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CONTINUITY THEOREM FOR NON-LOCAL FUNCTIONALS INDEXED

BY YOUNG MEASURES AND STOCHASTIC HOMOGENIZATION

OMAR ANZA HAFSA, JEAN-PHILIPPE MANDALLENA, AND GERARD MICHAILLE

ABSTRACT. We establish a continuity theorem for non-local functionals indexed by Young
measures that we use to deal with homogenization of stochastic non-diffusive reaction differ-
ential equations. Non-local effects induced by homogenization of such stochastic differential
equations are studied.
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1. INTRODUCTION

Let T > 0, let N > 1 be an integer and let 2 = RY be a bounded domain. Let X be a polish
subspace of a suitable metric space (see §2.1 for more details) and let Y(€2; X') be the class
of Young measures on {2 x X. Let us set

M= {u e H'(0, TT; L*(%:R)) : u(0,-) = 0}

and for each p € Y(Q;X) and each u € H}, let us consider the following two classes of
functions:

7—[(1),# = {U € Hl(]o,T[; Li(Q X X;R)) U(0,-,-) = 0};
Su(u) = {U €My, Le U(t,z,8)du, (&) = u(t, ) for dt ® dz-a.a. (t,z) e]O7T[xQ} ,

where {/1;}.cq denotes the desintegration of x on Q x X. In this paper we are concerned
with non-local functionals ®,, : Hj — R defined by

B, (u) = inf{qb“(U) Ue sﬂ(u)}
with p e Y(Q; X), where ¢, : S, (u) — R is given by

o) = | €(t.2.U2,6). Ut ) dt @du(w.&) + | 00T, €))dul.)
10,T[xQxX QxX
with 6 : R — [0, o[ a convex function of 2-polynomial growth (see (Cy), (Cy), (C3) and (Cy)
in §2.1 for more details). Let us set F := {®, : p € Y(Q; X)}. Our main result is to prove
that the map
p— o,

is continuous from Y(£2; X') endowed with the narrow convergence to F endowed with the
[-convergence (see Theorem 2.7 and also Corollaries 2.8 and 2.9), i.e.,

fe —5 1 = F—lir%fl)us =,
E—

The interest of this result comes from the convergence, when ¢ goes to zero, of non-diffusive
reaction differential equations of the type
Ote

(t,x) = g(t,z,ug(t)) for dt ® dz-a.a. (t,x) €]0,T[x2

Ou,
(R.) &
us(0,-) =0
with 1. : [0,7] x RY x R — R and € > 0. In fact, under suitable assumptions (see §2.3 for
more details) every (R.) admits a unique solution u. € H; which is also a minimizer of @,
with:
pe = dT @ 0y (a);

fe(x)(t,y, 8, 8) = (t, 2z, 8) + E(t,x,—$);
0s) = 5P
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where 1} denotes the Legendre-Fenchel conjugate of 1. with respect to the third variable
(see Proposition 2.11). When there exists 1 € Y(€2; X) such that dz ®dy, ;) — p, Theorem
2.7 implies that any cluster point of {u.}. with respect to the weak convergence in H} is a
minimizer of ®, with the same 6 : R — [0, co[ given above (see Corollary 2.12).

This latter result point out the appearance of non-local effects induced by homogenization of
non-diffusive reaction equations of type (R.) and, in some way, can be seen as a generalization
of previous non-local results obtained by Mascarenhas (see [Mas93]) and Toader (see [Toa99)).
The fact that non-local effects appear when dealing with homogenization of equations of type
(R¢) is illustrated by studying stochastic homogenization of such equations in the framework
of a Poisson point process (see Theorem 4.6 and also Theorems 4.3 and 4.4). In particular,
we show that the weak limit of solutions of stochastic non-diffusive reaction differential
equations of type (R.) is characterized by two integro-differential equations (see §4.3).

The plan of the paper is as follows. In Section 2 we state the main result of the paper (see
Theorem 2.7) and direct consequences of this result (see Corollaries 2.8 and 2.9) together
with results related to homogenization of non-diffusive reaction equations (see Proposition
2.11, Corollary 2.12 and Proposition 2.13). Propositions 2.11 and 2.13 are proved in Section
2 while the proof of Theorem 2.7 is given in Section 3. Section 4 is devoted to stochastic
homogenization. In §4.1, as a consequence of Theorem 2.7, we state and prove a non-local
stochastic homogenization theorem (see Theorem 4.2) that we apply in §4.2, in the case
of a Poisson point process, to homogenization of stochastic integral functionals as well as
to homogenization of stochastic non-diffusive reaction equations (see Theorems 4.3, 4.4 and
4.6). Theorems 4.3 and 4.4 and Theorem 4.6 are respectively proved in §4.2 and §4.3. Finally,
in the appendix, we recall some standard results on Young measures (see Appendix A) and
inf-convolution and parallel sum (see Appendix B).

Notation. Throughout the paper, for any function w, w denotes the partial derivative of w

with respect to ¢, i.e., w = %—1:.

2. MAIN RESULTS

2.1. A continuity theorem for a class of non-local functionals indexed by Young
measures. Let N > 1 be an integer and let T > 0. Let «, 5 €]0, o0 be such o < 8 and let
7 : [0, 00[— [0, 00[ be such that lim, ,o~(r) = 0. In what follows, we denote by M, . the
class of functions £ : [0,T] x RY x R x R — R satisfying the following three conditions:
(Cy) &(t, @, -, ) is convex for all (t,z) € [0,T] x RY;
(Co) a(|(s,8)> = 1) < &(t,m,5,8) < B(I(s,8)]* + 1) for all (t,z) € [0,7] x RY and all
(s,8) e R x R;
(Cg) |€(t1, 1, S, S)—g(tg, ZT9, S, 8)| < ’7(|t1—t2|+|l'1—$2|) for all (tl, ZE1)7 (tg, 172) € [O, T] XRN
and all (s,s) e R x R.
From now on, to simplify notation we will sometimes write S to denote the couple (s, s) € R?.
From (Cy), (Cq) and (Cj3) it is easy to see that there exists L > 0 such that

(1, 21, 51) — E(ta, w2, S2)| < (|1 — to| + |21 — 22]) + L|ST — Sof(1 + [S1| + [S2])  (2.1)
for all £ € M, .4, all (t2,22) € [0,T] x RY and all (S, Ss) € R? x R2.
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Proposition 2.1. Under (C;), (C2) and (Cs) the space Mg g~ is a compact metric space
with respect to the metric d : My g~ X Mq g~ — [0,0[ defined by

0

A6,6) = 3 gy {1161~ &l ), (2.

n=0

where || - | is the uniform norm on [0,T] x B,(0), i.e., for each & € Mg,
€0 = sup {[€ (¢, 2, )| : £ € [0,T] and (2, )  Bo(0)}

with B, (0) = R¥*2 being the (N + 2)-dimensional closed ball centered at 0 with radius n.
Moreover, the evaluation map € : My g~ x [0,T] x RN x R? — R defined by E(&,t,x,5) =

&(t,x, S) is continuous.

Proof of Proposition 2.1. For each n € N, we consider the normed space (X,, | - [oo.n)
with X,, defined by

Xn 1= {f\OT x B (0 5€Maﬂv}

where &) 71,5, (o) denotes the restriction of £ to [0,T7 x B,(0). Then (Myp.,d) is homeo-
morphic to the product [ [, Xn. On the other hand, by using (C;) and (2.1), from Ascoli’s
compactness theorem we see that (X,,| - [0n) is compact for all n € N. By Tychonov’s
compactness theorem it follows that (M, s, d) is compact.

Let (&,¢,2,9) x [0,T] x RY x R? and let {(&;,t;,2,5;)}; € Mag, x [0,T] x RY x R? be
such that |(¢;,z;,5;) — (t,x,5)] — 0 and d(§;,&) — 0. Then, there exists ny € N such that
(t,z,9) € [0,T] x By, (0) and (t;,;,S;) € [0,T] x By, (0) for all j > 1. Let jo > 1 be such
that

0

1 o
d(&;,6) < Y, oy for all j = jo. (2.3)

n=ng

Then, for every j > jo we have inf {L I1€5 — gHOO,no} = [|&; — &]oono- Indeed, fix any j = jo. If
inf {1, |&; — &loono } = 1 then inf {1, [&; — £]oon} = 1 for all n > ng because & — &lloon, <
ny — &|oon for all n = ny. Hence

1
d(f]ag) = Z on+1’

which contradicts (2.3). Using (2.1) we deduce that

‘5 ity Ty, S, ) £t x, S)‘ < !53 tj, T, S ) fj(t z S)‘ ‘(éﬂ _5)(75»1‘75)‘

< (It = tl + |o; — x|) + LIS; = S|(1 + [55] + |S])
+[&5 = Ellooino
Y(|t5 =t + oy — 2]) + LCw |S; — S| + 274 d(&, €)

for all j > jo with C,,, := sup{1+|S;| +[S| : 7 = jo} €]0, 0[. Letting j — oo we deduce that
(&, t5,x4,5;) —E(E,t,x,5)] — 0. Hence € is continuous. W

A
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Let Q < RY be a bounded domain. In what follows, we set
Hy o= {ue H'(10,T[; L*(%R)) : u(0,) = 0}.

Let X be a polish subspace of (M, 3-,d) and let Y(£2; X') be the class of Young measures
on 2 x X. For each € Y(Q; X) and each u € H} we consider the following two classes of
functions:

b, = {U e H'(10.T[ L2(Q x XR))  U(0, ) = 0};
Su(u) = {U e My, L{ U(t,z,8)du, (&) = u(t, z) for dt ® dz-a.a. (t,x) e]O,T[xQ} ,

where {ji,}.cq denotes the desintegration of pon Q x X. Let 6 : R — [0, 0] be a convex
function of 2-polynomial growth, i.e.,

(Cy) 0(y) < (1 + |y[?) for all y € R and some ¢ €]0, oo].
Remark 2.2. Under (Cy4) as 6 is convex we can assert that there exists C' > 0 such that
10(51) = 0(y2)| < C'lyr = vl (L + [w] + |y2]) (2:4)
for all ¥,y € R.

To every u € H, and every p € Y(Q; X) we associate the integral functional ¢, : S,(u) — R
defined by

6u(U) = j] o S U 9,002, )t @, ) + f 0T, )du(.) (25)

XXX

and we consider the functional @, : Hj — R given by

®,(u) = inf {@(U) U e Su(u)}. (2.6)

Remark 2.3. By Proposition 2.1, the evaluation map & is continuous, and so the map

(t,2,€) — &(ta,U(t,2,6),U(t,x,€)) is (B(10,T]) ® B(Q) ® B(X), B(R))-measurable. It
follows that the integral functional ¢, is well defined.

Remark 2.4. From (Cy) and (Cy) it is easy to see that
a f (1.0)7 = 1) dt @ du(e, )<, (U)<B f (1. 0)2 +1) dt @ dpu(z, €)
10,T[xQxX 10,T[xQxX

e L CECEPIPETENS

for all U € S, (u) with u € HJ, where a, 3, ¢ €]0, o[ are given by (Cs) and (Cy).
Let us set F := {®, : p e V(s X)}.
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Remark 2.5. From Remark 2.4 it is easy to see that every F' € F satisfies the following
growth conditions:

aJ (J(w,0)? = 1) dt®@dz < F(u) < /BJ (J(u, 2)]* + 1) dt ® da
]OzT[XQ ]O,T[XQ

—i—cf (1 + [u(T,2)]?) dx
Q
for all u e Hj.

Let us recall the definition of I'-convergence (see [DM93, Bra06] for more details).
Definition 2.6 (I'-convergence). Given {F.}. < F and F' € F we say that {F.}. [-converges

to F at u € H} ase — 0, and we write (- lir% F€)> (u) = F(u), if the following two assertions

hold:

1
[-lower bound at u: for every every {u.}. = H}, if u. 2. then

h_mFa(ua) = F(u),

e—0

1
[-upper bound at u: there exists {v.}. = HJ such that v, Ly and

@FE(UE) < F(u).

When <F— lintl) F5)> (u) = F(u) for all u € H} we say that {F.}. ['-converges to I as ¢ — 0,

and we write I'- liné F.=F.
e—

The main result of the paper is the following. (This result is a new and more complete version
of [MV02, Theorem 3] in the specific case of the one-dimensional distributional derivative.)

Theorem 2.7. Under (Cy), (Cz), (C3) and (Cy) the map p — P, is continuous from
V(Q; X) endowed with the narrow convergence to F endowed with the T'-convergence, i.e.,
for every pe Y(Q; X) and every {u.}. < V(4 X)), if pe — p then

[-lim @, = @,.

2.2. From local to non-local functionals. It is easy to see that if y = dx ® dy(,) with
f:Q— X a(B(Q),B(X))-measurable function, then for any u € H} one has

0,0 = |

f(@)(t, z,u(t, z), u(t, ) dt ® dz + J O(u(T,x))dx
10,T[x Q2

Q
for all U € S, (u). Hence
D, (u) = J f(@)(t, z,u(t,z), it z))dt @ do + J O(u(T,x))dx (2.7)
10,T[x2 Q

for all u € Hj. In what follows, when p = dx ® dy(,) we use the notation “®;” instead of
“®,”. As a direct consequence of Theorem 2.7 we have
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Corollary 2.8. Assume that (Cy), (Cs), (Cs) and (C4) hold and, for each € > 0, consider
a (B(Q),B(X))-measurable function f. : Q — X. If there exists p € Y(; X) such that
dx ® 0. (z) — u then

[-lim ®; = P,

e—0
In corollary 2.8, although the functionals ®; are local, i.e., are integral functionals, the
[-limit @, is in general non-local (here infimum of integral functionals). However, since

dr ® 0y (x) — dx ® 0y if and only if {f.}. converges in measure to f (see [ABM14,
Proposition 4.3.8] and also [Val90, Proposition 6]), we have

Corollary 2.9. Assume that (Cy), (C3), (C3) and (C4) hold and, for each € > 0, consider
a (B(Q), B(X))-measurable function f.: Q — X. If there exists a (B(Q), B(X))-measurable

function f: Q — X such that {f.}. converges in measure to f, i.e.,

hI% £N<{x € Q:d(f(z), f(x)) > n}) =0 foralln>0,
where d is the metric defined by (2.2), then
F—limq)fs = (I)f

e—0

2.3. Non-diffusive reaction differential equations. For each ¢ > 0, let ¢, : [0,T] x
RY x R — R be a (B([0,T]) ® B(RY) ® B(R), B(R))-measurable function such that:

(A1) ¥.(t,x,) € CH(R) for dt ® dz-a.a. (t,x) €]0, T[xQ;

(Ay) te(t,x,-) is convex for dt ® dz-a.a. (t,x) €]0, T[xS;

(A3) there exist ¢1,C; > 0 (which does not depend on ¢) such that

alsl® = 1) < 9e(,5) < Culls]” + 1)

for all s € R;
(A4) there exists 0 : [0,00[— [0,0[ (which does not depend on &) with lim, o d(r) = 0
such that
’ws(tlv K ) - ws(t% K )‘ < 6(|t1 - tZD
for all t1,t5 € [0, T7];
(As) there exists L > 0 (which does not depend on ¢) such that

ey e
0s " 51 0s

('7 '752) < L’51 - 82’

for all s1,s9 € R,
and consider the non-diffusive reaction differential equation defined in H'(]0,T[; L*(€; R))

by
_Oue (t,x) = Ov (t,z,u.(t,x)) for dt ® dz-a.a. (t,z) €]0,T[xQ
(R.) ot ds
u:(0,-) = 0.

Remark 2.10. Under (A;), (As), (As), (Ay) and (Aj), it is well known that every (R.) has a
unique solution u. € HY (for a proof, see for instance [AHM18, Theorem 2.3]).
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The following proposition makes clear the link between non-diffusive reaction differential
equations and integral functionals of type (2.7).

Proposition 2.11. If (A;), (A2), (As), (Ay) and (As) hold then, for every e > 0, the non-
diffusive reaction differential equation (R.) admits a unique solution u. € H}. Moreover,
there ezist a, f > 0 and v : [0, 00[— [0, o[ with lim,_oy(r) = 0 such that every u. minimizes
the functional ®;. : Hy — R given by

P (u) = J]o _ fe(@) (8,2, ult, ), u(t, z))dt @ dv + JQ O(u(T, z))dz

with fo: Q@ — Mag, (here X = Mqpg,) and 0 : R — [0, o[ respectively defined by

fe(@)(t,y,s,8) = e(t,x,s) + YX(t, x,—5) (2.8)
and
0(s) — %\SF, (2.9)

where ¥ denotes the Legendre-Fenchel conjugate of 1p. with respect to the third variable.
Proof of Proposition 2.11. For ¢ > 0 and define ¥, : [0,7] x L*(;R) — R by

U (t,v) := L Ve (t, z,v(x))d.

(Note that W_(¢,-) is convex by (As).) Then (R.) is equivalent to the following differential
inclusion defined in H{ by

(D.) —a.(t,") € OU.(t,uc(t,")) for dt-a.a. t€0,T],

where 0W.(¢,-) denotes the subdifferential of W.(¢,-). According to Fenchel’s extremality
condition (see [ABM14, Proposition 9.5.1]), we see that (D.) is equivalent to

W, (t, ue(t, ")) + UE(t, —(t,-)) + (u(t, ), u(t,)) = 0 for dt-a.a. t €]0,T],
where U* denotes the Legendre-Fenchel conjugate of ¥, with respect to the second variable.
But, by Legendre-Fenchel’s inequality, W (¢,v) + U*(t, —w) 4+ (w,v) = 0 for dt-a.a. t €]0,T[
and all v,w € L?*({;R). Consequently, noticing that <|lu.(t, WNizm = 2Cue(t, ), e (t, )
and defining F. : H} — [0, ] by

FS(U) = L <qja(ta u(t7 )) + \Ij:(t7 —’ll(t, )) +54 Hu(t7 ')HiQ(Q;R) )dt,

it follows that (D.) is equivalent to F.(u.) = 0. (More precisely, we see that (D,) is equivalent
to F.(u.) < 0.) Thus, u. solves (R.) if and only if u. minimizes F..

On the other hand, as 1. satisfies (A3) and (Ay), so is its Legendre-Fenchel conjugate ¥
with other constants ¢;, C’l > (0, instead of ¢, C; > 0, but with the same function 6. Thus
fe(z) € My, for all € 0 (with suitable constants «, 3 > 0 and a suitable function )
where, for each (¢,y,s,$) € [0,T] x RY x R x R, f.(z)(t,y,s, 5) is given by (2.8).

Finally, for each u € H}, as u(0,-) = 0, by using Legendre-Fenchel’s calculus, it is easy to
see that

F.(u) = f]o . Qfe(a:)(t,x,u(x,t),u(t,:c))dx@dt + L O(u(T, z))dz,



CONTINUITY THEOREM FOR NON-LOCAL FUNCTIONALS INDEXED BY YOUNG MEASURES 9
where 6 : R — [0, o[ is given by (2.9), which means that F. = ;. B
As a direct consequence of Proposition 2.11 and Corollary 2.8 we obtain the following result.

Corollary 2.12. Assume that the assumptions of Proposition 2.11 are satisfied and, for
each € > 0, let u. € H{ be the solution of (R.). If there erists p € Y(Q; X) such that
dx @4y (x) — p, where f. : Q — Mg is given by (2.8), then any cluster point of {u.}.
with respect to the weak convergence in Hy is a minimizer of ®, : Hy — R defined by (2.6)
with 0 : R — [0, 0 given by (2.9).

Thus, the results obtained in [Mas93, Toa99] concerning non-local effects induced by homog-
enization can be seen as a particular case of Corollary 2.12 (see §5.2 for more details). Note
that if we further assume that

(Ag) for every € > 0, 1. does not depend on ¢, and there exists 1) : RY x R — R such that
for dr-a.e. x € RY, ¢(x,-) € CYR), ¢(x,-) is convex and ¢ (z,s) = lim._g¢.(z, s)
for all s € R,

then the non-local effects disappear. More precisely, we have the following proposition which
states a stability result for sequences of non-diffusive reaction differential equations of type

(Re).

Proposition 2.13. Under the assumptions of Proposition 2.11, if moreover (Ag) holds then
(up to a subsequence) the sequence {u.}. of solutions of (R.) weakly converges in H{ to the
solution u of the following non-diffusive reaction differential equation:

—%(t,x) = a—w(x,u(t,x)) for dt ® dx-a.a. (t,z) €]0,T[xQ

(R) 68

u(0,-) = 0.
Proof of Proposition 2.13. For each ¢ > 0, let U_, ¥ : L*(2;R) — R be defined by

V. (v) = L Ve (x,v(x))dz

U(v) := J P(z,v(x))de.
Q
(Note that, by (Ag), ¥. does not depend on ¢.) We first prove that
M-lim W, = W, (2.10)

e—0
where the symbol “M-1lim” denotes the Mosco-limit'. For any ¢ > 0 and any A > 0, let
WA U L2 R) — R be the \-Moreau-Yosida approximation of ¥, and ¥. By using an

'Let X be a Hilbert space, let h : X — R and, for each ¢ > 0, let h. : X — R. We say that {h.}.
Mosco-converges to h, and we write M-lim._.qg h. = h, if the following two assertions hold:

M-lower bound: for every v € X and every {v.}. < X, if v — v then lim__,, he(ve) = h(v);

M-upper bound: for every v € X there exists {w.}. < X such that w. — v and lim._¢ he(we) < h(v).
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interchange argument of infimum and integral (see [AHMO3]) it easily seen that

J D (o
_ Lw(;g,v(:p))d:p

where 12 and 1* denotes the \-Moreau-Yosida approximation of 1. and v with respect to
the second variable. From (A;), (A2) and (Ag) we deduce that ¥ and W, are closed, convex
and proper. Consequently, to prove (2.10) it is equivalent to show that

lim U2 (v) = U*(v) for all A > 0 and all v e L*(Q;R) (2.12)

(2.11)

(see [Att84, Theorem 3.26]). Taking (2.11) and (A3) into account, by Lebesgue’s dominated
convergence theorem, we see that for establishing (2.10) it suffices to prove that

lir% Y (x,8) = (2, s) for dz-a.e. € RV all A > 0 and all s € R. (2.13)

But (A;), (Ay) and (Ag) implies that for dz-a.e. z € RY, 1. (x,-) and 1 are closed, convex
and proper, and so (2.13) holds if and only if

M- lim Ve(z,) = Y(x,) for dr-a.e. x € RV, (2.14)

Fix z € RY and fix any € > 0. From (A;) and (A3) we deduce that there exists C' > 0 (which
does not depend on ¢) such that

Ve (, 81) — (2, 82)| < Clsy — sal(1+ |s1] + |s2|) (2.15)
for all s1,s9 € R. Let s € R and let {s.}. € R. On one hand, by (Ag) we have
lim i (z, 5) = (x, 5), (2.16)

which gives the M-upper bound of (2.14). On the other hand, from (2.15) it follows that

Ve(z,5:) < Ye(w,5) — Clsc — s|(1 + [sc| + [s])

for all ¢ > 0, and so, by using (2.16), if s. — s in R then lim__,¢.(z, s.) = ¥(z, s), which
gives the M-lower bound of (2.14). Thus (2.10) is proved.
For each € > 0, let G, G : L*(]0, T[; L*(2;R)) — R be defined by

From (2.10) we deduce that

M-lim Gz = G (2.17)
(see [ABM14, Lemma 17.4.8]). Hence (see [ABM14, Theorem 17.4.3])
M-lim G = G¥, (2.18)

e—0
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with G¥, G* : L*(]0,T[; L*(Q;R)) — R denoting the Legendre-Fenchel conjugate of G. and

G, where, by using Legendre-Fenchel’s calculus, one has

G (v) = j W (u(t, ))dt

0

G*(v) = f U* (u(t, ))dt

0

with U* W* : [2(Q; R) — R denoting the Legendre-Fenchel conjugate of ¥, and ¥. For each
e>0,let F.,F : H} — R be defined by

* . 1
Fe(v) = Ge(v) + G2 (=0) + 5 [o(T, MNizom

F(v) = G(0) + G*(=) + 5 [o(T, ) a o

Arguing as in the proof of Proposition 2.11 we can assert that:

for each € > 0, v solves (R,) if and only if F.(v) < 0; (2.19)
v solves (R) if and only if F'(v) < 0; (2.20)
Let {u.}. = H} be a sequence of solutions of (R.). Taking Remark 2.5 into account, we
see that (up to a subsequence) there exists u € H} such that u. 7, u, i.e., Ug L wand
Ue L Then, by (2.19), one has F.(u.) <0 for all € > 0. Letting ¢ — 0 we obtain
lim F. (u.) < 0. (2.21)
e—0
On the other hand, from (2.17) and (2.18) we deduce that:
G(u) < h_mGa(ua); (2'22)
e—0
G (i) < lm G (i), (2.23)
e—0
As, for any € > 0, uge”H(l) andue'HO Wehaveua(() ) =0 and u(0,-) = 0, and so u.(T,-) =
So u.(t,)dt and u(T,-) = So )dt. Since 1. —— @ it follows that u.(T, -) N u(T, ), and
consequently
(T, ')HLQ(Q;R) < lim [u (T, ')HL2(Q;JR) : (2.24)

E—>

From (2.22), (2.23) and (2.24) we deduce that F(u) < lim__, F.(u.). Hence F(u) < 0 by

e

(2.21). From (2.20) we conclude that u solves (R). B

3. PROOF OF THE CONTINUITY THEOREM

In this section we prove Theorem 2.7.
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Proof of Theorem 2.7. Let u e Y(; X) and let {u.}. = Y(Q; X) be such that p. — p.
According to the left inequality in Remark 2.5, to prove that

I-lim®, =P, (3.1)

it is equivalent to show that every subsequence of {®,,_}. contains a further subsequence which
I'-converges to @, (see [DM93, Proposition 8.17]). Let us consider a subsequence that we still
denote by {®,_}.. Taking the left inequality in Remark 2.5 into account, by compactness,
we can assert that, up to subsequence, {®,_}. I'-converges (see [DM93, Corollary 8.12]), i.e.,
I-lim. o ®,. = . So, to establish (3.1) it is sufficient to prove that

U (u) = @, (u) for all ue H,. (3.2)
For this, we only need to show that for each u € H} the following two assertions hold:

1) there exists a subsequence e and (V.. C such that v, —1\u and
(G1) th bseq {®,. .} and {v.}. < H} such th 1

Ho ()

m(PHG(E) (’Ua) < q)u(u>’

e—0
(Gy) for every {u.}. = H, if u. M then

lim @, (ue) = @p(u),
e—0

where {®,, 1. is given by (Gy).

Indeed, let u € Hj. According to Definition 2.6, from (G;) and (Gg) we sce that {®, _ }.
[-converges to ®, at u as ¢ — 0, i.e, (I-lim.o®, ., )(u) = ®,(u). On the other hand,
as {®,, ., }c is a subsequence of {®,,}. we have I'-lim._o®, = I-lim.o®, , and so
[-lim. o ®,, ., = V. Hence, in particular, (I'-lim.o®,, . )(u) = ¥(u). It follows that
U(u) = ®,(u), which proves (3.2).

Let us fix u € H}.

Proof of (G1). By using the direct method of the calculus of variations, we can assert that
there exists U € S, (u) such that U is a minimizer of ®,(u), i.e., ®,(u) = ¢,(U). We then
have:

2%@=LWM@MM% (3.3)

zmw:me@w&x (3.4)

where {/i, }.co denotes the desintegration of uon Q x X. As C}(]0, T[; C.(2 x X)) is strongly
dense in H; ,, for each 6 €]0, 1] there exists Us € C}(]0, T[; Co(Q x X)) such that:

j Us(t, 2, €) — Ut 2,62 dt @ du(, €) < 6 (3.5)
10,T[xQxX

J] N |Us(t, 2,€) = U(t, 2, &) dt @ dp(w, &) < 6. (3.6)
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In particular, one has:

Us 2 U (3.7)
Us 2 0. (3.8)

For each § €]0,1] and each £ > 0, let us. € H{ be given by

we(t.a) = [ Ukt )iz ©) (3.9)

where {pS}.cq denotes the desintegration of p. on 2 x X'. Then
e (t.) 1= | Vst i ©) (3.10)
X

(In what follows, we systematically use the fact that Us, U2, Us, and U2 are test functions
for the narrow convergence in )Y (£2; X') because these are bounded Carathéodory integrands
on Q x X.)

Since p1. —— pu, there exists a mapping & — 7 with 75 — 0 as  — 0 such that for all
e €]0,ns], one has:

[ s Predneo - [ e OPd e de ) <1 31)
10, T[xQx X 10,7

XOQAXX

| 0,2, )t @ de(,) — | !Uzs(t,w,f)lgdt®du(af,£)‘ <1 (312)
10,T[xQ2xXx 10,7°]

Fix any ¢ €]0,1] and any ¢ €]0,7s]. Using (3.9) and (3.11) we see that

Jure

f Us(t, 2, €)%t @ dpe(,€)
><Q><X

XQXX

2

dt ® dx

f Us(t, . €)dpic €)

f |us.-(t, 7)|?dt ® dx
10,T[xQ

N

<1 Us(t,,€)Pdt @ dp(, €).
10,T[xQxX

But, taking (3.5) and the left inequality in Remark 2.4 into account and recalling that
U e S,(u), we have

| Wtegrde ey < w2 UGt
10,T[xQxX 10,T[xQxX
1
< 2 <1 + E%(U) + T|Qy) :
and so, setting R := 3+ 1¢,(U) + T'|Q, it follows that

J lus.(t, z)?dt ® doz < R for all § €]0,1] and all € €]0, n;]. (3.13)
10,7[x0
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In the same manner, by considering (3.10), (3.12) and (3.6) instead of (3.9), (3.11) and (3.5),
we obtain

f |5, (t, 7)|*dt ® dz < R for all § €]0, 1] and all ¢ €]0, n5]. (3.14)
10,7[x

For each ¢ €]0, 1], consider the mapping € — As(e) given by

) oms ife>mns
As(e) '_{5 if € < ns.

(Note that A\s(¢) — 0 as ¢ — 0.) From (3.13) and (3.14) we deduce that
{5 5(0)}5.)e10.1] x]0,0f © Br(0), (3.15)

where Br(0) denotes the closed ball in H} centered at 0 with radius R. As p. — u we have
firs(e) — p for all 6 €]0, 1], and so

Usag(e) ——> L Us(-, -, €)dp (€) for all § €]0, 1]. (3.16)
Taking (3.7) and (3.3) into account, from the above it follows that
| vt 90dua() £ | U nle) = (3.17)
By the same arguments, using (3.8) and (3.4) instead of (3.7) and (3.3), we obtain:
g ()~ L Us(-, -, €)dpi(€) for all § €]0, 1]; (3.18)
| Ot 00at) £ | U dinl) = i (3.19)
Combining (3.16) with (3.18) and (3.17) with (3.19) we see that
Us \s(e) 5%16 L Us(:, -, §)dpe(§) 51_;)‘ u. (3.20)

According to (3.15) and the fact that in Br(0) the weak convergence is metrizable, we can
rewrite (3.20) as follows:
- %im - lin(l) Us ps(e) = U, (3.21)

—0
where d,, denotes the metric associated with the weak convergence in Bx(0).

On the other hand, by using similar arguments together with (2.1) and (2.4), we can assert
that

limlim ¢, _ (Us) = 6, (U). (3.22)

0—0e—0
According to (3.21) and (3.22), by diagonalization there exists a mapping ¢ +— J. with § — 0
as € — 0 such that:
: . H
- }:ILI(I) Us. A5, (c) = Uy 1.€.; Us, N () — Uj (3.23)

}:E% ¢MA55(5)(U58) = ng(U)' (3'24)
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Since ¢,(U) = ®,(u) and, for each € > 0, ¢, . (Us.) = @y,

CH]O, T[; C.(2 x X)) < Hil),m(; ., and §, Us. (-, -, E)dpa=@ (&) = Us, s,y frOm (3.24) we
deduce that

(us. x5, (c)) because Us, €

mq)#xgs(g)(ulse,)\ag(s)) < @#(u), (3'25)

e—0
Taking (3.23) and (3.25) into account and setting o(€) := As.(€) and v. := us, »;_(,, We have
o(e) — 0 ase — 0 and:

Hl
Ve — U;

m@ua(e) (ve) < D (u),

e—0

and the proof of (Gy) is complete. B

Proof of (Gz). Let {u.}. = H} be such that u,. M 4. Without loss of generality we can
assume that

lm®, . (u)= lir% P, (ue) <00, and so sup P, (ue) < 0. (3.26)
e e>0

Ho
o ()

Fix any ¢ > 0. By using the direct method of the calculus of variations, we can assert that
there exists U € S, ., (ue) such that U. is a minimizer of G (ue), ie.,

(I)NU(E) (U,E) = qug(s)(Ue) (327)

with ¢, Sua(g)(ua) — R given by (2.5). From (3.26) and the left inequality in (Cs) we
deduce that

(0. 02)

< 0. (3.28)

Ssu
b (J0,T[x2x X;R2)

2
e>0 Ldt@ug(g)

Let g. :]0, T[xQ x X —]0,T[xQ x X x R? be defined by

ge(t,2,€) = (t,2,€, Ue(t, 0, €), Ue(t, 2, €))
and let v, 1= g*dt ® i, (c). 1t is clear that v. € Y(]0, T[xQ; X x R?) whose projection measure
is dt @ dz. We claim that {v.}. is tight (see Definition A.2). Indeed, given n > 0, as {fto(-) }<
is tight, there exists a compact set L < X such that

1 1o (0 % (1)) <

7 (3.29)

From (3.28) and Markov’s inequality we can assert that there exists R > 0 such that

SUp dt @ io(e) (Fep) < (3.30)

e>0 2
with

Bopi= {(t,x,g) €0, T[xQ x X : (U.(t,z,6),U.(t,,)) € RQ\ER(O)},
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where Br(0) = R? denotes the 2-dimensional closed ball centered at the origin with radius
R. On the other hand, we have

v (10, T[Q x (X x B2\(K % Br(0)) < dt @ puoe (10, T[xQ x (X\K)) + d# @ jio(o) (B )
= Tio(e)(Q x (X\K)) + dt ® po(e) (Ee.r)
for all € > 0, and consequently
sup v(]0, T[xQ x (X x R)\(K x Bg(0))) <,

e>0

which proves the claim. Let h. : Q2 x X — 2 x X x R defined by

h&(m’g) = (:B7 g? U&(T’x7 6))

and let A\, := hg,ua(a). It is clear that A € Y(€; X x R). In the same manner we can establish
that {\.}. is tight. From Prokhorov’s compactness theorem (see Theorem A.3) we deduce
that there exist v € Y(]0, T[x; X x R?) and A € Y(2; X x R) such that, up to a subsequence,

one has:

Ve — U (3.31)
A2 (3.32)

Let morixaxx 0, T[xQ x X x R? —]0,T[xQ x X (resp. moxx : @ x X x R — Q x X) be
the canonical projection from |0, T[xQ x X x R? (resp. Q x X x R) to 0, T[x x X (resp.
1 x X). From (3.31) and (3.32) it is easy to see that:

f _ : 8 _ .
Mo, r[xoxx? = W= lim Mo, r[xaxxVe = dt @ pu;

e—0
i — : 8 —
ToxaA = W-Um a7 o, A = 11,
where “w-lim” denotes the weak limit associated with the weak o(Cj,C}) topology (see

[ABM14, Definition 4.2.2]). By using desintegration’s theorem (see Theorem A.5) it follows
that:

vV=dAdt@ U Vye; (3.33)
A= % ® )\x7§7 (334)

where {Viz¢}reeorixaxy and {A; ¢} eeaxr are families of probability measures on R?
and R respectively. We will need the following lemma whose proof is given below.

Lemma 3.1. For each (t,z,£) €]0,T[xQ x X, let us denote by U(t,x,§&), V(t,z,£) and
Wr(x, &) the 1™ moments of vy .e and Nug, i.e.,

U(t,z,§) := ( sdvyz¢(S,S); (3.35)
JR2
(

V(t,x,&) = 5dvy  ¢(s, 5); (3.36)
JR2
r

WT($,€) = STd)\xé(ST). (337)
JrR

Then V =U, U € S,(u) and Wy = U(T, -, -).
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According to (3.27) and the definitions of {v.}. and {\.}., we see that

lim q)#a(a) (us) =
e—0

> lim
e—0

+ lim

e—0

QxX

= lim
e—0

+ lim

e—0

]'i—I%QSIJ‘(r(E) (UE)
&(t, x, Ud(t,2,8), U,
10,T[xQxX

o(

10, T[xQx X xR?

U (T, , f))dﬂa(a) (z,€)

E(t,x, S)dve(t, x, &, S)

O(st)d\(x, &, sT).

Ox X xR

But, recalling (3.31) and (3.32), by Theorem A.4(i) have:

lim
e—0

10,T[x 2 x X xR2

lim

e—=0JOxX xR

€(t7 w? S)dyf(t7 1.7 57 S) >

J]\O,T[XQXXXR2

O(st)d\(x,&, s7) = L ) RH(ST)d)\(x,S,sT).

Jo(t,2,€))dt @ dptg (o) (,€)

E(t,x, S)dv(t, x, &, S);

(3.38)

(3.39)

(3.40)

Moreover, by using (Cy), (3.33) and (3.34), Jensen’s inequality and Lemma 3.1, we obtain

the following two inequalities:

E(t,x, S)dv(t, x,&,S)

10, T[xQ2x X xR2

>J\
10,T[xQxX

:J (f §(t,x,S)th,z7§(S)> dt ®@ dp(z, &)
10, T[xQxx R2

(t,x,f Sdvi ,¢(S )dt®du(x,£)
RQ

sdvy z ¢(s, 8) J Sdumf(s,.é)) dt ® du(x, )
R2

:J £ (82, U(t2,€),U(t,2,€) ) dt @ dpu(z, €):
10,T[xQxX

f O(st)d\(x, &, sT)
QXX xR

[

r

QOxX
,\

OxX
~

OxX
r

QOxX

(] tsriiracton) ) dute.

0 < [ sTdAm(sT)) dp(a, )

0 (U(T,z,8)) dulx, §),

(3.41)

(3.42)
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where U € S, (u) by Lemma 3.1. Consequently, combining (3.39) with (3.41) and (3.40) with
(3.42), and using (3.38) we conclude that

lim () > [ E(ba V(0. 005,9) d @ dutr,)

e—0

] U)o
QxX
= (b“(U)
> ,(u),
and (Gy) is proved.
This finishes the proof of Theorem 2.7 (the proof of Lemma 3.1 is given below). H

Proof of Lemma 3.1. The proof is divided into six steps.
Step 1: We prove that:

Ue L*(]0,T[; L2(Q2 x X;R)); (3.43)
Ve L*(J0,T[; L,(2 x X;R)); (3.44)
Wre L2(Q x X;R). (3.45)

Taking (3.35) into account and using Jensen’s inequality, we see that

[ et = [ [ s
10,T[xQx X 10,T[xQx X [JR?

< f (Jbﬁmm@@>ﬁ®W@@,
10,T[xQxX R2

2

dt @ dyu(x, &)

and so
J U (¢, 2,8)]dt ® du(z, €) < f [s]2dv(t, €, s, 5) (3.46)
10,T[xQxX 10, T[xQx X xR?

because of (3.33). On the other hand, according to (3.31) and the definition of {v.}., From
Theorem A.4(i) we have

| sPdv(t,,6,5,5) < lm sPdve(t,2.€,5.9)
10, T[xQx X xR? e—0 J10,T[xQx X xR2
= lim ‘Us(t>$7 f)’th®dﬂg(5)(l‘,£),

e—0J]0,T[xQx X
and so
f s[2du(t, 3, €, 5, 8) < o0 (3.47)
10, T[xQ2x X xR?
by (3.28). From (3.46) and (3.46) we get (3.43). In the same manner, by considering (3.36)
instead of (3.35) we obtain (3.44). By using (3.37), (3.34), (3.32) and the definition of {\.}.
instead of (3.35), (3.33), (3.28) and the definition of {v.}., a similar calculation gives (3.45).
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Step 2: We prove that
f Ut 2, €)dpin(€) = u(t, 2) for dit ® dr-aa. (1) €]0, T[x . (3.48)
X

where {1, }.cq denotes the desintegration of g on  x X. Fix any ¢ € CX(]0,T[x). As
1

H
u, — u we have

f o(t, x)u(t, r)dt ® dr = lim o(t, T)u(t, z)dt ® dz. (3.49)
10,T[xQ

=0 Jjo,1[x
Setting (t, z,&, s, 8) := ¢(t, x)s and recalling that U. € S, _, for any € > 0, we see that
f @(f,x)u5<t,$)dt®d$=J w(t,xaf, Us(ta$7§>aUs(ta$7§>)dt®dﬂo(s)(x7€)a
10,T[x2 10,T[xQxX

and so, according to the definition of {v.}., one has

J] [ ng(t,x)ue(t,x)dt@ﬁdx = J W(t,x, & s, 8)dve(t, z,€, s, $)
0,T[x

10, T[xQ2x X xR?

for all € > 0. Taking (3.31) into account, from Theorem A.4(ii) we deduce that

lim o(t, r)ue(t, r)dt ® dz J
=0 Jjo,1[x 10, T[x Q2 x X x R2

w(t’ x? 6’ S? ‘é)dy(t7 x? 6’ 87 S)

J o(t,x)sdv(t, z,€, s, s). (3.50)
10, T[xQ2x X xR?

Combining (3.49) with (3.50) and by using desintegration’s theorem (see Theorem A.5) and
(3.35), we obtain

J o(t, 2)u(t, x)dt @ de = o(t, ) (J sdvy 4 ¢(s, s)> dt ® dp(z, &)
10,T[xQ J10,T[xQxx R2

= o(t, 2)U(t,z,§)dt ® du(z,§)
J10,T[xQxx

- ot ([ Ut 90(6)) dt@

J10,7[xQ

which proves (3.48).
Step 3: We prove that
V=U. (3.51)

Fix any ¢ € C}(]0,T[) and any ¢ € C.(Q). Set 1y (t,x,&,s,8) := p(t)p(x)s. According to
(3.36) and the definition of {v.}., by using desintegration’s theorem (see Theorem A.5) and
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Theorem A.4(ii) together with (3.31), we see that

J]O T@(tW(x)V(t, 2, &)dt @ dp(x, &) = J]O’T[ o(t)o(x) (JRQ $dvgpe(s, g)) dt ® du(z, €)

JT[xQx X xQxX

:J 1/11(t,x,§,s,é)du(t,x,f,s,é)
10, T[xQ2x X xR?

.
= lim U (t, x, &, s, 8)dve(t, z, &, s, $)
€70 Jo,7[xQx X xR2
"
=lim ¢1(t T g Ue (t T 5) (t T 5))dt®d,ua 5)(1’ 5)
=0 Jo,1[xQx X
.

=lim [ @(t)p(x)UL(t, 2, €)dt @ dpto(e) (2, ).

£=0 Jo,1r[xQx X

But, for any € > 0, as p € C}(]0,T[) one has

f (BTt 2, €)dE @ e, €) = — f (Db Ua(t, 2, €)dt ® dptoio (2, €),
10,T'[ ] Q

xQxX 0,T[x§2x

and so, setting ¥s(t,x,&, s, 8) := ¢'(t)p(x)s and using the same arguments as in above with
(3.35) instead of (3.36), it follows that

f@(t)cb(l“)V(t,fv,é)dt®du(fc,§)—*hm balt, 2.6, Uty 2, €), Ut 2, €))dE ® djtogey (2, €)
10,T[xQxX 10,T[xQxX

=—lim Uo(t, z, €, s, 8)dve(t,x, &, s, $)

€—0 10, T[xQx X xR?

:_J Ua(t, 2, €, 5,8)dv(t,x,€, 5, 5)
107

x Qx X xR2

:_J o (t)p(x)sdu(t, x, €, 5, $)
0,T[xQ2x X xR2

xQxX

J (@(Lammgﬁ)m®w@@
f o) t, 2, )t @ diu(z, €),

><Q><X

which establishes (3.51).
Step 4: We prove that

U(0,z,&) =0 for pra.a. (x,£) e Q x X. (3.52)
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Let ¢ € C'([0,T]) be such that ¢(T) = 0 and ¢(0) + 0 and let ¢ € C.(Q x X). Then, we

have

f] P02 (@ () =~ f] oy OV OV (.

_L POV, 0 (@, E)du(x,£). (3.53)

On the other hand, by (3.51) and (3.36) and the definition of {v.}., from desintegration’s
theorem (see Theorem A.5) and Theorem A.4(ii) together with (3.31), we see that

fm[ p()U(t, x,&)(x, &) dt @ du(z,€) :J]O’T[ w(t) UR $dVyz e (s, s')) W(z, &)dt @ dp(x, €)

XQAxXX xQxX

:J o1& (x, €)du(t, o, €, 5, 8)
o]

x Qx X xR2

e—0 10,T[xQx X xR2

=lim POV (t, 2, ) (, €)dt ® dpto(e) (. ).
e~V 0, T[xQxx
But, for any € > 0, one has

f P(OU-(t, 7, €)1 (w, &) dt@dpto(o) (v, €) = —f ¢ (UL, z, )Y (x, §)diQdpo) (z, )
10,T'[ 10,T'[

XQXX XOQXX

because ¢(T") = 0 and U(0,x,§) = 0 for pis(»)-a.a. (z,£) € Q x X since U, € 7—[(1)7%(5). Hence,
by the same arguments as in above, we get

), 00 0t O Sdutr =ty | OV (. Ot Do)
=] B 7€ 53

o .J]o T[(pflz@z( (Jﬂv s (s, 3)) Y(w,&)dt @ du(w,§)

=~ | @ (U (t, 2, ) (x, &) dt @ dp(z, €). (3.54)

10,T[xQxX

Combining (3.53) with (3.54) we deduce that

Jﬂ X@(O)U(O,x,g)@b(m’g)dM(m,g) _0

for all ¢ € C.(Q2 x X), and (3.52) follows because ¢(0) # 0.
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Step 5: We prove that
Wr(z,&) = U(T, z,§) for pra.a. (x,€) e Q x X. (3.55)

Fix any ¢ € C.(Q2 x X). According to (3.37) and the definition of {\.}., by using desin-
tegration’s theorem (see Theorem A.5) and Theorem A.4(ii) together with (3.32), we see
that

Wrle,0(e, Odutee) = [ (j sTdAx,AsT)) (o, O)du(z, €)

OxX

_ j sp9b(x, €)dA(x, €, 1)
OAx X xR

= lim STTM% f)d)\s(xa 57 ST)

=0 Joxx xR

= lim UT, 2, ) (2, &) dpo (2,6).  (3.56)

=0 Joxx

But, for any € > 0, U.(0,2,&) = 0 for yy()-a.a. (x,§) € 2 x X because U, € H(l]v%(g), and so

LXX Ue(T, z, )¢(x, §)dpo(e)(2,§) = LXX (JT Ug(t,x,f)dt) b, &) dpts) (1, €)

0

- U(t, 2, &)t (w, §)dt @ dpto o) (,6). (3.57)

10,T[xQxX

Moreover, according to (3.51) and (3.36) and the definition of {v.}., by using the same
arguments as in above with (3.31) instead of (3.32), we have

lim U.(t, 2, €)(x,£)dt ® dpp(e(, €) =lim $(x, €)dve(t, x, €, 5, §)
=0 Jjo, [ xx X £=0 J1o,7[x Qx X xR2
:J sz, &)dv(t,x, &, s, $)
10, T[xQx X xR?

=J (f sdvy ¢ (s, s)) Y(x,&)dt ® du(z, &)
10, T[xQx X \JR2
-| Ut 2,€)0(r, )t ® dpu(, ). (3.59)
10,T[xQxX
From (3.52) we see that
. T .
| teoveoaedms - [ ([ Uernow) v oo
10,T[xQxX QxX 0
- | U ue dueg, (359
and consequently, from (3.56), (3.57), (3.58) and (3.59), we conclude that

WT(.I,g)Qﬂ(JI,g)d,U,(I,g) = U(T7I7£)w('r7€)dﬂ(‘r7€>

OxX OxX
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for all ¥ € C,(2 x X), and (3.55) follows.

Step 6: end of the proof. From (3.43), (3.44), (3.51) and (3.52) we deduce that U € Hj ,,
and so U € S,,(u) by (3.48), which completes the proof of Lemma 3.1. l

4. STOCHASTIC HOMOGENIZATION
4.1. A non-local stochastic homogenization theorem. Let (X, A, P) be a probability
space and let (7)),czv be a group of P-preserving transformations on (X%, A), i.e.,

e (mesurability) T, is A-measurable for all z € Z" ;
e (group property) T.0T. = T, and T_, = T ! for all 2,2’ € ZV ;
e (mass invariance) P(T,(A)) = P(A) for all z € Z" and all A € A.

Let f: 2 xRY x [0,T] xRY xRxR — Rbea (AR B(RY x [0,T] x RN xR x R), B(R))-
measurable function such that
f(w,:r:) = f(wv'ru'v'u'?') eX
for all w € ¥ and all x € RY. It is easily seen that the map
f Y - X:= RN
w = f(wa')

is a (A, B)-random variable with B := Qrn~B(X). We futhermore assume that the random
variable f is covariant with respect to the dynamical system (X, A, P, (T,),ezn), i.e.,

f(Tzwa ) = f(w7 i Z) (41)

for all z € ZY and for P-a.a. w e X. For each z € Z"V, let 7. : ¥ — X denote the shift map
on X, i.e.,

T.(w) := w(- + 2) (4.2)
for all w € X. Then, f*P, i.e., the law of f, is invariant under the group (7.).czv, i.e.,
THP = fiP (4.3)

for all z € ZN. We finally assume that the dynamical system (3, A, P, (T,).czv ), or equiva-
lently (X, B, f*P, (7.),ezn), is ergodic, i.e., for each A € A,

if T,(A) = A for all z € Z" then P(A) =0 or P(A) = 1,
or equivalently, for each B € B,
if 7,(B) = B for all z € Z" then f*P(B) =0 or f*P(B) = 1. (4.4)

For each w € 3} and each € > 0, we consider F.(w) : H} — R given by

Fe(w)(u):@f(%)(u):f f <w,f> (t,a:,u(t,x),d(t,x))dt@dx+f O(u(T, z))de. (4.5)

10,T[x 9 € Q

For each € > 0, let p. : 3 — Y(Q; X) be the random Young measure defined by
fe(w) = dr ® df(0,2). (4.6)
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Let Y :=]0,1[V be the unit cell, let fy : ¥ — XY be defined by fy(w)(y) = f(w,y) and,
for each w € X, let f&(w)dy be the image by fy(w) of the Lebesgue measure restricted to Y
that we denote by dy. Let u € Y(€2; X') be the Young measure defined by

pri=dr®dE (4.7)

fidy’

where dE oy denotes the expectation of the random probability measure w +— ff, (w)dy, i.e.,

Y
dE £y is the probability measure on X given by

dE: ., (B) = L ( L 1B(fy(w)<y))dy) dP(w)
N ny 1 (fr(w)(y))dP(w) ® dy

for all B € B(X'), where 15 denotes the indicator function of B, or equivalently by

[ e@Eg©-5([ cutma) - [ etwnrwes  u

for all (B(X), B(R))-measurable functions ¢ : X — Rsuch that §,, ¢ (f(-,y)) dy € L' (%, A, P).

Proposition 4.1. For P-a.e. w € X one has

nar

pe(w) — i
with py € Y(2; X) given by (4.7).

Proof of Proposition 4.1. It is sufficient to prove that there exists 32 € A with P(3) = 1
such that for every w € 3, one has

im [ 14(0)e(€)due () (@, €) = f

=0 Joxx QxX

La(@)p()de @ dE  , (€)

for all A€ B(£2) and all ¢ € D with D a dense subset of C.(X), see [Val90, Val94].

Let A e B(Q2) and let ¢ € D. Taking (4.8) into account, from the additive ergodic theorem
[ABM14, Theorem 12.4.1] (see also [CM94]), we can assert that there exists N, € F with
P(N,,) = 0 such that for every w € ¥\N,,, one has

o (£ 2)) 2 | wloEs 0 (1.9

On the other hand, by (4.6) we see that for every w € 3, one has

Lm (@) () dpio(w) (z, €) — L Law)e (£(, ) do for all e > 0 (4.10)



CONTINUITY THEOREM FOR NON-LOCAL FUNCTIONALS INDEXED BY YOUNG MEASURES 25

Set 3 := Uyep(X\Ny) (where N, corresponds to N, with ¢ = ). Then P(i) = 0 and, by
using (4.9), from (4.10) we deduce that for every w € X, one has

lim La(x)p(&)dpe(w)(z,§) = limf 1A(:1c)cp f w,%))dm

o Lo som)

_ f (€)dz ® dE 1, (£).

and the proof is complete. B
Let Fiom : H — R be defined by

Fhom(u) := inf {J; y P pwy) V(- w,y))dP(w) ®@dy 1 v e Shom(u)} : (4.11)

where Spom(u) is given by

Shom (1): {U e H} Ar@PRdy’ fv(t, z,w,y)dP(w)®dy=u(t,z) for dt®dz-a.a. (t,x) €]0, T[XQ}
XY

with
H aasrsay = {0 € H(0.TT; Lsgraa, (2 x ©x YiR)) 1 0(0,, ) = 0}
and
D o (00w, y)) = | f[((g,y) (t,x,v(t,x,w,y),v(t, z,w,y))dt ® dx
0,7[x
+J O(v(T,x,w,y))dx (4.12)
0

for all w € ¥ and all y € Y. The following result is a consequence of Corollary 2.8 and
Proposition 4.1.

Theorem 4.2. For P-a.e. w € X one has
F—lin& F.(w) = Fhom
with Fhom given by (4.11)-(4.12).

Proof of Theorem 4.2. From Corollary 2.8 and Proposition 4.1 we deduce that for P-a.e.
w € X, one has
I- liH(l) F(w) =9,

with ®, : Hg — R given by (2.6). (Since ju; does not depend on w, so is for ®,, .) Taking
(4.7) and (4.8) into account we see that for any u € H}, one has

Sy, (u)={U € ’H(l),w:J/g(t,Jz,f)dEqudy(f)zu(t,x)for di®dz-a.a. (t, ) E]O,T[XQ}

:{UG’HOW U(t, z, f(w,y))dP(w)®@dy=u(t, z)for dt®dz-a.a. (t, ) e]o,T[xQ}

YxY
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and
®,,, (u) = inf {%(U) Ues,, (u)}
with
Gy (U) = [ €(2.Ut2.8).0(t.2,€)dt @ dpg(.€) + [ U (T 2.))dsg(,6)
Jlo, T ><Q><X QxX
- ( ta, Ut z,€),U(t,x g))dt®dx®dEfuydy(§)+f0( (T,2,8))de ®dE ; , (£)
Jlo, T ><Q><X QxX
[ g (b U F,0)), U0, f(,9))) dt© dr © dB(w) @ dy
J]0,T[xQxEXY
+J O(U(T, z, f(w,y)))dr ® dP(w) ® dy. (4.13)
[92°937°9%
So, it remains to prove that ®,, = Fyom, i.e., for every u € H}, one has:
(I)Mf( ) = Fhom( ) (4'14)
D, (1) < From(u). (4.15)

Let us fix u € H}.
Proof of (4.14). Let U € S, (u). Then:

Ue L*(|0,T[; L; (2 x £ x Y;R)); (4.16)
U e L*(]o, T[ L, (2 x X x Y;R)); (4.17)

Uo,-,-) = (4.18)
fz y U(t,z, f(w,y))dP(w) ® dy = u(t, z) for dt ® dz-a.a. (t,x) €]0, T[x€. (4.19)

Set v(t,z,w,y) := U(t,z, f(w,y)). By (4.18) we have v(0,-,-,-) = 0 and from (4.19) it is
clear that

J v(t, z,w,y)dP(w) ® dy = u(t,z) for dt ® dz-a.a. (t,z) €]0, T[xS.
XY
On the other hand, taking (4.8) into account, we see that

-
[o(t, 2, w,y)|?dt @ dr @ dP(w) ® dy = < \U(t, z, f(w,y))|?dP(w) ® dy> dt ® dx
J0.7[x0

10,T[xQxExY J1]o,T XY
[

| <LX Ut 2, ) Pde ® dEfgdy(f)) dat

J1]o,T
-
= U(t, 2, &) 2dt @ dpyg(, ),

J]0,T[xQxX

and so, from (4.16) we deduce that v € L*(]0, T[; L7, gpga, (2 X X x Y;R)). In the same way,
by using (4.17) instead of (4.16) we obtain @ € L*(]0, T'[; L3, gpga, (2 x X x Y;R)). It follows
that v e S, (u).
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We have thus proved that for each U € S, (u) one has v € Syom(u). According to (4.11)-(4.12)
and (4.13) we conclude that

Gy (U) = f D) (V- w0, 9))dP(w) @ dy = Firom(u)

UxY
for all U € S, (u), and (4.14) follows. W

Proof of (4.15). Consider g : X xY — X x X x Y defined by g(w,y) := (f(w,y),w,y) and
set

M= F(PRdy). (4.20)
Then Wﬁv/\ = dE oy with 7y : X x ¥ x Y — X denoting the canonical projection from
Y

X x ¥ xY toX. So, from desintegration’s theorem (see Theorem A.5) we can assert that
there exists a familiy (A¢)eex of probability measures on ¥ x Y such that

N=dEg, ® e (4.21)
Fix any v € Spom(u) and set
Ulta,8)i= [ oltawp)dlwn) (4.22)
XY
(In particular, U(T, z, &) := {5 v(T,z,w,y)dA¢(w,y).) Then, it is easy to see that
Uta,8)i= | olto)dre(onn) (4.23)
XY
We claim that U € S, (u). Indeed, as v € Spom(u) we have:
ve L?(]0,T[; Li,gpgay (2 X & x YiR)) ; (4.24)
v e L? (]0,T[; Li,gpgay (2 X X x Y3R)) ; (4.25)
U(07'73') ::0; (4'26)
J v(t, z,w,y)dP(w) ® dy = u(t,z) for dt ® dz-a.a. (t,z) €|0,T[xQ. (4.27)
XY

Firstly, by (4.26) it is clear that U(0, -, ) = 0. Secondly, by using (4.8), (4.22), (4.21), (4.20)
and (4.27) we see that

-
J Ult,z, f(w,9)dP(w) ®dy = U(t7x7£)d]Ef€/dy(€)
XY i
-
= (J v(t,x,w,y)d&(w,y)) dEff/dy(g)
Jx \Usxy

[ stmw e wy
JXXxEXY

— [ v(t, z,w,y)dP(w) ® dy

JEXY
= u(t,z)
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for dt ® drx-a.a. (t,z) €]0, T[x€. Thirdly, taking (4.22) into account and using Jensen’s
inequality, we have

| wesoraede - |
10,T[xQxX 10,T[xQxX

<

2

j ot 2y, y)dde(w, )| di @ dpig(, €)
YxY

j o(t, 2, w, ) Pdt @ djy (1, €) ® dAe(w, ).
10, T[xQx X xExXY

But, by (4.7), (4.21) and (4.20) we have

’U(ta T, w, y)|2dt ® dlu“f(xa 5) ® d)‘ﬁ(w7 y) = |U(t7 T, W, y)‘th Qdr ® d]EfE/dy<£) ® d>\§<w7 y)

10,T[xQ2xXXEXY 10,T[xQAxXxEXY
- o0, 2,00, Pt © d © AN(E,0,)
JO,T[xQxXxEXY
=J lv(t, z,w, y)Pdt ® dz ® dP(w) ® dy
10,T[xQxExY
hence
J U(t,2,6)Pdt @ dpys(x,€) < f [o(t, 2, w, y)[*dt @ dz @ dP(w) ® dy,
10,T[xQxX 10, T[xQxExY

and so, from (4.24) we deduce that U € L*(]0, T'; L7 (22 x X;R)). In the same way, by using
]

(4.25) instead of (4.24) we obtain U € L2(]0, T'; Lif(Q x X;R)), and the claim is proved.
On the other hand, taking (4.22) and (4.23) into account and using Jensen’s inequality, we
have

b, (U) = f s(ux, f o(t, 2w, y)dAe(w, 1), f o(t,x,w,ymg(w,y)) 0t ® djig (2, €)
10,T[xQxX

XY YxY

I LXX 0 <JU(T, 7, w, y)de (W, y)) dpy(z,§)

YxY

J;O,T[XQXXXEXY

Pl BT ) i) © D)
AxXXxEXY

hence, by using (4.7), (4.21), we obtain

¢N«f(U) < J 5 (ta x, U(ta T,w, y)’ U(ta T, w, y)) dt ® d.T ® dIE’f’j dy(g) ® dA{(“a y)
10,T[xOXx X xExY Y
v 0 (u(T, 7, 3)) dz @ dE () ® dre(eo,y)
OxXxXEXY
< f E(ta,v(t, 2,0, ), (0 2,0, ) dE © dr ® AA(E, w0, )
10,T[xQxXxEXY

—i—J 0(U(T,$,W,y)) dI®d)\(£7wuy)7
OAXXXxEXY
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and consequently, from (4.20) we conclude that

0, (U) < f F(w,9) (o o(t,w,y), 6t 0, w,y)) dt @ dr @ dP(w) © dy

10,T[xQxExY

+J 0(v(T,z,w,y))dr®dP(w) ® dy
AxExXY

[ Bl )P @
YxY

We have thus prove that for each v € Spom(u) there exists U € S, (u) such that

by (U) < J B ) (V- 0,9))dP(w) ® dy,

XY
which implies (4.15). B
This finishes the proof of Theorem 4.2. B

4.2. Non-local stochastic homogenization in the setting of a Poisson point pro-
cess. Let D : =R" be a (A, B(R"Y))-measurable multifunction such that for every w € ¥,
the set D(w) is countable and without cluster point and let N : & x B(RY) — N u {0} be
defined by
N(w,B):= Y. 6.(B) = card(D(w) n B),
26D(w)

where §, denotes the Dirac measure at the point z € RY. (Note that for each w € 3, N(w,-)
is a counting measure.) From now on, we assume that {N(-, B)}gegrn) is a Poisson point
process with intensity A > 0, i.e.,

e for every bounded set B € B(RY) and every k € N, one has

—AlB]
P([N(-, B) = k]) = |B|*\*—— (4.28)
k!
where [N(-,B) = k] := {w e ¥ : N(w, B) = k} and |B| denotes the Lebesgue measure
of B;
e for every disjoint and bounded sets A, B € B(RY), N(-, A) and N(-, B) are indepen-
dant.

Fix r > 0 and g, h € X and consider the (A, B := Qr~B(X))-measurable function f, : ¥ —
X = ARV given by
g ifxe u B.(z
flto.a) = { O

h  otherwise
— h+(g—h)min {1, N(w, Br(af))}

_ { g if N(w,B.(z)) >1
h if N(w, B,(x)) = 0.

Then, f, is covariant with respect to the dynamical system (X, A, P, (T}),cz~), €., (4.1) hols
with f = f,,, and the law of f, is invariant under the group (7,).czv, i.e., (4.3) holds with

(4.29)
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f = fp and (7:).ez~ given by (4.2), and moreover the dynamical system (X, 5, féP, (T2)sezn)
is ergodic, i.e., (4.4) holds with f = f, (see [MM94, §5]). (The ergodic dynamical sys-
tem (X, B, fg]P), (T2).ezv) models environments whose heterogeneities are independently dis-
tributed with a frequency \.)

For each w € ¥ and each £ > 0, we consider FP(w) : H) — R given by (4.5) with f = f,,, i.e.,

FP(w)(u) = Py (1) = f] - f, (w, g) (t, 2, u(t, z), i(t, z))dt @ d + L O(u(T, z))dx.

Set o := P([N(-, B,(0)) = 1]) = 1 — e MNP Ol and consider the integral functionals G, H :
H — R given by:

'<’;"”’)) dt @ da + L 0 (“<T’ x)) dm] : (4.30)

H(u) = (1-0) U&T[mh (t,x, "‘i(’i?, lft_“?) dt @ dx + Le <“1(T_ ?) dx] . (4.31)

Let GOH : H} — R be the inf-convolution of G and H, i.e.,

«Q
&
I

9
| —|
—
2
=
X
o)

K
VR
“@F
8

I
9|
S
~—
I

GOH (u) := inf {G(ul) + H(ug) : uy,up € Hy and up + ug = u}

The following result is a consequence of Theorem 4.2.
Theorem 4.3. For P-a.e. we Y one has
F_lii]% FP(w) = GOH.
Proof of Theorem 4.3. Applying Theorem 4.2 with f = f, we deduce that for P-a.c.

w € X, one has

[-lim FP(w) = Fhom

e—0

with Fiom @ Hy — R given by (4.11)-(4.12) with f = f,. So, it remains to prove that
Fiom = GOH, i.e., for every u € H}, one has:
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Taking (4.29) into account, as [N (, - ()
ExY =[N, B() =2 U [N(, B() =

) = 1] and [N(-, B,(:)) = 0] are disjoints and
0], for any v € Shom(u), one has

f By o (0110, ) AP(w) @ dy = f Doy (030, 1)) AP() @ dy
XY [N(-,Br(-)=1]
+ By (00, ))B() @y
[N(-,Br(-))=0]
(I)g<v('7 W, y))dP(w> ® dy
n f a0l -, y))dP(w) ® dy.
[N(-,Br(-))=0]

Hence

Fhom(u) = inf {J[ O, (v(-, - w,y))dP(w) ® dy + f Oy (v(- -, w,y))dP(w) ® dy} . (4.34)

V€Shom (W) LJ[N(-,B,(-))=1] [N(,Br(-))=0]

Fix any v € Spom(u). Taking (4.28) into account we see that

{P®%M (- B:(1)) = 1]) = P(IN(-, B:(0) = 1]) = o,

> 1]) = P
and so P@ dy([N (-, B,()) = 0)) = 1~ 0. (4:5)

Hence, by using Jensen’s inequality, one has

_ o0, (% J[ ol w,y)d[[”(w)@dy) (4.36)

and, in the same way,

f@h(v(-,-,w,y))d]}”(w)(@dy > (1—0)d, ( L JU( : w,y)dP(w)@dy) . (4.37)
[ [ =

N(-Br(-))=0]

Set

[
%
=
su
O
é
=
Q
pac}
£
&®
Q,
Ny
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Then, uy,us € Hy and ug + ug = u. Moreover, according to (4.11)-(4.12), from (4.30), (4.31),
(4.36) and (4.37) we deduce that:

f (I)g(v('v'away))dp(w)®dy = G(U1>,
[N(Br(-))=1]

J q)h(v('a'away))dp(w)®dy = H(’LLQ)
[N(-Br(-))=0]
Consequently, one has

f (Pg(v(-,~,w,y))dP(w)®dy+ J q)h(v('7'7way))dp(w)®dy = GDH(U’)
[NC.Br(-)=1] [NC.Br()=0]

for all v € Shom(u), and (4.32) follows by taking (4.34) into account.
Conversely, for any uy, ug € ’Hé such that u; + us = u, set

“12’ )y N(w, B,(y)) > 1
v(.) .’w’y) c=
?E’(’) if N(w, B (y)) = 0.

Then, v € Spom(©) and, from (4.12), (4.30), (4.31), (4.34) and (4.35), we see that

Fhom(u) < J @Q(v(,,w,y))dp(w)®dy+ f (I)h(U(',',w,y))dP(W)®dy
[N(.Br(-))= [N(,Br(-))=0]

_ J L 6w dP(w) @ dy + J L H(us)dP() © dy
[NG,Br(-)=1] @ [NG,Br(-))=0] + — O
— P@dy(INC, B,()) > 1) > Clur) + POAy(IN(, B,()) = 0] H(w)

which gives (4.33), and the proof of Theorem 4.3 is complete. B

Assume futhermore that:
(Py) for dt ® dz-a.e. (t,x) €]0,T[xS, the functions g(t,z,-,-) and h(t,z,-,-) are strictly
convex, g(t,z,-,-) € CY(R?) and h(t,z,-,-) € C*(R?);
(P2) the function 6 is strictly convex and 6 € C*(R).

The following result is somehow a version of Theorem 4.3 in terms of weak convergence in
H' and Euler-Lagrange’s equations.

Theorem 4.4. Assume that (Py) and (Py) hold and, for each w € ¥ and each € > 0, let
ue(w) be the minimizer of FP(w). Then, for P-a.e. w € 3 one has

Hl

ue(w) u,
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where u € H} is the minimizer of GOH. Moreover, u minimizes GOH if and only if there
exist v,w € Hy such that u = v +w with v and w satisfying the following differential system:

% t,x, olt, x)7 v(t,x))_ﬁ(@_g(t’ x, U(t’ﬁ), olt, :B))> =0 dt ®dz-a.e.in |0, T[x
(Syn) 0s o o ot \0s o o

Chf p wt7) w(t’x>) i(ahe,x,w(t’@ w(t’x)»: 0 dt ® dz-a.e. in 10, T[xQ

s "1—0' 1—0) 0t\0s l—0c’ 1—0

subjected to the time-boundary conditions:

d_@ M + Ua—g. <T,w, o, x)) o, a:)) =0 dz-a.e. in
ds o 0s o o )
(84) 3 Z—z @) (- 0)% (T,x, wl(i’:), wl(i:)) —0 du-a.e. inQ
v(0,-) =0
w(0,-) = 0.

\

Proof of Theorem 4.4. The first part of the proposition is a direct consequence of Theo-
rem 4.3. Let us prove the second part of the proposition. First of all, it is easy to see that
G and H are convex, and so is GOH by Propostion B.2. As GOH is a I'-limit (see Theorem
4.3), it follows that GOH is closed and convex. Consequently, v minimizes GOH if and only
if, one has

0 e d(GOH)(u) (4.38)

(see [ABM14, Proposition 9.5.3]). Taking (P;) and (Ps) into account, we see that G and H
are Gateaux differentiable, and so, from Theorem B.4 we deduce that

0(GOH)(u) = DG J) DH (u), (4.39)

where DG /) DH denotes the parallel sum of G and H (see Definition B.3). Consequently,
from (4.39) we can assert that (4.38) holds if and only if there exist v,w € H} such that
u = v+ w and

{ DG(v) =0, i.e., DG(v)(€) = 0 for all € Hy (4.40)

DH(w) =0, ie., DH(w)(£) = 0 for all £ € H{.

By using differential calculus, we see that (4.40) is equivalent to the following integral equa-
tion system: for every & € H}, one has

( [ Og v(t,x) o(t, ) og v(t,x) o(t,x)\ ;
J;O,T[XQ %<t,ac, , ) E(t,x) + gé,x, —_ ) §(t,a:)] dt ® dx

o o o o

d9 (v(T.x) £t x)dt @ dz = 0

(D) 4 f an_hé’x’ w(t, z) w(t,x)> (t.2) &h<t7x’ w(t, z) w(t, )
0,T[xQ

x) + == : >§(t,x)] dt ® dx

lo.r[x L 08 l-0’ 1-0 0s o l—0o
do (w(T,x)\ : B

Finally, in one hand, taking &(¢t,z) = a(t)b(z) with a € CP(]0,7[) and b € C*(Q2), and
integrating by part with respect to the time variable, from (I) we obtain (S, ;). On the other
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hand, taking £(t,2) = a(t)b(z) with a(t) = (%)" and b € CX(Q), integrating by part with
respect to the time variable and letting n — oo, from (I) we obtain (0S,;). B

4.3. Non-local stochastic homogenization of non-diffusive reaction equations. Let
P :Ux[0,T]xRY xR — R be a (AQB([0, T]) @ B(RY) ® B(R), B(R))-measurable function
such that:

(Ho) ¥(Tow, -, z,-) = ¥(w, -,z + z,-) for P-a.a. we X, all z € RY and all 2z € ZV;

(Hy) ¥(w,t,z,-) € CYR) for PR dt ® dz-a.a. (w,t,z) € Xx]0, T[xRY;

(Hy) ¥(w,t,z,-) is strictly convex for P® dt ® dz-a.a. (w,t,z) € X x]0, T[xRY;
(H3) there exist ¢1,C; > 0 such that for P-a.e. w e ¥, one has

Cl(|s|2 - 1) < ¢(w7 K '73) < Cl(|8|2 + 1)
for all s € R;
(Hy) there exists 0 : [0, 00[— [0, oo with lim,_od(r) = 0 such that for P® dz-a.e. (w,z) €
¥ x RV, one has
|,l/}(w7 tl? E ) - ¢<w7t27 R )| < 5(‘t1 - t2|>
for all 1,5 € [0, T7;
(H5) there exists L > 0 such that for P-a.e. w € X, one has

’ad} aw < L|81—82|

g(w7 ) '781> - E(wu ERE) 82)

for all s1,s5 € R,

and, for each w € ¥, consider the non-diffusive reaction differential equation defined in
H'(]0, T[; L*(% R)) by

—%(w,t,x) = é’_w (w,t, E,udw,t,x)) for dt ® dz-a.a. (t,x) €]0, T[x
(RY) ot Js €
Ue(w, 0,-) = 0.
Then, as in §2.3, for P-a.e. w € ¥ and every € > 0, (R¥) has a unique solution u.(w, -, ) € Hp.

Moreover, arguing as in the proof of Proposition 2.11, we can assert that there ex1st a, >0
and v : [0,00[— [0, oo[ with lim,_~(r) = 0 such that for each w € ¥, u.(w,-, ) minimizes
the functional @y : Hy — R given by

D, (u) = f fy <w, —) (t, 2, u(t,z),u(t,z))dt @ dv + f O(u(T, z))dz
10,T[xQ € Q
with fy(w,2) : RN — M, g, (here X = Mg 5,) defined by
T . r
Jo (W ( ) (t,y,s,8) = (w,t, g,s) + 1 <w,t, = 3) (4.41)

and 0 : R — [0,00[ given by (2.9), where ¢* denotes the Legendre-Fenchel conjugate of ¢
with respect to the fourth variable. From (Hj) we deduce that fy is covariant with respect
to the dynamical system (X, A, P, (T}).cz~ ), €., (4.1) hols with f = f,, and the law of f
is invariant under the group (Tz)zezN i.e., (4.3) holds with f = f, and (7,).czv given by
(4.2), and moreover the dynamical system (X, B, fiIP’, (T2).ezn) is ergodic, i.e., (4.4) holds
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with f = f,. On the other hand, from (Hs) we see that fy is strictly convex with respect to
(s,5). Hence Fyom defined by (4.11)-(4.12), with f = f,, and 6 given by (2.9), has a unique
minimizer u € H}. So, as a direct consequence of Theorem 4.2 we obtain the following result.

Corollary 4.5. Assume that (Hy), (Hy), (Hs), (Hs), (Hy) and (Hs) are satisfied. Then, for

P-a.e. we X, one has
1

e (w, -, +) 2 .
In the setting of a Poisson point process, we can precise the (non-local) equations satisfied
by u making clear the non-local effects induced by homogenization of stochastic non-difusive
reaction differential equations of type (R¥) (see Theorem 4.6(iv)).

4.3.1. The setting of a Poisson point process. Let 11,1y : [0,T] x RY x R — R be two
(B([0,T]) ® B(RY) ® B(R), B(R))-measurable functions such that:

(Ey) for each i € {1,2}, ¥;(t,z,), ¥ (t, z,-) € CL(R) for dt@dr-a.a. (t,x) € Lx]0, T[xRY;
(Ey) for each i € {1,2}, 1;(t, x,) is strictly convex for dt ® dr-a.a. (t,z) € X x]0, T[xRY;
(E3) there exist ¢;,C7 > 0 such that for each i € {1, 2}, one has
allsl® = 1) < il s) < Cu|s]* + 1)
for all s € R;
(E4) there exists 0 : [0,00[— [0, co[ with lim,_od(r) = 0 such that for each i € {1,2}, one
has

Wite, ) = Wilta, )| < 6([tr — taf)
for all t1,t5 € [0, T7;
(E5) there exists L > 0 such that for each i € {1,2}, one has

Os ('7 '781) - Os ('7 'a82) < L’SI - 32’

for all sq,s9 € R,
and let ¢, : X x [0,T] x RY x R — R be defined by

{wl(t,m,s) ifre u B.(z)

26D(w)

Uy(w, t,z,s) =
ol ) o(t,x,s) otherwise

= ot ,x,8) + (UV1(t, x,8) — (t, x,s)) min {1, N(w, Br(x))}

{ i(t,x,s) if N(w,By(x)) > 1
Po(t,x,s) if N(w, B.(x)) = 0.

Then, (Hy), (Hi), (H2), (Hs), (Hy) and (Hs) are satisfied with ¢ = v,,.
For each w € ¥ and each £ > 0, let FY?(w) : H} — R given by (4.5) with f = fy, and 0
given by (2.9), i.e.,

FEv(w)(u) = By, (1) = J] ot («.%) (t,x,u(t,x),u(t,x))dt®dx+% L|u(T,x))\2dx

with fy given by (4.41) with ¢ = ¢,. Asin §4.2, set o := P([N(-, B,(0)) > 1]) = 1—e A5
and consider the integral functionals ¥y, Uy : H} — R given by:
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Uy (u) = O'J (1/)1 (t,x, u(t,m)) + Yy (t,a:, —M)) dt ® dx
10,7[xQ o o

2
+2 f wT, ) dx;
2 Q o

\bm):=(1—®LMVQ<%(LL%%%»4w£<u@—%%?>>ﬁ®dx

1—0’J u(T, )|
+
2 Ja

dx.
1—0 .
Let ¥,0W, : 'H(l) — R be the inf-convolution of ¥; and W, i.e.,

U0y (u) := inf {\Dl(ul) + Wo(uy) : up,ug € Hy and uy + uy = u}
The following result is a consequence of Theorems 4.3 and 4.4 and Corollary 4.5.

Theorem 4.6. Assume that (Ey), (E2), (E3), (E4) and (Es) are satisfied. Then, the following
four assertions hold.

(i) For P-a.e. we X one has

I-lim FYr(w) = U,00,.
(i) For P-a.e. we X and every ¢ > 0, let u(w,-,-) € H be the unique solution of (R¥).
Then

1
u(w, -, ) Ao,
where u € HY is the unique minimizer of W,0W,.
(iii) The function u minimizes V10W, if and only if there exist v,w € H such that
u=v+w with v and w satisfying the following differential system:

Ot t,x, v(t,x))_g(&ﬁ‘f G, x, ot ac)) =0 dt ® dz-a.e.in |0, T[x
(Su.) 0s o ot \ 0s o
Yo/ ) Oy f w(t,a:)) g<&w;‘(t . w(t, z)

0s U T g ) T o\ 03 e

subjected to the time-boundary conditions:

): 0 dt ® dx-a.e.in |0, T[x

T o} (T
u(T, ) _U(% (T’%_M =0 dzx-a.e. in
o 0s o
w(T, ) o w(T, z) :
68 N _ J— = “Ww.C.
(0Sy,) < T (1-0) Ep T, x, - 0 dz-a.e. in
v(0,-) =0
w(0,-) =0,

where ¥ (resp. 15 ) denotes the Legendre-Fenchel conjugate of 1y (resp. o) with
respect to the third variable.



CONTINUITY THEOREM FOR NON-LOCAL FUNCTIONALS INDEXED BY YOUNG MEASURES 37

(iv) The function u minimizes W,0Wy if and only if there exist uy,uy € H such that
u = ouy; + (1 — o)uy with uy and uy being the unique solutions of the following
integro-differential equations:

duy . oYy U1(T7 x) r‘Tal/}l Py .
o (t,z)= s G,x, - —I—Jt 2 \T T (1,2, u1 (7, 2)) )dT| dt ® dz-a.e. in |0, T[xQ
ul(()? ) =0

Quz _5% uy(T', ) (10y, b
o (b¥)=7; (t‘"” =0 ), 25 "% s
UQ(O, ) = 0.

(1,2, us(T, x)))dT) dt ® dz-a.e.in |0, T[x

Proof of Theorem 4.6. We only need to prove (iv). For this, it suffices to show that
(v,w) € Hj x H} satisfies the differential system (Sy, )-(0Sy, ) if and only (ug, ug) = (%, %) €
H{ x H) satisfies the integro-differential equations above. First of all, by integrating over
|t,T'[ the first equation in (S, ), we see that

Y (t,x, —i’(t’gj)) _ (T,x, —M> + f % <T,x, ol x)> dr.  (4.42)

0s o 0s o 0s o

But 6(;11_8_;*(1571,7 ) = (%)71 (t,z,-) (see [ABM14, Theorem 9.5.1]), where (%)71 denotes the

inverse of the subdifferential of 11 with respect to s, and so from (4.42) we deduce that

1 Ov _ awl 37/)* U(Ta ZL‘) g 5¢1 5%01 U(Ta I)
—;a(t,x) = <t,x, &él (T,x,— . ) +£ A (t,xg <7’,x, . >) dT) :

Moreover, according to the first equation in (0Sy, ), one has

o(T,x)  O0Yf (T,ZL‘, o(T, x)) .

g

o2 0$

It follows that

1 dv - 5% U(T7 Q?) JT 3% 5% U(Ta .’L’)
Uat(t,x)— s (t,:v, o s t,:lras T dr | .

for dt @ dr-a.e. (t,z) €]0,T[x, and setting u; = 2 we obtain the first integro-differential

equation. In the same manner, by using the second equations in (Sy, ) and (0Sy,) and by
setting u; = %=, we obtain the second integro-differential equation.

Conversely, setting v = ou; and w = (1 — o)ug, by derivating each integro-differential
equation with respect to the time variable (resp. by letting ¢ = T in each integro-differential

equation), we obtain (Sy ) (resp. (0Sy,)). B

APPENDIX A. YOUNG MEASURES

Let (V,d) be a polish space, i.e., (V,d) is a separable and complete metric space, let k > 1
be an integer and let O < R* be a bounded domain. Let Y(O;V) be the class of Young
measures on @ x V and let Cth’(O; V) be the space of all bounded Carathéodory integrands
on O x V.
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Definition A.1 (narrow convergence). Let {u.}. < Y(O;V) and let p € Y(O;V). We say
that {y.}. narrow converges to p as ¢ — 0, and we write p, — p, if

lim U(y, &)dps(y, &) = W(y, )du(y,&)  for all ¥ € Cth*(O; V).
OoxVy OxY

Definition A.2 (tightness). We say that {u.}. < Y(O;V) is tight if for every n > 0, there
exists a compact set K < V such that sup . (O x (W\K)) < 7.
e>0

A proof of the following compactness result can be found in [Val90, Theorem 11] (see also
[Val94, Theorem 7 and Comments 1), 2) and 3)]).

Theorem A.3 (Prokhorov’s compactness theorem). If {u.} < Y(O;V) is tight then there
exists € Y(O; V) such that, up to a subsequence, jio — fi.

For a proof of the following theorem we also refer to [Val90, Val94].

Theorem A.4 (lower semicontinuity, continuity). Let ¢ : O xV — [0, 0] be a B(O) x B(V)-
measurable function such that ¥(-,y) is lower semicontinuous for all y € O and let ¥ :
Y(O;V) — [0, 0] be defined by

W(p) = V(y, §)du(y, ).

OxVy
(i) The functional ¥ is lower semicontinuous, i.e., for every {u-}. = Y(O;V) and every
e Y(O;V), if pe = p then

lim W(p.) = W(p).

e—0

(i) If ¥(-,y) is continuous for all y € O then for every {uc}. < Y(O;V) and every
pe Y(O;V) such that p. — p and

Jim (s ol Olan(06)) —0

g W 1) = V().

Let (W, d) be a polish space. A proof of the following theorem can be found in [Tor77] (see
also [ABM14, Theorem 4.2.4]).

one has

Theorem A.5 (desintegration). Let y be a Borel measure onV x W and let v := W?,u where
my VY x W — V denotes the canonical projection from V x W to V. Then, there exists a
unique (up to the equality a.e.) family {{ic}eer of probability measures on W such that for
every ¢ € L, (V x W), one has:

(i) the function & — f Y(&, C)due(C) is v-measurable;
w

i) [ pteone ) = [ ([ vl 0dnc)) avte

The family {ue}eerv of probability measures on W is called the desintegration of j1 on the
product V x W. To summarize it, we write i = v & [lg.
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APPENDIX B. INF-CONVOLUTION AND PARALLEL SUM
Let E be a linear space.

Definition B.1 (inf-convolution). Let G, H : E —] — o0, ®]. By the inf-convolution of G
and H we mean the function GOH : E — [—o0, 00| defined by

GOH(u) := inf {G(ul) + H(uz) : uy,us € E and uy + ugy = u}

A proof of the following proposition can be found in [ABM14, Proposition 9.2.2].
Proposition B.2. Let G,H : E —]| — o0, ©]. If G and H are convex then GOH is convet.
In what follows, F is a Banach space and E’ is its dual.

Definition B.3 (parallel sum). Let I'; A : E==F’ be two multifunctions. By the parallel
sum of I" and A we mean the multifunction I' / A : E==F’ defined by

I')Au) := {v € E': 3(u1,uz) € E x E such that u = uy + uy and v € I'(ug) N A(uQ)}.

For a proof of the following theorem, we refer to [Str94, Theorem 3.7] (see also [Str96)).

Theorem B.4. Assume that E is reflexive, G : E —] — 00, 0] is convez, proper and lower
semicontinuous and H : E —] — 00, 00[ is conver and Gateauz differentiable. Then GOH is

Gateauz differentiable and D(GOH) = 0G ) DH.
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