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STABILITY OF A CLASS OF NONLINEAR REACTION-DIFFUSION EQUATIONS
AND STOCHASTIC HOMOGENIZATION

OMAR ANZA HAFSA, JEAN PHILIPPE MANDALLENA, AND GERARD MICHAILLE

ABSTRACT. We establish a convergence theorem for a class of nonlinear reaction-diffusion equations
when the diffusion term is the subdifferential of a convex functional in a class of functionals of the
calculus of variations equipped with the Mosco-convergence. The reaction term, which is not globally
Lipschitz with respect to the state variable, gives rise to bounded solutions, and cover a wide variety
of models. As a consequence we prove a homogenization theorem for this class under a stochastic
homogenization framework.

1. INTRODUCTION

Let © be a bounded regular domain in RY, and T any positive real number. The purpose of this
paper is to investigate the stability and the stochastic homogenization of the class of reaction-diffusion

problems

B ) 408 (u(t,) > F (tu(t, ) for ace. t € (0,T)
(P) dt

u(0,-) = u?, u® € dom (9®),u° suitably bounded according to F,
defined in L2 (0, T,L? (Q)), when @ belongs to the class of integral functionals of the type

/ W (x,Vu (z)) dx + 1/ aou’dHy 1 f/ hu dHy—1 ifue H (Q)
O (u) = Q 2 Jaq a0

+00 otherwise.
The reaction functionals F', called CP-structured reaction functionals, have the following form:

Yo € L? (Q)7 F(tav) (Ji) = f(t,l‘,’()(l‘)), f(t’x’C) = T(tvx) g(C) +Q(t’x)a
where g : R — R' is alocally Lipschitz function, r € W41 (0,7, L  (RY,R"))NL> ([0, 7] x RN, R!), and
gewhl (0, T, L120€ (RN)) NL? (0, T, L120c (RN)). We assume furthermore that f satisfies a condition (CP)
((CP) for Comparison Principle, see Definition . Under this condition, (P) admits a unique bounded
solution according to ug, with a right derivative at every ¢t € (0,7) (Theorems [-2). Problems (P)
cover a wide variety of applications in the fields of thermochemistry, combustion, biochemical systems,

as well as those of population dynamics and evolution of ecosystems as illustrated in examples

of the Appendix A.

The main first result of the paper, Theorem states the stability of the class (P) when the class
of functionals ® is equipped with the I'-convergence associated both with strong and weak topology of
L? (), namely, the Mosco-convergence, and the class of functionals F with some “weak” convergence.
Stochastic homogenization of reaction-diffusion problems (P) is addressed in Section [5| w here we set
up the basic concepts concerning ergodic dynamical systems. The main theorem, Theorem based
on Theorem states the limit homogenized problem of (P, (w)) when € — 0. As an example, in the
appendix B, the stochastic homogenization of the reaction-diffusion problem describing a food-limited
population model is treated in two differents situations. The reaction functional is that of the Fisher
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model with Allee effect (see Example a)). In the first situation the small spatial heterogeneities of
size ¢ are distributed following a random patch model, i.e., a random checkerboard-like environment. In
the second situation, the discrete dynamical system describes spatial heterogeneities distributed following
a Poisson point process. For homogenization of convection-diffusion equations, and parabolic problems
in perforated domains or in periodic or random environments, we refer the reader to [2 3, [, [5, [I5] and
references therein. For homogenization of a Fokker-Planck equation with space-time periodic potential,
we refer to [22].

A similar analysis will be performed from this paper for time delays reaction-diffusion equations and
coupled reaction-diffusion systems in forthcoming works. For these problems, the reaction functionals
are of the form F (t,u,v)(x) = f(t,z,u(x),v(z)) for all v and v in L?(Q), where f(t,7,(,() =
r(t,z) ® g1(¢") - g2(¢) + ¢ (t,z)] under the condition that for fixed ¢’ € R, ¢ — f(t,(,{') is a CP-
structured reaction function.

2. EXISTENCE AND UNIQUENESS FOR REACTION-DIFFUSION CAUCHY PROBLEMS IN HILBERT SPACES

In this section, X denotes a Hilbert space equipped with its scalar product denoted by (-,-) and its
associated norm || - ||x. In all along the paper we use the same notation | - | to denote the norms of the
euclidean spaces R?, d > 1, and by ¢ - ¢ the standard scalar product of two elements &, ¢ in R?.

Let @ : X — RU {400} be a convex proper lower semicontinuous (Isc in short) functional, minorized,
i.e., satisfying infx ® > —oo, that we assume to be Gateauzr differentiable so that its subdifferential 0®
is single valued. We make this choice in order to simplify the notation but, in this section, we could use
the subdifferential of ® in place of its Gateaux derivative, denoted by D®, without additional difficulties.
We denote by dom (®) and dom (D®) the domain of ® and D® respectively.

On the other hand, let F': [0,+00) x X — X be a Borel measurable map fulfilling the two following
conditions:
(Cy) there exists L € L2 _ (0, 400) such that ||F (t,u) — F (t,v) || x < L (t)|ju—v| x for all (u,v) € X?
and all ¢t > 0;

(Ca) the map t — || F (t,0) || x belongs to L2 _ (0, +00).

loc
Given T > 0 and ug in dom (D®), the map F is referred to as the reaction part, and D® as the
diffusion part of the following Cauchy problem:

d
() + DB (u(t)) = F (t,u(t)) for ae. t € (0,T)
dt
(P)
u (0) = ug, ug € dom (D®).
where % denotes the distributional time derivative of u. We say that u is a solution of (P) if u €

L2 ([0, 7], X) is absolutely continuous in time and satisfies (P). In all the paper, the space C ([0, T], X)
is endowed with the sup-norm. The results stated in the theorem below are somewhat well known. The
proof is based on [8, Theorems 17.2.5, 17.2.6], or on [13, Theorem 3.7]), together with a fixed point
procedure.

Theorem 2.1 (local existence). Assume that F satisfies conditions|(Cy)l, |(Co)l Then, there exist T >0
small enough and o unique solution w € C ([0,T], X) of (P) which satisfies

(Ly) u(t) € dom (D®) for a.e. t € (0,T),

(L) w is almost everywhere differentiable in (0,T) and v’ (t) = %1; (t) for a.e. t € (0,T).

Assume furthermore that G : [0,T] — X defined by G (t) = F (t,u(t)) belongs to W1 (0,T, X), then
u satisfies:

(L3) w(t) € dom (D®) for all t €]0,T],

+ dut

d
u admits a right derivative % (t) at every t € (0,T) and - (t)+D® (u(t)) =F (t,u(t)).

Denote by T* > 0 a small enough real number so that (P) admits a unique solution in C ([0,7%], X),
whose existence is asserted in Theorem Under the initial condition ug € dom (D®) we are not assured

We denote by € ® ¢ the Hadamard (or Schur) product of two elements & and &’ in R%.



STABILITY OF A CLASS OF NONLINEAR REACTION-DIFFUSION EQUATIONS 3

that the derivative % of the solution belongs to L? (0,7*,X). Nevertheless vt%% € L?(0,7*, X) (see

3, eorem 17.2.5] or |13} eorem 3.6|). Hence, for 0 < o0 < 1™, == belongs to , 17, X ). Set
Th 17.2.5 Th 3.6]). H for 0 <& <T*, 4 bel L?(6,T*,X). S

E:={T>¢:3ueC(0,T],X) solution of (P)}.

Since T* € E, we have E # (). We define the maximal time in Ry by Ty, := sup F and denote by u the
maximal solution of (P) in C ([0, Thaz), X ). We have the following alternative:

Theorem 2.2 (Global existence or blow-up in finite time). Assume that F' satisfies|(C1)}, [(C2)l then we
have the blow-up alternative
(G1) Taaw = +00 (emistence of a global solution);

(G2) Thpaw < +00. In this case . l}rI% llullco,m,x) = +oo (blow-up in finite time).
- Mazx

Moreover, for all T, 0 < T < Ty, the restriction of u to [0,T] satisfies assertions and and
furthermore satisﬁes when G : [0, Tyae) — X defined by G (t) = F (t,u (t)) belongs to WH1(0,T, X)
forallT, 0 < T < Thras-

Proof. We assume that T, < oo and show that . 1J1rnT1 llullcqo,m,x) = +oo. We argue by con-
- Maz

tradiction. Assume that u does not fulfill . lilg llull (o, 17, x) = 400, then there exist G > 0 and a
- Mazx

sequence (1},), oy in E such that 75, — T, and [lullco,r.],x) < G-
Step 1. We show that lim; 7, u(t) exists in X.

Let n € N. For a.e. t € (0,T},) we have

(G 0.5 0)+ (Do) G o) =(Feuw. o).

By integration over (§,T},) we obtain

Tl du 2 In : M 2 :
/ Dol dt+ @ () - @ () < /'HFWumn&m ,/ Dl a) . @
s dt X 0 5 dt X
On the other hand, from (C4) we infer that
IF (0 () x < IF (5,0) [x + L () [ (8) l1x
so that for a.e. t € (0,7
1P (tu(8) 1% < 21F (£,0) % +2L2 () [ull2 0,15,
Hence we have
Tn TMaz TMaz
A nquwn&ﬁs21; HF@ﬂM§ﬁ+%M%@mhmA L2 () dt
TMaw TM(M;
< 2/ | F (t,0) ||?th+2g2/ L% (t)dt. 2)
0 0

From , , and since inf ® > —oco, we infer that there exists a constant C (P, d, The, G) which does
not depend on T, such that
1
2 2
dt
X
2

T
/
dt < +o0. (3)

from which we deduce that
X

du

du
m (t)

0 (t)

2 Tn
dt S C ((I)a 6a TM(w)g) 1 + (/
S

X

du

o (1)

Tn
sup /
neNJ§
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From , we deduce that u : [0, The,) — X is uniformly continuous. Indeed, let s < ¢ in [0, Th,,) and
choose n large enough (depending on (s,t)) so that s and ¢ belong to [0, T},]. We have

2 3
dt
X
1
2 2
at|
X
1_

so that u is more precisely 3-Holder continuous. According to the continuous extension principle in the

complete normed space X, u possesses a unique continuous extension @ in [8, Tiyq,), i.€., limy_7,, u (t) =
T (Thtaz)-

Step 2. (Contradiction) Consider the Cauchy problem

dv (t)+D® (v(t)) = F(t,v(t)) forae. te(0,T)

(PI) dt
v (0) = T (Twraz) -

Note that @(Ty.,) € dom (D®). Indeed, u(t) € dom (D®) for ae. ¢ in (0,7) and T(Tyw) =
lim; 7, u(t) (choose t, — Ty, with t, outside the negligible set in which u(t) ¢ dom (D®)).
Then applying Theorem there exists T** > 0 small enough such that (P’) admits a solution
v e C([0,T*],X). Set

du
dt

du

[u(®) - ulx < [ |50 )

du
P (t)

7 () = w(t) if t € [0, Thras)
vt = Taan) if t € [Tataws Thtaw + T

Then u € C ([0, Thae + T%*], X) is a solution of (P). This leads to a contradiction with the maximality

Proposition below provides a condition on D® which ensures that (P) satisfies More
precisely

Proposition 2.1. Assume that (D® (v),v) > 0 for all v € dom (D®). Then (P) admits a global
solution.

Proof. According to Theorem It suffices to prove that there is no blow-up in finite time. Assume
that Thee < +00 and let T < Tyq,. Taking u (t) as a test function, for a.e. t € (0,T) we have

<Cfl7: (t),u (t)> + (DD (u(t)),u(t)) = (F (t,u(t),u(t).

Hence, using the fact that (D® (u (¢)),u (t)) > 0 (recall that u (t) € dom (D®) for a.e. t € (0,T)), we
infer that

%I\U(t) 12 < 2(F (t,u(t)),u(t)

< (IF (1,0 [|x + L () llu (1) x)* + llu (8) 1%
< 2P (1,0) |5 + (27 (1) + 1) [Ju (1) 1%
By integrating over (0, s) for s € [0,T], we deduce
lu(s) 1% < lluollk +2/0 [ (t,0) ||§<dt+/0 (227 (1) + 1) flu (t) 1% dt
(note that from |(Ca)| t — [|F (t,0) % belongs to L' (0,T), and t — (2L (¢) +1) [Ju(t)[|% belongs

to L' (0,T) since |lu(t) |x < [lullco,m,x) and L € L?(0,T)). By using Gronwall’s lemma and the
continuity in [0, 7] of

s Juoll% +2 / IF (£,0) |%dt + / (2L (1) + 1) u (8) 3t — [ () 1%
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we obatin for all ¢ € [0,T]:

15 < (ol +2 [ 17 (50013 ds)esp ([ 22706 +1) ).

Then, if Ty, < +00, we have

TMu,z TMaz
L Sup llulleqo,m,x) < <||U0||§< + 2/ [F (s,0) % d5> exp </ (2L7 (s) +1) dS) :
0 0

Mazx

This makes  lim [juf¢(o,1),x) = +0c impossible. Thus Ty, = +co. M
T—+Trax T

From Proposition 2.1} when ® = 0, [(G1) |is automatically satisfied. Therefore we obtain the following
global existence for non diffusive problems

Theorem 2.3 (Global existence for non diffusive Cauchy problems). Assume that F' satisfies|(Cq)}, [(C2)}
Then, there exists a unique global solution u € C ([0,4+00), X) of the non diffusive Cauchy problem

du
u (0) = up, up € X.

Moreover, for allT < Ty, the restriction of u to [0, T satisfies assertions|(Ly1)| and|(Lo)l, and furthermore
sitisﬁes when G : [0, Taee) — X defined by G (t) = F (t,u (t)) belongs to WH1(0,T, X).

(t) = F (t,u(t)) for a.e te(0,T)

3. EXISTENCE AND UNIQUENESS OF BOUNDED SOLUTION FOR A CLASS OF REACTION-DIFFUSION
PROBLEMS

From now on (2 is a domain of RV of class C! and £y denotes the Lebesgue measure on RY. We
denote by 0N its boundary and by Hy_; the N—1-dimensional Hausdorff measure. To shorten the
notation, we sometimes write X to denote the Hilbert space L? (2) equipped with its standard scalar
product and its associated norm, denoted by (-,-) and || - || x respectively.

3.1. The class of diffusion terms associated with convex functionals of the calculus of vari-
ations. In all the paper, we focus on the specific case of a standard convex functional ® of the calculus
of variations, i.e., a functional ® : L? (2) — R U {+o0} defined by

/ W (x,Vu (z)) dx + 1/ apu’dHy 1 —/ hu dHy_1 ifue H'(Q)

_ Q 2 Joq 89

P (u) = (4)
400 otherwise,

Whereﬂ h e L%_(N_l (09), ap € Lg7 . (09) with ag > 0 Hy_1-a.e. in 02 and a9 > o on I' C 99 with

Hy—1(T') > 0 for some o > 0.

The density W : RV x RY — R is a Borel measurable function which satisfies the following conditions:
(D) there exist a > 0 and 8 > 0 such that for a.e. x € RY and every £ € RN

aléP <W (2,8 < B(1+[¢7),

(Dg) for a.e. z € RN, & W (x,€) is a Gateaux differentiable and convex function (we denote by
De¢W (z,-) its Gateaux derivative), and

DgW (.CE, 0) = 0.

By using the subdifferential inequality together with the growth conditions |(D;)} it is easy to show
that there exist nonnegative constants L (3) and C (3) such that, for all (¢,¢) € RY x RV,

(W, 8) =W (2,&) | < L(B)[€ = &I+ [E[+[€7]),

[DeW (2, 6)| < C(8) (1 + [€]) -
From the second estimate, we infer that if u € H' (Q), then the function D¢W (-, V) belongs to L2 ()"

2In the integrals on OS2, we still denote by u the trace of w.
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Remark 3.1. We do not loss of generality by considering D¢ W (x,0) = 0 in Indeed, for any Borel
measurable function W : RY x RY — R satisfying with & — W (z,¢) Gateaux differentiable and

convex, define the function 1% by
W (2,€) =W (2,6) = DWW (,0) - € + C () €],

Then & — W (z,€) is convex, Gateaux differentiable with DgW (z,0) = 0. Moreover W satisfies the
upper growth condition of and the lower growth condition up to an additive constant, with two
other positive constants o/ and 3'.

Consider the space H (div) := {0 € L2(Q)" : dive € L?(Q)}. It is well known that when € is an
open domain of class C', with outer unit normal n, the normal trace

Tn : H(div) N C (Q) — H™2 (8Q) N C (9Q)

defined by 7 (¢) = (¢ - n) |90, has a continuous extension from H (div) onto H~2 (99), still denoted by
Y. Moreover, the following Green’s formula holds: for every ¢ € H! (2) whose trace denoted by o ()
belongs to Hz (852), we have

In all the paper, as usual, for simplicity of notation, for any o € H(div) and any ¢ € H!(Q), we

(improperly) write, [, 0 -n ¢ dHy_; the last term (74 (0),70 ((’0)>H7%(89)7H%(69)’ and, as for regular

functions, we denote by ¢ - n and ¢ the normal trace and the trace of o and ¢ respectively. We start
by expliciting the subdifferential of the functional ® (actually its Gateaux derivative), whose domain
contains mixed Dirichlet-Neumann boundary conditions. For a detailed proof we refer the reader to [8|
Theorem 17.2.10] where ® is a more basic integral functional.

Lemma 3.1. The subdifferential of the functional ® is the operator A = 0P (= D®) defined by

dom (A) = {v € HY(Q) : divDeW (-, Vo) € L2 (Q), agv + DeW (-, Vo) -n = h on aQ}

A(w) = —=divDW (-, Vv) for v € dom (A)
where agv + DeW (-, Vu) - n must be taken in the trace sense.

Assume that h = 0. Let I be a subset of 0Q with Hy_1 (I') > 0 and define a¢ in [0, +o0] in the
following way:

(@) 0 if e € 0Q\T
ao () =
0 +o0o ifzel.

Then, the integral f 20 apu?dH y_1 may be considered as a penalization which forces the function v to
belong to HE (Q) = {u € H' (2) : w =0 on I'}. By convention the functional ® becomes

/ W (z,Vu(z))dz if u€ HE(Q)
O (u)=4{ 7 ()

400 otherwise.

The subdifferential of ® contains now the homogeneous Dirichlet-Neumann boundary conditions as stated
in the following lemma which can be proved by an easy adaptation of the proof of Lemma [3.1

Lemma 3.2. The subdifferential of the functional ® is the operator A = 0P (= D®) defined by

dom (A) = {v € H: (Q) : divDeW (-, Vv) € L? (Q), DeW (-, Vo) -n =0 on 9Q\ I‘}

A (v) = —=divDW (-, Vu) for v € dom (A).
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3.2. The class of CP-structured reaction functionals. The reaction-diffusion problems modeling
a wide variety of applications, and amenable to analytical manipulation in homogenization (periodic or
stochastic), involve a special class of functionals that we define below.

Definition 3.1. A map F : [0,4+00) x L?(Q) — R% is called a CP-structured reaction functional, if
there exists a Borel measurable function f : [0, +00) x RY x R — R such that for all ¢ € [0, +-00) and all
veL?(Q), F(t,v)(z) = f(t,z,v(x)), and fulfills the following structure conditions:

ftz, Q) =r(tz)-g(C)+q(t,x)
with
e g:R — R!is a locally Lipschitz continuous function;

e for all T' > 0, r belongs to L™ ([O,T] X RN,RZ);
e for all T > 0, ¢ belongs to L? (O,T7 L? (RN)).

loc
Furthermore f must satisfy the following condition:

(CP) there exist a pair (L ?) of functions L? [0, 4+00) x R = R with f <0 < f and a pair (Bv ﬁ) in
R? with p < p, such that each of the two following ordinary differential equations

/ _ _y Ty =
ODE{ y (t)=[f(t,y(t)) forae. te0,+00) ODE{ y (t) 7,f (t,7(t)) for a.e. t €[0,+00)
—lyO)=p y(0)=p
admits at least one solution denoted by y for Ope and by ¥ for Ope satisfying for a.e. (t,z) €
(0,400) xR

fty®) < f(tey®) and f(t27)<fE7{).

The map F is referred to as a CP-structured reaction functional associated with (r,g,q), and f as a CP-
structured reaction function associated with (r,g,q). The map F is referred to as a regular CP-structured
reaction functional and f as a regular CP-structured reaction function if furthermore, for all T' > 0,
re WHH(0,T, L (RY,RY)) and ¢ € WHE (0,7, L2, (RY)).

loc loc

Remark 3.2. 1) Since y and ¥ are nonincreasing and nondecreasing respectively, for any 7' > 0 we
have y (T) <y (0) =p<p=y(0) <y (T).

2) We introduce the spaces L (]RN ) and L% (RN , Rl) because of the specific form of sequences
of CP-structured reaction functionals F. in the framework of homogenization where the scaling
r — % appears. Nevertheless, in Section we can replace these two spaces by L? () and
L? (Q,R") respectively. Note that when X is a reflexive space, W (0,7, X) is exactly the

space of absolutely functions from [0, T] into X (see [I3 Corollary A4]).

3) The reason why we introduce condition[[CP)|may be summarized as follows: even if CP-structured
reaction functionals do not satisfy the Lipschitz condition invoked in Theorems
according to the comparison principle (Proposition and Proposition below), we can prove
that reaction-diffusion problems associated with a CP-structured reaction functional admits a
unique solution which satisfies y (T') < u < §(T) whenever the initial condition satisfies p <

up < p (see Section [3.4)).

3.3. The comparison principle. Let us set V := {v € H'(Q) : divD:W (-,Vv) € L?(Q)}, and
consider two functionals Fy, Fy : [0, +00) x L? (2) — L? () defined by

)
Fy (t’u) (‘T) =f (t733,u (.’L‘)) B (tau) (m) =f (t,x,u(x))

where fi, fo : [0,+00) x RV x R — R are two measurable functions, fo being Lipschitz continuous
uniformly with respect to (¢, z), i.e., fulfills the condition | fs (¢,2,() — f2 (¢, 2,¢") | < L|¢ —(’'|. Moreover,
we are given two functions ug and vg in H' () and two functions h; and hsy in L? (0, T,L3, ., (89))
The following comparison result will be used for proving existence of bounded solutions of reaction-
diffusion problems associated with special reaction functionals (see Subsection . For similar notion
and applications of sub and supersolution related to elliptic boundary valued problems we refer the
reader to [10} [I1] and for parabolic problems, to [21].
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Proposition 3.1. Let T > 0, u € C ([0,T],L? () and v € C ([0,T],L? () be a subsolution and a
supersolution of the reaction-diffusion problems with respect to the data (ug, hi, F1) and (vo, he, F3), i.e.,

u(t) eV, C(% (t) € L*(Q) for a.e. t € (0,T),

P (o, I, F) % (t) = divDeW (-, Vu (t)) < Fy (t,u(t)) for ae. t € (0,T),

u(0) =ug € L2 (Q),

aou (t) + DeW (-, Vu (t)) - = hy (t) on OQ for a.e. t € (0,T),
dv

v(t) eV, p (t) € L*(Q) for a.e. t € (0,T),

dv

Pl )4 (t) = divD:W (-, Vv (t)) > Fy (t,v (t)) for a.e. t € (0,T),

v(0) = vy € L2 (),

agv (t) + DeW (-, Vo (t)) -n = hy (t) on 0Q for a.e. t € (0,T).
Then the following comparison principle holds:
up < g in L?(Q),
hi(t) < hg(t) on 99, for a.e. t€(0,T), p = u(t)<wv(t) foralltel0,T)].
<Pk

Proof. Set w = v —u. We are going to prove that w(t)” = 0 for a.e. t € (0,7). Indeed, for a.e.
t € (0,T) we have
dw
dt

Take w ()~ as a test function. By integrating over 2, and using Green’s formula we obtain

(t) — [divDeW (-, Vo (£)) — divDeW (-, Va (£)] > Fy (t,v () — Fi (8w (2)) .

|G 0w® det [ (DeW (2,0 (0) = DeW (2. Vu(e)) - Voo () da

_ /BQ (DeW (2, Vo (1)) — DeW (2, Vu (£))) -1 w (1) dH—y

> / (o (6,0 () — o (t 2 (8))) w () dz,
Q

Noticing that D:W (z, Vu (t)) - n = hy (t) — aou (t), and DeW (z,v (t)) - n = ha (t) — agv (¢) on 012, we
infer that

/Q %Lf () w (t)” da + /Q (DeW (x, Vo () — DeW (z,u (1)) - Vw () dz

+ /GQ (h1(t) —ho () w (t)” dHN-1 + /GQ ap (v —u)w dHy_1

> / (fa (b0 (8) — fu (t 2 (1)) w (£) da,
Q

from which we deduce

f/ % ) w(t)” dz — / (DeW (2, Vv (1)) — DeW (2,u (1)) - (Vo () — Vu (t)) dz
Q

[w(t)<0]

_ / (ho (£) — ha (8)w (£) dHy 1 — / a0 (v — u)? dHn
o0

[w(t)<0]NAN

> / (o (b, (8)) = fr (tsu (8))) 0 (1) d,
Q
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where we have used the relations
dw T dwt dw T dw™ dw dw™ dw~ dw _
(G0) =% 0 (G0) =% 0.5 0="0-% 0w 0uwn -0

in the distributional sense. Noticing that the three last integrands of the first member are nonnegative,
and f1 < fy, we obtain

331 [l Pde < [ (faltau@) = ot )0 () do. (©

From @ and the Lipschitz continuity of the function f5, we deduce that

< =
2dt/| T Pdx < L/|w ) w(t)” dx L/Q\w(t)

Integrating this inequality over (0, s) for s € [0, T], we obtain

[ o o ([ )

Note that since w™ € C ([0,T], L (Q)), s — [, |w (s)” |* dx is continuous. Then, according to Gronwall’s
lemma we finally obtain that for all s € [0, T]

/|w )P dax</ |w (0)~ |*dx exp (2Ls) ,

from which we deduce, since w (0)” = (vg — ug)~ = 0, that w (s)” = 0 in L?(Q) for all s € [0,T], i.e
u(s) <w(s)forall s€[0,7]. WA

Let us consider the case

a0 (z) = 0 if x € 0Q\T
0 ] 40 ifxel,

with h = 0, and set V := {v € H' (Q) : divDeW (-, Vo) € L2 (), DeW (-, Vv)-n =0 on 9Q\T'}. Then
an easy adaptation of the previous proof leads to the following comparison principle

Proposition 3.2. Let T > 0, u € C ([0,T],L?(Q)) and v € C ([0,T],L? () be a subsolution and a
supersolution of the reaction-diffusion problems with respect to the data (ug, F1) and (vo, Fy), i.e

du

(t) € L*(Q) for a.e. t € (0,T),

P (ug, b1, F1){ du

s (t) = divDeW (-, Vu (t)) < Fy (t,u(t)) for a.e. t € (0,T),

u (0) = ug € L% (Q),

v(t) eV, % (t) € L*(Q) for a.e. t € (0,T),
P (vo, ha, F3) Z—: (t) = divD:W (-, Vv (t)) > Fy (t,v (t)) for a.e. t € (0,T),

v(0) = o € L2 (Q).

Then the following comparison principle holds:

up < g in L? (),
u(t) <wv(t) onT, forae t€(0,T), p = u(t) <v(t) foraltel0T]
Fi <F
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3.4. Existence and uniqueness of a bounded solution. Combining Theorems [2.2| with the com-
parison principle we can establish the existence of a bounded solution of the Cauchy problem associated
with CP-structured reaction functionals.

Theorem 3.1. Let F be a CP-structured reaction functwnal with p, p and y, § given by and let
D be a standard functional of the calculus of variations (4f) of Section E 1| Assume that agp < h < agp
on 092. Then for any T > 0, the Cauchy problem

du

U )+ D (u(t)) =F (t,u(t)) for ae te (0,T)

(P)
w(0) =ug, p<ug<p, uo€dom(DD)

admits a unique solution u € C' ([O, T), L? ( )) satisfying assertzonsm m and the following bounds
in [0,T]: y(T) < y(t) <u(t) <yit) <y(T). If furthermore F is a reqular CP-structured reaction
functional, then u satisfies m
Proof. The proof of 1anf( o ® (v) > —oo is obtained from a standard calculation (see [?]).
ve

Step 1. We prove existence of a solution u of (P) for T = T* > 0 small enough, which satis-
ﬁes and the bounds y (T%) <y (t) <wu(t) <y(t) <y (T*).

By definition of CP-structured reaction functionals, F' : [0, 4+00) x L? (Q) — R% is defined for all
t €10,+00), all v € L? (), and for a.e. z € Q by F (t,v) (x) = f (t,z,v (z)), where for all ( € R

f(t7x7C) :T(t7x) g(C) —|—q(t,1‘),
and where g : R — R! is locally Lipschitz continuous. Fix arbitrary 77 > 0. The restriction of g
to the interval [y (7"),7 (T")] is Lipschitz continuous with some lipschitz constant L, [ Consequently
¢ — f(t,z,() is Lipschitz continuous with respect to ¢, uniformly with respect to (¢, x) in [y (T"),7(T")],
with

lf (t2,Q) — f(tz, )| < LIC= ¢,
where L = Lyl|7||poc(jo,r1]xr~ g1y According to the Mac Shane extension lemma, g can be extended
into a Lipschitz continuous function g in R. Hence the extension fof f defined by f(t, x,¢) =r(tx)-
g (¢) + q(t,x) is Lipschitz continuous with respect to ¢ in R, uniformly with respect to (¢, ), with the
same Lipschitz constant L. Consequently, the functional F : [0,400) x L2 (Q) — L2 () defined by

F (t,v) (z) = f (t,x,v (z)) satisfies and with L (t) = L.
Therefore, according to Theorem 2.1} for 7* > 0 small enough, that we can choose such that 7% < T”,
the problem

du ~
+D® =F (t,u(t)) for a.e. t € (0, T
(75) 5 @) (u(t)) (t,u(t)) €(0,77)
ﬂ(O):’LLO

admits a unique solution in C'([0,7*], X)) which satisfies |(L; )| and

By using Proposition we are going to prove that for all t € [0,T7], u(t) € [y(t),7(t)] C
[y (T*),y(T*)]. From condition |(CP), the function y, which does not depend on w, is a subsolu-

tion of the reaction-diffusion problem P (B? aoy (t) F ) in the sense of Proposition Indeed since
y(t) € ly(T),5(T")], DeW (2,0) = 0, and Vy = 0, we have for all t € [0, T"]

dy

Fty®))=F(ty®)=Ffty®) > f(ty ) =y (&) = F ¢ — divDW (-, Vy (1)),

initial condition y (0) = p,

boundary condition agy (t) + DeW (z, Vy () - n = agy (t) on 0.

On the other hand w is a solution of (ﬁ), thus a supersolution of P (uo, o, F ) From the comparison
principle, Proposition since p < ug, and agpy (t) < agy (0) = agp < h, we infer that y () < u(t)

3To simplify the notation, we do not indicate the dependance on T".
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for a.e. t € (0,7%). Actually, inequality y (t) < @(t) holds for all ¢t € [0,T*] (invoke the continuity of
t || (@(t) —y(t) |x). Reasoning similarly with g which is a supersolution of P (ﬁ, aoy (t) ,ﬁ), we
obtain that 7 (t) > w (t) for all ¢ € [0,T]*. To sum up we have u (t) € [y (t),7(t)] C [y (T*),y(T™")] for
all ¢ € [0, 7).

We claim that @ is actually solution of (P) in C ([0,T*],X). Indeed, from above, for all t € [0,T™]
we have w(t) € [y(t),y(t)] C [y(T*),y(T")] which in turn is include in [y (T”),7 (T")]. Therefore
F (t,@(t)) = F (t,u(t)) so that @ is solution of (P). From now on we write u for .

Step 2. We prove that there exists a global solution of (P). We use the notation of Theorem
and still denote by u € C ([0, Thas), X) the maximal solution of (P).

By applying Theorem [2.2] it suffices to establish that there is no blow-up in finite time. Assume

that Tha, < +o0o. From Step 1 we infer that for all T < Ty, and all ¢ € [0,T] we have u(t) €
[ﬂ (TMaz) 7? (TMaz)} . Hence

1 _
lullor,x) < Ln (2)? max (|y (Thao) | 7 (Taas) 1)

which makes lim |lullc(jo,77,x) = +00 impossible.
T—Trax e

Step 3. We finally establish that if F' is a regular CP-structured reaction functional, then G :
[0,400) — L2 (), defined by G (t) = F (t,u(t)), belongs to W' (0, T, L* (2)) for all T > 0. According
to Theorem we will infer that u satisfies

For all s < ¢ in [0,7], and from the fact that ¢, r and u are absolutely continuous, we have

1E () = F(s,u(s)) lx <[F@Eu) = F(su@)|x +[1F(s,ut) = F(su(s)|x

<lg(®) —q(s)llx+ sup g |llr (t) = r(s) lL2(orr)
Cely(T),5(1)]

+ 17l oo (o, 7y xrY 1y Lgllu (B) — u (s) || x
< [utyar 7)
where E| the function ¢, : [0,T] — R4, given by
= |2 + s WG| gk F @] ®
X CEy(D)y(1)] L2(Q,RY)

belongs to L' (0,T). From , we easily deduce that G is absolutely continuous, then belongs to
WL1(0,T, X). This completes the proof. W

By an easy adaptation of the previous proof, applying this time Proposition[3.2] we obtain the following
result.

Theorem 3.2. Let F' be a CP-structured reaction functional, with p, p and y, y given by and let
D be the functional of the calculus of variations . Assume that p < 0 < p. Then for any T > 0, the
Cauchy problem a

du

pn (t)+ D® (u(t)) = F (t,u(t)) for a.e te (0,T)

(P)
u (0) = g, p<ug<p, up€ dom (D)
admzts a unique solution u € C ([ 0,7], L* ( )) atisfying assertzons m m and the following bounds

sa
n [0,T]: y(T) < y(t) <wu(t) < y( ) < y(T). If furthermore F is a reqular CP-structured reaction
functional, then u satisfies|(Ls) m

Remark 3.3. 1) The set of functions uy € dom (D®) satisfying p < ug < p is non empty. For
the functional of Theorem any constant in [p,p] is suitable since H' () = dom (®) C

dom (®) = dom (D®) (for the last equality we refer to [8 Lemma 17.4.1]). For the functional
of Theorem ug = 0 is suitable.

“4We still wrote Lg the Lipchitz constant of the restriction of g to [y (T),5(T)]
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2) In the proof of Theorem we have established that if u is the solution of (P), then, for all
t € [0, T), the function F (£, (t)) belongs to L2 () since F (t,u (t)) = F (¢, (t)) for all t € [0, T).
3) In Theorem the mixed Dirichlet-Neumann boundary condition fulfilled by the solution u at
t €]0,T], is expressed in conditionby the fact that u (¢) € dom (D®) for all ¢ €]0,T], and is
given by:
aou (t) + DeW (-, Vu (t)) -n=h on 0N.
Therefore, when F' is a regular CP-structured reaction functional, () may be written as
du

s (t) — divDeW (-, Vu (t)) = F (t,u(t)) for all t €]0,T] (equality in L? (1))

(P) u(0) =ug, p<ug<p, upecdom(DP),

aopu (t) + DeW (-, Vu (t)) - = h on 0N for all ¢ €]0,T).
4) As regards Theorem the same remark holds, i.e., problem (P) may be written as

d
d%‘ (t) = divDeW (-, Vu () = F (t,u(t)) for all t €]0,T] (equality in L* ()
w(0) =up, p<up<p, uyedom(DP),

u(t) =0on I for all ¢ €]0,T],

DeW (-, Vu(t)) -n=0on 0Q\T for all ¢ €]0,T].

3.5. Estimate of the L? (R)-norm of the right derivative. From above we know that when the CP-
structured reaction functional is regular, the solution of P admits a right derivative at each ¢t € (0,T].
The next estimate below is crucial in the proof of the compactness step (Step 2) of the convergence
theorem, Theorem [41]

Proposition 3.3. Under hypotheses of Theorems when F is a reqular CP-structured reaction
functional, for allt € (0,T] we have

du™ 1 | du
22 (t <C C+ = — d
dt()HX +< +t>/o dt(T)XT
where
T dq T dT
C =max | Lg|[r|| Lo (jo,7]xrN R!)s I (r)|| dr+ sup lg (€) | dt (1) dr |, (9)
0 X CE(T),y(T)] 0 L2(,RY)

and Lg denotes the Lipschitz constant of the restriction of g to [p,p].
Proof. Step 1. We establish the following lemma.

Lemma 3.3. Let X be a Hilbert space, T >0, G € W11 (0,T,X) and ® : X — RU {+oo} be a convex
proper lower semicontinuous functional. Let u satisfy

% (t)+ 0% (u(t)) > G(t) for a.e. t€ (0,T),
(10)

u (0) € dom (0P).
Then the right derivative of u satisfies for all t €]0,T] the following estimate

+ t t
‘d“ wll < / du ol s+ / Gl as.
X t 0 X 0

X

dt dt At
Proof. For h > 0 intended to tend to 0, set H := G (- + h) and let v be the solution of

d

#)+0® (v(t) 3 H () for ae. t e (0,T),

v(0)=wu(h).
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Clearly v (t) = u (t + h) (recall that u which solves is the restriction to [0, 7] of a unique global solu-
tion u € C ([0, 4+00), X) of in (0,+00), and that u (t) € dom (®) for all ¢ € (0,7)). From (10), (1)),
and the monotonicity of 9®, we infer that for a.e. o € (0,7)

<Ccll:(0_) ‘f;;(g)’v(g)u(g)> <(H (o) =G (0),v(0) —u(o)),

hence
sglv (@) —u(o) % < (H(0) = G(0),v(0) —u(0).
Integrating over (s,t) where 0 < s < ¢ < T, we obtain for all ¢ € [0,T]
Sl0® = u@ Ik < 5106 ~u@ 5+ [ (H@) =6 0).0(0) - ul) do

< %Hv (s) —u(s) % + Ot [H (o) = G (0) [[x][v(0) —u(0)|do.
Thus, according to the Gronvall type lemma, [I3, Lemma A.5], it follows that for all ¢ € [0,7] and all
s €[0,t] )
o) = u®x < o) =l lx + [ 17 (0) =G (o) |xder
that is .
Ju(t+h) —u(t)llx <llu(s+h)—u(s) HX+/O |G (0 +h) =G (0) || xdo.

Dividing by h and letting h — 0, we infer that for all ¢ € [0,7] and all s € [0, ¢]
du™ du™ HdaG
o || +[]5 e

dt x dt < Jo || dt
(for a justification in order to obtain the last integral, we refer the reader to [13, Proposition A2]). By
integration over (0,t), we obtain for all ¢ € [0, T]

do
X

dut Hl dut Hlada
t||— (T < —_— t —_— d
‘ dt()Hx_/o dt (8)X+/0 dt(s)xs
Hl du Hlda
= — t —_— d
/0 7 (s) X—|— /0 7 (s) . s

which gives the result for all ¢ €]0,77]. This ends the proof of Lemma |

Last step. The thesis of Proposition follows by combining Lemma |3.3| and the expression of the
total variation of G given by and where G (t) = F (t,u(t)). W

4. GENERAL CONVERGENCE THEOREM FOR A CLASS OF NONLINEAR REACTION-DIFFUSION PROBLEMS

Consider a sequence (®,,),, oy of functionals of the calculus of variations @, : L? () — R U {+oc}
defined by

1
/ W, (x, Vu (z)) dx + f/ ao’n’LLQdHNfl — / hou dHy—1 ifu€ H(Q)
o, (u) = Q 2 Joa 99

400 otherwise

where h, € L3, (09Q), apn € L3, (09), agn > 0 Hy_1-a.e. in 09, agpn > 0, on I' C 9Q with
Hy_1 (') > 0 for some o, > 0, and W,, : RY x RY — R is a measurable function satisfying the following
conditions:
(D1,5,) there exist {ay}neny C RY% and {8, }nen C RY such that for a.e. x € RY, all £ € RY, and all
neN
anl€]* < Wy (2,6) < Ba (1+ %)
(Da,,) for a.e. x € RY and every n € N, the function W, (x,-) is convex and differentiable with
DeW,, (2,0) = 0 a.e. in RY,
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(D3,n) (Whn),,cn is uniformly strongly convex, i.e., for some v > 0 it holds for all £ € RY,

f inf D € > lE2
fnf inf DeWn (2,€) - € 2 9[¢]

In the following, we fix T'> 0 and we consider a sequence (F},),, oy of regular CP-structured reaction
functionals, each of them being associated with (ry,gn,qn), i-e., Fy (t,v) () = fo (¢, 2,0 (x)) for all
t€[0,7T], a.e. x € Q and all v € L? (), where

fn (t,2,0) =70 (£,2) - gn (O) + qn (t, ) for all (t,z,¢) € [0,400) x RY x R. (12)

We assume that for all n € N the fonction g, is locally Lipschitz continuous, uniformly with respect to
n, i.e., for every interval I C R there exists L; > 0 such that for every (¢,¢’) € R?

sup |gn (¢) = gn (¢)| < Lyl¢ = ¢ (13)
neN

This condition is fulfilled for example by g, = (g"vi)izl,‘..,l where the scalar functions g, ; are convex
and satisfy for all ¢ € R, 0 < g,,;(¢) < B (1 +|¢|P*) for some §; > 0 and p; > 1. This is the case of
Example b) where ~,, > 0 is substitute for v > 0.

We assume that the absolute continuity of the functions r,, and g, holds uniformly with respect to n,

ie.,
T
dry,
sup/ " (t,~) dt < +o00,
neN L2(Q,RY) (14)
d
sup H qn t,) dt < +o0.
neN 2(Q)
Finally, we assume that
p=infy (T)>—-o0 and p:=supy, (T)< +o0, (15)
- neN=" neN
and, for all n € N,
aonp, < hy < agup, on 0N (16)

where y ~and ¥, are given by condition E )| fulfilled by each F),. Recall that these two functions are
solution of suitable o.d.e. with initial condition e, and p,, respectively. When considering the case

(2) 0 ifx € 0Q\T
agn (x) =
0 400 ifzel,

and h, =0, for all n € N, then has to be replaced by
p,<0<p, foralneN. (17)

In order to establish a convergence result for reaction-diffusion problems (P,,) with diffusion part D®,,
and reaction part F),, we take advantage of standard results involving I'-convergence of the functionals
®,, to @, and particularly in homogenization framework (see [8, Subsection 12.4]). More precisely, it
is convenient to establish the convergence of the sequence of problems (P, ) under the hypothesis of
the Mosco-convergence of the sequence (@), .y, introduced in [I8, 9], i.e., the I'-convergence of the
functionals ®,, when L? (Q) is equipped both with its strong and its weak topology. For the definition
and variational properties of this notion we refer the reader to [8 Section 17.4.2], and for the connection
with Moreau-Yosida approximations we refer to [7, [16]. Note that even if ®,, is Gateaux differentiable
according to we are not ensured that its Mosco-limit ® is Gateaux differentiable. We will denote

by &, M & the Mosco-convergence of the sequence (), .y to ®. A first important lemma (which is
proved in Appendix [C)) concerns the Mosco-convergence of functionals defined in L? (0, T, X).

Lemma 4.1. Let (X, |- ||x) be a reflexive Banach space whose norm together with its dual norm is
strictly convex, and such that weak convergence of sequences and convergence of their norms imply strong
convergence. Let (1n), oy, ¥ be a sequence of convex uniformly proper lower semicontinuous functions
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from X into RU {+o0} such that iy, M and consider (0,) U:L2(0,T,X) — RU{+co} defined

by

neN?

T T
V(o) = [ lo@)dn )= [ w)

Then ¥, My,

Recall that the sequence (¢,),,cx, % is said to be uniformly proper if ¢ is proper and if there exists a
bounded sequence (un,0),y in X such that sup,,ey ¥n (un,0) < +00.

Here is the main result of Section Fl

Theorem 4.1 (General convergence theorem). Assume that (W), oy satisfies and
and that the sequence of CP-structured reaction functionals (Fy), cy, of the form (12), satis-

fies (13)), , , or when, for alln € N, h, =0 and

don () = 0 if x € 0Q\T
02 T Y heo  ifz el

Let u,, be the unique solution of the Cauchy problem

Bn () 4 D, (un (1)) = Fy (1 un (1)) for a.e. t € (0,T)

dt
(Pn)
un (0) =uy, p <up <p,, u)cdom(P,).

Assume that
(Hy) @, M & and sup lhnllz, (o) < +oo;
neN HN-1

(Hg) sup @, (u?l) < 4o00;
neN

(H3) there exists u® such that u® — u® strongly in L? (Q);

(Hy) there exists g such that g, pointwise converge to g;

(Hs) ilég [7nllLos (0,7) xRN RY) <+00, and there exists v € L™ ([O,T] X RN,RZ)
such that r, — r in L? (O,T, L? (Q,Rl));

(He) for all't € [0,T], sup llgn (¢, ) [|L20) < +oo0,

and there exists q such that ¢, — q in L? (O,T, L? (Q))
Then (un),, ey uniformly converges in C ([O,T], L? (Q)) to the unique solution of the problem

d
dit‘ (t) + 0D (u(t)) > F (t,u(t)) for a.e. t € (0,T)
(P)
uw(0)=u’, p:=infy (T)<u’<sup%, (T):=p, uo€ dom(P).
- neN—" neN
The reaction functional F : [0, +00) x L? () — R® is defined, for all t € [0,T], all v € L?(Q)

and for a.e. x € Q, by
E(tv)(x) = f{azv(x) and f( () =r(tz)

Moreover, %o — 4t weakly in L? (0,T, L* (Q)) and inf,en y, (T)
If furthermore ® (u,ol) — @ (uo), rn — 1 in L? (O,T, L? (QRZ)

then %o — 24 in [2(0,T, L% ().

g()+q(t,z).
u < sup,en ¥, (1).

<
), and g, — q in L? (O,T,L2 (Q)),

Proof. We only establish the proof for ®,, given of the first form, i.e., when the domain of the subdif-
ferntial contains mixed Dirichlet-Neumann boundary conditions. The proof of the second case is slightly
shorter, with some easy adaptations. Note that in the statement of Theorem we assume that
u? € H' () = dom (®,,). But dom (®,,) C dom (®,,) = dom (D®,,), thus u € dom (D®,,). Therefore,
according to Theorem [3.1] (P,) has a unique solution u,, which satisfies and of Theorem [2.1
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and the bounds y (T') < un, < ¥, (T). Finally, note that since u? € dom (®,,), we have the additional

regularity: %% belongs to L? (0,7, L? (2)) (see [8, Theorem 17.2.5] or [I3, Theorem 3.6]).

Step 1. We establish

1
sup [tnllo0.7,x) < L ()2 max (|p, [7]) ; (18)
ne

duy,
sup “ < 400 (19)
neN dt L2(0,T,X)

(recall that p and p belong to R from (T5)).
Inequality follows directly from p <y (T) < u, <7, (I') < p. Let us establish (19). In what
follows the letter C' denotes a constant which can vary from line to line. From (P,,) we deduce that for
duy,

a.e. t € (0,T),
%20+ (Do), % 0) = (B v ). 52 0)).

We have used the fact that F), (,u, (t)) belongs to L? (2) as stated in Remark By integrating this
equality over (0,7, we obtain

/OT iy /OT <D<I>n (un (), ddi; (t)> dt = /OT <Fn (t,un (1)), CZ‘T” (t)> . (20)

X

2
duy,

dt

X

du,,
7 (t)

But %= belongs to L? (0,7, X) and ¢ — @, (u, (t)) is absolutely continuous (see [I3, Theorem 3.6]).
Consequently for a.e. t € (0,T), L@ (uy (t) = (DPu, (t ),dg—t"( )) (see [, Prop051t10n 17.2.5]). Recall
that there exists p > 0 such that ®,, + (]| - ||x + 1) > 0. Therefore from and (|18) we deduce
du ? du
)| dt=-a, o, (t,un (1), —= (t) ) dt 21
[ ][ Cun () 0 () + [ (Pt ). 2 1)) (21)

< o (un (T >||x+1>+3gg ()

T % T 2 %

2
+</0 |Fn(t,un(t))|th> (/0 th)
T % T
sc+i§§¢n(ua)+</) ||Fn<t,un<t>>||%<dt> (/

By using the structure of the CP-structured reaction functional F,,, we have

B (810 () 15 = |

where L = Lysup, ey |75l £ (jo,7]xr~ rty, and Ly is the Lipschitz constant of {g,}nen in the interval
I = [p,p]. On the other hand, we have clearly

1 (2,0) 1% < € (1 + llgn (£ ) %) (24)
where, from hypothesis [(H4)|and [(Hs), C is a nonnegative constant which does not depend on n. Hence

du,

pr (t)

dun

Q)

i dt) y (22)
X

~ 2
B (b un ()] < 2010 (1,0) I + 222 () 0.7 (23)

T
| 1P 0 e < € (14 Il rm)
so that, according to hypothesis

T
sup/ 1E, (2,0) % dt < +o0. (25)
neN

Combining and , yields

T
Sup/ | Ep (t, un (1)) || 3 dt < 4-00.
neNJo
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From and we infer that
2 3
dt
X

T 2 T
/ a<C|1+ /
0 X 0

where C is a nonnegative constant which does not depend on n, from which we deduce (|19)).

du,

du,,
— e ()

a0

Step 2. We prove that there exist u € C ([0,T], X), and a subsequence of (uy), .y not relabeled,
satisfying u, — u in C ([0,T7], X).

We apply the Ascoli-Arzela compactness theorem. From , (tn), ey is bounded in C([0,77], X).
Moreover, for s < t, (s,t) € [0,7?], we have

t
du 1 ||du du
[[tn () = un () IIXS/ = || _dr<(t-s)®||—= < (t—s)% sup s
s t X t L2(0,T,X) neN t L2(0,T,X)
which, according to ([19)), proves the equicontinuity of the sequence (uy,),cy. It remains to establish for

each t € [0,T], the relative compactness in X of the set E; := {u, () : n € N}. For t = 0 there is nothing

to prove because of hypothesis on the initial condition. For ¢ €]0, 7] we are going to use that H' (Q)

is compactly embedded in L? (). For that purpose, we are going to see that the boundedness of Vu,, (t)

requires the sharp estimate of Proposition [3.3]

According to Theorem uy,, satisfies then possesses a right derivative at each ¢ €]0,T] (at

t = T, this is due to the fact that u, belongs to C ([0,+00),X) so that the right derivative of u,, at
t = T is nothing but the right derivative of the restriction of u,, to [0,7]). Moreover,

dut

dt

Taking u, (t) as a test function, we infer that for all ¢ €]0, T

dut
(5 00 0) 4 (Do 10 (000 () = (o 100 ()0 (1),

hence, from the Green formula and the fact that u,, (t) € dom D®,, for all ¢ €]0,T],

/Q DeW (&, Vi (1)) - Vup (£) da

(t) + D, (uy, (t)) = Fy, (¢, un (t)) for all t €]0,T).

duf
= DeW,, (2, V up, (8) 1wy () dHN—1 — d—t" (t) un, (t) dz + / Fy (t,un (1)) uy, (t) de
a0 Q Q
dut

N /asz (6 = aontn (8)) un (¢) dHy - _/Q dtn (t) up (t) d +/ F, (t,uy, (1) up (t) do

ut
< d)nun (t)dHn—1 — /Q dd; (t) uy (t) dz + /Q F,, (t,up (1)) uy, (t) de. (26)

ChooseyeRO<V<C =

tion and Cl e 18 the constant of continuity of the trace operator. From m and .
we infer that for all ¢ €]0, 77,

7 [ 90 () P < ol om0 113, om)

1 _ du;
2 (@ (g ) (|2 0+ 17 (o ) 1)
X
CTGC? CTGC?
s H¢nHL2 COR t2 [un (8) 171 0
1 _ duj
+cN<sz>2max(\g\,\p\) 5 )|+ 1 (o ) I
X
Ctmce

CT(LCGV 72
1601, om + <5 ([ 1700 (0 P + £av (@) (21 7)°)

1 u+
+ oy (@) ma ol 1) | %52

E (o (1) ||X) |

X
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Hence

C race C race C ’V‘ace
(v= S5 [ 19 ) Pae < G sup ol oo +

2

Zreeel £ (€0) max (Jpl, [7])?

+ 2@ max (ol o) (| %2 0+ 15 G @)1x) . D
X
To conclude, it suffices to prove that
dut H
su — (¢
nEII\)T< dt () X

Indeed, from (27), (18), and the compactness embedding H' () — L*(Q) we will conclude the com-
pactness of the set E; for each ¢ €]0,T]. For proving , we establish successively

+ || Fo (t, up (1)) ||X) < +o0. (28)

sup || Fp (¢, up (1)) || x < +00; (29)
neN

d +
sup B (t) ’ < +00. (30)
neN dt X

Proof of . This estimate follows straightforwardly from , , 7 and hypothesis |(Hg )|
Proof of . By applying Proposition we deduce that there exists C), such that
du,

dut 1 T
—2 (t <C, C, + - — (¢t
|G 0] <o (e d) [ G,

From (9, the uniform Lipchitz condition (|13) together with (Hs)l, and [(Hg)} we infer that
19)

sup,,eny Cn < +00. Hence (30) follows from (19

dt.

Step 3. We assert that d"“ — %‘ weakly in L? (0,7, X) for a non relabeled subsequence, and that
p <u <p. The first claim is a straightforward consequence of (| and Step 2. The second one follows
easily from inequality p < wu, <p and u, — u in C([0,T], X )

Step 4. We prove that u is the unique solution of (P). From Step 2, there exists u € C ([0,T], X)
and a (non relabeled) subsequence such that u,, — u in C ([0,T],X). To simplify the notation, we still
write Gy, (t) = F, (t,u, (t)) and we use the subsequence obtained in Step &, that we do not relabel.
According to the Fenchel extremality condition (see [8, Proposition 9.5.1]) (P,) is equivalent to

By (n (£)) + D7 <Gn () — ddit" (t)) + <CZ”; (t) = G (1) , un (t)> ~0

for a.e. t € (0,T) (together with the initial condition that we do not write), which is also equivalent to

[ [0 (600 - 2 @) + (% 0 Ga0.0 )] =0

Note that equivalence above is due to the Legendre-Fenchel inequality which asserts that inequality

P, (un (1) + % (G (t) — L (1) + (Ln (1) — Gy, () ,un (1)) > 0 for ae. t € (0,T), is always true (see
[8, Remark 9.5. 1]) T herefore (Py) is equlvalent to
T . dun d1
ot @)+ 8 (6000 = G2 0) + Gl 0012 = (G0 0 ()] a1 =0,
0

or, equivalently, to

[ [t @0+ (001 G 0)] s g (oo 01 = ) = [ @ 0,0 =00

(31)
From hypothesis |(Hs )| we have
[unllx = el (32)
T
du, du, du . .
Combining u,, (T) = u? +/ L (t) dt with HnC gy 12 (0,T,X), we infer that
o dt dt dt

lim inf {|u, (T) [* = u (T) [|*. (33)
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We postpone the proof of the following convergence at the last step of the proof (see Lemma
G, — G weakly in L* (0, T, X) (34)
where G (t) = F (t,u(t)) and F (t,u(t)) (z) =7 (t,z) - g (u(t,x)) + ¢ (¢, x). Passing to the limit in (3I)),
from , , 7 Step 3, and Lemma we obtai
T T
* 1
[ [pworre (6o -5 0)] a5 Gum =102 - [ 6w daso

or equivalently

T
du du
® o+ _ au
[ [pwmer (co-%0)+ (G 0-c0.u0)] as (35)
But from the Legendre-Fenchel inequality we have ® (u (t))+®* (G ( 0))+{(% ) -G @t),u(t)) >
0, so that yields that for a.e. ¢t € (0,T), ® (u(t)) + ®* (G (t) — ) d@t)y—G@t),ut))=0
which is, according to [8, Proposition 9.5.1], equivalent to
d
d?( )+ 0 (u(t)) > G (t) for ae. te (0,T).

We have already proved that p < ug < pin Step 3. It remains to establish that uy € dom (®). From
and we infer that
® (up) < liminf @, (ul)) < sup @, (uh) < 400,

n—+0o0 neN

which prove the thesis. For the proof of uniqueness of
du

w(0)=u", a<u®<b, weH(Q)),

— )+ 0P (u(t)) > F(t,u(t)) for ae. t € (0,7T)

it is enough to reproduce the proof of uniqueness of Theorem [2.1] with a Lipschitz constant for F' given by
L (t) = [|r[| oo (jo,7) x&~ rt) L[5 Since every subsequence of the subsequence of (uy), oy obtained above
converges to the same limit u in C ([0, 7], X), the sequence (uy,),, oy converges to u in C ([0, 7], X). Idem

for the sequence (%) - which converges to 4% weakly in L? (0,T, X).

Step 5. We show that if ® (u) — @ (u° ), rn, — 1 strongly in L? (0,7, L? (Q,R")) and ¢, — ¢
strongly in L? (0,7, X), then %= — 44 strongly in L2 (0,7, X). From Step 3 and Step 4 we have
dc’;t" — ‘3—1; weakly in L2 (0,7, X), hence it suffices to establish that H%Hy(o rx) ||Ccll—1t‘||L2(0 7.x) t0
prove the claim. By repeating the proof of Lemma [4.2] below under the hypotheses of strong convergence
of r, and g, to r and g respectively, it is easily seen that G,, strongly converges to G in L? (0,7, X).

Therefore, passing to the limit on , and since ., M ®, we deduce that

. T\l duy, 2 L 0 T du
lgigg/o W(t) th—*légl}rg}:q)n (un (1)) + @ (u )+/0 <F(t,u(t)),dt(t)>dt
T du
< =@ (u(T)) + @ (u°) +/O <F(t,u(t)),dt(t)>dt
T du 2

The conclusion follows from the lower semicontinuity of the convex function ¢ — /¢ ||i2(0T x) in
L?(0,T, X).

Last step. We establish the convergence invoked in Step 4.

Lemma 4.2. The functional G, = F, (-, u,) weakly converges in L?(0,T,X) to G defined by G (t) =
F (t,u(t)) where F (t,u(t)) (x) =r(t,x) g (u(t,z))+q(t,x).

5From hypothesesl(Hl)l, |(H2)| andl(Hg)I, the sequence (®n), ¢y, @, is clearly uniformly proper.
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Proof. Recall that G, (t) = H,, (t) + g, (t) where
Hy, (1) (x) = ry (t,2) - gn (un (¢,2)) -
Hence, since ¢, — ¢ in L? (0,7, X), it remains to prove that H,, — H in L? (0,T, X) where H (t) (z) =
r(t,z) - g (u(t,x)). According to in the interval I = [p, p], we haveﬂ
llgn (un (8)) = g (w(®) L2ty < Lillun (£) = w () [[x + llgn (w(8)) = g (w(8) L2 pr)-

Hence

/0 g (t (8))—9 (1 (1)) [ g, it < 213 /

T T
(8= () e | (0= 0 (0) [

(36)
On the other hand, from (13]), and hypothesis [(Hy)} we clearly deduce that |g,, (¢)| < C (1 + |¢|) where
C' is a nonnegative constant depending only on L; and ¢ (0). Consequently, applying the Lebesgue
dominated convergence theorem and [(Hy), we infer that

T
fm_J. lgn (u () = g (u(®)) 122z dt = 0.

n—-+4oo

Passing to the limit in (36) we deduce that g, (un (-)) — g (u(-)) strongly in L? (0, T, L? (Q,R")). The
conclusion of Lemma [4.2| follows from the fact that r,, — r weakly in L? (0,7, L* (,R')). W

The proof of Theorem [.1]is complete. M

In some cases, we can specify the domain of the limit functional ® as in the proposition below.

Proposition 4.1. Let denote by dom (®) the domain of the Mosco-limit ® of the sequence (P,,)
Then we have

i) if an =« for alln € N, then dom (®) C H' (Q2),
i) if iminf,,_ o Bp < +00, agn — ag for the o (L%?Ni1 (09, L%{Nil (89)) topology, and h, — h
weakly in L3, (0R), then H' (Q) C dom (®).

neN"

Proof. Let us establish the first assertion. Let v € dom (®), then from (H;), there exists v, — v
strongly in L? (Q) such that lim,_ 4o @y, (v,) = ® (v) < +00. From the uniform lower growth condition

of ®,, and hypotheses |(H;)| and |(Hs)l we infer that for any v > 0,
2
o [V, @F do < sup®, o) + s, oo onllss, om

Ctmce
< sup @y (V) + ——
neN ( ) 2v

ClraceV
2 trace 2
”hnHLitN_l(aQ) + =5 lall ) -

Hence choosing v such that o — %Ctmceu > 0, we obtain for some constant C > 0,

/Q‘W" )] dz < C (1 + anlliz(m)a

and, finally, from |(H3)|

sup [[on | 1) < 00
neN

Therefore, there exists a subsequence, that we do not relabel, and w € H* (Q) satisfying v,, — w weakly
in H' (Q) and strongly in L? (Q2). Hence v =w € H' (Q).

On the other hand, for v € H! (), according to (H;) and the growth condition, one has

1
® (v) < liminf @, (v) < liminf G, (1 +/ |V1)|2 da:) + f/ aov® dHy_1 f/ hv dHy_1 < 400,
—+oo Q 2 Jaq a0

n—-+o0o n

from which we infer the second assertion. W

6To simplify the notation we write g (un (t)) for the function = — gy, (un (£, z)).
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For each n € N let us write ®,, : L% (Q) — R U {+oc} as follows:

1
D, (u) + 7/ apnu? dHyn_1 — hpu dHy_1  ifue H(Q)
®, (u) = 2 Joo 00

+o00 otherwise,

where ®, : H'(Q) — R, is defined by @, /W z,Vu(x)) dz. The following result gives

sufficient conditions for the Mosco-convergence of (®,,), .y when we assume that d, I’-converges to d
with respect to the L? () topology.

Proposition 4.2. Assume that

(Hy) o there exist « >0 and > 0 such that the sequence (W), cy satisﬁes with a, = a and
By, = B for alln € N;
o &, I'-converges to ® when H' (Q) is equipped with the strong convergence of L? (2);
® agn, — ag strongly in L3}~ (09Q);
o hy — h strongly in L, (09).

Then @, 2 ® where & : L2 (Q) = RU{+o0} is given by

® (u) + 1/ aou® dHy—1 —/ hu dHy_y  ifu € H' (Q)
O (u) = 2 Joa o9

400 otherwise.

Proof. The proof fall into two steps.
Step 1. Let v, — v weakly in L? (€2), we establish that ® (v) < lim+inf D, (vy).

We assume that liminf,, o @y, (v,) < 400 and we reason with various subsequences that we do not
relabel. Moreover C' denotes various positive constants. From |(H7)l the uniform lower bound of W,
and the continuity of the trace operator, we have, for v > 0,

o [ IVt de < Cotlihall, oollenlzs, oo

C”(I/Le
< O+ = hy ||L2 ) T T anHHl(Q

O'V'(I/Ce
(a : ) / |V, |? de < C (1 + an||H1(Q )

sup [|[vp || 1) < +oo.
neN

A

Hence

Therefore, choosing v

Consequently, there exist a subsequence and w € H* (Q) such that v,, — w weakly in H! () and strongly
in L2 (Q). Thus w = v so that v € H! (Q) and v,, — v strongly in L? (Q). According to we infer
that

® (v) < liminf @, (vy) . (37)

n—-+oo

On the other hand

/ao,nvfl dHy_1 = / (ao,n—ao)vidHN_l—F/ aovidHN_l
o0 o o

%

—|lao,n — aoHLoo L(09) sup/ v dHy 1 +/ apv2 dHy 1.
20 a0

neN
According to the weak continuity of the trace operator from H' () into L, (8Q) and to the lower
semicontinuity of the map w +— [, 5 aow? dHy_1, we infer that

/ apv? dHy_1 < liminf/ aoynvz dHy_1. (38)
80 9Q

n—-+o0o
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. . . 2 . 2
Finally, since h,, — h strongly in Lz, (952), and v, — v weakly in L7, _ (99Q), we have

lim hnvn dHN_l = hv dHN_l. (39)
n—=+o0 Jaq oQ

The proof of the claim is obtained by collecting (37), (38), and (39).

Step 2. Assume that ® (v) < +o00. We prove that there exists a sequence (v, ),,cy strongly converging
to v in L? (Q) such that limsup,,_, . @5, (vs) < P (v).

Since @ (v) < +o00, we infer that v € H! (), and, according to hypothesis there exists a sequence
(W) ey 0 H' (Q) strongly converging to v in L? (), such that

lim @, (w,) = (v).

n—-+o0o

By using the well known De Giorgi slicing method, (it is precisely at this point that we use the uniform
growth condition), we can modify w,, into a function v, in H' (Q) satisfying v,, = v on 9Q and

lim sup ®,, (vn) < @ (v)

n—-+o0o
(see proof of [8, Corollary 11.2.1]). Then clearly limsup,, ., , ., @y (v,) < @ (v), which proof the claim. B

Proposition[£.2]leads straight to the following corollary of Theorem 4.1 which is applied in Theorem
below.

Corollary 4.1. Under hypotheses of Theorem 4.1 where|(Hy)| is replaced by the same conclusions
hold.

Remark 4.1. We can, in some sense, justify our convention which consists to see the functional
N / W (z,Vu(z))dx ifue HE:(Q)
O (u)=1{ 7

400 otherwise

as a particular case of
/ W (x,Vu (z)) dx + 1/ au’dHy 1 —/ hu dHy_1 ifue H' (Q)
O (u) = Q 2 Jaq a0

+00 otherwise

0 ifxeoQ\T

with h =0 and ag (z) = .
4+oo ifzxeTl.

0 ifzedQ\T

. . We
n ifzel

For this purpose we apply suitably Theorem Set h, =0 and agp, (v) = {

have

5 () /QW (x,Vu(x))dz + E/I;UQCZHN_l ifue H* (Q)

+00 otherwise.

On the other hand, set F,, = F and uy = up, p < ug < p, wup € dom(D®). The conditions
ag,np < hp < agnp on 0 become p <0 <p. We claim that ®,, Mosco-converges to P.

Consider a sequence (Unen),, oy Satisfying v, — v strongly in L? () and liminf,, o ®p (vn) < +00.
In what follows, we reason with various subsequences that we do not relabel. From
n2
sup — deHN,l < 400
neN r
we infer that

v, — 0 strongly in L3, (). (40)
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On the other hand, from

sup/ W (z, Vo, (x)) de < +00
neNJQ

and the lower bound condition of W, we deduce that the sequence (vy),,cy is bounded in H' () (recall
that v,, — v in L? (Q)). Therefore v,, — v weakly in H! (), and, according to the continuity of the trace
operator from H' () into L3, (99), v, — v weakly in L3, _ (T'). From we infer that v = 0 in

T, hence v € HE () and ® (v / W (x,Vv (z)) dz. Since for all n € N,

/Q W (x, Vo (x))dz < @, (vy,)

we deduce that ® (v) < liminf, 400 @y (Vn)-
Take now v € Hf: () (otherwise we have nothing to prove), and set v,, = v. Since ® (v) = ®,, (v), we

have lim, 1 oo @, (v,,) = ) (v), which proves the claim.

Since all other conditions of Theorem are fulfilled, we deduce that problem (P,) with mixed
Dirichlet-Neumann boundary conditions

CC%L (t) — divDW (-, Vu (t)) = F (t,u(t)) for all t €]0,T] (equality in L? (Q))
(Pn)q (0) =uo, p<wup<p, ugécdom(DP),

u(t) + DeW (-, Vu(t)) -n =0 on 0N for all ¢ €]0,T].

converges in the sense of Theorem to problem (P) with homogeneous Dirichlet-Neumann boundary
conditions

du

s (t) — divDeW (-, Vu (t)) = F (t,u(t)) for all ¢t €]0,T] (equality in L? (1))

w(0) =up, p<ug<p, wug€dom(DP),

u(t)=0onT for all ¢ €]0,T],

DW (,Vu(t)) - n=00n0Q\T for all t €]0,T).

5. APPLICATION TO STOCHASTIC HOMOGENIZATION

The behavior of heterogeneous media in physics or mechanics has been thoroughly analyzed from a
mathematical perspective through the framework of homogenization. In this context, diffusion problems
with periodic heterogeneities are now well understood, and diffusion in random media has been fairly
well analyzed in [I7] and [8] Sections 17.4.4, 17.4.5], where the diffusion operator is the subdifferential
of a random energy.

By contrast, homogenization of reaction-diffusion problems modeling for example biological invasion in
the context of food limited population dynamics, does not seem to be addressed. The interplay between
environment heterogeneities in the individual evolution of propagation species, plays an essential role.
Indeed, empirical observations suggest that growth rates, or various thresholds which appear in the
models, are mostly influenced by the environment, and vary in each small habitats (forests, marshes,
hedges, etc.). Most of the time, these heterogeneities appear very small compared with the dimension of
the domain, and statistically, are homogeneously distributed. Therefore both diffusion and reaction parts
in the problems modeling the propagation, present random coefficients and a small parameter & which
accounts for the dimension of heterogeneities. To identify the effective coefficients (effective growth rate,
various effective thresholds etc.), the purpose of this section is to describe the equivalent homogenized
problem when ¢ goes to zero. The procedure consists in applying Theorem [41]in Section [4
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5.1. Probabilistic setting. For any topological space X, we denote by B (X) its Borel o-field, and we
return to the basic concepts of [8, Section 12.4.3] (see also references therein) concerning ergodic dynamic
systems. Let (3, A, P) be a probability space. Let (7%),.,~ be a group of P-preserving transformations
on X, ie., for all z € ZY, the map T, : ¥ — ¥ is A measurable and satisfies T,#P = P, where we use
the standard notation T,#P to denote the image measure (or push forward) of P by T,. We denote
by T the o-algebra of invariant sets of A by the group (7%.),.,~ and, for every h in the space Ly (%)
of P-integrable functions, by EZh the conditional expectation of h with respect to Z, i.e., the unique
Z-measurable function in L} (X) satisfying for every E € T

[ E @) P = [ hwap ).

E
If 7 is made up of sets with probability 0 or 1, the discrete dynamical system (E, AP, (TZ)ZGZN) is said
to be ergodic. Under this condition, we have EZh = Eh where Eh = [ h (w) dP (w) is the mathematical
expectation of h.
A sufficient condition to ensure ergodicity is the so called mixing condition which expresses an asymptotic
independence: for all sets E and F of A
‘ ‘hni P(T.ENF)=P(E)P(F). (41)

Ergodicity is indeed obtained from by taking E = F' in Z. In what follows we will also need the
following technical standard results.

Invariance and Z-measurability. A function h : ¥ — R is Z-measurable if and only if it is invariant
under the group (7%),,, i.e., hoT, = h for all z € ZN . For implication

(h is Z-measurable = h is invariant),
the claim is indeed the straightforward consequence of
T ({(h@)}) = i~ ({h(@)}) <= h(T. (@) = h(w).
The other implication is immediate.

The conditional Lebesgue dominated convergence theorem. Let (hy), .y be a sequence in Lp (¥) such

that h,, — h, P-a.s. in 3, and assume that there exists h € Lp (X) such that |h,| < h for all n € N.
Let G be a sub c-algebra of A, then EYh,, — E%h, P-a.s. in . The proof follows a similar method
as in the proof of the standard Lebesgue dominated convergence theorem, using the conditional Fatou
Lemma instead of the standard Fatou Lemma.

In the next two sections, (E, AP, (Tz)zeZN) is a given discrete dynamical system.
5.1.1. The random diffusion part. Given o > 0, 8 > 0, and v > 0, we denote by Conv, g the class
of functions g : RV x RY — R, (z,€) — g (z,€), satisfying conditions [(Dy )} [(D2.,,)} and |(Ds.,)l The

class Conv, g is endowed with the o-algebra 7cony, ;. Which is the trace of the product o-algebra of
RRY xRV

, i.e., the smallest o-algebra on Conv, g~ such that all the evaluation maps

- Convepy, — R
C,8) - — (9) =g (x,€)
g C.e)\9) = 9\, (z,6)ERN xRN

are measurable.

We consider a random convex integrand W : ExRY xRN — R, ie.,a (A® B (RY) @ B (RY),B(R))-
measurable function such that for every w € X, the function W (w, -, -), belongs to the class Convy g,
Since W (-,z,¢) is (A, B(R))-measurable for all (z,£) € RY x RV, the map W : & — Conva 3.,
wr— W (w, ), is (A, 'ZﬂConVa,Bﬁ)-measurable, and we denote by P its law, that is P= W#P.

We assume that W satisfies the following covariance property with respect to the dynamical system
(2,A,P,(T.) cpn): forall z € ZN

W (Tow, x,&) = W (w,x + z,£) for ae. z € RV, for all € € RY, and for P-a.e. w € X.
For all g in Conv, g~ and all z € ZV, let us set T.g(z,-) = g(z + z,-). This defines a group (i)

z€ZN
which acts on Convg, g4, and clearly, T, : Conva gy — Conva g,y i Toony, 5 ,-measurable for all z € ZV.
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Then it is easy to show that the covariance property implies that the law P of W is invariant under the
group (TZ>ZGZN, that is TZ#IND =P for all z € ZN. We say that the random function W is periodic in
law.

We write € to denote a sequence (En)neN of positive numbers with lim,,_, ;. &, = 0, which is denoted
by € — 0. Then, the following random functional ®. : ¥ x L? (2) — R, U {+o0} defined by

/W(w,f,v@ dr  ifue H'(Q)
O (w,u) =4 70 ©
+00 otherwise.

models a random energy concerning various steady-states situations, where the small parameter ¢ ac-
counts the size of the randomly distributed heterogeneities in the context of a statistically homogeneous
media. The measurability of w — ®. (w,u) for all u € H* () may be obtained by standard arguments
(see for instance [8, Section 12.4.3 and Proposition 12.4.1]).

Under the hypotheses above on W with respect to the discrete dynamical system (Z, AP (T,), GZN)7
it is now standard, using the subadditive ergodic theorem ([I7] or [8, Theorem 12.4.3]), that for P-a.s.

w in ¥ the sequence (55 (w,~)) . I-converges to the integral functional ®"°™ (w,-), where ®hom :
e>
Y x L2 (Q) — R, U {+o0} is given by
N / Whom (w, Vu)de  if u € H (Q)
QoM (W, u) = @
400 otherwise,

when L? (Q) is equipped with its strong convergence. Let Y denote the unit cell (0, 1)N7 then, for every
¢ € RV, the density W"°™ is given, for P-a.s. w € ¥, by

1
W (o) = tim BTt {2 [ W g Vu) dy e ()

n—-+o0o

1
. T. . 1
= nlél[\f]\*E 1nf{nN /ny W (w,y,§+Vu(y))dy :u € H (nY)}

If (E, AP, (TZ)ZEZN) is ergodic, then W"°™ is deterministic and given for P-a.s. w € ¥ by

Whem (&) = lim Einf{nlN/nyW(w,y,f—l—Vu(y))dy:uEH&(nY)}

n—-+4o0o

= niéle* Einf{nlN/nY W (w,y, &+ Vu(y))dy : u € Hy (nY)} .
For a proof we refer the reader to [8, Proposition 12.4.3, Theorem 12.4.7] and references therein.

Given h € L%N,l (09), and ag € Lg?, (09Q), ap > 0, ap > o on I' C 9Q with Hy_1 (I') > 0, for
some o > 0, we consider the random functionals ®. and ®"°™ defined by

~ 1
P, (w,u)+§/ apu dHN_1 —/ hu dHN_1 if u e HY (Q)
d, (w7 u) — o0 o0
400 otherwise,
and )
E)hom (w,u) + */ aou dHN_1 — hu dHy_—1 ifue H! (Q)
MO (. u) = 2 Jon o9
+o0 otherwise.

According to Lemma[3.1] for P-a.s. w € X, the subdifferential of @, (w, -) (actually its Gateaux derivative)
is the operator A, (w) : L% (Q) — 2L*(Q) defined for every w € ¥ by

dom A, (w) = {v e H'(Q) : divDeW (w, - W) € L2 (Q), apv + DeW (w, - Vv) ‘n=hon aQ}



26 STABILITY OF A CLASS OF NONLINEAR REACTION-DIFFUSION EQUATIONS

and, for all v € dom A (w),
A (w)v = —divDeW (w, - Vv) .

Similarly the subdifferential of ®"°™ (w, -) is the operator A"™ (w) : L2 (Q) — 257 defined for every
w € X by

dom A" (w)={v € H* () : divosW"™ (w, Vv) € L* (Q), agv + IeW"*™ (w,Vv) -n = h on 9}
and, for all v € dom A (w),
Al (W) v = —divaeWhe™ (w, V).
When W is ergodic, then A"™ is deterministic and
Aoy = —divo W™ (Vo).

Note that we can not guarantee a priori that Whe™ (w, -) is Gateaux-differentiable, hence d¢ W™ (w, )
is possibly multivalued. Nevertheless, to shorten the notation, we write indifferently 8§W’wm (w,-) to
denote the subdiffrential d:W"°™ (w,-) or any of its elements. We emphasize the fact that A"™ (w) is
the P-a.s. graph limit of the operator A, (w), and that under the following additional condition on the
Fenchel conjugate of £ — W (w,, &), the density Wh™ (w, ) is Gateaux differentiable for P a.e. w € 3,
so that 9:W"°™ (w,-) is univalent and reduced to a pointwise limit:

(D3) there exists v* > 0 such that <§f — &5, — §2> > *|& — &% for P ae. we X, for ae. z € RY,
for all (£1,&2) € RY x RN and all (67,€3) € 0:W* (w,2,&1) X Oe¢W* (w, 7, &2).
For a proof, we refer the reader to [8, Proposition 17.4.6].

5.1.2. The random reaction part. We consider a regular CP-structured random functional, i.e., a func-
tional

F: % x[0,400) x L? () — R?
defined by F (w,t,v) (z) = f (w,t,z,v (x)) where
f:E2x[0,400) xRN xR =R

isa (A®B(R)® B (RY) ® B(R),B(R))-measurable function such that for P-a.s. w € %, (t,z,() —
f(w,t,z,¢) is a regular CP-structured reaction function associated with (r (w), g, ¢ (w,)). Furthermore,
we make the following additional hypotheses on 7 and ¢: we assume that r € W42 (0,7, L% (RN, R")),

qe Wh2(0,T, L% (RY)), that for all bounded Borel sets B of RV, the real valued functions

w ||r(w, t,-) ||2LQ(B’R,) for all ¢t € [0,T7, (42)
w g (w,t, ) H%z(B) for all ¢ € [0,T], (43)
T 2
d
w / & (w,7,") dr (44)
0 dt LZ(B,RL)
T 2
d
w H/ ) dr (45)
o |ldt L2(B)

belong to Lp (X), and that r and g, satisfy the covariance property with respect to the dynamical system
(E, AP, (TZ)ZGZN)7 i.e., that for all z € ZV all t € [0, +0), a.e. # € RY and P-a.s. w € %,

r(wt,x+z2) = r(Twtx),

q(w,t,z+2) q(Tow,t,x). (46)
We set fe (w,t,2,() := f (w,t, %,(), and define the functional F. b}i F. (w,t,v)(x) = f (w,t, v (x))
Note that in the expression of the condition |(CP), the functions f, f, y, ¥, and the numbers p, p may
depend on w (we sometimes omit it to shorten the notation), and that F. is a CP-structured reaction
functional whose condition |(CP)|is exactly that of F, i.e., with the functions f, f, y, 7, p and p. Since
y and ¥ do not depend on ¢, condition is automatically satisfied. We assume that condition

or condition is satisfied, i.e., agp < h < agp or p<0<p Letus show that holds for P-a.s.
w € X. This condition is a straightforward consequence of the following more accurate result.



STABILITY OF A CLASS OF NONLINEAR REACTION-DIFFUSION EQUATIONS 27

Lemma 5.1. There exists Niem in A with P (Niey) = 0 such that for all w € ¥\ Nigm, we have

T 2 T 2
d . d
lim/ o (wny 7) dr = Ly () EI/ & (w,T,-) dr, (47)
e—0 Jq dt 5 L2(Q,RY) 0 dt L2(Y,R)
T T 2 3
d . d
limsup/ o (w,t, 7) dt < |TLn () EI/ &< (w,7,-) dr| (48)
e—0 0 dt g L2(Q,R!) 0 dr L2(Y,RY)
T 2 T 2
d . d
lim ' (w, T, 7) dr = LN (Q) EI/ = (w,T,) dr, (49)
e—=0 J, dt € L2(Q) 0 dt L2(Y)
T T 2 2
d . d
hmsup/ 't (w,t, 7> dt < |TLy () EI/ 4 (w,T,") dr| . (50)
=0 Jo |l dt €/ 2 o [ldt L2(Y)

Proof. We only prove and , the proof of and is similar. Consider the set function A
from the class B, (R") of bounded Borel subsets of R into the space Lp () of P-integrable real valued

functions, defined by
T
Aam0- [

From , the process A is well defined. Then, for every (A, B) € B, (RN) x By (RN) with AN B = (),
from additivity of the integral we have

A(AUB)=A (A) +A(B).

d 2
djq' (7y°) dr.

L*(B)

Moreover, from we deduce that
A(z+B)=A(B)oT..

Furthermore, A fulfills the following domination property: for all Borel set A included in Y,

2

dr
L2(Y)

with h € Lp (X). Therefore, A is an additive process indexed by B (RN ), covariant with respect to
(T.),cp~ (see [8, Definition 12.4.1] and references therein). According to the additive ergodic theorem
(see [8, Theorem 12.4.1]), there exists N € A with P (N) = 0 such that for alﬂ weX\N,

dq 2

A(
E (w,T,-)

lim 7%9) = lim/
1
e—=0 Ly (EQ) e—0 /g

T
T
=EZ /
0
Hence, a change of scale gives

dq NIk
o)

dr
12(19)

‘
2

dr.
L2(Y)

T
dr.
L2(Y)

lim
e—0 0

We obtain by combining with

T .
/0 % (wt:2)

This completes the proof W

1
2 2

dr
L2(Q)

Nl

dt<T

o 7 (o)

/

7Strictly speaking the almost sure convergence holds when 2 is a convex set. Using approximation of € by finite union
of convex subset, it is easy to show that the convergence holds for regular Q of class C! (see [I4, Remark 3.3]).
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5.2. General homogenization theorem for a class of nonlinear reaction-diffusion equations.
Given a sequence (ug)E of (A, B (L2 (Q)))—measurable functions u? : ¥ — H! (Q), by combining Theorem
of the previous section together with the variational convergence of the sequence of random energies
®. specified above, we intend to analyze the asymptotic behavior in C (0, T, L? (2)) of the solution u. (w)

of the random reaction-diffusion problem when ¢ — 0:
due (w)
dt

(t)—divD:W (w7 é, Vue (w) (t)) =F. (w,t,u. (w) (1)) in L? (), for a.e. t € (0,T)
(Pe (W) § te (,0) =u (W), p(w) <ul(w,) <P W),

aote (w) (t) + DeW (w, é, Ve (w) (t)) ‘n = h on 90 for all ¢ €]0,T).

Theorem 5.1. For each w € %, let us denote by u. (w) the unique solution in C ([0,T], L*(Q)) of the
(random) reaction-diffusion problem (P. (w)). Assume that for P-a.s. w € 3, ul (w) strongly converges
to u® (w) in L*(Q), and that sup.s e (w,ul (w)) < +oo. Then, for P-a.s. w € ¥, u. (w) uniformly
converges in C ([O,T], L? (Q)) to the unique solution of the reaction-diffusion problem

du (w)

5 (t) —divo: W™ (w, Vau (w) (£)) 2 F*™ (w, t,u (w) (1)) in L* (), for a.e. t € (0,T)

(Phom (w)) u (@) (0) = u° (W), y(va) <0 (w,*) €Y (w,T),

aou (w) () + G Whem (w, Vu (w) (¢)) -1 > h on OQ for all t €]0,T]

where Fh™ s given by F'™ (w,t,v) (z) = fro" (w,t,z,v (x)) with

DY

from (wit, @, ¢) =7 (w, 1) - g () +q(w,t), T(wt)=E (/
©

and q(w,t) =E* (/ q(w,t,y) dy>~
(0,1)¥

Moreover, for P-a.s. w € ¥, dugiiw) - dud—(tw) weakly in L? (O,T, L? (Q)) and y (w,T) <u(w) <7 (w,T).

When the dynamical system (E,.A,P, (TZ)ZEZN) is ergodic, the initial condition is deterministic, i.e.,
ud (w) = u? for P-a.s. w € %, together with p, [, p, and f, then ('Ph"m (w) = ?hom) is deterministic
and is given by

(W, t,y) dy)

% (t) — div@gWhom (Vu(t)) Frhom (t,u(t)) in L? (Q), for a.e te(0,T)

(P4 w0 =, y (1) <0 () <71,

aou (t) + OcWho™ (Vu (t)) -n > h on 0Q for all t €]0,T)
where F"™ s given by F'™ (t,v) (x) = f™ (t,z,v (x)) with

fhom(t,l‘,C)ZT‘(t)'g(C)—Fq(t),T(t):E</ T("tay) dy) and Q(t):E</ Q('at7y) dy)
o~ o~

Moreover, for P-a.s. w € 3, dufigw) — 9 weakly in L* (0,T, L* () and y(T) <u <y (T).

If in addition W satisfies |(D3) then 9eW"™ (w,Vu (t)) or d¢Whe™ (Vu (t)) are univalent equal to
DeWhem (w, Vu (t)) or DeWhe™ (Vu (t)), and the differential inclusions are equalities.

Proof. The proof is a straightforward consequence of Theorem and consists in checking
and [(Hg)| In the whole proof, we reason with the set of full probability ¥/ = ¥\ Ny, where Ny, is the
P-negligible set given by Lemma 5.1

Proof of s D (w, ) M phom (w,). According to [8 Theorem 12.4.7] in the scalar version,

we deduce that for P-a.s. w in ¥/, the sequence of functional (&)5 (w, )) , defined in Proposition
e>0
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I'-converges to the random integral functional ®"°™ (w,-) when L2 () is endowed with the strong
convergence. We can conclude by using Proposition |4.2)

Proof of|(Hs)|: We have to establish that for P-a.s. w € X', sup.~ [|7 (w,, 2) | 1o (0,7 xrN 1) < +00
and 7 (w,+,2) =7 (w,-) in L* (0, T, L* (0, RY)).
The first claim is obvious. To show that r (w, “ g) -7 (w,-)in L? (O7 T, L? (Q, Rl)) we need the following
lemma.

Lemma 5.2. There exists N € A with P (N) =0, such that for every t € [0,T] and every w € ¥\ N,

r (w,t, E) —~7(w,-) :=ET (/(0’1)]\[ r(w,t,y) dy)

weakly in L? (Q,RY).

Proof. Fixt € [0,7] N Q. From we can apply [I4, Theorem 4.2]), straightforward consequence of
the additive ergodic theorem (see [8, Theorem 12.4.1]): there exists N; € A with P (N;) = 0 such that
for every w € ¥\ Ny

r (w,t, g) -7 (w,t)

weakly in L? (Q,Rl). Set N := Usepo,rjng Ne- We are going to show that for all w € X'\ N, the weak
convergence 1 (w,t, g) — 7 (w, ), holds for all t € [0,T]. Let w € X'\ N, ¢ € L? (Q,Rl), t € [0, 7] and
(tn),en be a sequence in [0, 7] N Q converging to ¢ with ¢, < ¢. We have

<7‘ (w,t, g) ,<p>L2(Q7Rl) = <r (w,tn, g) 7¢>L2(97Rl) + <7° (w,t, g) —-r (w,tn, g) ’¢>L2(Q,Rl) , (51)

with, from the weak convergence above, lim._, <7“ (u)ﬂfn7 g) ,¢>L2(Q Rl) = (T (w, tn), ‘P>L2(Q,Rl)- Let us
set Re (w,t,ty,) := <7" (w,t, g) —-r (w,tn, g) ,<p>L2(Q R Since 7 (w,-) € Wh? (O,T, LE. (RN,Rl)), we
infer that

|Re (w,t,t,)| < Hr (w, t, ;> —r (w,tn, 7)‘
€ L2(Q,R

(3
< el [ o (w0 2)
= [[PllL2(Q,R — \w T, =
L2(Q,R!) o | dr e/l paamy

1 T dr : 2 :
< t, — 1 2 - (WaTa 7) dr ' 52
< [lellzz2ry ( ) /O dr e/ | poo @y g1y e

Letting ¢ — 0, then n — 400 in , from and of Lemma we deduce that

) ||‘P||L2(Q,1Rl)

dr

nl{r-&{loo gl—{r(l) <7’ (w’ ¢, g) ’ (p>L2(Q7]Rl) - nl{r—ir-loo <7’ (w’ tn) ’ S0>L2(QJRZ)
= (T (w,t),9) 2y

which ends the proof of Lemma provided that we justify the convergence

lim <F (wa tn) ) (p>L2(Q7]RZ) = <? (LU, t) ) ¢>L2(Q7Rl) )

n—-+o0o

which is a straightforward consequence of the continuity of ¢ +— fy 7 (w,t,y)dy and the conditional
Lebesgue dominated convergence theorem. W

Proof of |(Hs)| continued. Fix w € '\ N. Let ¢ € L? (0,T, L* (Q,R")). According to Lemma
for all ¢ € [0, T] we have

(r(@:6:2) 0 0) e = @00 Do
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and the conclusion follows from the Lebesgue dominated convergence theorem. Indeed, the domination
property is obtained as follows: we have

<r (w,t, 2) ¥ (t)>L2(Q,]Rl)

< (w2
e/ 2R

- T
(I (50 g+ |

)H@(t) I 22(0,r)

@ (om3)

dT) o (8) [l 22 (o.re)
L2(QR!)

T
: dr .
om0 [ ] )t
E>I:O) ( €/ IIL2(Q,RY) 0 dt € L2(Q.RY) ”SD( ) ”Lz(Q,]Rl)
where . 1
707 7)‘ < E Q 2 Syt oo ,
51 [ (10 2)] g € 8 OF 7 o9 ooz
and, from (48),
Td
r .
Sup/ - (w,T, 7> dr < +00.
>0Jo | dt ML AIGED)

Proof of|(Hg)l First, we have to prove that for P-a.s. w € ¥, and for all ¢ € [0,T]
sup ||q (w,t, ;) | L2 () < +o0.
e>0 €

For this, by reproducing the proof of Lemma and using this time the additive ergodic theorem for
the process B — |¢q (w,0, ") H%Q(B), which is well defined according to (43)), we easily obtain that there
exists Ny with P (Ng) = 0 such that for all w € '\ Ny,

im flg (0,0, = £ @B (0,0, 1320r,. (53
dr

L)
T
d .
[t en)
L2(Q) o || dt €/l 2

Then for all w € ¥’ \ Ny and all ¢ € [0, 7] we have
(o) = )
e/ llLz() €
and the claim follows from (53) and . The rest of the proof concerning the weak convergence is
exactly that of condition |

APPENDIX A. EXAMPLES OF CP-STRUCTURED REACTION FUNCTIONALS

Examples A.1. Let us examine a first class of examples of CP-structured reaction functionals for which
condition is readily checked. Assume that for a.e. (t,z) € (0,+00) x R, f(t,2,0) > 0 and that
there exists p > 0 such that f (¢,x,p) < 0. Then |(CP)|is satisfied. Indeed, take f = f = 0 and p = 0,
p = p. Then y = 0 and § = p are solution of Ope and Obk respectively, and

Fty®) =0<f(t,2,0)=f(ta,y (1)

ftzp)=ftzy®) <0=F{7y({).
For various discussions and references about examples and [f)| below, we refer the reader to [21].

a) Example derived from food limited population models.

The Fisher logistic growth model. The reaction function is
¢
t =r(t 1-=
Flt g =r(ta)¢(1- 5

where r(¢t,2) > 0 and K > 0. The function g defined by ¢ ({) = C(l - %) is locally Lipschitz

continuous. Moreover, f (t,2,0) = 0 and f (¢,z,p) < 0 for p > K. Therefore the functional F is a
CP-structured reaction functional associated with (r, g, 0).
The interpretation of this model is the following;:

e u (t,x) is the population density of some species at time ¢ located at x,
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e 7 (t,x) is the growth rate of the population at time ¢, located at x,

e K is the carrying capacity, i.e., the capacity of the environment to sustain the population,
1du . .
° war is the per-capita growth rate.
u
The same conclusion holds for the following extension of the previous logistic function proposed
by Turner-Bradley-Kirk

B\ Y

where 3 >0,y >0and v <1+ % (this last condition ensures that the maximal growth is obtained

for ¢ > 0). For the analysis of this function and various logistic growth models, we refer the reader
to [25].

The logistic growth model with immigration (or stocking). The reaction function is

PO =ra)¢ (1- 5 ) +alt

The interpretation is that of the logistic growth model where in addition ¢ (¢,2) > 0 denotes the
immigration rate. We have f (¢,z,0) > 0. Assuming that S := sup( ,)e(o,400)xr> & (£,2) < +00, we
15
see that f (¢, z,p) <0 for p > K 21+K )
We will consider the logistic growth model with emigration (or harvesting) in Examplebecause
it does not fall into this category.

The Fisher logistic growth model with Allee effect. The reaction function is

f(t,0) =r<t,x><(1_;;) (C—KM>

where 0 < a < K. The function f may be written

Ft2,0) :r(t,x)g (1[4() fr(t,x)a(t,z)é <1[<()

and f (t,2,0) =0, f (t,z,p) <0 for p > K. Therefore the functional F' is a CP-structured reaction
functional associated with ((ri,gi)izm ,0) where g (¢) = % (1 — %), 92 (¢) = % <1 — %) and
r=r,Ty = —Ta.

The interpretation of this model is the same as the one of Fisher model with the additional critical

density a below which the per-capita growth rate turns negative. We can also consider the logistic
growth model with Allee effect and immigration by setting

ren 0 =rane(1- ) (58D 1o
with the stocking rate ¢ (¢t,x) > 0. We have f(¢,2,0) > 0 and f(¢,2z,p) < 0 for p large enough
depending on Sup(; ;e(o,400) xRN 1 (t,x).
Exzample derived from haematopoiesis (Wazewska-Czyziewska € Lasota model). The
reaction function is

f(t,2,¢)=—p(t,z)(+ P(t,z)exp (—()

with g > 0, P > 0, and v > 0. In this example g1 () = ¢, ¢g2(¢) = exp(—7¢), r1 = —u and
r2 = P. Moreover, f(t,2,0) = 0 and f(t,z,p) < 0 for p > SUP(; 4)e[0,+00) xRN %
assumed to be finite. Therefore the functional F' is a CP-structured reaction functional associated
with ((ri’gi)i:1,2 ,0).

which is

The interpretation of this the model is the following:
e u (t,x) is the number of red-blood cell at time ¢ located at x,
e 1 (t,x) is the probability of death of red-blood cells, P and  are two coefficients related to the
production of red-blood cells per unit time.
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For a generalization of this function in the context of delay ordinary differential equations, we refer
the reader to [24].

Example derived from nuclear reactor dynamics and heat conduction
First model. The reaction function is

with @ > 0, b > 0, and ¢ > 0. In this example i = 1, g1 ({) = ¢ (a — (), 11 = r. Moreover,
f(t,z,0)=q(t,x) >0 and f(tz,p) <0 for
a+ a2+4@
p>————
2b
t, )

which is assumed to be finite. Therefore the functional F' is

Tay _ q(
where (7) = sup
r (t,2)€[0,400) xRN T (t,z)
a CP-structured reaction functional associated with ((r1,91) ,q).
The interpretation of this the model is the following:

e u (t,x) is the one velocity neutron flux at time ¢ located at x, i.e., the total path length covered
by all neutrons in one cubic centimeter during one second, of the beam of neutrons traveling in a
single direction. Mathematically, u (¢,2) = m (¢, z) v (t,2) where m (¢, z) is the neutron density
(neutrons/cm®) and v (¢, ) the neutron velocity (cm/sec).

e ¢ (t,x) is an additional source.

Exzample derived from heat transfer: the Stefan’s-Boltzmann fourth-power law in heat
transfer. The reaction function is

/ (t,.]?, C) =r (ta Z‘) (a4 - <4)
with @ > 0 and r > 0. In this example i = 1, g; () = a* — (% r; = r. We have f(t,z,0) =
r(t,z)a* >0 and f(t,2,p) <0 for p > a.
The interpretation of this the model is the following:
e T is temperature radiated by a black body,
e ¢ is the temperature of surroundings,
e 7 is related to the radiating area and the emissivity of the radiator.

Ezxzample derived from chemical reactor and combustion models. The reaction function is

f (tu z, C) =T (ta JI) Cp
with p > 1 and r (¢,x) > 0, or its generalization f (¢,z,¢) = — [r1 (¢, 2) (P* + 72 (¢, z) (2] with p; > 1,
pe > 1, and 1 (t,2) > 0, ro (t,2) > 0. In this example, i = 1,2, g; () = (Pi. We have f (¢,2,0) =0,
and f (¢, z,p) <0 for any p > 0.

The interpretation of this the model is the following for ¢ = 1:
e u (t,x) is the mass concentration of the combustible material at time ¢, located at x in a non-
isothermal reaction,

e 7 is given according to Arrhenius kinetics by r (t,2) = exp (7 — ﬁ) where v (t,x) is the

temperature and ~y is the Arrhenius number, and p is the order of the reaction.

Example derived from enzyme kinetics models in biochemical system. The reaction func-
tion is ¢ ¢
t = —r(t t = —r(te) ———

with @ > 0, b > 0, and 7 > 0. In this example, i = 1, g1 (¢) = 1+CGC
for ¢ < 0. We have f (t,z,0) =0 and f (t,z,p) <0 for any p > 0.

The interpretation of this the model is the following for i = 1:
e u(t,x) is the substrate concentration,

or 1+a<<+b<2 that we extend by 0

e 7 depends on the total amount of enzyme and various rates of the reaction,
e r depends on various rates of the reaction.
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Examples A.2. We examine now a second class of examples. We assume, as in the previous examples,
that for a.e. (t,x) € (0,400) x R, f(¢,2,0) > 0, but the second condition is no longer satisfied.
Nevertheless we assume that there exists a constant M > 0 such that f < M. Then is satisfied.
Indeed, take f = 0, p = 0 as for the previous class of examples, and f =M and p any positive p. Then
y = 0 and 5 = Mt + p are solution of Ope and Obe respectively, with

fty@)=0< f(tx0) =f(tzyt)

[z, Mt+p) = f(t2,y(t) <M= [f(t7(1).

Example derived from thermal explosions in the theory of combustion. The reaction func-

tion is !
rome =] reae (s (1-2)) iteso
0 if ¢<0.

In this example ¢ = 1, 11 = r and g; = f/r. We have f(t,2,0) = 0 and f < M with M =
SUDP(¢,2)€[0,400) xBN T (£, @) €xp () where sup( ,yc(0,100)xrn 7 (£, ) 18 assumed to be finite.
The interpretation of this model is the following:

e u(t,x) is temperature at time ¢ located at x in thermal explosion,

e « and r are physical coefficients (see [2I] and references therein).

Examples A.3. We deal with a third class of examples where we still assume that for a.e. (¢,z) €
(0,4+00) x R, f(¢t,2,0) > 0, but f does not satisfies the second condition fulfilled by the two previous
class of examples, but satisfies f (¢,z,() < a¢? for some a > 0 and p > 1. Thenis satisfied. Indeed,
take f = 0, p = 0 as for the previous class of examples, f (t,() = a(? and p any positive p. Then y = 0
is solution of Obe and 7 defined by B

exp (at) when p =1
(){ pexp
((

y(t 1
Y 1—p)at+p'"?)™7 whenp>1
is solution of Ope (when p > 1, Opk is the classical Bernouilli o.d.e ¥’ = ay?) with

[ty ) =0<f(tz0) = f(tzy()
ft2,7(t) <agt)’ = f(t,7(1)).

Ezxample derived from nuclear reactor dynamics and heat conduction or from chemical
reactor. The reaction function is
f(t,$7C) = ’I“(t,.’l?) Cp
where p > 1. In this example ¢ = 1, 1y = r and g; = (?. We have f (¢,2,0) = 0 and f < 7P, where
T = SUP(; 4)e[0,400)xrN T (£, @) is assumed to be finite.
The interpretation of this the model is the following:
e u (t,x) represents the one velocity neutron flux at time ¢ located at « in case there is a positive
temperature feedback. A second interpretation occurs in the scope of chemical reactor, where
u (t,x), this time, is the concentration of a chemical labile species (see [21] and references therein).
For the case p = 2 see [23].

Examples A.4. We finally complete our examples by examining a last class for which the first condition
f(t,z,0) > 0 is not satisfied. We assume that there exists p > 0 such that for all (t,z) € [0, +00) x RV,
f(t,z,p) <0and f(t,z,() > (1 () —a for some a > L. Since ¢ (1 —¢) —a < 0, it is not assured
that f (¢,2,0) > 0. Nevertheless we claim that condition is satisfied. Indeed take 7 = p, f = 0 as
in Examples On the other hand, take f (¢,{) = ((1 — () — a and p any negative number. Then y
is the solution to the ordinary differential equation

mm{y’ZN —y) -a

and is given by

_ _ )2
(t) P ! 22%\ > tan %)
< 1— 17)\22 ta At )
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where A = v/4a — 1.

Example derived from food limited population models with emigration (or harvesting, or
extraction). The reaction function is

Flta)=rta)c(1- ) ~ato).

The interpretation is that of the logistic growth model where in addition 0 < ¢ (¢,z) denotes the em-

igration rate. The change of variable % = s, and the change of function f (,z,s) = = f(t,x,Ks)
where 1 (t,x) = inf 1)c[0,400)xrN 7 (t,2) is assume to be positive, leads to f(t,a:,s) > s(l—s) —

SUD(¢,2)€[0,4-00) xRN q(t,x). We are in the general situation described above provided that we assume

a = SUP(4 2)€[0,400) xRN (t,z) > %. For further examples on logistic growth models with migration,
we refer the reader to [9].

APPENDIX B. EXAMPLES OF STOCHASTIC HOMOGENIZATION OF A DIFFUSIVE FISHER FOOD LIMITED
POPULATION MODEL WITH ALLEE EFFECT

As an application of Theorem [5.1] we treat the stochastic homogenization of the reaction-diffusion
problem describing the food limited population model whose reaction function corresponds to that of the
Fisher model with Allee effect (see Examples of the appendix A). We assume that the growth rate r,
along with the critical threshold a below which the per-capita growth rate turns negative, are influenced
by the heterogeneities of the spatial environment and change in each small habitats. However we assume
that the carrying capacity K is constant. In a first example, we assume that the distribution of the
heterogeneities is following a regular random patch model, i.e., in the probabilistic setting, the dynamical
system is that of a random checkerboard-like environment. In a second example, the heterogeneities are
distributed following a Poisson point process. In the two examples, in order to simplify the model, we
assume that r and a do not depend on the time variable ¢t. Otherwise, it would be sufficient to make the
appropriate assumptions concerning the absolute continuity on r and a with respect to the time variable,
without changing the constructions below. It is interesting to note that the homogenized critical density
al*™ is now a function of the growth rate. To shorten the notation we assume that the Fenchel conjugate
of £ — W (w,x,§) satisfies [(D3)

B.1. Random checkerboard-like environment. Given two triples (r~,a=,W™) and (r*,a™, WT)
in [0, +00] x [0, K] x Conv,, g, where W, W+ do not depend on z, and p € [0,1], we consider the
product ¥ = {(r~,a=,W™), (r*,a*,W*)}ZN equipped with the o-algebra A, product of the trivial
o-algebra of subsets of {(r~,a™,W~),(r*,a™, W*)}. Each element of 3 is then of the form (w;),.;n,
with w, = (wl,w?,w?), where w! € {r=,r*}, w? € {a7,a"}, and w3 € {W—, W}

We equip (3,.A) with the product probability measure P, = ®.czvp. where p, = pdg— .- w-) +
(1 =p) ¢t at,w+) for all z € ZN. By construction Py, is invariant under the shift group (T.),cpn
defined by T% (w)ycpn = (Wetz)iepn, i-e., To#Pp =Py, for all z € ZN . We set

1 2

r(w,r):=w! and a(w,r)=w? Wz, )=w’

~ whenever z €Y + 2,

and f (w,t,2,{) =71 (w,z) ¢ (1 - %) (%) which define a random CP-structured reaction function

provided that we write it

fw,t,z,0) :r(w,z)c—; (1-}?) —r(w,x)a(w,x)% <1‘1C<)'

According to this definition it is straightforward to show that f is a random CP-structured reaction
function, that f (w,t,z + z,-) = f (T.w,t,z,&) for all (w,z,€&) € ¥ x RY x RN, and that conditions
and hold. Regarding the random density W, one can easily show that it verify W (w,z + z,£) =
W (Tw,z,§).

Furthermore, it is easily seen that (Z, A, Py, (T Z)zeZN) is ergodic since its satisfies the mixing condi-
tion (notice that is satisfied with the cylinders which generate A).

The random CP-structured reaction function f. defined by f. (w,t,2,{) = f (w, t,Z, Q) may be seen as
the Fisher reaction function defined in a checkerboard-like spatial environment, i.e., the growth rate r and
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the threshold a take two values at random on the lattice spanned by the unit cell Y = (0, 1)2 modeling a
mosaic of two kinds of small habitats. The diffusion is associated with a random density W, defined by
We (w,z,&) =W (w, Z, 5) taking also two values at random on this lattice. The triples (r—,a~, W ™) and
(rT,a™, W) represent a sample of two kinds of habitat whose probability of occurring is p and 1 — p
respectively. Obviously, we can easily generalize this model with r, a and W taking countable values.
To shorten the notation, we assume that W= satisfy so that W™ is Gateaux differentiable, and
is reduced to a pointwise limit.

The reaction-diffusion problem modeling the evolution of the density u of some species during a time
T >0, in a C'-regular domain 2 included in a random checkerboard-like environment, when no species
is located on the boundary, and when the density u? at time ¢ = 0 is regular and known, is given by

du, . . B
o (w,t) —divDeW (w, o Vu, (w,t)) =

r(w, é)us(w,t) (1 - UEK(:’Tt)) <u‘E (w’t;(:: (. 5)> a.e. in (0,7) x Q

e (w,0) =ul, 0 <ud < Ko,

ue (w,t) € H' (), divDeW (w, £, Vue (w,t)) € L2 (Q) for all ¢ €]0,T7,

ue (w,t) = 0 on 9N for all t €]0,T7.

We assume that the initial density u! strongly converges to some wug in L? (Q). According to Theorem
we can say that when ¢ is very small compared to the size of the domain €2, a deterministic model,
well aware with the evolution species, is given by

du
dt
U(O) = ug, 0 < UO < Kcar»

(t) — divDeWho™ (Vu (t)) = 7u (t) (1 - ;{EZ)T) (u (26;7;"@> for a.e. (t,x) € (0,T) x Q

(54)
u(t) € H (Q), div (DeWho™ (Vu (b)) € L* (),

u(t) =0 on 0N for all ¢ €]0,T7.

where

hem (¢) = njgl\fI*Einf{;/nyw(w,y,g—&—Vu(y)) dy :u € Hy (Y)},

=8 ([ rew ar)=pr+0-prt =k ([ rematon dr)=pra 0o p)rte

Everything happens as if the density evolution of the species took place in a homogeneous environment
following a Fisher diffusive model with Allee effect and constant coefficients. Concerning the solution
u, it is interesting to note that the growth rate is deterministic and constant in the environment, and
that the critical density alom = ? which still satisfies 0 < a"*™ < K is now a function of the growth
rate and is a monotone function of the probability p. The diffusion operator is now governed by an

homogeneous and deterministic operator obtained as an almost sure graph limit.

B.2. Environment whose heterogeneities are independently randomly distributed with a
frequency A. As a first step, we are going to define a discrete dynamical system (Z, AP, (TZ)ZGZN)7
modeling the environment whose heterogeneities are spheres and whose centers are randomly distributed
with a frequency A per unit area. We assume that the number of centers is locally finite and that the
numbers of centers in two disjointed regions are two independent random variables. The growth rate
and the threshold in the Fisher reaction function with Allee effect, together with the density associated
with the random diffusion, must take different values outside or inside the heterogeneities.

Denote by M the set of countable and locally finite sums of Dirac measures in R?, equipped with
the o-algebra generated by all the evaluation maps £g : m — m (B) from M into NU {+oco} when B
belongs to B (R?). Then, given A > 0, there exists a subset ¥ of locally finite sequences (w;),cy in R?, a
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probability space (X,.4,P,) and a point process, called Poisson point process, N : w — N (w,-) from 2
into M satisfying

(i) N(w,-) = Z dw;, where we identify the sequence (w;);.; with the set {w; : i € N};
ieN
(ii) for every finite and pairwise disjoint family (B;),.; of B (R?), the random variables (N (-, B;))
are independent ;
(iii) for every bounded Borel set B and every k € N

i€l

K exp (—ALy (B))

k! '
We denote by E, the expectation operator with respect to the probability Py. Note that for ev-
ery bounded Borel set B in R?, we have N (w,B) = # (XN B), and that an easy calculation yields
E) (N (-, B)) = AL (B). For the existence of Poisson point processes and an explicit construction of the
probability space (X3,A, Py), we refer the reader to [12]. We define the group (7%), 4. of Px-preserving
transformation on (3, A, Py), by Tow = w — 2. From and using the mixing condition , we can
easily show that (E,A,Pk, (TZ)zeZN) is ergodic. We claim, as we will see below, that the dynamical
system (Z, A, Py, (TZ)zeZN) is a good description of the heterogeneous environment described above.

Py (N (-,B) = k]) = ALy (B)

In a second step we define the random diffusion and the random reaction part. Given R > 0,
(r~ya=,W~) and (r*,at, W) in [0,400] x [0, K] x Conv,,g~, where W~, W do not depend on z,
we define the random density W associated with the random diffusion part, by

W (w,2,6) =W (&) + (W™ (§) = W (¢)) min (1, N (w, Br (2))) -
More explicitly we have
W= () ifze U Br(w;),
W (w,2,§) = © seh R (20
W (€) otherwise.
Similarly we define the random growth rate and the random threshold by
r(w,z)=rt+ (r~ —r") min (1,NV (v, Bg (2))),
a(w,z)=a’ + (e —a’)min(1,N (w, Bg (z))).
The random CP-structured reaction function is given by

f(wat7$7§)=7"(w,a?)§§(1—f(> ronaen s (1-4)

which is a Fisher reaction function with Allee effect whose growth rate and threshold are (r—,a™)
when © € U;jenBg (w;), and (r*,a™) otherwise. We set We (w,2,§) = W (v, £,£), and f (w,t,2,() =
f(w,t,%,¢). It is easy to check that conditions and hold so that the homogenized problem is

s e

still given by where this time (when N = 2)

T=7r 4+ (r+ — ) exp (f)mRz) ,

.
Tat — r_a_) ex ( )\7rR2) .

ra=r a -+ (r

p(—
Endeed, using the fact that Jw € ¥, y € U,y Br (wi) <= # (XN Bgr(y)) > 1, and by using Fubini’s
theorem, we have

7= E) (/ 7 (w,y) dy)
Y
- r+/ / Li4(5nBr(y)=0] (W, y) dy dP (w) + r*/ / LissnBa) 1) (@,y) dy dPy (@)
=" s o)~

= T+/ / Li(5nBr(y)=0] (W, y) dPx (w) dy + 7~ / / Lig(snBry)>1] (W, y) dPx (w) dy
(o,HN Jx 01N Jx
=T exp (—)\WRQ) +7r" (1 —exp (—)\WRQ)) .

A similar calculation holds for 7a.
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APPENDIX C. PROOF OF LEMMA [.1]

Since (¥n),en, ¥ are uniformly proper, according to [8, Lemma 17.4.5], there exists y > 0 such that
Yo+l lx+1)>0and ¥+ p (|| ||x +1) >0 so that the integrals ¥,, and ¥ are well defined for all
n € N.

Furthermore, for sequences of convex proper and lower semicontinuous functions from a reflexive
Banach X spaces into R U {400}, where X is as in the assumptions, there is equivalence between
the Mosco-convergence and convergence of the sequences of the Moreau-Yosida approximations (see [7,
Theorem 3.26] or [16]). We are going to apply this result to the spaces X and L? (0,7, X) which fulfill
these conditions and to the functionals ¥,,, ¥, 1,,, ¥ which are convex proper and lower semicontinuous.

Step 1. Denote by ¢, *, U} and ¥* the Moreau-Yosida approximation of index A > 0 of 1,,,
¥, U, and ¥ respectively (for the definition and properties of Moreau-Yosida approximation see [8|

Proposition 17.2.1]). For every u € L? (0,T, X), we have

WA (u) = / WA u()dt and U (u) = / 6 (u (1)) dt.

This result is an elementary case of interchange of infimum and integral (see for instance [6] and references
therein).

Step 2. We claim that if ¥,, > ¥ then ¥,, 2% ¥. We have (see [, Theorem 3.24])
Y B = YueX VA0 ¥ (u)— P (u).

Let u € L? (0, T, X). Assume that 1), M ¥. Then from above, for a.e. t € (0,T) and for all A > 0, we
have 47 (u (t)) — ¥ (u (1))

Let v € dom (¢). Since ), X 1, there exists a sequence (v,), .y in X such that v, — v and
Yn (V) — ¥ (v). Then there exists N € N which depends only on v (v) and ||v||x such that for all
n>N

Y2 (0 (0) < (0n) + g5 om = 0 (0) e < 9 (0) + 1+ g Jon — w(0) I

1 1
<P (v)+1+ XH"%H%( + Ml (@) %

1 1
<Y +2+ Slollx + Sl 1%,

where ¢ (v) + 2+ $|jv[|% + f[lu () [[% belongs to L' (0,T). Then, according to the Lebesgue dominated
convergence theorem, we deduce that for all A > 0

T T
| i [ o @),
0 0
that is, from Step 1, ¥ (u) — ¥* (u), which ends the proof since u is arbitrary chosen in L? (0,7, X).
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