
ps0, T r;L2

µpΩˆ X ;Rqq; (3.44)

WT P L
2
µpΩˆ X ;Rq. (3.45)

Taking (3.35) into account and using Jensen’s inequality, we see that
ż

s0,T rˆΩˆX
|Upt, x, ξq|2dtb dµpx, ξq “

ż

s0,T rˆΩˆX

ˇ

ˇ

ˇ

ˇ

ż

R2

sdνt,x,ξps, 9sq

ˇ

ˇ

ˇ

ˇ

2

dtb dµpx, ξq

ď

ż

s0,T rˆΩˆX

ˆ
ż

R2

|s|2dνt,x,ξps, 9sq

˙

dtb dµpx, ξq,

and so
ż

s0,T rˆΩˆX
|Upt, x, ξq|2dtb dµpx, ξq ď

ż

s0,T rˆΩˆXˆR2

|s|2dνpt, x, ξ, s, 9sq (3.46)

because of (3.33). On the other hand, according to (3.31) and the definition of tνεuε, From
Theorem A.4(i) we have

ż

s0,T rˆΩˆXˆR2

|s|2dνpt, x, ξ, s, 9sq ď lim
ε!0

ż

s0,T rˆΩˆXˆR2

|s|2dνεpt, x, ξ, s, 9sq

“ lim
ε!0

ż

s0,T rˆΩˆX
|Uεpt, x, ξq|

2dtb dµσpεqpx, ξq,

and so
ż

s0,T rˆΩˆXˆR2

|s|2dνpt, x, ξ, s, 9sq ă 8 (3.47)

by (3.28). From (3.46) and (3.46) we get (3.43). In the same manner, by considering (3.36)
instead of (3.35) we obtain (3.44). By using (3.37), (3.34), (3.32) and the definition of tλεuε
instead of (3.35), (3.33), (3.28) and the definition of tνεuε, a similar calculation gives (3.45).
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Step 2: We prove that
ż

X
Upt, x, ξqdµxpξq “ upt, xq for dtb dx-a.a. pt, xq Ps0, T rˆΩ, (3.48)

where tµxuxPΩ denotes the desintegration of µ on Ω ˆ X . Fix any ϕ P C8c ps0, T rˆΩq. As

uε
H1

Ýá u we have
ż

s0,T rˆΩ

ϕpt, xqupt, xqdtb dx “ lim
ε!0

ż

s0,T rˆΩ

ϕpt, xquεpt, xqdtb dx. (3.49)

Setting ψpt, x, ξ, s, 9sq :“ ϕpt, xqs and recalling that Uε P Sµσpεq for any ε ą 0, we see that

ż

s0,T rˆΩ

ϕpt, xquεpt, xqdtb dx“

ż

s0,T rˆΩˆX
ψpt, x, ξ, Uεpt, x, ξq, 9Uεpt, x, ξqqdtb dµσpεqpx, ξq,

and so, according to the definition of tνεuε, one has

ż

s0,T rˆΩ

ϕpt, xquεpt, xqdtb dx “

ż

s0,T rˆΩˆXˆR2

ψpt, x, ξ, s, 9sqdνεpt, x, ξ, s, 9sq

for all ε ą 0. Taking (3.31) into account, from Theorem A.4(ii) we deduce that

lim
ε!0

ż

s0,T rˆΩ

ϕpt, xquεpt, xqdtb dx “

ż

s0,T rˆΩˆXˆR2

ψpt, x, ξ, s, 9sqdνpt, x, ξ, s, 9sq

“

ż

s0,T rˆΩˆXˆR2

ϕpt, xqsdνpt, x, ξ, s, 9sq. (3.50)

Combining (3.49) with (3.50) and by using desintegration’s theorem (see Theorem A.5) and
(3.35), we obtain

ż

s0,T rˆΩ

ϕpt, xqupt, xqdtb dx “

ż

s0,T rˆΩˆX
ϕpt, xq

ˆ
ż

R2

sdνt,x,ξps, 9sq

˙

dtb dµpx, ξq

“

ż

s0,T rˆΩˆX
ϕpt, xqUpt, x, ξqdtb dµpx, ξq

“

ż

s0,T rˆΩ

ϕpt, xq

ˆ
ż

X
Upt, x, ξqdµxpξq

˙

dtb dx,

which proves (3.48).

Step 3: We prove that

V “ 9U. (3.51)

Fix any ϕ P C1
c ps0, T rq and any φ P CcpΩq. Set ψ1pt, x, ξ, s, 9sq :“ ϕptqφpxq 9s. According to

(3.36) and the definition of tνεuε, by using desintegration’s theorem (see Theorem A.5) and
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Theorem A.4(ii) together with (3.31), we see that

ż

s0,T rˆΩˆX
ϕptqφpxqV pt, x, ξqdtb dµpx, ξq“

ż

s0,T rˆΩˆX
ϕptqφpxq

ˆ
ż

R2

9sdνt,x,ξps, 9sq

˙

dtb dµpx, ξq

“

ż

s0,T rˆΩˆXˆR2

ψ1pt, x, ξ, s, 9sqdνpt, x, ξ, s, 9sq

“ lim
ε!0

ż

s0,T rˆΩˆXˆR2

ψ1pt, x, ξ, s, 9sqdνεpt, x, ξ, s, 9sq

“ lim
ε!0

ż

s0,T rˆΩˆX
ψ1pt, x, ξ, Uεpt, x, ξq, 9Uεpt, x, ξqqdtb dµσpεqpx, ξq

“ lim
ε!0

ż

s0,T rˆΩˆX
ϕptqφpxq 9Uεpt, x, ξqdtb dµσpεqpx, ξq.

But, for any ε ą 0, as ϕ P C1
c ps0, T rq one has

ż

s0,T rˆΩˆX
ϕptqφpxq 9Uεpt, x, ξqdtb dµεpx, ξq “ ´

ż

s0,T rˆΩˆX
ϕ1ptqφpxqUεpt, x, ξqdtb dµσpεqpx, ξq,

and so, setting ψ2pt, x, ξ, s, 9sq :“ ϕ1ptqφpxqs and using the same arguments as in above with
(3.35) instead of (3.36), it follows that

ż

s0,T rˆΩˆX
ϕptqφpxqV pt, x, ξqdtb dµpx, ξq“´ lim

ε!0

ż

s0,T rˆΩˆX
ψ2pt, x, ξ, Uεpt, x, ξq, 9Uεpt, x, ξqqdtb dµσpεqpx, ξq

“´ lim
ε!0

ż

s0,T rˆΩˆXˆR2

ψ2pt, x, ξ, s, 9sqdνεpt, x, ξ, s, 9sq

“´

ż

s0,T rˆΩˆXˆR2

ψ2pt, x, ξ, s, 9sqdνpt, x, ξ, s, 9sq

“´

ż

s0,T rˆΩˆXˆR2

ϕ1ptqφpxqsdνpt, x, ξ, s, 9sq

“´

ż

s0,T rˆΩˆX
ϕ1ptqφpxq

ˆ
ż

R2

sdνt,x,ξps, 9sq

˙

dtb dµpx, ξq

“´

ż

s0,T rˆΩˆX
ϕ1ptqφpxqUpt, x, ξqdtb dµpx, ξq,

which establishes (3.51).

Step 4: We prove that

Up0, x, ξq “ 0 for µ-a.a. px, ξq P Ωˆ X . (3.52)
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Let ϕ P C1pr0, T sq be such that ϕpT q “ 0 and ϕp0q “ 0 and let ψ P CcpΩ ˆ X q. Then, we
have

ż

s0,T rˆΩˆX
ϕptq 9Upt, x, ξqψpx, ξqdtb dµpx, ξq“´

ż

s0,T rˆΩˆX
ϕ1ptqUpt, x, ξqψpx, ξqdµpx, ξq

´

ż

ΩˆX
ϕp0qUp0, x, ξqψpx, ξqdµpx, ξq. (3.53)

On the other hand, by (3.51) and (3.36) and the definition of tνεuε, from desintegration’s
theorem (see Theorem A.5) and Theorem A.4(ii) together with (3.31), we see that
ż

s0,T rˆΩˆX
ϕptq 9Upt, x, ξqψpx, ξqdtb dµpx, ξq“

ż

s0,T rˆΩˆX
ϕptq

ˆ
ż

R2

9sdνt,x,ξps, 9sq

˙

ψpx, ξqdtb dµpx, ξq

“

ż

s0,T rˆΩˆXˆR2

ϕptq 9sψpx, ξqdνpt, x, ξ, s, 9sq

“ lim
ε!0

ż

s0,T rˆΩˆXˆR2

ϕptq 9sψpx, ξqdνεpt, x, ξ, s, 9sq

“ lim
ε!0

ż

s0,T rˆΩˆX
ϕptq 9Uεpt, x, ξqψpx, ξqdtb dµσpεqpx, ξq.

But, for any ε ą 0, one has
ż

s0,T rˆΩˆX
ϕptq 9Uεpt, x, ξqψpx, ξqdtbdµσpεqpx, ξq “ ´

ż

s0,T rˆΩˆX
ϕ1ptqUεpt, x, ξqψpx, ξqdtbdµσpεqpx, ξq

because ϕpT q “ 0 and Uεp0, x, ξq “ 0 for µσpεq-a.a. px, ξq P ΩˆX since Uε P H1
0,µσpεq

. Hence,

by the same arguments as in above, we get
ż

s0,T rˆΩˆX
ϕptq 9Upt, x, ξqψpx, ξqdtb dµpx, ξq“´ lim

ε!0

ż

s0,T rˆΩˆX
ϕ1ptqUεpt, x, ξqψpx, ξqdtb dµσpεqpx, ξq

“´ lim
ε!0

ż

s0,T rˆΩˆXˆR2

ϕ1ptqsψpx, ξqdνεpt, x, ξ, s, 9sq

“´

ż

s0,T rˆΩˆXˆR2

ϕ1ptqsψpx, ξqdνpt, x, ξ, s, 9sq

“´

ż

s0,T rˆΩˆX
ϕ1ptq

ˆ
ż

R2

sdνt,x,ξps, 9sq

˙

ψpx, ξqdtb dµpx, ξq

“´

ż

s0,T rˆΩˆX
ϕ1ptqUpt, x, ξqψpx, ξqdtb dµpx, ξq. (3.54)

Combining (3.53) with (3.54) we deduce that
ż

ΩˆX
ϕp0qUp0, x, ξqψpx, ξqdµpx, ξq “ 0

for all ψ P CcpΩˆ X q, and (3.52) follows because ϕp0q “ 0.
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Step 5: We prove that

WT px, ξq “ UpT, x, ξq for µ-a.a. px, ξq P Ωˆ X . (3.55)

Fix any ψ P CcpΩ ˆ X q. According to (3.37) and the definition of tλεuε, by using desin-
tegration’s theorem (see Theorem A.5) and Theorem A.4(ii) together with (3.32), we see
that

ż

ΩˆX
WT px, ξqψpx, ξqdµpx, ξq “

ż

ΩˆX

ˆ
ż

R
sTdλx,ξpsT q

˙

ψpx, ξqdµpx, ξq

“

ż

ΩˆXˆR
sTψpx, ξqdλpx, ξ, sT q

“ lim
ε!0

ż

ΩˆXˆR
sTψpx, ξqdλεpx, ξ, sT q

“ lim
ε!0

ż

ΩˆX
UεpT, x, ξqψpx, ξqdµσpεqpx, ξq. (3.56)

But, for any ε ą 0, Uεp0, x, ξq “ 0 for µσpεq-a.a. px, ξq P Ωˆ X because Uε P H1
0,µσpεq

, and so

ż

ΩˆX
UεpT, x, ξqψpx, ξqdµσpεqpx, ξq “

ż

ΩˆX

ˆ
ż T

0

9Uεpt, x, ξqdt

˙

ψpx, ξqdµσpεqpx, ξq

“

ż

s0,T rˆΩˆX

9Uεpt, x, ξqψpx, ξqdtb dµσpεqpx, ξq. (3.57)

Moreover, according to (3.51) and (3.36) and the definition of tνεuε, by using the same
arguments as in above with (3.31) instead of (3.32), we have

lim
ε!0

ż

s0,T rˆΩˆX

9Uεpt, x, ξqψpx, ξqdtb dµσpεqpx, ξq“ lim
ε!0

ż

s0,T rˆΩˆXˆR2

9sψpx, ξqdνεpt, x, ξ, s, 9sq

“

ż

s0,T rˆΩˆXˆR2

9sψpx, ξqdνpt, x, ξ, s, 9sq

“

ż

s0,T rˆΩˆX

ˆ
ż

R2

9sdνt,x,ξps, 9sq

˙

ψpx, ξqdtb dµpx, ξq

“

ż

s0,T rˆΩˆX

9Upt, x, ξqψpx, ξqdtb dµpx, ξq. (3.58)

From (3.52) we see that
ż

s0,T rˆΩˆX

9Upt, x, ξqψpx, ξqdtb dµpx, ξq “

ż

ΩˆX

ˆ
ż T

0

9Upt, x, ξqdt

˙

ψpx, ξqdµpx, ξq

“

ż

ΩˆX
UpT, x, ξqψpx, ξqdµpx, ξq, (3.59)

and consequently, from (3.56), (3.57), (3.58) and (3.59), we conclude that
ż

ΩˆX
WT px, ξqψpx, ξqdµpx, ξq “

ż

ΩˆX
UpT, x, ξqψpx, ξqdµpx, ξq
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for all ψ P CcpΩˆ X q, and (3.55) follows.

Step 6: end of the proof. From (3.43), (3.44), (3.51) and (3.52) we deduce that U P H1
0,µ,

and so U P Sµpuq by (3.48), which completes the proof of Lemma 3.1. �

4. Stochastic homogenization

4.1. A non-local stochastic homogenization theorem. Let pΣ,A,Pq be a probability
space and let pTzqzPZN be a group of P-preserving transformations on pΣ,Aq, i.e.,

‚ (mesurability) Tz is A-measurable for all z P ZN ;
‚ (group property) TzoTz1 “ Tz`z1 and T´z “ T´1

z for all z, z1 P ZN ;
‚ (mass invariance) PpTzpAqq “ PpAq for all z P ZN and all A P A.

Let f : ΣˆRN ˆ r0, T s ˆRN ˆRˆR! R be a pAbBpRN ˆ r0, T s ˆRN ˆRˆRq,BpRqq-
measurable function such that

fpω, xq :“ fpω, x, ¨, ¨, ¨, ¨q P X

for all ω P Σ and all x P RN . It is easily seen that the map

f : Σ ! X :“ X RN

ω 7! fpω, ¨q

is a pA,Bq-random variable with B :“ bRNBpX q. We futhermore assume that the random
variable f is covariant with respect to the dynamical system pΣ,A,P, pTzqzPZN q, i.e.,

fpTzω, ¨q “ fpω, ¨ ` zq (4.1)

for all z P ZN and for P-a.a. ω P Σ. For each z P ZN , let τz : X ! X denote the shift map
on X, i.e.,

τzpwq :“ wp¨ ` zq (4.2)

for all w P X. Then, f 7P, i.e., the law of f , is invariant under the group pτzqzPZN , i.e.,

τ 7zf
7P “ f 7P (4.3)

for all z P ZN . We finally assume that the dynamical system pΣ,A,P, pTzqzPZN q, or equiva-
lently pX,B, f 7P, pτzqzPZN q, is ergodic, i.e., for each A P A,

if TzpAq “ A for all z P ZN then PpAq “ 0 or PpAq “ 1,

or equivalently, for each B P B,

if τzpBq “ B for all z P ZN then f 7PpBq “ 0 or f 7PpBq “ 1. (4.4)

For each ω P Σ and each ε ą 0, we consider Fεpωq : H1
0 ! R given by

Fεpωqpuq:“Φfpω, ¨
ε
qpuq“

ż

s0,T rˆΩ

f
´

ω,
x

ε

¯

pt, x, upt, xq, 9upt, xqqdtb dx`

ż

Ω

θpupT, xqqdx. (4.5)

For each ε ą 0, let µε : Σ! YpΩ;X q be the random Young measure defined by

µεpωq :“ dxb δfpω,x
ε
q. (4.6)
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Let Y :“s0, 1rN be the unit cell, let fY : Σ ! X Y be defined by fY pωqpyq “ fpω, yq and,

for each ω P Σ, let f 7Y pωqdy be the image by fY pωq of the Lebesgue measure restricted to Y
that we denote by dy. Let µ P YpΩ;X q be the Young measure defined by

µf :“ dxb dE
f 7Y dy

, (4.7)

where dE
f 7Y dy

denotes the expectation of the random probability measure ω 7! f 7Y pωqdy, i.e.,

dE
f 7Y dy

is the probability measure on X given by

dE
f 7Y dy

pBq “

ż

Σ

ˆ
ż

Y

1B
`

fY pωqpyq
˘

dy

˙

dPpωq

“

ż

ΣˆY

1B
`

fY pωqpyq
˘

dPpωq b dy

for all B P BpX q, where 1B denotes the indicator function of B, or equivalently by

ż

X
ϕpξqdE

f 7Y dy
pξq “ E

ˆ
ż

Y

ϕ pfp¨, yqq dy

˙

“

ż

ΣˆY

ϕ pfpω, yqq dPpωq b dy (4.8)

for all pBpX q,BpRqq-measurable functions ϕ : X ! R such that
ş

Y
ϕ pfp¨, yqq dy P L1pΣ,A,Pq.

Proposition 4.1. For P-a.e. ω P Σ one has

µεpωq
nar
−! µf

with µf P YpΩ;X q given by (4.7).

Proof of Proposition 4.1. It is sufficient to prove that there exists pΣ P A with PppΣq “ 1

such that for every ω P pΣ, one has

lim
ε!0

ż

ΩˆX
1Apxqϕpξqdµεpωqpx, ξq “

ż

ΩˆX
1Apxqϕpξqdxb dEf 7Y dypξq

for all A P BpΩq and all ϕ P D with D a dense subset of CcpX q, see [Val90, Val94].
Let A P BpΩq and let ϕ P D. Taking (4.8) into account, from the additive ergodic theorem
[ABM14, Theorem 12.4.1] (see also [CM94]), we can assert that there exists Nϕ P F with
PpNϕq “ 0 such that for every ω P ΣzNϕ, one has

ϕ
´

f
´

ω,
¨

ε

¯¯

L1

Ýá

ż

X
ϕpξqdE

f 7Y dy
pξq (4.9)

On the other hand, by (4.6) we see that for every ω P Σ, one has

ż

ΩˆX
1Apxqϕpξqdµεpωqpx, ξq “

ż

Ω

1Apxqϕ
´

f
´

ω,
x

ε

¯¯

dx for all ε ą 0. (4.10)
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Set pΣ :“ YψPDpΣzNψq (where Nψ corresponds to Nϕ with ϕ “ ψ). Then PppΣq “ 0 and, by

using (4.9), from (4.10) we deduce that for every ω P pΣ, one has

lim
ε!0

ż

ΩˆX
1Apxqϕpξqdµεpωqpx, ξq “ lim

ε!0

ż

Ω

1Apxqϕ
´

f
´

ω,
x

ε

¯¯

dx

“

ż

Ω

1Apxq

ˆ
ż

X
ϕpξqdE

f 7Y dy
pξq

˙

dx

“

ż

ΩˆX
1Apxqϕpξqdxb dEf 7Y dypξq,

and the proof is complete. �

Let Fhom : H1
0 ! R be defined by

Fhompuq :“ inf

"
ż

ΣˆY

Φfpω,yqpvp¨, ¨, ω, yqqdPpωq b dy : v P Shompuq

*

, (4.11)

where Shompuq is given by

Shompuq:“

"

v P H1
0,dxbPbdy:

ż

ΣˆY

vpt, x, ω, yqdPpωqbdy“upt, xq for dtbdx-a.a. pt, xq Ps0, T rˆΩ

*

with

H1
0,dxbPbdy :“

!

v P H1
ps0, T r;L2

dxbPbdypΩˆ Σˆ Y ;Rqq : vp0, ¨, ¨, ¨q “ 0
)

and

Φfpω,yqpvp¨, ¨, ω, yqq “

ż

s0,T rˆΩ

f pω, yq pt, x, vpt, x, ω, yq, 9vpt, x, ω, yqqdtb dx

`

ż

Ω

θpvpT, x, ω, yqqdx (4.12)

for all ω P Σ and all y P Y . The following result is a consequence of Corollary 2.8 and
Proposition 4.1.

Theorem 4.2. For P-a.e. ω P Σ one has

Γ- lim
ε!0

Fεpωq “ Fhom

with Fhom given by (4.11)-(4.12).

Proof of Theorem 4.2. From Corollary 2.8 and Proposition 4.1 we deduce that for P-a.e.
ω P Σ, one has

Γ- lim
ε!0

Fεpωq “ Φµf

with Φµf : H1
0 ! R given by (2.6). (Since µf does not depend on ω, so is for Φµf .) Taking

(4.7) and (4.8) into account we see that for any u P H1
0, one has

Sµf puq“
!

U P H1
0,µf

:

ż

X
Upt, x, ξqdE

f 7Y dy
pξq“upt, xqfor dtbdx-a.a. pt, xq Ps0, T rˆΩ

)

“

!

U P H1
0,µf

:

ż

ΣˆY

Upt, x, fpω, yqqdPpωqbdy“upt, xqfor dtbdx-a.a. pt, xq Ps0, T rˆΩ
)
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and

Φµf puq “ inf
!

φµf pUq : U P Sµf puq
)

with

φµf pUq“

ż

s0,T rˆΩˆX
ξ
`

t, x, Upt, x, ξq, 9Upt, x, ξq
˘

dtb dµf px, ξq `

ż

ΩˆX
θpUpT, x, ξqqdµf px, ξq

“

ż

s0,T rˆΩˆX
ξ
`

t, x, Upt, x, ξq, 9Upt, x, ξq
˘

dtb dxb dE
f 7Y dy

pξq `

ż

ΩˆX
θpUpT, x, ξqqdxb dE

f 7Y dy
pξq

“

ż

s0,T rˆΩˆΣˆY

fpω, yq
´

t, x, Upt, x, fpω, yqq, 9Upt, x, fpω, yqq
¯

dtb dxb dPpωq b dy

`

ż

ΩˆΣˆY

θ
`

UpT, x, fpω, yqq
˘

dxb dPpωq b dy. (4.13)

So, it remains to prove that Φµf “ Fhom, i.e., for every u P H1
0, one has:

Φµf puq ě Fhompuq; (4.14)

Φµf puq ď Fhompuq. (4.15)

Let us fix u P H1
0.

Proof of (4.14). Let U P Sµf puq. Then:

U P L2
ps0, T r;L2

µf
pΩˆ Σˆ Y ;Rqq; (4.16)

9U P L2
ps0, T r;L2

µf
pΩˆ Σˆ Y ;Rqq; (4.17)

Up0, ¨, ¨q “ 0; (4.18)
ż

ΣˆY

Upt, x, fpω, yqqdPpωq b dy “ upt, xq for dtb dx-a.a. pt, xq Ps0, T rˆΩ. (4.19)

Set vpt, x, ω, yq :“ Upt, x, fpω, yqq. By (4.18) we have vp0, ¨, ¨, ¨q “ 0 and from (4.19) it is
clear that

ż

ΣˆY

vpt, x, ω, yqdPpωq b dy “ upt, xq for dtb dx-a.a. pt, xq Ps0, T rˆΩ.

On the other hand, taking (4.8) into account, we see that
ż

s0,T rˆΩˆΣˆY

|vpt, x, ω, yq|2dtb dxb dPpωq b dy“
ż

s0,T rˆΩ

ˆ
ż

ΣˆY

|Upt, x, fpω, yqq|2dPpωq b dy
˙

dtb dx

“

ż

s0,T r

ˆ
ż

ΩˆX
|Upt, x, ξq|2dxb dE

f 7Y dy
pξq

˙

dt

“

ż

s0,T rˆΩˆX
|Upt, x, ξq|2dtb dµf px, ξq,

and so, from (4.16) we deduce that v P L2ps0, T r;L2
dxbPbdypΩˆΣˆY ;Rqq. In the same way,

by using (4.17) instead of (4.16) we obtain 9v P L2ps0, T r;L2
dxbPbdypΩˆΣˆY ;Rqq. It follows

that v P Sµf puq.
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We have thus proved that for each U P Sµf puq one has v P Shompuq. According to (4.11)-(4.12)
and (4.13) we conclude that

φµf pUq “

ż

ΣˆY

Φfpω,yqpvp¨, ¨, ω, yqqdPpωq b dy ě Fhompuq

for all U P Sµf puq, and (4.14) follows. �

Proof of (4.15). Consider g : ΣˆY ! X ˆΣˆY defined by gpω, yq :“ pfpω, yq, ω, yq and
set

λ :“ g7pPb dyq. (4.20)

Then π7Xλ “ dE
f 7Y dy

with πX : X ˆ Σ ˆ Y ! X denoting the canonical projection from

X ˆ Σ ˆ Y to X . So, from desintegration’s theorem (see Theorem A.5) we can assert that
there exists a familiy pλξqξPX of probability measures on Σˆ Y such that

λ “ dE
f 7Y dy

b λξ. (4.21)

Fix any v P Shompuq and set

Upt, x, ξq :“

ż

ΣˆY

vpt, x, ω, yqdλξpω, yq. (4.22)

(In particular, UpT, x, ξq :“
ş

ΣˆY
vpT, x, ω, yqdλξpω, yq.) Then, it is easy to see that

9Upt, x, ξq :“

ż

ΣˆY

9vpt, x, ω, yqdλξpω, yq. (4.23)

We claim that U P Sµf puq. Indeed, as v P Shompuq we have:

v P L2
`

s0, T r;L2
dxbPbdypΩˆ Σˆ Y ;Rq

˘

; (4.24)

9v P L2
`

s0, T r;L2
dxbPbdypΩˆ Σˆ Y ;Rq

˘

; (4.25)

vp0, ¨, ¨, ¨q “ 0; (4.26)
ż

ΣˆY

vpt, x, ω, yqdPpωq b dy “ upt, xq for dtb dx-a.a. pt, xq Ps0, T rˆΩ. (4.27)

Firstly, by (4.26) it is clear that Up0, ¨, ¨q “ 0. Secondly, by using (4.8), (4.22), (4.21), (4.20)
and (4.27) we see that

ż

ΣˆY

Upt, x, fpω, yqqdPpωq b dy “

ż

X
Upt, x, ξqdE

f 7Y dy
pξq

“

ż

X

ˆ
ż

ΣˆY

vpt, x, ω, yqdλξpω, yq

˙

dE
f 7Y dy

pξq

“

ż

XˆΣˆY

vpt, x, ω, yqdλpξ, ω, yq

“

ż

ΣˆY

vpt, x, ω, yqdPpωq b dy

“ upt, xq
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for dt b dx-a.a. pt, xq Ps0, T rˆΩ. Thirdly, taking (4.22) into account and using Jensen’s
inequality, we have
ż

s0,T rˆΩˆX
|Upt, x, ξq|2dtb dµf px, ξq “

ż

s0,T rˆΩˆX

ˇ

ˇ

ˇ

ˇ

ż

ΣˆY

vpt, x, ω, yqdλξpω, yq

ˇ

ˇ

ˇ

ˇ

2

dtb dµf px, ξq

ď

ż

s0,T rˆΩˆXˆΣˆY

|vpt, x, ω, yq|2dtb dµf px, ξq b dλξpω, yq.

But, by (4.7), (4.21) and (4.20) we have
ż

s0,T rˆΩˆXˆΣˆY

|vpt, x, ω, yq|2dtb dµf px, ξq b dλξpω, yq“

ż

s0,T rˆΩˆXˆΣˆY

|vpt, x, ω, yq|2dtb dxb dE
f 7Y dy

pξq b dλξpω, yq

“

ż

s0,T rˆΩˆXˆΣˆY

|vpt, x, ω, yq|2dtb dxb dλpξ, ω, yq

“

ż

s0,T rˆΩˆΣˆY

|vpt, x, ω, yq|2dtb dxb dPpωq b dy

hence
ż

s0,T rˆΩˆX
|Upt, x, ξq|2dtb dµf px, ξq ď

ż

s0,T rˆΩˆΣˆY

|vpt, x, ω, yq|2dtb dxb dPpωq b dy,

and so, from (4.24) we deduce that U P L2ps0, T r;L2
µf
pΩˆX ;Rqq. In the same way, by using

(4.25) instead of (4.24) we obtain 9U P L2ps0, T r;L2
µf
pΩˆ X ;Rqq, and the claim is proved.

On the other hand, taking (4.22) and (4.23) into account and using Jensen’s inequality, we
have

φµf pUq “

ż

s0,T rˆΩˆX
ξ

ˆ

t, x,

ż

ΣˆY

vpt, x, ω, yqdλξpω, yq,

ż

ΣˆY

9vpt, x, ω, yqdλξpω, yq

˙

dtb dµf px, ξq

`

ż

ΩˆX
θ

ˆ
ż

ΣˆY

vpT, x, ω, yqdλξpω, yq

˙

dµf px, ξq

ď

ż

s0,T rˆΩˆXˆΣˆY

ξ pt, x, vpt, x, ω, yq, 9vpt, x, ω, yqq dtb dµf px, ξq b dλξpω, yq

`

ż

ΩˆXˆΣˆY

θ pvpT, x, ω, yqq dµf px, ξq b dλξpω, yq,

hence, by using (4.7), (4.21), we obtain

φµf pUq ď

ż

s0,T rˆΩˆXˆΣˆY

ξ pt, x, vpt, x, ω, yq, 9vpt, x, ω, yqq dtb dxb dE
f 7Y dy

pξq b dλξpω, yq

`

ż

ΩˆXˆΣˆY

θ pvpT, x, ω, yqq dxb dE
f 7Y dy

pξq b dλξpω, yq

ď

ż

s0,T rˆΩˆXˆΣˆY

ξ pt, x, vpt, x, ω, yq, 9vpt, x, ω, yqq dtb dxb dλpξ, ω, yq

`

ż

ΩˆXˆΣˆY

θ pvpT, x, ω, yqq dxb dλpξ, ω, yq,
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and consequently, from (4.20) we conclude that

φµf pUq ď

ż

s0,T rˆΩˆΣˆY

fpω, yq pt, x, vpt, x, ω, yq, 9vpt, x, ω, yqq dtb dxb dPpωq b dy

`

ż

ΩˆΣˆY

θ pvpT, x, ω, yqq dxb dPpωq b dy

“

ż

ΣˆY

Φfpω,yqpvp¨, ¨, ω, yqqdPpωq b dy.

We have thus prove that for each v P Shompuq there exists U P Sµf puq such that

φµf pUq ď

ż

ΣˆY

Φfpω,yqpvp¨, ¨, ω, yqqdPpωq b dy,

which implies (4.15). �

This finishes the proof of Theorem 4.2. �

4.2. Non-local stochastic homogenization in the setting of a Poisson point pro-
cess. Let D : Σ−!−!RN be a pA,BpRNqq-measurable multifunction such that for every ω P Σ,
the set Dpωq is countable and without cluster point and let N : Σ ˆ BpRNq ! N Y t8u be
defined by

Npω,Bq :“
ÿ

zPDpωq

δzpBq “ cardpDpωq XBq,

where δz denotes the Dirac measure at the point z P RN . (Note that for each ω P Σ, Npω, ¨q
is a counting measure.) From now on, we assume that tNp¨, BquBPBpRN q is a Poisson point
process with intensity λ ą 0, i.e.,

‚ for every bounded set B P BpRNq and every k P N, one has

P
`

rNp¨, Bq “ ks
˘

“ |B|kλk
e´λ|B|

k!
(4.28)

where rNp¨, Bq “ ks :“ tω P Σ : Npω,Bq “ ku and |B| denotes the Lebesgue measure
of B;

‚ for every disjoint and bounded sets A,B P BpRNq, Np¨, Aq and Np¨, Bq are indepen-
dant.

Fix r ą 0 and g, h P X and consider the pA,B :“ bRNBpX qq-measurable function fp : Σ!
X :“ X RN given by

fppω, xq :“

#

g if x P Y
zPDpωq

Brpzq

h otherwise

“ h` pg ´ hqmin
!

1, Npω,Brpxqq
)

“

"

g if Npω,Brpxqq ě 1
h if Npω,Brpxqq “ 0.

(4.29)

Then, fp is covariant with respect to the dynamical system pΣ,A,P, pTzqzPZN q, i.e., (4.1) hols
with f “ fp, and the law of fp is invariant under the group pτzqzPZN , i.e., (4.3) holds with
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f “ fp and pτzqzPZN given by (4.2), and moreover the dynamical system pX,B, f 7pP, pτzqzPZN q
is ergodic, i.e., (4.4) holds with f “ fp (see [MM94, §5]). (The ergodic dynamical sys-
tem pX,B, f 7pP, pτzqzPZN q models environments whose heterogeneities are independently dis-
tributed with a frequency λ.)
For each ω P Σ and each ε ą 0, we consider F p

ε pωq : H1
0 ! R given by (4.5) with f “ fp, i.e.,

F p
ε pωqpuq :“ Φfppω,

¨
ε
qpuq “

ż

s0,T rˆΩ

fp

´

ω,
x

ε

¯

pt, x, upt, xq, 9upt, xqqdtb dx`

ż

Ω

θpupT, xqqdx.

Set σ :“ PprNp¨, Brp0qq ě 1sq “ 1 ´ e´λ|Brp0q| and consider the integral functionals G,H :
H1

0 ! R given by:

Gpuq :“ σ

„
ż

s0,T rˆΩ

g

ˆ

t, x,
upt, xq

σ
,

9upt, xq

σ

˙

dtb dx`

ż

Ω

θ

ˆ

upT, xq

σ

˙

dx



; (4.30)

Hpuq :“ p1´ σq

„
ż

s0,T rˆΩ

h

ˆ

t, x,
upt, xq

1´ σ
,

9upt, xq

1´ σ

˙

dtb dx`

ż

Ω

θ

ˆ

upT, xq

1´ σ

˙

dx



. (4.31)

Let G�H : H1
0 ! R be the inf-convolution of G and H, i.e.,

G�Hpuq :“ inf
!

Gpu1q `Hpu2q : u1, u2 P H1
0 and u1 ` u2 “ u

)

.

The following result is a consequence of Theorem 4.2.

Theorem 4.3. For P-a.e. ω P Σ one has

Γ- lim
ε!0

F p
ε pωq “ G�H.

Proof of Theorem 4.3. Applying Theorem 4.2 with f “ fp we deduce that for P-a.e.
ω P Σ, one has

Γ- lim
ε!0

F p
ε pωq “ Fhom

with Fhom : H1
0 ! R given by (4.11)-(4.12) with f “ fp. So, it remains to prove that

Fhom “ G�H, i.e., for every u P H1
0, one has:

Fhompuq ě G�Hpuq; (4.32)

Fhompuq ď G�Hpuq. (4.33)

Let us fix u P H1
0 and let us set:

“

Np¨, Brp¨qq ě 1
‰

:“
!

pω, yq P Σˆ Y : Npω,Brpyqq ě 1
)

;

“

Np¨, Brp¨qq “ 0
‰

:“
!

pω, yq P Σˆ Y : Npω,Brpyqq “ 0
)

.
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Taking (4.29) into account, as rNp¨, Brp¨qq ě 1s and rNp¨, Brp¨qq “ 0s are disjoints and
Σˆ Y “ rNp¨, Brp¨qq ě 1s Y rNp¨, Brp¨qq “ 0s, for any v P Shompuq, one has

ż

ΣˆY

Φfppω,yqpvp¨, ¨, ω, yqqdPpωq b dy “

ż

rNp¨,Brp¨qqě1s

Φfppω,yqpvp¨, ¨, ω, yqqdPpωq b dy

`

ż

rNp¨,Brp¨qq“0s

Φfppω,yqpvp¨, ¨, ω, yqqdPpωq b dy

“

ż

rNp¨,Brp¨qqě1s

Φgpvp¨, ¨, ω, yqqdPpωq b dy

`

ż

rNp¨,Brp¨qq“0s

Φhpvp¨, ¨, ω, yqqdPpωq b dy.

Hence

Fhompuq “ inf
vPShompuq

"
ż

rNp¨,Brp¨qqě1s

Φgpvp¨, ¨, ω, yqqdPpωq b dy `
ż

rNp¨,Brp¨qq“0s

Φhpvp¨, ¨, ω, yqqdPpωq b dy
*

. (4.34)

Fix any v P Shompuq. Taking (4.28) into account we see that

"

Pb dyprNp¨, Brp¨qq ě 1sq “ PprNp¨, Brp0q ě 1sq “ σ,
and so Pb dyprNp¨, Brp¨qq “ 0sq “ 1´ σ.

(4.35)

Hence, by using Jensen’s inequality, one has

ż

rNp¨,Brp¨qqě1s

Φgpvp¨, ¨, ω, yqqdPpωq b dy “ σ

ż

rNp¨,Brp¨qqě1s

Φgpvp¨, ¨, ω, yqq
1

σ
dPpωq b dy

ě σΦg

ˆ
ż

rNp¨,Brp¨qqě1s

vp¨, ¨, ω, yq
1

σ
dPpωq b dy

˙

“ σΦg

ˆ

1

σ

ż

rNp¨,Brp¨qqě1s

vp¨, ¨, ω, yqdPpωq b dy
˙

(4.36)

and, in the same way,

ż

rNp¨,Brp¨qq“0s

Φhpvp¨, ¨, ω, yqqdPpωq b dy ě p1´ σqΦh

ˆ

1

1´ σ

ż

rNp¨,Brp¨qq“0s

vp¨, ¨, ω, yqdPpωq b dy
˙

. (4.37)

Set
$

’

’

’

’

&

’

’

’

’

%

u1p¨, ¨q :“

ż

rNp¨,Brp¨qqě1s

vp¨, ¨, ω, yqdPpωq b dy;

u2p¨, ¨q :“

ż

rNp¨,Brp¨qq“0s

vp¨, ¨, ω, yqdPpωq b dy.
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Then, u1, u2 P H1
0 and u1`u2 “ u. Moreover, according to (4.11)-(4.12), from (4.30), (4.31),

(4.36) and (4.37) we deduce that:
ż

rNp¨,Brp¨qqě1s

Φgpvp¨, ¨, ω, yqqdPpωq b dy ě Gpu1q;

ż

rNp¨,Brp¨qq“0s

Φhpvp¨, ¨, ω, yqqdPpωq b dy ě Hpu2q.

Consequently, one has
ż

rNp¨,Brp¨qqě1s

Φgpvp¨, ¨, ω, yqqdPpωq b dy `
ż

rNp¨,Brp¨qq“0s

Φhpvp¨, ¨, ω, yqqdPpωq b dy ě G�Hpuq

for all v P Shompuq, and (4.32) follows by taking (4.34) into account.
Conversely, for any u1, u2 P H1

0 such that u1 ` u2 “ u, set

vp¨, ¨, ω, yq :“

$

’

’

’

&

’

’

’

%

u1p¨, ¨q

σ
if Npω,Brpyqq ě 1

u2p¨, ¨q

1´ σ
if Npω,Brpyqq “ 0.

Then, v P Shompuq and, from (4.12), (4.30), (4.31), (4.34) and (4.35), we see that

Fhompuq ď

ż

rNp¨,Brp¨qqě1s

Φgpvp¨, ¨, ω, yqqdPpωq b dy `
ż

rNp¨,Brp¨qq“0s

Φhpvp¨, ¨, ω, yqqdPpωq b dy

“

ż

rNp¨,Brp¨qqě1s

1

σ
Gpu1qdPpωq b dy `

ż

rNp¨,Brp¨qq“0s

1

1´ σ
Hpu2qdPpωq b dy

“ Pb dyprNp¨, Brp¨qq ě 1sq
1

σ
Gpu1q ` Pb dyprNp¨, Brp¨qq “ 0sq

1

1´ σ
Hpu2q

“ Gpu1q `Hpu2q,

which gives (4.33), and the proof of Theorem 4.3 is complete. �

Assume futhermore that:

(P1) for dt b dx-a.e. pt, xq Ps0, T rˆΩ, the functions gpt, x, ¨, ¨q and hpt, x, ¨, ¨q are strictly
convex, gpt, x, ¨, ¨q P C1pR2q and hpt, x, ¨, ¨q P C1pR2q;

(P2) the function θ is strictly convex and θ P C1pRq.
The following result is somehow a version of Theorem 4.3 in terms of weak convergence in
H1 and Euler-Lagrange’s equations.

Theorem 4.4. Assume that (P1) and (P2) hold and, for each ω P Σ and each ε ą 0, let
uεpωq be the minimizer of F p

ε pωq. Then, for P-a.e. ω P Σ one has

uεpωq
H1

Ýá u,
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where u P H1
0 is the minimizer of G�H. Moreover, u minimizes G�H if and only if there

exist v, w P H1
0 such that u “ v`w with v and w satisfying the following differential system:

pSg,hq

$

’

’

&

’

’

%

Bg

Bs

ˆ

t, x,
vpt, xq

σ
,

9vpt, xq

σ

˙

´
B

Bt

ˆ

Bg

B 9s

ˆ

t, x,
vpt, xq

σ
,

9vpt, xq

σ

˙̇

“ 0 dtb dx-a.e. in s0, T rˆΩ

Bh

Bs

ˆ

t, x,
wpt, xq

1´ σ
,

9wpt, xq

1´ σ

˙

´
B

Bt

ˆ

Bh

B 9s

ˆ

t, x,
wpt, xq

1´ σ
,

9wpt, xq

1´ σ

˙̇

“ 0 dtb dx-a.e. in s0, T rˆΩ

subjected to the time-boundary conditions:

pBSg,hq

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dθ

ds

ˆ

vpT, xq

σ

˙

` σ
Bg

B 9s

ˆ

T, x,
vpT, xq

σ
,

9vpT, xq

σ

˙

“ 0 dx-a.e. in Ω

dθ

ds

ˆ

wpT, xq

σ

˙

` p1´ σq
Bh

B 9s

ˆ

T, x,
wpT, xq

1´ σ
,

9wpT, xq

1´ σ

˙

“ 0 dx-a.e. in Ω

vp0, ¨q “ 0
wp0, ¨q “ 0.

Proof of Theorem 4.4. The first part of the proposition is a direct consequence of Theo-
rem 4.3. Let us prove the second part of the proposition. First of all, it is easy to see that
G and H are convex, and so is G�H by Propostion B.2. As G�H is a Γ-limit (see Theorem
4.3), it follows that G�H is closed and convex. Consequently, u minimizes G�H if and only
if, one has

0 P BpG�Hqpuq (4.38)

(see [ABM14, Proposition 9.5.3]). Taking (P1) and (P2) into account, we see that G and H
are Gâteaux differentiable, and so, from Theorem B.4 we deduce that

BpG�Hqpuq “ DG {{DHpuq, (4.39)

where DG {{DH denotes the parallel sum of G and H (see Definition B.3). Consequently,
from (4.39) we can assert that (4.38) holds if and only if there exist v, w P H1

0 such that
u “ v ` w and

"

DGpvq “ 0, i.e., DGpvqpξq “ 0 for all ξ P H1
0

DHpwq “ 0, i.e., DHpwqpξq “ 0 for all ξ P H1
0.

(4.40)

By using differential calculus, we see that (4.40) is equivalent to the following integral equa-
tion system: for every ξ P H1

0, one has

pIq

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

ż

s0,T rˆΩ

„

Bg

Bs

ˆ

t, x,
vpt, xq

σ
,

9vpt, xq

σ

˙

ξpt, xq `
Bg

B 9s

ˆ

t, x,
vpt, xq

σ
,

9vpt, xq

σ

˙

9ξpt, xq



dtb dx

`

ż

Ω

dθ

ds

ˆ

vpT, xq

σ

˙

9ξpt, xqdtb dx “ 0
ż

s0,T rˆΩ

„

Bh

Bs

ˆ

t, x,
wpt, xq

1´ σ
,

9wpt, xq

1´ σ

˙

ξpt, xq `
Bh

B 9s

ˆ

t, x,
wpt, xq

σ
,

9wpt, xq

1´ σ

˙

9ξpt, xq



dtb dx

`

ż

Ω

dθ

ds

ˆ

wpT, xq

1´ σ

˙

9ξpt, xqdtb dx “ 0.

Finally, in one hand, taking ξpt, xq “ aptqbpxq with a P C8c ps0, T rq and b P C8c pΩq, and
integrating by part with respect to the time variable, from (I) we obtain (Sg,h). On the other
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hand, taking ξpt, xq “ aptqbpxq with aptq “ p t
T
qn and b P C8c pΩq, integrating by part with

respect to the time variable and letting n! 8, from (I) we obtain (BSg,h). �

4.3. Non-local stochastic homogenization of non-diffusive reaction equations. Let
ψ : Σˆr0, T sˆRN ˆR! R be a pAbBpr0, T sqbBpRNqbBpRq,BpRqq-measurable function
such that:

(H0) ψpTzω, ¨, x, ¨q “ ψpω, ¨, x` z, ¨q for P-a.a. ω P Σ, all x P RN and all z P ZN ;
(H1) ψpω, t, x, ¨q P C1pRq for Pb dtb dx-a.a. pω, t, xq P Σˆs0, T rˆRN ;
(H2) ψpω, t, x, ¨q is strictly convex for Pb dtb dx-a.a. pω, t, xq P Σˆs0, T rˆRN ;
(H3) there exist c1, C1 ą 0 such that for P-a.e. ω P Σ, one has

c1p|s|
2
´ 1q ď ψpω, ¨, ¨, sq ď C1p|s|

2
` 1q

for all s P R;
(H4) there exists δ : r0,8r! r0,8r with limr!0 δprq “ 0 such that for Pb dx-a.e. pω, xq P

Σˆ RN , one has

|ψpω, t1, ¨, ¨q ´ ψpω, t2, ¨, ¨q| ď δp|t1 ´ t2|q

for all t1, t2 P r0, T s;
(H5) there exists L ą 0 such that for P-a.e. ω P Σ, one has

ˇ

ˇ

ˇ

ˇ

Bψ

Bs
pω, ¨, ¨, s1q ´

Bψ

Bs
pω, ¨, ¨, s2q

ˇ

ˇ

ˇ

ˇ

ď L|s1 ´ s2|

for all s1, s2 P R,

and, for each ω P Σ, consider the non-diffusive reaction differential equation defined in
H1ps0, T r;L2pΩ;Rqq by

pRω
ε q

$

’

&

’

%

´
Buε
Bt
pω, t, xq “

Bψ

Bs

´

ω, t,
x

ε
, uεpω, t, xq

¯

for dtb dx-a.a. pt, xq Ps0, T rˆΩ

uεpω, 0, ¨q “ 0.

Then, as in §2.3, for P-a.e. ω P Σ and every ε ą 0, (Rω
ε ) has a unique solution uεpω, ¨, ¨q P H1

0.
Moreover, arguing as in the proof of Proposition 2.11, we can assert that there exist α, β ą 0
and γ : r0,8r! r0,8r with limr!0 γprq “ 0 such that for each ω P Σ, uεpω, ¨, ¨q minimizes
the functional Φfψpω,

¨
ε
q : H1

0 ! R given by

Φfψpω,
¨
ε
qpuq “

ż

s0,T rˆΩ

fψ

´

ω,
x

ε

¯

`

t, x, upt, xq, 9upt, xq
˘

dtb dx`

ż

Ω

θpupT, xqqdx

with fψpω,
¨

ε
q : RN !Mα,β,γ (here X “Mα,β,γ) defined by

fψ

´

ω,
x

ε

¯

pt, y, s, 9sq :“ ψ
´

ω, t,
x

ε
, s
¯

` ψ˚
´

ω, t,
x

ε
,´ 9s

¯

(4.41)

and θ : R ! r0,8r given by (2.9), where ψ˚ denotes the Legendre-Fenchel conjugate of ψ
with respect to the fourth variable. From (H0) we deduce that fψ is covariant with respect
to the dynamical system pΣ,A,P, pTzqzPZN q, i.e., (4.1) hols with f “ fψ, and the law of fψ
is invariant under the group pτzqzPZN , i.e., (4.3) holds with f “ fψ and pτzqzPZN given by

(4.2), and moreover the dynamical system pX,B, f 7ψP, pτzqzPZN q is ergodic, i.e., (4.4) holds
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with f “ fψ. On the other hand, from (H2) we see that fψ is strictly convex with respect to
ps, 9sq. Hence Fhom defined by (4.11)-(4.12), with f “ fψ and θ given by (2.9), has a unique
minimizer u P H1

0. So, as a direct consequence of Theorem 4.2 we obtain the following result.

Corollary 4.5. Assume that (H0), (H1), (H2), (H3), (H4) and (H5) are satisfied. Then, for
P-a.e. ω P Σ, one has

uεpω, ¨, ¨q
H1

Ýá u.

In the setting of a Poisson point process, we can precise the (non-local) equations satisfied
by u making clear the non-local effects induced by homogenization of stochastic non-difusive
reaction differential equations of type (Rω

ε ) (see Theorem 4.6(iv)).

4.3.1. The setting of a Poisson point process. Let ψ1, ψ2 : r0, T s ˆ RN ˆ R ! R be two
pBpr0, T sq b BpRNq b BpRq,BpRqq-measurable functions such that:

(E1) for each i P t1, 2u, ψipt, x, ¨q, ψ
˚
i pt, x, ¨q P C

1pRq for dtbdx-a.a. pt, xq P Σˆs0, T rˆRN ;
(E2) for each i P t1, 2u, ψipt, x, ¨q is strictly convex for dtb dx-a.a. pt, xq P Σˆs0, T rˆRN ;
(E3) there exist c1, C1 ą 0 such that for each i P t1, 2u, one has

c1p|s|
2
´ 1q ď ψip¨, ¨, sq ď C1p|s|

2
` 1q

for all s P R;
(E4) there exists δ : r0,8r! r0,8r with limr!0 δprq “ 0 such that for each i P t1, 2u, one

has
|ψipt1, ¨, ¨q ´ ψipt2, ¨, ¨q| ď δp|t1 ´ t2|q

for all t1, t2 P r0, T s;
(E5) there exists L ą 0 such that for each i P t1, 2u, one has

ˇ

ˇ

ˇ

ˇ

Bψi
Bs
p¨, ¨, s1q ´

Bψi
Bs
p¨, ¨, s2q

ˇ

ˇ

ˇ

ˇ

ď L|s1 ´ s2|

for all s1, s2 P R,

and let ψp : Σˆ r0, T s ˆ RN ˆ R! R be defined by

ψppω, t, x, sq :“

#

ψ1pt, x, sq if x P Y
zPDpωq

Brpzq

ψ2pt, x, sq otherwise

“ ψ2pt, x, sq ` pψ1pt, x, sq ´ ψ2pt, x, sqqmin
!

1, Npω,Brpxqq
)

“

"

ψ1pt, x, sq if Npω,Brpxqq ě 1
ψ2pt, x, sq if Npω,Brpxqq “ 0.

Then, (H0), (H1), (H2), (H3), (H4) and (H5) are satisfied with ψ “ ψp.

For each ω P Σ and each ε ą 0, let F
ψp
ε pωq : H1

0 ! R given by (4.5) with f “ fψp and θ
given by (2.9), i.e.,

Fψp
ε pωqpuq :“ Φfψp pω,

¨
ε
qpuq“

ż

s0,T rˆΩ

fψp

´

ω,
x

ε

¯

pt, x, upt, xq, 9upt, xqqdtbdx`
1

2

ż

Ω

ˇ

ˇupT, xqq
ˇ

ˇ

2
dx

with fψp given by (4.41) with ψ “ ψp. As in §4.2, set σ :“ PprNp¨, Brp0qq ě 1sq “ 1´e´λ|Brp0q|

and consider the integral functionals Ψ1,Ψ2 : H1
0 ! R given by:
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Ψ1puq :“ σ

ż

s0,T rˆΩ

ˆ

ψ1

ˆ

t, x,
upt, xq

σ

˙

` ψ˚1

ˆ

t, x,´
9upt, xq

σ

˙˙

dtb dx

`
σ

2

ż

Ω

ˇ

ˇ

ˇ

ˇ

upT, xq

σ

ˇ

ˇ

ˇ

ˇ

2

dx;

Ψ2puq :“ p1´ σq

ż

s0,T rˆΩ

ˆ

ψ2

ˆ

t, x,
upt, xq

1´ σ

˙

` ψ˚2

ˆ

t, x,´
9upt, xq

1´ σ

˙˙

dtb dx

`
1´ σ

2

ż

Ω

ˇ

ˇ

ˇ

ˇ

upT, xq

1´ σ

ˇ

ˇ

ˇ

ˇ

2

dx.

Let Ψ1�Ψ2 : H1
0 ! R be the inf-convolution of Ψ1 and Ψ2, i.e.,

Ψ1�Ψ2puq :“ inf
!

Ψ1pu1q `Ψ2pu2q : u1, u2 P H1
0 and u1 ` u2 “ u

)

.

The following result is a consequence of Theorems 4.3 and 4.4 and Corollary 4.5.

Theorem 4.6. Assume that (E1), (E2), (E3), (E4) and (E5) are satisfied. Then, the following
four assertions hold.

(i) For P-a.e. ω P Σ one has

Γ- lim
ε!0

Fψp
ε pωq “ Ψ1�Ψ2.

(ii) For P-a.e. ω P Σ and every ε ą 0, let upω, ¨, ¨q P H1
0 be the unique solution of (Rω

ε ).
Then

uεpω, ¨, ¨q
H1

Ýá u,

where u P H1
0 is the unique minimizer of Ψ1�Ψ2.

(iii) The function u minimizes Ψ1�Ψ2 if and only if there exist v, w P H1
0 such that

u “ v ` w with v and w satisfying the following differential system:

pSψpq

$

’

’

&

’

’

%

Bψ1

Bs

ˆ

t, x,
vpt, xq

σ

˙

´
B

Bt

ˆ

Bψ˚1
B 9s

ˆ

t, x,´
9vpt, xq

σ

˙̇

“ 0 dtb dx-a.e. in s0, T rˆΩ

Bψ2

Bs

ˆ

t, x,
wpt, xq

1´ σ

˙

´
B

Bt

ˆ

Bψ˚2
B 9s

ˆ

t, x,´
9wpt, xq

1´ σ

˙̇

“ 0 dtb dx-a.e. in s0, T rˆΩ

subjected to the time-boundary conditions:

pBSψpq

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

vpT, xq

σ
´ σ

Bψ˚1
B 9s

ˆ

T, x,´
9vpT, xq

σ

˙

“ 0 dx-a.e. in Ω

wpT, xq

1´ σ
´ p1´ σq

Bψ˚2
B 9s

ˆ

T, x,´
9wpT, xq

1´ σ

˙

“ 0 dx-a.e. in Ω

vp0, ¨q “ 0
wp0, ¨q “ 0,

where ψ˚1 (resp. ψ˚2 ) denotes the Legendre-Fenchel conjugate of ψ1 (resp. ψ2) with
respect to the third variable.
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(iv) The function u minimizes Ψ1�Ψ2 if and only if there exist u1, u2 P H1
0 such that

u “ σu1 ` p1 ´ σqu2 with u1 and u2 being the unique solutions of the following
integro-differential equations:

$

&

%

´
Bu1

Bt
pt, xq“

Bψ1

Bs

ˆ

t, x,
u1pT, xq

σ
`

ż T

t

Bψ1

Bs

ˆ

τ, x,
Bψ1

Bs
pτ, x, u1pτ, xqq

˙

dτ

˙

dtb dx-a.e. in s0, T rˆΩ

u1p0, ¨q “ 0
$

&

%

´
Bu2

Bt
pt, xq“

Bψ2

Bs

ˆ

t, x,
u2pT, xq

1´ σ
`

ż T

t

Bψ2

Bs

ˆ

τ, x,
Bψ2

Bs
pτ, x, u2pτ, xqq

˙

dτ

˙

dtb dx-a.e. in s0, T rˆΩ

u2p0, ¨q “ 0.

Proof of Theorem 4.6. We only need to prove (iv). For this, it suffices to show that
pv, wq P H1

0ˆH1
0 satisfies the differential system pSψpq-pBSψpq if and only pu1, u2q “ p

v
σ
, w

1´σ
q P

H1
0 ˆ H1

0 satisfies the integro-differential equations above. First of all, by integrating over
st, T r the first equation in pSψpq, we see that

Bψ˚1
B 9s

ˆ

t, x,´
9vpt, xq

σ

˙

“
Bψ˚1
B 9s

ˆ

T, x,´
9vpT, xq

σ

˙

`

ż T

t

Bψ1

Bs

ˆ

τ, x,
vpτ, xq

σ

˙

dτ. (4.42)

But
Bψ˚1
B 9s
pt, x, ¨q “

`

Bψ1

Bs

˘´1
pt, x, ¨q (see [ABM14, Theorem 9.5.1]), where

`

Bψ1

Bs

˘´1
denotes the

inverse of the subdifferential of ψ1 with respect to s, and so from (4.42) we deduce that

´
1

σ

Bv

Bt
pt, xq “

Bψ1

Bs

ˆ

t, x,
Bψ˚1
B 9s

ˆ

T, x,´
9vpT, xq

σ

˙

`

ż T

t

Bψ1

Bs

ˆ

t, x
Bψ1

Bs

ˆ

τ, x,
vpτ, xq

σ

˙˙

dτ

˙

.

Moreover, according to the first equation in pBSψpq, one has

vpT, xq

σ2
“
Bψ˚1
B 9s

ˆ

T, x,´
9vpT, xq

σ

˙

.

It follows that

´
1

σ

Bv

Bt
pt, xq “

Bψ1

Bs

ˆ

t, x,
vpT, xq

σ2
`

ż T

t

Bψ1

Bs

ˆ

t, x
Bψ1

Bs

ˆ

τ, x,
vpτ, xq

σ

˙˙

dτ

˙

.

for dt b dx-a.e. pt, xq Ps0, T rˆΩ, and setting u1 “
v
σ

we obtain the first integro-differential
equation. In the same manner, by using the second equations in pSψpq and pBSψpq and by
setting u1 “

w
1´σ

, we obtain the second integro-differential equation.
Conversely, setting v “ σu1 and w “ p1 ´ σqu2, by derivating each integro-differential
equation with respect to the time variable (resp. by letting t “ T in each integro-differential
equation), we obtain pSψpq (resp. pBSψpq). �

Appendix A. Young measures

Let pV , dq be a polish space, i.e., pV , dq is a separable and complete metric space, let k ě 1
be an integer and let O Ă Rk be a bounded domain. Let YpO;Vq be the class of Young
measures on OˆV and let CthbpO;Vq be the space of all bounded Carathéodory integrands
on O ˆ V .
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Definition A.1 (narrow convergence). Let tµεuε Ă YpO;Vq and let µ P YpO;Vq. We say
that tµεuε narrow converges to µ as ε! 0, and we write µε

nar
−! µ, if

lim
ε!0

ż

OˆV
ψpy, ξqdµεpy, ξq “

ż

OˆV
ψpy, ξqdµpy, ξq for all ψ P CthbpO;Vq.

Definition A.2 (tightness). We say that tµεuε Ă YpO;Vq is tight if for every η ą 0, there
exists a compact set K Ă V such that sup

εą0
µε
`

O ˆ pVzKq
˘

ă η.

A proof of the following compactness result can be found in [Val90, Theorem 11] (see also
[Val94, Theorem 7 and Comments 1), 2) and 3)]).

Theorem A.3 (Prokhorov’s compactness theorem). If tµεu Ă YpO;Vq is tight then there
exists µ P YpO;Vq such that, up to a subsequence, µε

nar
−! µ.

For a proof of the following theorem we also refer to [Val90, Val94].

Theorem A.4 (lower semicontinuity, continuity). Let ψ : OˆV ! r0,8s be a BpOqˆBpVq-
measurable function such that ψp¨, yq is lower semicontinuous for all y P O and let Ψ :
YpO;Vq! r0,8s be defined by

Ψpµq :“

ż

OˆV
ψpy, ξqdµpy, ξq.

(i) The functional Ψ is lower semicontinuous, i.e., for every tµεuε Ă YpO;Vq and every
µ P YpO;Vq, if µε

nar
−! µ then

lim
ε!0

Ψpµεq ě Ψpµq.

(ii) If ψp¨, yq is continuous for all y P O then for every tµεuε Ă YpO;Vq and every
µ P YpO;Vq such that µε

nar
−! µ and

lim
M!8

ˆ

sup
εą0

ż

rψěMs

|ψpy, ξq|dµεpy, ξq

˙

“ 0,

one has
lim
ε!0

Ψpµεq “ Ψpµq.

Let pW , δq be a polish space. A proof of the following theorem can be found in [Tor77] (see
also [ABM14, Theorem 4.2.4]).

Theorem A.5 (desintegration). Let µ be a Borel measure on VˆW and let ν :“ π7Vµ where
πV : V ˆW ! V denotes the canonical projection from V ˆW to V. Then, there exists a
unique (up to the equality a.e.) family tµξuξPV of probability measures on W such that for
every ψ P L1

µpV ˆWq, one has:

(i) the function ξ 7!

ż

W
ψpξ, ζqdµξpζq is ν-measurable;

(ii)

ż

VˆW
ϕpξ, ζqdµpξ, ζq “

ż

V

ˆ
ż

W
ψpξ, ζqdµξpζq

˙

dνpξq,

The family tµξuξPV of probability measures on W is called the desintegration of µ on the
product V ˆW. To summarize it, we write µ “ ν b µξ.



CONTINUITY THEOREM FOR NON-LOCAL FUNCTIONALS INDEXED BY YOUNG MEASURES 39

Appendix B. Inf-convolution and parallel sum

Let E be a linear space.

Definition B.1 (inf-convolution). Let G,H : E !s ´ 8,8s. By the inf-convolution of G
and H we mean the function G�H : E ! r´8,8s defined by

G�Hpuq :“ inf
!

Gpu1q `Hpu2q : u1, u2 P E and u1 ` u2 “ u
)

.

A proof of the following proposition can be found in [ABM14, Proposition 9.2.2].

Proposition B.2. Let G,H : E !s ´ 8,8s. If G and H are convex then G�H is convex.

In what follows, E is a Banach space and E 1 is its dual.

Definition B.3 (parallel sum). Let Γ,Λ : E−!−!E 1 be two multifunctions. By the parallel
sum of Γ and Λ we mean the multifunction Γ {{ Λ : E−!−!E 1 defined by

Γ {{ Λpuq :“
!

v P E 1 : Dpu1, u2q P E ˆ E such that u “ u1 ` u2 and v P Γpu1q X Λpu2q

)

.

For a proof of the following theorem, we refer to [Str94, Theorem 3.7] (see also [Str96]).

Theorem B.4. Assume that E is reflexive, G : E !s ´ 8,8s is convex, proper and lower
semicontinuous and H : E !s ´ 8,8r is convex and Gâteaux differentiable. Then G�H is
Gâteaux differentiable and DpG�Hq “ BG {{DH.
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