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Strategies for Coexistence in Molecular
Communication

Malcolm Egan, Valeria Loscri, Trung Q. Duong and Marco Di Renzo

Abstract—Some of the most ambitious applications of molec-
ular communications are expected to lie in nanomedicine and
advanced manufacturing. In these domains, the molecular com-
munication system is surrounded by a range of biochemical
processes, some of which may be sensitive to chemical species
used for communication. Under these conditions, the biological
system and the molecular communication system impact each
other. As such, the problem of coexistence arises, where both
the reliability of the molecular communication system and the
function of the biological system must be ensured. In this paper,
we study this problem with a focus on interactions with biological
systems equipped with chemosensing mechanisms, which arises
in a large class of biological systems. We motivate the problem by
considering chemosensing mechanisms arising in bacteria chemo-
taxis, a ubiquitous and well-understood class of biological sys-
tems. We then propose strategies for a molecular communication
system to minimize disruption of biological system equipped with
a chemosensing mechanism. This is achieved by exploiting tools
from the theory of chemical reaction networks. To investigate the
capabilities of our strategies, we obtain fundamental information
theoretic limits by establishing a new connection with the problem
of covert communications.

Index Terms—Molecular Communications, Coexistence,
Chemical Reaction Networks, Covert Communications

I. INTRODUCTION

Molecular communication is well known to play an im-
portant role in a range of biological systems, ranging from
bacteria colonies [1] to the development of the embryos of
the fruit fly Drosphila melanogaster [2], and also in cell-cell
communication in humans. Following the seminal paper of
Hiyama et al. [3], the last decade has seen the proposal and
initial development of artificial molecular communications.
Motivated in large part by the possibility of coordinating
nanoscale networks in domains including nanomedicine [4],
[5] and high efficiency manufacturing, artificial molecular
communication aims to develop mechanisms to transfer in-
formation via the propagation of molecules. One version of
this vision has been called the internet of nanobio things [6],
which follows the ideas underlying the internet of things into
the nanoscale regime.

The vision of nanoscale networking and the internet of
nanobio things remains riddled with many challenges. One
fundamental issue is how molecules should propagate from
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a transmitter to a receiver. Diffusion-based propagation, flow
assisted propagation, active transport and bacterial assisted
propagation have all been considered [7]. Recent surveys of
these approaches, their models and challenges are available in
[8], [9].

Based on these channel models, there have also been
many studies of receiver structures from a communication
point of view; e.g., algorithms for detection of transmitted
symbols [10]–[13]. On the transmitter side, coding strategies
accounting for strict energy and complexity constraints have
been introduced in [14]. Intersymbol interference reduction
strategies have been proposed in [15] and synchronization in
[16]. Simulation tools have also been developed in [17], [18].

Despite the progress designing communication strategies,
the large majority of existing work has focused on the case
of an isolated molecular communication system. That is, the
molecular communication system is the only biochemical
system in the environment. As a consequence, little is known
about how a molecular communication system interacts with
its environment.

Exceptions examining interactions between a molecular
communication system and external biochemical systems have
focused on the problem of drug delivery. That is, how an
external biological system degrades the quality of the commu-
nication channel. For example, in [19] the impact of immune
responses on the reliability of drug delivery was studied. A
recent survey of drug delivery methods based on molecular
communication is available in [20].

In this paper, we adopt an alternative perspective where our
focus is instead on the impact of molecular communications
on the function of a nearby biochemical system. As biological
systems are governed by complex networks of chemical reac-
tions or other biochemical processes, it may be unavoidable
that chemical species used to transfer information interact
with the biological system. This situation is particularly likely
when—as has been widely proposed [21]—the molecular
communication system adopts a bio-inspired approach. For
example, a Ca2+-based mechanism may alter balances of
electrostatic forces and interfere with the structure of the lipid
bi-layer, compromising the membrane of a cell [22]. As such,
it is critical to understand the impact of the molecular com-
munication system on the function of the biological system.

In our earlier work on coexistence in molecular communi-
cations [23], we introduced tools from the theory of chemical
reaction networks to understand how molecular communica-
tion systems impact the dynamics of chemical systems. In
particular, we established how steady states of a class of simple
chemical systems are perturbed by the presence of information
molecules.
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In this paper, we apply chemical reaction networks to
study how a molecular communication link impacts more
realistic models of biological systems. Here, we consider bi-
ological systems that exploit chemosensing mechanisms [24].
Chemosensing provides a means for a cell to observe the
presence of chemical species in its environment and adjust
internal parameters based on observed concentrations. As
such, chemosensing is exploited in a wide range of biological
systems.

A well-studied setting of chemosensing arises in the bacteria
Escherichia coli, which is used for chemotaxis [25]. This
mechanism provides a means for each bacterium to move or
“tumble” towards attractants such as glucose or away from
repellants such as phenol. The first part of this paper describes
this mechanism and known features of its underlying chemical
kinetics. We then provide a general model of chemosensing
systems that we later use to understand the impact of the
presence of molecular communications.

Having established a concrete model of a biological
chemosensing system, we discuss general strategies for how
a molecular communication system can coexist with bio-
logical systems. The challenge is to minimize the impact
of information molecules (or other chemical species aiding
communication) on the concentration of chemical species
governing biological processes. Our strategies are based on
a new analogy with cognitive radio developed in the context
of wireless communications [26].

One such strategy is the underlay strategy, where the molec-
ular communication system chooses a transmission strategy to
ensure that changes to the concentration of chemical species
inside a biological system do not exceed a given level. To
characterize fundamental limits of the underlay strategy, we
establishing a novel connection to the problem of covert
communications [27].

A. Overview of Contributions
The main goal of this paper is to establish a framework

to model molecular communications in the presence of an
external biological system, in which both systems coexist. In
this work, we account for the fact that most interactions be-
tween the molecular communication system and the biological
system will be through a chemosensing mechanism.

Our main contributions are summarized as follows:
1) We formalize chemosensing mechanisms in biological

systems and their interaction with a molecular communi-
cation system. This formalization is based on the theory
of chemical reaction networks, which provides methods
to establish stability of the biological system and hence
conditions under which biological function is preserved.
Unlike earlier work on coexistence between molecular
communication systems and external biological systems
[23], this work accounts for a wider range of biological
systems and utilizes a more realistic model.

2) We propose the framework of cognitive molecular com-
munications, which provides a basis to design systems
that do not disrupt the function of nearby biological
systems. Our framework is based on an analogy with

cognitive radio and we discuss different means of im-
plementing the underlying ideas within the context of
molecular communications.

3) We study the underlay strategy in detail and show that
it leads to a problem closely related to covert commu-
nications or communications with a low probability of
detection. Under certain conditions on the behavior of
the biological system, we show that known fundamental
limits for the covert communications problem can be
directly applied. As such, we obtain scaling laws for the
number of messages that can be sent as the number of
channel uses tends to infinity. In particular, the square-
root law holds, which implies that the number of bits of
information scales with the square-root of the number
of channel uses.

B. Organization of the Paper
In Section II, we overview chemosensing in biological

systems and how they can be modeled via chemical reac-
tion networks. In Section III, we develop our framework of
cognitive molecular communications. In Section IV, we study
the underlay strategy and establish a new connection with
the problem of covert communications. In Section V, we
numerically study the concentration trajectories in our model
and the behavior of the scaling law obtained in Section IV.
In Section VI, we discuss limitations of the models and
the impact of the structure of the chemosensing mechanism.
Finally, in Section VII we conclude and outline avenues of
future work.

II. CHEMOSENSING IN BIOLOGICAL SYSTEMS

A. Motivating Example
On the surface of the membrane of a cell, proteins—held

in place by lipids—provide a means for the cell to interact
with its environment. These proteins bind with ligands in
the environment, which triggers a sequence of biochemical
processes whereby a chemical complex used for signaling is
produced. The signaling complex then forms the basis for
regulation of internal parameters of the cell.

Perhaps the most well-understood chemosensing mecha-
nism arises in bacteria chemotaxis [25], which is used by
bacteria including Escherichia coli to move through a fluid.
In particular, each bacterium is equipped with a rotary mo-
tor. The probability of clockwise motor rotation is governed
by a biochemical regulator system based on inputs from a
chemosensing mechanism. In the presence of no attractants
(e.g., glucose) or repellants (e.g., phenol), the bacterium fol-
lows a random walk. However, when attractants or repellants
are present, the movement of bacteria is biased towards or
away from the attractant or repellant, respectively.

The biochemical mechanism is described as follows [28].
Upon activation by ligand binding of attractants or repellants,
the ligand-occupied form of a given binding protein on the
surface of the membrane docks to a transmembrane receptor,
initiating a signaling event. This leads to up or down regulation
of a histidine kinase, which is a class of enzyme. The histidine
kinase provides a mechanism to transfer a phosphate group
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from ATP to an aspartate in the active site of a response regu-
lator protein, CheY. An aspartate is an amino acid of a protein
(i.e., CheY), and once the phosphate group is transfered to
the aspartate, it modifies the protein to its phosphorylated
form, phospho-CheY. At this point phospho-CheY diffuses
due to thermal fluctuations or a concentration gradient to the
rotary motor where it docks and increases the probability of
clockwise motor rotation.

A key feature of bacteria chemotaxis is that the steady
state level of phospho-CheY serves as a signal that controls
the rotor motion. It is modulated by two opposing reactions:
creation of phospho-CheY by the receptor-kinase complex;
and destruction of phospho-CheY by hydrolysis of its acyl
phosphate.

Due to the fact bacteria chemotaxis relies heavily on steady
state levels of certain chemical species, the function of the
biological system is tightly linked to their steady state con-
centrations. Therefore it is critical to understand the behavior
of steady state concentrations of chemical species arising in
biological chemosensing mechanisms. This is achieved by
exploting tools from the theory of chemical reaction networks,
which we recall in the following section.

B. Chemical Reaction Network Preliminaries
Chemical reaction networks are mathematical models gov-

erning the time evolution of chemical concentrations [29]. To
illustrate these concepts, we begin with the ubiquitous class of
enzyme-activated chemical reaction networks. These networks
consist of four chemical species: the enzyme E; the reactant
S; the complex ES; and the product P . The set of chemical
species in this example is then SE = {E,S,ES, P}. In this
system there are three reactions:

E + S
k1→ ES

ES
k−1→ E + S

ES
kcat→ E + P, (1)

where k1, k−1, kcat are called reaction rate coefficients and
control the rate of the chemical reactions.

A convenient way of representing each of these reactions is
as a map1 from NSE to NSE . For example, the first reaction
is written as (1, 1, 0, 0) → (0, 0, 1, 0). In this way, we can
define a set of reactions RE = {yi → y′i, i = 1, 2, 3}, where
yi ∈ NSE is the vector of reactants in reaction i and y′i ∈ NSE
is the vector of products.

The pair of chemical species and chemical reactions
(SE ,RE) is called a chemical reaction network. In order
to characterize this network, we also need to consider the
kinetics. Let [E](t), [S](t), [ES](t), [P ](t) denote the concen-
tration of each chemical species at time t. Under the standard
assumption of mass-action kinetics, the concentrations of each
species in the enzyme-activated system are governed by the
following system of ODEs

d[E](t)

dt
= −k1[E](t)[S](t) + k−1[ES](t) + kcat[ES](t)

1The notation NSE represents the set of functions from SE → N, which
map the chemical complexes in SE to multiplicities. For example, in the
reaction 2A+ C → B, the multiplicity of A is two.

d[S](t)

dt
= −k1[E](t)[S](t) + k−1[ES](t)

d[ES](t)

dt
= k1[E](t)[S](t)− k−1[ES](t)− kcat[ES](t)

d[P ](t)

dt
= kcat[ES](t), (2)

with initial conditions [E](0) = E0, [S](0) = S0, [ES](0) =
ES0, and [P ](0) = P0. The biochemical system can then be
written as the tuple (SE ,RE , kE), where kE : {1, 2, 3} →
{k1, k−1, kcat}.

We now consider general chemical reaction systems.

Definition 1. A chemical reaction system is the tuple (S,R, k)
consisting of a set of chemical species S, a set of reactions
R = {yi → y′i, i = 1, 2, . . .}, and the rate function k.

Let x(t) ∈ RS be the vector consisting of concentrations of
each chemical species at time t. Under mass-action kinetics,
the chemical reaction system is then governed by

ẋ(t) =
∑

y→y′∈R
ky→y′x(t)y(y′ − y), (3)

where x(t)y = x1(t)y1x2(t)y2 · · · .
A key property of chemical reaction networks is their steady

state concentration; that is the concentration of each species
when dx(t)

dt = 0. In the context of biological systems, the
steady state is often tightly linked to function. However, it is
important to note that these steady states are not guaranteed
to be unique nor even to exist. In fact, a long-standing
open problem in the theory of chemical reaction networks is
conditions under which the steady state exists and is unique,
known as the global attractor theorem [30].

In this paper, we only assume that there exists at least
one steady state of the chemical reaction network, which may
depend on initial conditions. As such, we denote the steady
state as Φx(0), where x(0) denotes the initial concentration
levels.

C. Chemosensing Chemical Reaction Network Models
Chemical reaction networks provide a basis to formalize

the behavior of biological systems exploiting chemosensing.
For our purposes, there are three classes of chemical species
involved: the species to which receptors are sensitive, denoted
by the set S; the species produced by the chemosensing
mechanism, denoted by the set C; and species produced by the
adaptation mechanism of interest for a particular biological
process, denoted by the set A. The behavior of such a
biological system is assumed to be governed by the ordinary
differential equations in (3).

To illustrate this model in the context of chemosensing,
consider the example of bacteria chemotaxis detailed in Sec-
tion II. The chemosensing-regulation system is called the
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EnvZ-OmpR system and is described by the following chem-
ical reactions.

X
k1[T ]

�
k−1

XT
k2→ Xp

Xp + Y
k3
�
k−3

XpY
k4→ X + Yp

XT + Yp
k5
�
k−5

XTYp
k6→ XT + Y, (4)

where X is the sensor kinase, Xp is its phosphorylated
form, Y is the response regulator CheY, and Yp is phospho-
CheY. Therefore, using the notation defined above, C =
{X,Xp, XT} and A = {Y, Yp, XTYp}. The species T is
linked to levels of ATP in the bacterium. Although not
explicitly stated in the system (4), the concentration of X is
determined by the concentration of species in S to which the
receptors are sensitive.

As noted earlier, the steady state concentrations are closely
linked to function and in the context of chemotaxis, determine
the rate that the rotor turns. To this end, denote the vector
of concentrations at time t by x(t) ∈ RC∪A+ , which can
be obtained by solving the system of ordinary differential
equations induced by the reactions in (4). The EnvZ-OmpR
system then admits a steady state concentration vector Φx(0),
which depends on the initial conditions x(0) [31]. These initial
conditions are determined by the quantity of attractants or
repellants in the environment. That is, in order to understand
the behavior of each bacterium, it is necessary to characterize
the impact of the environment.

More generally, we are concerned with the impact of the
environment on the chemosensing mechanism of a biological
system. As observed in the bacteria chemotaxis example, the
function of a biological system is determined by a small
number of chemical species. In particular, the key species
in bacteria chemotaxis is phospho-CheY, which controls the
rate of the rotor. For general chemosensing mechanisms, we
are therefore interested in how the concentration of species
in the set S affects the steady state behavior of these key
chemical species in A via the chemosensing species in the set
C. The fundamental question is then: how do we ensure that
chemical species in the molecular communication system do
not significantly disturb the steady state behavior of the key
species via the chemosensing mechanism? Put simply, how
can the molecular communication system and the biological
system coexist?

III. GENERAL STRATEGIES FOR COEXISTENCE

In this section, we propose three strategies to minimize
the impact of molecular communication systems on biological
systems, where interactions are mediated via a chemosensing
mechanism. The three strategies differ in their impact, com-
plexity and level of cooperation between the communication
and biological systems. Each strategy is developed by analogy
with a problem in wireless communication systems, known as
cognitive radio [26]. For this reason, we call our framework
cognitive molecular communications.

To begin, we briefly review the key ideas behind cognitive
radio. In cognitive radio, there are primary and secondary

wireless communication networks. The primary network has
priority and the goal is to design the secondary network’s
access protocol to ensure that the reliability of the primary
network is not degraded. Cognitive radio strategies are known
as [32]: underlay, where the secondary network transmits
independently of the primary network under an interference
constraint; overlay, where the primary and secondary networks
cooperate by sharing their transmission strategy to remove
interference; and interweaving, where the secondary network
senses the activity of the primary network and only transmits
when the primary network is not active.

In cognitive radio there are a number of technical difficulties
due to the nature of electromagnetic propagation in wireless
communications. However, for our purposes only the basic
principles are important. In particular, we seek to exploit a
new analogy between the primary wireless network and the
biological system, as well as the secondary wireless network
and the molecular communication system.

While the molecular communication system and the bio-
chemical system exchange mass due to reactions between
chemical species in each system, they also exchange infor-
mation, either through dedicated reaction pathways or indi-
rectly through observations made locally in the molecular
communication system. The basis for the analogy is that a
similar situation occurs in cognitive radio, except instead of the
exchange of matter, the interaction is through electromagnetic
interference.

The first strategy is underlay, where cooperation is not
possible but the molecular communication system has knowl-
edge of its impact on the biochemical system. The impact
of the molecular communication system is determined by
any changes to the kinetics of the biochemical system. More
precisely, this impact can be formalized as changes to initial
conditions or parameters of the differential equations describ-
ing the kinetics of the biochemical system. The underlay
strategy is necessary when the information molecules used
for the molecular communication link either overlap or react
with the species in the biochemical system. In the case
where the biochemical system is complex—i.e., containing
a very large number of species—this situation is likely to
occur and therefore it is important to design the molecular
communication link to ensure the concentration of species in
the biochemical system are not significantly perturbed.

In the context of biological systems exploiting chemosens-
ing, the underlay strategy requires that the molecular com-
munication systems does not introduce chemical species that
result in large changes to the steady state of key chemical
species in the biological system. An advantage of this approach
is that it does not require high complexity sensing or cooper-
ation mechanisms at the cost of knowledge of the behavior of
the biological system.

The second strategy is overlay. In the context of cognitive
radio, the overlay strategy is applicable when the secondary
transmitting device has knowledge of the codebook and mes-
sages of transmissions in the primary network. That is, a high
level of side information is available to the secondary network.
The analogous setting in molecular communications is when
the molecular communication link and the biochemical system
are jointly designed.
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Overlay communication can be viewed as a cooperative
transmission strategy present in biological systems such as
bacteria colonies. In Vibrio fischeri or Vibrio herveyi, for
example, a dedicated communication link is established be-
tween bacteria, which is supported by the production of
autoinducer molecules during the DNA transcription process
[1]. By encoding molecular communication messages in this
way, communication is intimately linked to the function of
each bacterium. Crucially, communication does not reduce the
ability of the bacteria to find nutrient sources or reproduce as
could be the case if the underlay stategy was employed.

The third strategy is interweaving. In cognitive radio, this
strategy ensures that the secondary network does not interfere
with the primary network by detecting spectrum holes. That
is, no side information assumptions are required at the cost
of additional signal processing to detect whether there is a
primary network transmission on a given band at a given time.

In molecular communications, the analogous situation is
when the information molecules either does not react with
any species in the biochemical system or, more generally, the
steady state concentrations are unaffected by any interactions.
In this case the molecular communication link can be viewed
as an isolated chemical system, able to coexist with the
biochemical system. This is an assumption widely used in
existing communication and information theoretic studies, e.g.,
[33]. Nevertheless, it may be challenging to implement unless
the kinetics of the biochemical system are sufficiently slow.
Conditions where the interweaving strategy can be applied
were obtained in our earlier work in [23].

We remark that an implementation of the interweaving
approach would require a sensing strategy to detect which
chemical species interact with the biological system. This is
likely to be more challenging than in common cognitive radio
models due to the fact that the behavior of the biological
system is governed by differential equations.

Each of the three cognitive communication strategies have
advantages and drawbacks. At present, developing systematic
methods to select the appropriate approach remains an open
problem. In order to address this challenge, a formalization is
required. To begin a study of these strategies, in the following
section we focus on the underlay approach by exploiting the
chemical reaction network models introduced in Section II.

IV. THE UNDERLAY APPROACH

A. System Model
A key question in order to implement underlay methods is

how to characterize the impact of a molecular communication
system on a biological system exploiting chemosensing. Based
on the discussion in Section II, we model the biological
system via the chemical reaction network (S ∪ C ∪ A,R, k),
defined in Section II-C. Motivated by the bacteria chemotaxis
model, we assume that the chemical reaction network admits
a steady state for initial conditions w(0). Moreover, only one
key species directly impacts the function of the chemotaxis
model; namely, phospho-CheY. We denote the steady state
concentration of this key species by Φw(0).

In the example of bacteria chemotaxis, there are ligands
in the environment that bind with receptor proteins, initiating

a response by the chemosensing mechanism. At each time
interval t, we model the initial concentrations of the environ-
mental ligands as random variables. This implies that the initial
concentrations observed by the chemosensing mechanism form
a discrete random vector, which we denote by W(0) with
elements supported on [0,Wmax] and distribution PW(0).

We assume that the biological system reaches its steady state
ΦW(0), or equilibriates, within a time period T . Moreover,
after a further time period T ′, the concentration of all species
in C ∪ A return to fixed values, independent of W(0). These
assumptions provide a basis to characterize fundamental limits
of the system, and we will return to their validity in Section VI.

We now introduce the molecular communication system,
which transmits information by modulating the number of
molecules that are emitted, known as concentration shift
keying (CSK). We assume that the communication system is
time-slotted with the transmission each symbol separated by a
time exceeding T + T ′; that is, the system operates with time
slots of duration greater than T + T ′.

The molecular communication system seeks to transmit a
message m ∈ M = {1, 2, . . . ,M} over n time slots. To do
this, the system is equipped with an encoder E : M → Xn,
where X is a finite set corresponding to the set of symbols.
Each symbol is the number of information molecules emitted
by the molecular communication system. The chemical species
corresponding to each information molecule is assumed to be a
single species in S. Moreover, the set X is assumed to contain
an innocent symbol, denoted by x0, corresponding to the case
where the transmitter does not send any molecules.

At time slot i, we model the channel between the transmitter
and the receiver by the transition probability PYi|Xi

, Xi is the
number of molecules emitted in time slot i and Yi is the num-
ber of information molecules observed at the receiver, with
a quantity lying in the finite set Y . In general, the transition
probability PYi|Xi

may depend on i due to the presence of
inter-symbol interference. In this work, we assume that this is
not the case (i.e., all information molecules are absorbed by the
end of the time slot). As such, the channel is memoryless and
determined by the transition probability PY |X , independent of
the time slot. As a consequence, communication occurs over
the discrete memoryless channel (X , PY |X ,Y).

The receiver in the molecular communication system is
equipped with a decoder D : Yn → M. After observations
from n time slots, the decoder forms an estimate of transmitter
message m ∈ M, denoted by m̂ ∈ M. For codewords of
length n, the decoder has an average probability of error given
by

P (n)
err =

1

M
Pr(m̂ 6= m|m sent). (5)

Some information molecules are also observed by the bio-
logical system. Since the information molecule species lies
in the set S, these molecules interact with the biological
system’s chemosensing mechanism. The quantity of molecules
in the set S, denoted by Zi with values in the discrete
set Z , observed by the biological system in time slot i is
assumed to be governed by the transition probability PZi|Xi

.
As the biological system is sensitive to all molecules in S,
it follows that Zi is determined not only by Xi but also by
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the distribution of the other molecules in S. We assume that
the distribution of molecules in S that are not information
molecules is fixed. As a consequence, the channel between
the transmitter and the biological system is also a discrete
memoryless channel, with a transition probability denoted by
PZ|X . We denote this channel by (X , PZ|X ,Z).

We also note that in each time slot i, the quantity of
molecules that bind with receptors, Zi, form an element of the
concentation vector W(0). Moreover, since all other chemical
species are assumed to have fixed initial concentrations, the
steady state of the biological system only depends on Zi. As
such, in the following we denote the steady state concentration
in time slot i by Φ(Zi). We also introduce the notation
Φ(Z) = [Φ(Z1), . . . ,Φ(Zn)]T for the vector of steady state
concentrations of the key chemical species determining biolog-
ical function; e.g., phospho-CheY in the bacteria chemotaxis
model.

B. Communication Constraints
Our goal is to design a transmission strategy such that the

molecular communication system is reliable and the function
of the biological system is not disrupted; that is, the two
systems coexist. The reliability requirement is modeled by
requiring

lim
n→∞

P (n)
err = 0. (6)

Due to the importance of steady state concentrations on
biological function, we formalize the coexistence constraint
as follows. Recall that Φ(Zi) is the steady state concentration
of the key chemical species determining the function of the
biological system and Zi is the quantity of molecules observed
by the chemosensing system in time slot i. A natural approach
is therefore to ensure that for some δ > 0,

|EPZi
[Φ(Zi)]− EPZi|Xi=x0

[Φ(Zi)]| < δ, i = 1, 2, . . . , n,

(7)

where PZi
is the distribution of the quantity of molecules that

bind with receptors within time slot i. Similarly, the distribu-
tion PZi|Xi=x0

corresponds to the the quantity of molecules
that bind with receptors when there is no communication. Ob-
serve that the coexistence constraint requires that the expected
steady state concentration within the biological system with
communication must not differ significantly from the expected
steady state concentration without communication.

Working directly with the constraint in (7) is presently not
tractable and therefore it is necessary to consider bounds. Let
Zmax = max{Φ(z) : z ∈ Z} and define the n-dimensional
vector x01 = [x0, . . . , x0]T . Then,

|EPZi
[Φ(Zi)]− EPZi|Xi=x0

[Φ(Zi)]|
≤ Zmax‖PZi

− PZi|Xi=x0
‖1

≤ Zmax

√
2D(PZi

||PZi|Xi=x0
)

≤ Zmax

√
2D(PZ||PZ|X=x01), (8)

where D(·||·) is the Kullback-Leibler divergence and the
bounds follow from Pinsker’s inequality and the chain rule for

Kullback-Leibler divergence [34]. An appropriate coexistence
constraint is therefore that

lim
n→∞

D(PZ||PZ|X=x01) = 0. (9)

A key insight is that the constraint in (9) bears a strong
similarity to the problem of covert communications or com-
munication with a low probability of detection [27]. Next,
we formalize and exploit this non-trivial connection to obtain
fundamental limits on the rate of reliable molecular commu-
nication which can coexist with a biological system.

C. Connections with Covert Communications
The covert communication problem involves two legitimate

users who attempt to transmit over a discrete memoryless
channel (X , PY |X ,Y) without being detected by a warden,
who observes the signals through another discrete memoryless
channel (X , PZ|X ,Z). The key assumptions in this problem
are [35]:
• There exists an innocent symbol x0 ∈ X , corresponding

to the input of the channel when no communication takes
place. The distributions on the outputs of the two channels
in this case are

P0 = PY |X=x0
, Q0 = PZ|X=x0

. (10)

• There exists another symbol x1 ∈ X with x1 6= x0,
inducing output distributions

P1 = PY |X=x1
, Q1 = PZ|X=x1

. (11)

Note that it is possible to also consider input alphabets
containing more than two symbols [35]; however, for the
purposes of establishing a connection between the covert
communication and overlay molecular communication
problems it is sufficient to only consider the two symbol
case.

• Q1 � Q0 and Q1 6= Q0, which2 excludes the situations
where either the warden would always detect a transmis-
sion with non-vanishing probability or would never detect
it.

• P1 � P0, which guarantees that the receiver does not
have an unfair advantage over the warden.

In the problem of covert communications, the transmitter
aims to transmit a message W uniformly distributed on [1,M ]
by econding it into a codeword X = (X1, . . . , Xn) of n
symbols with the help of a secret key S uniformly distributed
on [1,K]. In particular, at the beginning of a block of n
channel uses, the transmitter sets a switch T :
• if T = 1, the input is connected to the channel;
• otherwise the innocent symbol x0 is sent n times.
Upon observing a noisy version Y = (Y1, . . . , Yn) of X and

knowing S, the objective is for the receiver to form reliable
estimates T̂ and Ŵ of T and W . For a codeword of length
n, the error is defined as

P (n)
err = ES [Pr(W 6= Ŵ |S, T = 1)] + Pr(T̂ 6= 0|T = 0).

(12)

2Let Q,P be two probability measures. Then, Q � P denotes that Q is
absolutely continuous with respect to P .
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The goal in covert communications is then to establish scalings
of logM and logK with n for which

lim
n→∞

P (n)
err = 0 (13)

and

lim
n→∞

D(Q̂n||Q⊗n0 ) = 0, (14)

where Q⊗n0 =
∏n
i=1Q0.

It is now straightforward to identify an equivalence between
the covert communication problem and our formalization of
the overlay molecular communication strategy. First observe
that, for all n,

D(Q̂n||Q⊗n0 ) = D(PZ||PZ|X=x01), (15)

where Z = [Z1, . . . , Zn]T . Moreover, the probability of error
in (13) is precisely the probability of error in (5) under the
switching communication strategy.

In both the overlay molecular communication and the covert
communications problems, the channels between the transmit-
ter and intended receiver as well as the transmitter and the
biological system or warden are discrete and memoryless. As
such, the formal descriptions of both communication problems
are equivalent.

D. On the Secret Key
Although under the switching communication strategy, there

is an equivalence between the two problems, a natural question
is the role of the secret key in molecular communications. Due
to the fact that the biological system is a passive observer, does
the secret key still play such an important role?

The answer to this question is that to guarantee the diver-
gence constraint, a secret key is required for the switching
strategy, independent of chemical species observed directly
or indirectly by the biological system. However, due to the
fact that the biological system is not actively attempting to
gain knowledge of the secret key—as in the case of covert
communications—the problem of constructing it is much
simpler. For example, it may be obtained by observing the
concentration of a chemical species observable by both the
transmitter and the receiver that does not interact with the
chemosensing mechanism used by the biological system.

E. Fundamental Limits of the Underlay Strategy
By the equivalence of the molecular communication prob-

lem with underlay and covert communication, any fundamental
limit obtained for either problem holds for the other. In
particular, the following theorem holds.

Theorem 1. Consider a molecular communication system
using the underlay strategy with X = {x0, x1} where x0 is the
innocent symbol corresponding to no transmission. Further,
assume that

PY |X=x1
� PY |X=x0

, PZ|X=x1
� PZ|X=x0

,

PZ|X=x1
6= PZ|X=x0

(16)

and denote the chi-square distance by χ2(·||·). Then for any
ξ ∈ (0, 1), there exists a communication strategy such that

lim
n→∞

D(PZ||PZ|X=x01) = 0, lim
n→∞

Perr = 0,

lim
n→∞

logM√
nD(PZ||PZ|X=x01)

= (1− ξ)
√

2

χ2(PZ|X=x1
||PZ|X=x0

)
D(PY |X=x1

||PY |X=x0
),

lim
n→∞

logK√
nD(PZ||PZ|X=x01)

=

√
2

χ2(PZ|X=x1
||PZ|X=x0

)

[
(1 + ξ)D(PZ|X=x1

||PZ|X=x0
)

− (1− ξ)D(PY |X=x1
||PY |X=x0

)
]+
. (17)

Proof. Apply the equivalence between the overlay molecular
communication and covert communications problems in Sec-
tion IV-C, then use [35, Corollary 2].

Observe that the rate obeys the square-root scaling law,
which implies that for a secret key scaling with

√
n the number

of messages that can be reliably sent satisfying the constraint
in (7) also scales with

√
n. We investigate the impact of model

parameters on the scaling law in the following section.

V. NUMERICAL RESULTS

In this section, we provide numerical results to illustrate
features of our model. In particular, we demonstrate the key
differences between the model introduced in this paper and
our earlier model studied in [23]. We also study the behavior
of the scaling law in Theorem 1 to gain further insights into
fundamental limits of communication in the proposed model.

A. Illustration of the Model
In our earlier work in [23], we studied conditions under

which the steady-state concentrations of chemical species are
not perturbed by an external molecular communication system.
These conditions were on the type of chemical species used for
communication. To illustrate this setup, consider the following
example in Section IV-C in [23].

Suppose that the chemical reaction system (SB ,RB , kB)
models a biological system where SB = {X1, X2, X3} and
RB consists of the reactions

X1 +X3
k1→ 2X2

2X2
k2→ X1 +X3

Further, suppose that the effect of the molecular communica-
tion link that emits an information molecule I is to introduce
the additional reactions

X1 + I
k3→ X4

X4
k4→ X1 + I

I
kI→ ∅. (18)

The last reaction models the absorption of information
molecules by the receiver.
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As a consequence of [23, Theorem 1], the steady-state
concentration levels of the biological system do not change.
This is illustrated in Fig. 1, which plots the time evolution
for the concentration of X1 in the presence and absence of
information molecules. Note that the quantity of emitted in-
formation molecules does not matter as long as all information
molecules are absorbed as the time t→∞.
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Fig. 1. Plot of the time evolution for the concentration of species X1 in
(18). The parameters are: k1 = 1, k2 = 1, k3 = 1, k4 = 1, k5 = 0.1,
[X1](0) = 1 M , [X2](0) = 2 M , [X3](0) = 3 M , [X4](0) = 0 M , and
[I](0) = 0.05 M .

In this present work, we study the more general scenario
detailed in Section II-C, where the quantity of emitted infor-
mation molecules can change the steady-state concentrations
of molecules within the biological system. This occurs due to
the presence of a chemosensing mechanism and is illustrated
in Fig. 2.

In particular, Fig. 2 shows the behavior of a biological
system modeled by the reaction network with mass-action
kinetics

A+B
α→ 2B

B
β→ A, (19)

which corresponds to a simplified model of the system in
(4) introduced in [31]. In particular, B corresponds to the
inactive form of a protein which is affected by the presence
of information molecules and A is the active form. The active
form A is assumed to directly impact the function of the
biological system.

Fig. 2 shows the impact of changing the initial concentration
of the species B. Observe that unlike the model illustrated
in Fig. 1, the steady-state concentrations are affected by the
molecular communication system. This motivates the need for
communication strategies that limit the perturbation of the
steady-state, as obtained in Theorem 1.

B. Behavior of the Scaling Law
We now turn to a numerical study of the scaling law in

Theorem 1. In particular, we seek to understand how model
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Fig. 2. Plot of the time evolution for the concentration of species A in (19).
The parameters are [A](0) = 0.1 M , α = 0.5 and β = 0.2.

parameters affect the term

T (PZ|X , PY |X)

=

√
2

χ2(PZ|X=x1
||PZ|X=x0

)
D(PY |X=x1

||PY |X=x0
). (20)

Suppose that the number of molecules observed by the
receiver, Y , and the biological system, Z, in the absence of a
transmission is Y ∼ Pois(λY0) and Z ∼ Pois(λZ0), respec-
tively. Note that the random variable Z can be interpreted as
the number of molecules observed by the biological system in
its natural environment.

During a transmission, the communication system emits
either 0 or L molecules. A transmitted molecule reaches the
receiver with probability pC . Molecules that are not absorbed
by the receiver are assumed to be observed by the biolog-
ical system. These molecules in turn affect the steady state
concentrations of the biological system.

Fig. 3 plots the scaling law in (20) for varying success prob-
ability pC . Observe that for low pC , an increasing expected
number of environmental molecules observed by the biological
system has a limited impact. This is due to the fact that very
few molecules reach the receiver and hence it is difficult to
transmit information, irrespective of λZ .

On the other hand for large pC , the scaling law rapidly in-
creases when the expected number of environmental molecules
observed by the biological system increases. Intuitively, this
arises due to the fact that it is more difficult for the biological
system to discriminate between the case in which there are
information molecules present and the case when there are
not.

VI. DISCUSSION

A. Model Assumptions
Our analysis of the underlay strategy in Section IV relied

on two key assumptions:
1) The biological system reaches its steady state ΦW(0), or

equilibriates, within a time period T .
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Fig. 3. Plot of the scaling law in (20) for varying pC , the probability a
molecule reaches the receiver.

2) After a further time period T ′, the concentration of all
species in C ∪A return to a fixed value, independent of
W(0).

The main reason to introduce these assumptions was to obtain
memoryless channels for the receiver and the biological sys-
tem. The consequence of relaxing either assumption will be
to introduce memory into the model.

We believe that that the first assumption is reasonable
as long as transmissions of symbols by the transmitter are
separated sufficiently in time. On the other hand, the second
assumption is a property of the biological system and may not
be satisfied in every case.

Observe that if the second assumption is relaxed, the steady
state concentrations of chemical species in the biological
system (i.e., in C and A) will form new initial conditions for
the next symbol. As such, the channel will have a dependence
between outputs at different time periods. It is an interesting
avenue of future work to establish scaling laws for the com-
munication rate and the secret key in order for the constraint
in (7) to be satisfied.

B. On the Interweaving Strategy
An important feature of some biological systems, includ-

ing the EnvZ-OmpR system used in bacteria chemotaxis is
absolute robust adaptation. This is a fundamental property
arising from the structure of the chemical reaction network,
which means that once the initial concentration of species
in C produced by the chemoreceptor (X in the EnvZ-OmpR
system) reaches a given level, the steady state value of the key
chemical species Yp is independent of X . This means that the
response of bacteria is highly sensitive even to small quantities
of attractants or repellants.

We note that sufficient conditions for absolute concentration
robustness are known. These conditions depend on the graph
structure induced by the chemical reaction network. See [31]
for evidence the conditions are present in a range of biological
systems.

Clearly if a biological system has absolute concentration
robustness, then it is not sensitive to the presence of a
molecular communication system. Formally, this means that
PZ|X=x1

= PZ|X=x0
. In this case, the molecular commu-

nication system will never impact the biological system. As
such, the molecular communication link can operate at an
arbitrarily high rate without disrupting the function of the
biological system. The problem of identifying whether or
not a biological system has absolute concentration robustness
can be viewed within the framework of the interweaving
strategy developed in Section III. In particular, to apply the
interweaving strategy it is necessary to develop methods for
the molecular communication system to detect the presence of
absolute concentration robustness.

Another situation where the interweaving strategy is appli-
cable arises when the concentration of all chemical species is
not sensitive to the molecular communication system. Such a
scenario was identified in our earlier work in [23], where we
established conditions for all species in the biological system
preserve their steady state concentrations in the presence of
molecular communications. An interesting open issue is to
establish wider classes of biological systems for which the
interweaving strategy can be applied.

VII. CONCLUSIONS

At present, the vast majority of work on artificial nanoscale
molecular communication systems has focused on scenarios
where a coexisting biological system is not present. In contrast,
this paper has established a model of the interactions between
molecular communication systems and external biological sys-
tems via tools from chemical reaction networks. In particular,
we studied the setting where the biological system observes
its environment through a chemosensing mechanism.

In order to develop strategies for a molecular communi-
cation system to operate without disrupting the function of
the external biological system, we proposed three cognitive
molecular communication strategies. These strategies bear
strong analogies with those in cognitive radio in wireless
communication networks.

To explore the performance the applicability of the cog-
nitive molecular communication strategies, we focused on the
underlay strategy. For a model motivated by biological systems
exploting chemosensing, we established an equivalence with
the problem of covert communications. Through this equiva-
lence, scaling laws for the number of messages that could be
sent as the number of channel uses tended to infinity.

This work has provided initial models for the interactions
between molecular communication systems and external bio-
logical systems, as well as strategies to ensure the function
of the biological system is not disrupted. As such, there are a
number of future research directions.

The first direction is to explore other models for the kinetics
of chemical systems. One such approach is via the chemical
master equation, which models the concentrations of each
chemical species as a stochastic process rather than through
deterministic chemical reaction networks. It is known that
features such as absolute concentration robustness are not
guaranteed within these models, even when these features are
present in the underlying deterministic model. As such, it is
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likely that the impact of a molecular communication system
may be even more pronounced.

The second direction is to relax the assumptions detailed in
Section VI on the system model introduced to study the under-
lay strategy. This will require the development of information
theoretic techniques to cope with molecular communication
channels with memory and the divergence constraints.

The third direction is to explore the reliability of communi-
cation using the overlay and interweaving cognitive molecular
communication strategies. Although there is limited work
on interweaving [23] at present, only a simple model was
considered. More sophisticated models and fundamental limits
of communication remain open issues.
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