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1. Introduction and Motivation

The development of (probability) distributions that have the ability to extract es-
sential informations from lifetime data remains an important challenge for the statisti-
cians. Indeed, the classical lifetime distributions such as the exponential distribution,
the Rayleigh distribution, the linear failure rate distribution or the generalized expo-
nential distribution have some limitations. One of the common limitation of these
distributions is that they can not can have increasing, decreasing and bathtub shaped
hazard functions. This point is an obstacle for the perfect analysis of a wide variety of
lifetime data. A suitable alternative is proposed by the so-called generalized linear fail-
ure rate distribution introduced by Sarhan and Kundu (2009). It is a three-parameter
distribution characterized by the cumulative distribution function (cdf) given by

G(x) =
[
1− e−(λx+

θ
2
x2)
]α
, x ≥ 0, (1)

where (λ > 0 and θ ≥ 0) or (λ ≥ 0 and θ > 0) and α > 0. Here λ and θ denote the scale
parameters and α denotes the shape parameter of the distribution. The corresponding
probability density function (pdf) is given by

g(x) = α(λ+ θx)e−(λx+
θ
2
x2)
[
1− e−(λx+

θ
2
x2)
]α−1

. (2)

The corresponding hazard rate function (hrf) is given by

h(x) =
α(λ+ θx)e−(λx+

θ
2
x2)
[
1− e−(λx+ θ

2
x2)
]α−1

1−
[
1− e−(λx+ θ

2
x2)
]α . (3)

Let us mention that the generalized linear failure rate distribution contains several
known lifetime distributions. Indeed, when θ = 0 and α = 1, we obtain the exponen-
tial distribution with parameter λ, when λ = 0 and α = 1, we obtain the Rayleigh
distribution with parameter θ, when α = 1, we have the linear failure rate distribu-
tion with parameters λ and θ and when θ = 0, we obtain the generalized exponential
distribution with parameters λ and α.

On the other side, the last two decades of research in the field have been marked by
the development of new general methods for building meaningful distributions from a
baseline of an existing distribution. The most common approach is to use a so-called
generator of distributions derived to common distributions with well-known structural
properties. We refer to the extensive review of Tahir and Cordeiro (2016), and the
references therein. Using several kinds of generators, several extensions of the linear
failure rate distribution have been proposed (some of them extending the generalized
linear failure rate distribution by using a power parameter in their constructions). See,
for instance, Merovci and Elbatal (2015) used the Kumaraswamy generator, Elbatal
et al. (2014) used the McDonald generator, El-Damcese et al. (2016) used the OGE
generator, Oluyede et al. (2016) used the Beta and the Geometric generators, and
Luguterah and Nasiru (2017) used the Odd generator. In this study, we focus our
attention on an extension of the generalized linear failure rate distribution obtained by
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the use of the modified beta generator developed by Nadarajah et al. (2014). A feature
of this generator is to perfectly combine the complementary flexible properties of the
beta generator introduced by Eugene et al. (2002) and the Marshall-Olkin generator
introduced by Marshall and Olkin (1997). We then benefit of this great advantage to
increase the flexibility of the generalized linear failure rate distribution. The resulting
distribution is naturally called the modified beta generalized linear failure rate distri-
bution (MBGLFR for short). To the best of our knowledge, it has never been explored
in the literature. In this study, we extensively studied its statistical and practical
properties, and motivate its use for the analysis of complex data sets via a simulation
studies and the consideration of a concrete application.

The remainder of the article is organized as follows. Section 2 defines the MBGLFR
distribution. The main structural properties of the MBGLFR distribution are investi-
gated in Section 3. Section 4 provides the necessary to the estimation of the unknown
parameters with the maximum likelihood method. A simulation study is performed
to illustrate the theoretical results. The applicability of the MBGLFR model is stud-
ied in Section 4, with comparison to other competing probability models. Concluding
remarks are provided in Section 5.

2. Modified beta generalized linear failure rate distribution

This section is devoted to the presentation of the MBGLFR distribution. Firstly, we
recall the basics of the modified beta generator, then we present the crucial functions
of the MBGLFR distribution, with an analytical and graphical study of the shapes of
the related pdf and hrf.

2.1. The modified beta generator
First of all, let us recall the construction of the modified beta generator introduced

by Nadarajah et al. (2014). Let c > 0, G(x) be a cdf and g(x) be a related pdf. Then
the modified beta generator is characterized by the cdf given by

F (x) = I cG(x)
1−(1−c)G(x)

(a, b), (4)

where a, b > 0, B(a, b) denotes the beta function defined by B(a, b) =
∫ 1

0
ta−1(1 −

t)b−1dt and Ix(a, b) denotes the incomplete beta function ratio defined by Ix(a, b) =
(1/B(a, b))

∫ x
0
ta−1(1− t)b−1dt, x ∈ [0, 1]. The related pdf is given by

f(x) =
cag(x) [G(x)]a−1 [1−G(x)]b−1

B(a, b) [1− (1− c)G(x)]a+b
, x ∈ R. (5)

The related hrf is given by

h(x) =
cag(x) [G(x)]a−1 [1−G(x)]b−1

B(a, b) [1− (1− c)G(x)]a+b
(

1− I cG(x)
1−(1−c)G(x)

(a, b)

) , x ∈ R.

The related reversed hrf is given by

r(x) =
cag(x) [G(x)]a−1 [1−G(x)]b−1

B(a, b) [1− (1− c)G(x)]a+b I cG(x)
1−(1−c)G(x)

(a, b)
, x ∈ R.
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2.2. The MBGLFR distribution

Let us now present the MBGLFR distribution. Using the general formulas above
with the cdf of the generalized linear failure rate distribution as baseline, i.e. having
the cdf G(x) given by (1) (and the pdf g(x) given by (2)), the cdf given by (4) becomes

F (x) = I
c

[
1−e−(λx+ θ2x

2)
]α

1−(1−c)
[
1−e−(λx+ θ2x

2)
]α

(a, b), x > 0. (6)

The related pdf given by (5) becomes

f(x) =
caα(λ+ θx)e−(λx+

θ
2
x2)
[
1− e−(λx+ θ

2
x2)
]αa−1 [

1−
[
1− e−(λx+ θ

2
x2)
]α]b−1

B(a, b)
[
1− (1− c)

[
1− e−(λx+ θ

2
x2)
]α]a+b ,

x > 0. (7)

The related hrf is given by

h(x) =

caα(λ+ θx)e−(λx+
θ
2
x2)
[
1− e−(λx+ θ

2
x2)
]αa−1 [

1−
[
1− e−(λx+ θ

2
x2)
]α]b−1

B(a, b)
[
1− (1− c)

[
1− e−(λx+ θ

2
x2)
]α]a+b

1− I
c

[
1−e−(λx+ θ2x

2)
]α

1−(1−c)
[
1−e−(λx+ θ2x

2)
]α

(a, b)


,

x > 0. (8)

The related reversed hrf is given by

r(x) =

caα(λ+ θx)e−(λx+
θ
2
x2)
[
1− e−(λx+ θ

2
x2)
]αa−1 [

1−
[
1− e−(λx+ θ

2
x2)
]α]b−1

B(a, b)
[
1− (1− c)

[
1− e−(λx+ θ

2
x2)
]α]a+b

I
c

[
1−e−(λx+ θ2x

2)
]α

1−(1−c)
[
1−e−(λx+ θ2x

2)
]α

(a, b)

,

x > 0.

2.3. Special cases

The MBGLFR distribution has the faculty to approach different lifetime distribu-
tions when its parameters are changed. A non-exhaustive list is given below.

1. When α = 1 and c = 1/(1 − p) with p ∈ (0, 1), we obtain the beta geometric
generalized linear failure rate distribution introduced by Oluyede et al. (2016).
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2. When α = 1 and c = 1, we obtain the beta generalized linear failure rate distri-
bution introduced by Jafari and Mahmoudi (2015).

3. When α = c = b = 1, then we get the generalized linear failure rate distribution
introduced by Sarhan and Kundu (2009).

4. When α = c = 1 and λ = 0, we get the beta Rayleigh distribution proposed by
Akinsete and Lowe (2009).

5. When α = c = 1 and θ = 0, we obtain the beta exponential distribution which is
introduced by Nadarajah and Kotz (2006).

6. For α = c = b = 1 and θ = 0, we get the generalized exponential distribution
proposed by Gupta and Kundu (1999).

7. When a = b = α = c = 1, we get the linear failure rate distribution.

Potential new special distributions are listed below.

1. When α = 1, we get the modified beta linear failure rate distribution.
2. When α = 1 and λ = 0, we get the modified beta Rayleigh distribution.
3. When α = 1 and θ = 0, we obtain the modified beta exponential distribution.
4. When α = c = 1, we get the beta linear failure rate distribution distribution.

Note: For the sake of simplicity in exposition, we suppose in the next that λ > 0 and
θ > 0, which does not exclude the case where they are very small. This is the most
interesting cases in practice. The cases (λ > 0 and θ = 0) and (λ = 0 and θ > 0) can
be investigated in a similar way.

2.4. Asymptotes and shapes of the pdf and the hrf

Let us now investigate the asymptotes for f(x). We have

f(x) ∼ ca

B(a, b)
αλaαxaα−1, x→ 0.

So, for a ∈ (0, 1/α), we have limx→0 f(x) = +∞, for a = 1/α, we have limx→0 f(x) =
c1/αλα/B(1/α, b) and for a > 1/α, we have limx→0 f(x) = 0. We see that the parameter
θ play no role. On the other hand, we have

f(x) ∼ 1

cbB(a, b)
αbθxe−b(λx+

θ
2
x2), x→ +∞.

Therefore, we have limx→+∞ f(x) = 0 in all cases. The shapes of f(x) can be de-
scribed analytically; the critical points x∗ of the pdf f(x) satisfies the equation given
by ∂

∂x
log(f(x∗)) = 0, which corresponds to

θ

λ+ θx∗
− (λ+ θx∗) + (aα− 1)(λ+ θx∗)

e−(λx∗+
θ
2
x2∗)

1− e−(λx∗+ θ
2
x2∗)

− (b− 1)
α(λ+ θx∗)e

−(λx∗+ θ
2
x2∗)
[
1− e−(λx∗+ θ

2
x2∗)
]α−1

1−
[
1− e−(λx∗+ θ

2
x2∗)
]α

+ (a+ b)(1− c)
α(λ+ θx∗)e

−(λx∗+ θ
2
x2∗)
[
1− e−(λx∗+ θ

2
x2∗)
]α−1

1− (1− c)
[
1− e−(λx∗+ θ

2
x2∗)
]α = 0.
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As usual, a point x∗ corresponds to a local maximum if ∂2

∂x2
log(f(x∗)) < 0, a local

minimum if ∂2

∂x2
log(f(x∗)) > 0 and a point of inflection if ∂2

∂x2
log(f(x∗)) = 0.

Let us now focus on the hrf h(x). Similarly to f(x), we have

h(x) ∼ ca

B(a, b)
αλaαxaα−1, x→ 0.

So, for a ∈ (0, 1/α), we have limx→0 h(x) = +∞, for a = 1/α, we have limx→0 h(x) =
c1/αλα/B(1/α, b) and for a > 1/α, we have limx→0 h(x) = 0. We have

h(x) ∼ b(λ+ θx), x→ +∞.

Therefore, we have limx→+∞ h(x) = +∞, except in the case θ → 0 where limx→+∞ h(x) =
bλ. The critical points x∗ of h(x) satisfies the equation ∂

∂x
log(h(x∗)) = 0, i.e.

θ

λ+ θx∗
− (λ+ θx∗) + (aα− 1)(λ+ θx∗)

e−(λx∗+
θ
2
x2∗)

1− e−(λx∗+ θ
2
x2∗)

− (b− 1)
α(λ+ θx∗)e

−(λx∗+ θ
2
x2∗)
[
1− e−(λx∗+ θ

2
x2∗)
]α−1

1−
[
1− e−(λx∗+ θ

2
x2∗)
]α

+ (a+ b)(1− c)
α(λ+ θx∗)e

−(λx∗+ θ
2
x2∗)
[
1− e−(λx∗+ θ

2
x2∗)
]α−1

1− (1− c)
[
1− e−(λx∗+ θ

2
x2∗)
]α

+
caα(λ+ θx∗)e

−(λx∗+ θ
2
x2∗)
[
1− e−(λx∗+ θ

2
x2∗)
]αa−1 [

1−
[
1− e−(λx∗+ θ

2
x2∗)
]α]b−1

B(a, b)
[
1− (1− c)

[
1− e−(λx∗+ θ

2
x2∗)
]α]a+b

1− I
c

[
1−e−(λx∗+ θ2x

2∗)
]α

1−(1−c)
[
1−e−(λx∗+ θ2x

2∗)
]α

(a, b)


= 0.

A point x∗ corresponds to a local maximum if ∂2

∂x2
log(h(x∗)) < 0, a local minimum if

∂2

∂x2
log(h(x∗)) > 0 and a point of inflection if ∂2

∂x2
log(h(x∗)) = 0.

The critical points and the shapes of f(x) and h(x) can be explored graphically.
Figures 1 and 2 show the plots for f(x) and h(x) respectively, for selected parameter
values. In particular, we see that the hrf can be increasing, decreasing or bathtub
shaped, with more different curvatures in comparison to the former generalized linear
failure rate distribution (see Sarhan and Kundu (2009)).

3. Statistical properties

We now study some important statistical properties of the MBGLFR distribution,
i.e. a linear representation of the cdf (and the pdf), the moments, the moment gener-
ating function, the quantile function, the order statistics and the mean deviations.

6



0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

pd
f

a = 1  b = 2  c = 1.5  α = 1.5  λ = 0.9  θ = 3
a = 3.5  b = 2  c = 1  α = 2.5  λ = 2  θ = 1
a = 4  b = 2  c = 0.5  α = 2  λ = 2  θ = 0.2
a = 0.3  b = 0.6  c = 1  α = 5  λ = 0.1  θ = 2

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pd
f

a = 0.2  b = 0.8  c = 0.02  α = 3  λ = 2.5  θ = 1
a = 0.3  b = 0.6  c = 0.1  α = 5  λ = 2  θ = 1
a = 0.5  b = 0.8  c = 0.1  α = 4  λ = 2  θ = 1
a = 4  b = 0.5  c = 0.1  α = 0.2  λ = 2  θ = 1

Figure 1: Some plots of the pdf f(x) for selected parameter values.
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3.1. Linear representation for the cdf

Proposition 1 below shows that F (x) can be expressed as a linear combination of
survival functions of linear failure rate distributions.

Proposition 1. For any integer k and γ ∈ R, let us set

(
γ

k

)
=
γ(γ − 1) . . . (γ − k + 1)

k!
.

The cdf F (x) can be expressed as

F (x) =
+∞∑
m=0

vm[c]Sm(x), (9)

where

vm[c] =


(−1)mca

B(a, b)

+∞∑
k=0

+∞∑
`=0

(
α(`+ a+ k)

m

)(
−(a+ k)

`

)(
b− 1

k

)
ck(−1)k+`(1− c)`

a+ k
if c ∈ (0, 1],

(−1)m

B(a, b)

+∞∑
k=0

+∞∑
`=0

∑̀
q=0

(
−(a+ k)

`

)(
`

q

)(
α(q + a+ k)

m

)(
b− 1

k

)
(−1)`+q+k(c− 1)`c−`

a+ k
if c > 1

and Sm(x) = e−(mλx+
mθ
2
x2) is the survival function related to the linear failure rate

distribution with parameters mλ and mθ.

Proof of Proposition 1. The generalized binomial formula can be formulated as follows:

for any z such that |z| < 1 and γ ∈ R, we have (1 + z)γ =
+∞∑
k=0

(
γ

k

)
zk. By this formula,

we can express F (x) as the following series:

F (x) = I cG(x)
1−(1−c)G(x)

(a, b) =
1

B(a, b)

+∞∑
k=0

(
b− 1

k

)
(−1)k

∫ cG(x)
1−(1−c)G(x)

0

ta+k−1dt

=
1

B(a, b)

+∞∑
k=0

(
b− 1

k

)
(−1)k

a+ k

[
cG(x)

1− (1− c)G(x)

]a+k
.

Let us suppose that c ∈ (0, 1]. Using again the generalized binomial formula, we get[
cG(x)

1− (1− c)G(x)

]a+k
= ca+k

+∞∑
`=0

(
−(a+ k)

`

)
(−1)`(1− c)`[G(x)]`+a+k (10)

and again

[G(x)]`+a+k =
[
1− e−(λx+

θ
2
x2)
]α(`+a+k)

=
+∞∑
m=0

(
α(`+ a+ k)

m

)
(−1)mSm(x).

By putting the above equalities together, we prove the announced formula for c ∈ (0, 1]
(with the related expression for vm[c]).
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Let us now investigate the case c > 1. We still have

F (x) =
1

B(a, b)

+∞∑
k=0

(
b− 1

k

)
(−1)k

a+ k

[
cG(x)

1− (1− c)G(x)

]a+k
.

By noticing that cG(x)
1−(1−c)G(x)

= G(x)

1−(1− 1
c
)(1−G(x))

, by applying the generalized binomial

formula and the standard binomial formula, we obtain[
cG(x)

1− (1− c)G(x)

]a+k
= [G(x)]a+k

+∞∑
`=0

(
−(a+ k)

`

)
(−1)`(c− 1)`c−`[1−G(x)]`

=
+∞∑
`=0

∑̀
q=0

(
−(a+ k)

`

)(
`

q

)
(−1)`+q(c− 1)`c−`[G(x)]q+a+k.

We also have

[G(x)]q+a+k =
[
1− e−(λx+

θ
2
x2)
]α(q+a+k)

=
+∞∑
m=0

(
α(q + a+ k)

m

)
(−1)mSm(x).

By combining these equalities, we prove the announced formula for c > 1 (with the
related expression for vm[c]).

An important consequence of Proposition 1 is the following. Let um(x) be a pdf
related to the (standard) linear failure rate distribution with parameters mλ and mθ.
By the differentiation of infinite series, we can express the pdf f(x) as

f(x) =
+∞∑
m=0

wm[c]um(x), (11)

where

wm[c] = −vm[c] =
(−1)m+1ca

B(a, b)

+∞∑
k=0

+∞∑
`=0

(
α(`+ a+ k)

m

)(
−(a+ k)

`

)(
b− 1

k

)
ck(−1)k+`(1− c)`

a+ k
if c ∈ (0, 1],

(−1)m+1

B(a, b)

+∞∑
k=0

+∞∑
`=0

∑̀
q=0

(
−(a+ k)

`

)(
`

q

)(
α(q + a+ k)

m

)(
b− 1

k

)
(−1)`+q+k(c− 1)`c−`

a+ k
if c > 1.

Note: Hereafter, we denote by X a random variable having the cdf F (x) given by
(6) (and the pdf f(x) given by (7)) and by Ym a random variable following the linear
failure rate distribution with parameters mλ and mθ, i.e. having the survival function
Sm(x) (and the pdf um(x), i.e. the pdf given by (2) with mλ instead of λ and mθ
instead of θ).
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3.2. Moments

Here, moments of the MBGLFR distribution are presented. They are crucial since
some most important features of the distribution can be defined through moments
(dispersion, skewness, kurtosis . . . ). The result below presents a sum expression for
the r-th moment of X.

Proposition 2. Let r be a positive integer. Let Γ(x) be the gamma function defined
by Γ(x) =

∫ +∞
0

tx−1e−tdt, x > 0. Then the r-th moment of X is given by

µ′r =
1

λr+2

+∞∑
k=0

+∞∑
m=0

wm[c](−1)k
θk

2kk!λ2k
1

mk+r+1

(
mλ2 + θ(2k + r + 1)

)
Γ(2k + r + 1),

where wm[c] is defined as in Proposition 1.

Proof of Proposition 2. Using the linear representation given by (11), the r-th ordinary
moment of X is given by

µ′r = E (Xr) =

∫ +∞

−∞
xrf(x)dx =

+∞∑
m=0

wm[c]

∫ +∞

−∞
xrum(x)dx =

+∞∑
m=0

wm[c]E(Y r
m).

Using the exponential series expansion: e−
mθ
2
x2 =

+∞∑
k=0

(−1)k m
kθk

2kk!
x2k, x ∈ R, we obtain

E(Y r
m) = m

∫ +∞

0

xr(λ+ θx)e−(mλx+
mθ
2
x2)dx

=
+∞∑
k=0

(−1)k
mk+1θk

2kk!

∫ +∞

0

x2k+r(λ+ θx)e−mλxdx. (12)

By doing the change of variable u = mλx and by using the property Γ(x+ 1) = xΓ(x),
x > 0, we obtain∫ +∞

0

x2k+r(λ+ θx)e−mλxdx = λ

∫ +∞

0

x2k+re−mλxdx+ θ

∫ +∞

0

x2k+r+1e−mλxdx

= λ
1

(mλ)2k+r+1
Γ(2k + r + 1) + θ

1

(mλ)2k+r+2
Γ(2k + r + 2)

=
1

(mλ)2k+r+2

(
mλ2 + θ(2k + r + 1)

)
Γ(2k + r + 1). (13)

By putting all these equalities together, we end the proof of Proposition 2.

Proposition 2 can be used to determine all quantities depending on the moments.
In particular, the mean of X is given by E(X) = µ′1 and the variance of X is given by
V(X) = µ′2 − (µ′1)

2. The r-th central moment of X is given by

µr = E [(X − µ′1)r] =
r∑

k=0

(
r

k

)
(−1)k(µ′1)

kµ′r−k.

10



The r-th cumulants of X can be obtained by the equation: κr = µ′r −
r−1∑
k=1

(
r−1
k−1

)
κkµ

′
r−k,

with κ1 = µ′1. The skewness of X is given by γ1 = κ3/κ
3/2
2 and the kurtosis of X is

given by γ2 = κ4/κ
2
2. Finally, the moment generating function of X is given by

MX(t) = E(etX) =
+∞∑
k=0

tk

k!
µ′k

(an alternative expression, which really generate moments, will be given in Subsection
3.3).

Table 1 presents the numerical values of some moments (order 1, 2, 3 and 4), the
skewness γ1 and the kurtosis γ2 of X for selected values of the parameters.

Table 1: Some moments, skewness and kurtosis of X for the following selected parameters values in
order (a, b, c, α, β, θ); (i): (1, 2, 1.5, 1.5, 0.9, 3), (ii): (4, 2, 0.5, 2, 2, 0.2), (iii): (5, 5, 0.1, 2, 2, 0.1) and
(iv): (5, 5, 0.4, 2, 2, 0.5).

(i) (ii) (iii) (iv)

E(X) 0.1848323 1.436719 1.69751 1.13918
E(X2) 0.05675808 2.132057 2.912508 1.331062
E(X3) 0.02448038 3.262164 5.048277 1.592475
E(X4) 0.01358948 5.138691 8.835829 1.947968
V(X) 0.0225951 0.06789533 0.03096792 0.03333187
γ1 1.659701 0.2206476 -0.1597525 0.03524769
γ2 7.096917 3.169661 3.186536 3.017433

3.3. Moment generating function

The result below presents a series expression for the moment generating function
of X.

Proposition 3. Let r be a positive integer. Then the moment generating function of
X is given by

MX(t) =
+∞∑
k=0

+∞∑
m=0

wm[c](−1)k
mk+1θk

2kk!

1

(mλ− t)2k+2
[λ(mλ− t) + θ(2k + 1)] Γ(2k + 1),

where wm[c] is defined as in Proposition 1.

Proof of Proposition 3. Using the linear representation given by (11), the moment gen-
erating function of X is given by

MX(t) =

∫ +∞

−∞
etxf(x)dx =

+∞∑
m=0

wm[c]

∫ +∞

−∞
etxum(x)dx =

+∞∑
m=0

wm[c]MYm(t),

11



where MYm(t) = E(etYm) (is the moment generating function of Ym). Using the expo-

nential series expansion: e−
mθ
2
x2 =

+∞∑
k=0

(−1)k m
kθk

2kk!
x2k, x ∈ R, we obtain

MYm(t) = m

∫ +∞

0

etx(λ+ θx)e−(mλx+
mθ
2
x2)dx

= m

∫ +∞

0

(λ+ θx)e−((mλ−t)x+
mθ
2
x2)dx

=
+∞∑
k=0

(−1)k
mk+1θk

2kk!

∫ +∞

0

x2k(λ+ θx)e−(mλ−t)xdx.

By doing the change of variable u = [mλ− t]x and by using the property Γ(x+1) =
xΓ(x), x > 0, we obtain∫ +∞

0

x2k(λ+ θx)e−(mλ−t)xdx = λ

∫ +∞

0

x2ke−(mλ−t)xdx+ θ

∫ +∞

0

x2k+1e−(mλ−t)xdx

= λ
1

(mλ− t)2k+1
Γ(2k + 1) + θ

1

(mλ− t)2k+2
Γ(2k + 2)

=
1

(mλ− t)2k+2
[λ(mλ− t) + θ(2k + 1)] Γ(2k + 1).

By combining all these equalities, we complete the proof of Proposition 3.

3.4. Quantile function

Let I−1u (a, b) be the inverse of the incomplete beta function ratio Iu(a, b). Then the
quantile function of X is given by

Q(u) =
1

θ

−λ+

√√√√λ2 − 2θ log

(
1−

[
I−1u (a, b)

c+ (1− c)I−1u (a, b)

] 1
α

) , u ∈ (0, 1).

Since Iu(a, b) ∼ (auB(a, b))
1
a when u→ 0, we have

Q(u) ∼ 1

λc
1
α

(auB(a, b))
1
aα , u→ 0.

The median of X is given by M = Q(0.5). By definition of the quantile function, for a
random variable U following the uniform distribution over (0, 1), the random variable
X = Q(U) follows the MBGLFR distribution. Alternatively, noticing that I−1U (a, b)
follows the beta distribution with parameters a and b, the following characterization
holds.

Lemma 1. Let V be a random variable following the beta distribution with parameters
a and b. Then the random variable X given by

X =
1

θ

−λ+

√√√√λ2 − 2θ log

(
1−

[
V

c+ (1− c)V

] 1
α

) ,

12



follows the MBGLFR distribution. On the other side, let X be a random variable
following the MBGLFR distribution. Then the random variable given by

V =
c
[
1− e−(λX+ θ

2
X2)
]α

1 + (c− 1)
[
1− e−(λX+ θ

2
X2)
]α ,

follows the beta distribution with parameters a and b.

We can also use Q(u) to define other measures of skewness as, for instance, the
Bowley skewness and the Moors kurtosis. They are respectively defined by

B =
Q(0.75) +Q(0.25)− 2Q(0.5)

Q(0.75)−Q(0.25)
, Mo =

Q(0.875)−Q(0.625) +Q(0.375)−Q(0.125)

Q(0.75)−Q(0.25)
.

In comparison to γ1 and γ2, the interest of B and Mo is to be less sensitive to outliers
and to always exist (which is not the case for γ1 and γ2). Further details can be found
in Kenney and Keeping (1962) and Moors (1988).

3.5. Order statistics

The order statistics play a determinant role in statistics. They naturally arise in
reliability theory and life testing. Here we present a result characterizing the pdf of
the i-th order statistic of the MBGLFR distribution in terms of sum of pdfs of linear
failure rate distributions.

Proposition 4. Let X1, . . . , Xn be the random sample from X and Xi:n be the i-th
order statistic. Then the pdf of Xi:n can be expressed as a linear combination of pdfs
of linear failure rate distributions.

Proof of Proposition 4. The pdf of the i-th order statistic denoted by Xi:n is given by

fi:n(x) =
1

B(i, n− i+ 1)
f(x)[F (x)]i−1 [1− F (x)]n−i , x ∈ R.

By using the binomial formula and the linear expansions (9) and (11), we get

fi:n(x) =
1

B(i, n− i+ 1)

n−i∑
j=0

(
n− i
j

)
(−1)jf(x)[F (x)]j+i−1

=
1

B(i, n− i+ 1)

n−i∑
j=0

(
n− i
j

)
(−1)j

+∞∑
m=0

wm[c]um(x)

[
+∞∑
k=0

vk[c]Sk(x)

]j+i−1
.

A result from Gradshteyn and Ryzhik (2000) on power series can be formulated as
follows. As soon as the sums exist, for a positive integer s, a sequence of real numbers
(ak)k∈N and y ∈ R, we have (

+∞∑
k=0

aky
k

)s

=
+∞∑
k=0

ds,ky
k,

13



where the coefficients (ds,k)k∈N are determined by the following relations: ds,0 = as0
and, for any m ≥ 1,

ds,m = (ma0)
−1

m∑
`=1

(`(s+ 1)−m)a`ds,m−`.

Noticing that Sk(x) =
(
e−(λx+

θ
2
x2)
)k

, the formula above applied with s = j + i − 1,

ak = vk[c] and y = e−(λx+
θ
2
x2) yields[

+∞∑
k=0

vk[c]Sk(x)

]j+i−1
=

+∞∑
k=0

dj+i−1,k[c]Sk(x),

where dj+i−1,0[c] = (v0[c])
j+i−1 and, for any m ≥ 1, dj+i−1,m[c] = (mv0[c])

−1
m∑
k=1

(k(j +

i)−m)vk[c]dj+i−1,m−k. By combining the equalities above, we obtain

fi:n(x) =
1

B(i, n− i+ 1)

n−i∑
j=0

+∞∑
m=0

+∞∑
k=0

(
n− i
j

)
(−1)j wm[c]dj+i−1,kum(x)Sk(x).

We end the proof by observing that

um(x)Sk(x) = m(λ+ θx)e−(m+k)(λx+ θ
2
x2) =

m

m+ k
um+k(x),

where um+k(x) denotes the pdf of the linear failure rate distribution with parameters
(m+ k)λ and (m+ k)θ.

It follows from the proof of Proposition 4 that fi:n(x) can be written as

fi:n(x) =
+∞∑
m=0

+∞∑
k=0

zm,k[c]um+k(x),

where

zm,k[c] =
1

B(i, n− i+ 1)

n−i∑
j=0

(
n− i
j

)
(−1)j wm[c]dj+i−1,k

m

m+ k
.

Therefore the r-th ordinary moment of Xi:n can be expressed as

E(Xr
i:n) =

∫ +∞

−∞
xrfi:n(x)dx =

+∞∑
m=0

+∞∑
k=0

zm,k[c]

∫ +∞

−∞
xrum+k(x)dx.

By proceeding as in (12) and (13) with m+ k instead of m, we can show that∫ +∞

−∞
xrum+k(x)dx =

+∞∑
`=0

(−1)`θ`

(k +m)`+r+1λ2`+r+22``!

[
(m+ k)λ2 + θ(2`+ r + 1)

]
Γ(2`+ r + 1).

By combining the equalities above, we obtain a sum expression for the r-th ordinary
moment of Xi:n.
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3.6. Mean deviations

The mean deviation of X about the mean µ′1 is given by

δ1 = E(|X − µ′1|) =

∫ +∞

−∞
|x− µ′1|f(x)dx.

The mean deviation of X about the median M is given by

δ2 = E(|X −M |) =

∫ +∞

−∞
|x−M |f(x)dx.

They are two measures of spread in a population. The following result shows expres-
sions for these two quantities.

Proposition 5. Let γ(d, x) be the lower incomplete gamma function defined by γ(d, x) =∫ x
0
td−1e−tdt, d > 0, x ≥ 0. Then we have

δ1 = 2µ′1F (µ′1)− 2m∗(µ
′
1), δ2 = µ′1 − 2m∗(M),

where, for any t ≥ 0,

m∗(t) =

∫ t

−∞
xf(x)dx

=
+∞∑
k=0

(−1)k
θk

2kk!mk+2λ2k+3

[
mλ2γ(2k + 2,mλt) + θγ(2k + 3,mλt)

]
. (14)

Proof of Proposition 5. We have

δ1 =

∫ µ′1

−∞
(µ′1 − x)f(x)dx+

∫ +∞

µ′1

(x− µ′1)f(x)dx

=

∫ µ′1

−∞
(µ′1 − x)f(x)dx−

∫ µ′1

−∞
(x− µ′1)f(x)dx

= 2µ′1F (µ′1)− 2m∗(µ
′
1).

It follows from (11) that

m∗(t) =
+∞∑
m=0

wm[c]

∫ t

−∞
xum(x)dx.

Using similar mathematical arguments to (12) and (13) but with the integration over
(0, t) instead of (0,+∞) and with r = 1, we get∫ t

−∞
xum(x)dx =

+∞∑
k=0

(−1)k
mk+1θk

2kk!

∫ t

0

x2k+1(λ+ θx)e−mλxdx,
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with ∫ t

0

x2k+1(λ+ θx)e−mλxdx = λ

∫ t

0

x2k+1e−mλxdx+ θ

∫ t

0

x2k+2e−mλxdx

= λ
1

(mλ)2k+2
γ(2k + 2,mλt) + θ

1

(mλ)2k+3
γ(2k + 3,mλt)

=
1

(mλ)2k+3

[
mλ2γ(2k + 2,mλt) + θγ(2k + 3,mλt)

]
.

We end the proof of the first equality by putting these equalities together. For δ2, using
F (M) = 0.5, we obtain

δ2 =

∫ M

−∞
(M − x)f(x)dx+

∫ +∞

M

(x−M)f(x)dx

=

∫ M

−∞
(M − x)f(x)dx+ µ′1 −M −

∫ M

−∞
(x−M)f(x)dx

= µ′1 − 2m∗(M).

The second equality in the proof follows.

One can also use (14) to determine the Bonferroni curve and the Lorenz curve which
are very useful in many applied areas (economics, reliability, demography, medicine. . . ).
They are respectively given by

L(p) =
1

µ′1
m∗(Q(p)), B(p) =

1

pµ′1
m∗(Q(p)), p ∈ (0, 1).

4. Statistical inference

Here, the estimations of the parameters λ, θ, α, a, b and c of the MBGLFR distri-
bution are performed with the maximum likelihood method.

4.1. Maximum likelihood estimation

The most common method of parametric estimation is the maximum likelihood
method. The resulting estimators, called the maximum likelihood estimators, enjoy re-
markable properties. Among others, it can be used when constructing confidence inter-
vals and regions and also in test statistics. Approximation for the maximum likelihood
estimators in distribution theory is easily handled either analytically or numerically.
Further details can be found in Lehmann and Casella (1998). Here, we determine the
maximum likelihood estimators of the parameters of the MBGLFR distribution from
complete samples only. Let x1, . . . , xn be a random sample of size n from the MBGLFR
distribution. Let φ = (a, b, c, α, λ, θ)T be the 6 × 1 vector of parameters. The total
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log-likelihood function for φ is given by

Ln = Ln(φ) = na log c+ n logα− n logB(a, b) +
n∑
i=1

log(λ+ θxi)

− λ
n∑
i=1

xi −
θ

2

n∑
i=1

x2i + (αa− 1)
n∑
i=1

log
[
1− e−(λxi+

θ
2
x2i )
]

+ (b− 1)
n∑
i=1

log
[
1−

[
1− e−(λxi+

θ
2
x2i )
]α]

− (a+ b)
n∑
i=1

log
[
1− (1− c)

[
1− e−(λxi+

θ
2
x2i )
]α]

.

The associated components of the score function is igven by

Un(φ) =

[
∂Ln
∂a

,
∂Ln
∂b

,
∂Ln
∂c

,
∂Ln
∂α

,
∂Ln
∂λ

,
∂Ln
∂θ

]T
.

By introducing the digamma function ψ(x) defined by ψ(x) = Γ′(x)/Γ(x), we have

∂Ln
∂a

= n log c− nψ(a) + nψ(a+ b) + α
n∑
i=1

log
[
1− e−(λxi+

θ
2
x2i )
]

−
n∑
i=1

log
[
1− (1− c)

[
1− e−(λxi+

θ
2
x2i )
]α]

,

∂Ln
∂b

= −nψ(b) + nψ(a+ b) +
n∑
i=1

log
[
1−

[
1− e−(λxi+

θ
2
x2i )
]α]

−
n∑
i=1

log
[
1− (1− c)

[
1− e−(λxi+

θ
2
x2i )
]α]

,

∂Ln
∂c

=
na

c
− (a+ b)

n∑
i=1

[
1− e−(λxi+ θ

2
x2i )
]α

1− (1− c)
[
1− e−(λxi+ θ

2
x2i )
]α ,

∂Ln
∂α

=
n

α
+ a

n∑
i=1

log
[
1− e−(λxi+

θ
2
x2i )
]

− (b− 1)
n∑
i=1

[
1− e−(λxi+ θ

2
x2i )
]α

log
[
1− e−(λxi+ θ

2
x2i )
]

1−
[
1− e−(λxi+ θ

2
x2i )
]α

+ (a+ b)
n∑
i=1

(1− c)
[
1− e−(λxi+ θ

2
x2i )
]α

log
[
1− e−(λxi+ θ

2
x2i )
]

1− (1− c)
[
1− e−(λxi+ θ

2
x2i )
]α ,
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∂Ln
∂λ

=
n∑
i=1

1

λ+ θxi
−

n∑
i=1

xi + (αa− 1)
n∑
i=1

xie
−(λxi+ θ

2
x2i )

1− e−(λxi+ θ
2
x2i )

− α(b− 1)
n∑
i=1

xie
−(λxi+ θ

2
x2i )
[
1− e−(λxi+ θ

2
x2i )
]α−1

1−
[
1− e−(λxi+ θ

2
x2i )
]α

+ α(a+ b)
n∑
i=1

(1− c)xie−(λxi+
θ
2
x2i )
[
1− e−(λxi+ θ

2
x2i )
]α−1

1− (1− c)
[
1− e−(λxi+ θ

2
x2i )
]α ,

and

∂Ln
∂θ

=
n∑
i=1

xi
λ+ θxi

− 1

2

n∑
i=1

x2i + (αa− 1)
n∑
i=1

1
2
x2i e
−(λxi+ θ

2
x2i )

1− e−(λxi+ θ
2
x2i )

− α(b− 1)
n∑
i=1

1
2
x2i e
−(λxi+ θ

2
x2i )
[
1− e−(λxi+ θ

2
x2i )
]α−1

1−
[
1− e−(λxi+ θ

2
x2i )
]α

+ α(a+ b)
n∑
i=1

(1− c)1
2
x2i e
−(λxi+ θ

2
x2i )
[
1− e−(λxi+ θ

2
x2i )
]α−1

1− (1− c)
[
1− e−(λxi+ θ

2
x2i )
]α .

The maximum likelihood estimators of φ, say φ̂ = (â, b̂, ĉ, α̂, λ̂, θ̂), is obtained by
solving the nonlinear system Un(φ) = 0. These equations cannot be solved analytically,
and statistical software (R, SAS. . . ) can be used to solve them numerically via iterative
methods. For interval estimation and hypothesis tests on the model parameters, we
require the information matrix. The 6 × 6 observed information matrix is given by
In(φ) = {−Iuv}(u,v)∈{a,b,c,α,λ,θ}2 , where

Iuv =
∂2Ln
∂u∂v

.

The general expressions of Iuv can be found in (Nadarajah et al., 2014, Section 3)
with G(x) defined by (6). Applying the usual large sample approximation, maximum

likelihood estimators of φ, i.e φ̂ can be treated as being approximately N6(φ, Jn(φ)−1),
where Jn(φ) = E [In(φ)]. Under conditions that are fulfilled for parameters in the in-
terior of the parameter space but not on the boundary, the asymptotic distribution of√
n(φ̂−φ) is N6(0, J(φ)−1), where J(φ) = limn→∞ n

−1In(φ) is the unit information ma-
trix. This asymptotic behavior remains valid if J(φ) is replaced by the average sample

information matrix evaluated at φ̂, say n−1In(φ̂). The estimated asymptotic multi-

variate normal N6(φ, In(φ̂)−1) distribution of φ̂ can be used to construct approximate
confidence intervals for the parameters. For any γ ∈ (0, 1), a 100(1− γ)% asymptotic
confidence interval (ACI) for each parameter φr is given by

ACIr =

(
φ̂r − z γ2

√
Îrr, φ̂r + z γ

2

√
Îrr

)
,
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where φ̂r is the MLE of φr, Îrr is the corresponding estimation of Irr and zγ is the
upper 100γ-th percentile of the standard normal distribution.

4.2. Simulation

Due to obvious difficulties to compare the theoretical performances of the different
maximum likelihood estimates (MLEs) for the MBGLFR distribution. Therefore, sim-
ulation is needed to compare the performances of the MLE mainly with respect to their
mean square errors (MSEs) for different sample sizes. A numerical study is performed
using Mathematica 9 software. Different sample sizes are considered through the ex-
periments at size n = 50, 100 and 300. The experiment will be repeated 1000 times.
In each experiment, the estimates of the parameters will be obtained by maximum
likelihood method of estimation. The means and MSEs for the different estimates will
be reported from these experiments.
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Table 2: The MLEs and MSEs of parameters of the MBGLFR distribution.

n Parameters Initial MLE MSE Initial MLE MSE
50 a 1.20 1.0150 0.0511 1.00 1.0195 0.015400

b 0.80 1.0570 0.1216 0.80 1.0368 0.111000
c 0.50 0.4986 0.0013 0.50 0.5068 0.001400
α 2.00 3.0801 1.5397 2.00 2.9507 1.144700
λ 0.25 1.1084 0.8736 0.25 1.0530 0.739200
θ 0.50 1.3793 3.8545 0.50 1.2210 1.537500

100 a 1.20 1.0110 0.0408 1.00 1.0060 0.009500
b 0.80 1.0303 0.0778 0.80 1.0170 0.066500
c 0.50 0.5018 0.0005 0.50 0.5020 0.000800
α 2.00 2.9711 1.0646 2.00 2.9509 1.044300
λ 1.20 1.0083 0.0390 0.25 1.0326 0.651100
θ 0.50 1.1086 0.5313 0.50 1.0616 0.410300

300 a 0.80 0.9933 0.0447 1.00 0.9997 0.003000
b 0.50 0.5033 0.0002 0.80 1.0086 0.050100
c 2.00 2.9469 0.9487 0.50 0.5000 0.000300
α 0.50 1.0017 0.2983 2.00 2.9246 0.900500
λ 1.20 1.0150 0.0511 0.25 1.0159 0.599292
θ 0.25 0.9943 0.5687 0.50 1.0248 0.302500

50 a 0.80 1.01190 0.081700 0.50 1.1495 0.689600
b 0.80 1.07230 0.114200 0.80 1.0228 0.080300
c 0.50 0.49640 0.001900 0.50 0.5119 0.004400
α 2.00 2.97440 1.251500 2.00 2.6504 0.612700
λ 0.25 1.11030 0.835100 0.25 1.0248 0.648200
θ 0.50 1.20680 0.869400 0.50 1.0767 0.466000

100 a 0.80 0.99460 0.052000 0.50 1.0519 0.393300
b 0.80 1.02100 0.063000 0.80 1.0381 0.073900
c 0.50 0.49850 0.000800 0.50 0.4970 0.001900
α 2.00 2.90730 0.936600 2.00 2.6946 0.608100
λ 0.25 1.04250 0.654900 0.25 1.0435 0.658400
θ 0.50 1.05010 0.353800 0.50 1.0747 0.379000

300 a 0.80 1.00350 0.047300 0.50 1.0286 0.303200
b 0.80 1.01050 0.050200 0.80 1.0062 0.047000
c 0.50 0.49900 0.000300 0.50 0.5019 0.000800
α 2.00 2.83940 0.752100 2.00 2.6374 0.447600
λ 0.25 1.01618 0.597699 0.25 1.0046 0.577609
θ 0.50 1.02530 0.293600 0.50 1.0145 0.275000

50 a 1.20 1.02740 0.052500 0.80 1.03830 0.111600
b 1.00 1.00890 0.020900 1.20 1.00880 0.050300
c 0.50 0.50730 0.001600 0.50 0.50550 0.002000
α 2.00 2.01030 0.056600 2.00 1.60190 0.181900
λ 0.25 1.05160 0.750900 0.25 1.06560 0.757500
θ 0.50 1.14560 1.022200 0.50 1.13860 0.964000

100 a 1.20 1.01510 0.042200 0.80 1.03730 0.078100
b 1.00 1.00810 0.016700 1.20 0.99880 0.046900
c 0.50 0.50460 0.000800 0.50 0.50930 0.001200
α 2.00 2.00000 0.029500 2.00 1.57810 0.178000
λ 0.25 1.02730 0.658200 0.25 1.00770 0.622500
θ 0.50 1.08510 0.508800 0.50 1.03040 0.365200

300 a 1.20 0.99920 0.041500 0.80 1.01810 0.055300
b 1.00 1.00290 0.003600 1.20 0.99820 0.042900
c 0.50 0.49990 0.000200 0.50 0.50270 0.000500
α 2.00 2.01070 0.010200 2.00 1.57920 0.151100
λ 0.25 1.01628 0.601701 0.25 1.00005 0.576287
θ 0.50 1.01830 0.291100 0.50 1.00570 0.271700
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4.3. Applications

This section provides an application to show how the MBGLFR distribution can
be applied in practice. We compare MBGLFR to Kumaraswamy Weibull-exponential
(Kw-WE) by Hassan and Elgarhy (2016) and other well known distributions in litra-
ture, Kumaraswamy-Weibull (Kw-W), beta Weibull(BW) and Weibull (W) models.
The MLEs are computed using Quasi-Newton Code for Bound Constrained Optimiza-
tion and the log-likelihood function evaluated. The goodness-of-fit measures, Anderson-
Darling (A*), Cramer-von Mises (W*), Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), and log-likelihood (ˆ̀) values are computed. The lower
values of these criteria, the better fit. The value for the Kolmogorov Smirnov (KS)
statistic and its P-value are also provided.

The following data represent the survival times (in days) of 72 pigs infected with
virulent tubercle bacilli, observed and reported by Bjerkedal (1960). The data are as
follows: 0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05,
1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3,
1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95,
1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78,
2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55.
The required computations are carried out in the R software. Table 4 lists the maximum
likelihood estimates (and the corresponding standard errors in parentheses) of the
unknown parameters of the MBGLFR distribution. The statistics log likelihood, AIC,
BIC, W*, A*, KS, P-Value values for all the models are listed in Table 5. The proposed
MBGLFR model fits these data better than the other models according to the Table
5. The plots of the fitted pdfs, cdfs of some distributions are displayed for visual
comparison in Figure 5. The MBGLFR model may be an interesting alternative to
other models available in the literature for modeling positive real data.

The estimated variance-covariance matrix of the MLEs (â, b̂, ĉ, α̂, λ̂, θ̂) of the
parameters of the MBGLFR distribution for the data set is given by


0.11144487 0.10584027 −0.1973001 −0.7954907 −0.01736836 −0.05833310
0.10584027 0.14396049 −0.4818798 −0.8597145 −0.02380887 −0.07662741
−0.19730006 −0.48187977 90.0809792 1.9707454 −0.50662976 −1.64273388
−0.79549068 −0.85971454 1.9707454 7.1804502 0.28364724 0.45959755
−0.01736836 −0.02380887 −0.5066298 0.2836472 0.0025787 0.01287525
−0.05833310 −0.07662741 −1.6427339 0.4595976 0.01287525 0.05400238

 .

The confidence intervals (CIs) for the parameters of the MBGLFR distribution are
given in Table 3.

The shape of the most appropriate pdf or hrf for modeling can be determined by
a graphical analysis of the data set. In this context, we can use the total time on
test plot (TTT) (see Aarset (1987)) for the hrf and a basic kernel density estimator
for the pdf (see Silverman (1986)). Figure 3 shows that concave shape for the TTT
plot, indicating that the data set has increasing hrf. Figure 4 shows that the pdf is
unimodal with right skewed. Hence the MBGLFR model is in principle a suitable
model for fitting this kind of data set.

21



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

i/n

T
(i/

n)

Figure 3: TTT plots for the considered data set.
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Figure 4: Kernel density plots for the considered data set.
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Table 3: Confidence intervals for the parameters of the MBGLFR distribution for the considered data
set (the lower bounds have been remplaced put to 0 since they take negative values).

CI a b c α λ θ
95% [0, 1.0752] [0, 1.3390] [0, 35.6590] [0, 8.5570] [0, 0.1778] [0, 0.7055]
99% [0, 1.283986] [0, 1.577236] [0, 41.543040] [0, 10.230880] [0, 0.209206] [0, 0.851490]

Table 4: MLEs (standard errors in parentheses).

Distribution Estimates
MBGLFR(a, b, c, α, λ, θ) 0.4153 0.5860 17.0560 3.2654 0.0784 0.2439

(0.3367) (0.3842) (09.4911) (2.6998) (0.0507) (0.2355)
Kw-WE(λ, a, b, c, β) 3.63748 1.84467 2.14003 0.79822 0.03756

(2.58073) (2.76562) (1.12893) (1.06864) (0.11321)
BW(a, b, c, β) 2.73456 0.90765 0.66618 0.32174

(1.59435) (1.49643) (0.24362) (0.43221)
Kw-W(a, b, c, β) 4.12327 2.94308 0.45855 0.21630

(5.83511) (8.10936) (0.51350) (0.24837)
W(c, β) 1.04782 0.10459

(0.06757) (0.00933)
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Figure 5: Plots of estimated pdfs and cdfs for given data set.

Table 5: The ˆ̀, AIC, BIC, W*, A*, KS, P-Value values for the considered data set.

Distributon ˆ̀ AIC BIC W* A* KS P-Value
MBGLFR 100.1782 212.0563 218.0163 0.0465 0.3192 0.0745 0.8187
Kw-WE 102.9913 215.9826 227.3659 0.1141 0.7548 0.1045 0.4103

BW 102.7950 213.5901 222.6967 0.1097 0.7255 0.1010 0.4537
Kw-W 102.7097 213.4195 222.5261 0.1077 0.7107 0.1009 0.4557

W 104.0168 212.7336 219.5869 0.1602 0.9758 0.1134 0.3121
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5. Concluding Remarks

In this paper, we introduce a new distribution referred to as the modified beta
generalized linear failure rate. It generalizes the well-known; beta linear failure rate
distribution, the generalized linear failure rate distribution, beta geometric generalized
linear failure rate distribution, the beta exponential distribution, the beta Rayleigh
distribution, the generalized exponential distribution, and the linear failure rate dis-
tribution. Besides it contains some new sub-models. Some basic properties are de-
rived. The maximum likelihood estimators of the population parameters are obtained.
Simulation studies as well as a real data application are described to show superior
performance versus some other distributions.
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