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The precision trajectory tracking problem for Unmanned Aerial Systems (UAS) is addressed in this work. A novel algorithm that combines a Nonsingular Modified Super-Twisting Controller with a High Order Sliding Mode Observer to enable an aerial vehicle tracking a desired trajectory under the assumption that i) its translational velocities are not available and ii) there are unmodeled dynamics and external disturbances. The proposed Sliding Mode Controller is based on a nonlinear sliding mode surface that ensures that the position and velocity tracking errors of all system's state variables converge to zero in finite time. Moreover, the proposed controller generates a continuous control signal eliminating the chattering phenomenon. Finally, simulation results and an extensive set of experiments are presented in order to illustrate the robustness and effectiveness of the proposed control strategy.

Introduction

The growing interest for Quadrotor aircraft development has been accelerated during the last decade, mainly due to the advantages over comparable Vertical Take Off and Landing (VTOL) UASs, such as helicopters. A Quadrotor aircraft has simple hardware structure combined with inexpensive and reliable sensors. Applications of multirotors range from surveillance, aerial photograph, precision agriculture, search and rescue, to acrobatic maneouvers for entertaining. Nowadays, the applications and use of UASs is increasing exponentially but, simultaneously, the challenges related to improving its performance are also increasing, especially in the field of precision navigation.

With the main objective of find a satisfactory performance of Quadrotor vehicles, different control strategies have been proposed, such as Robust Controllers based on Sliding Mode techniques. Sliding Mode Control has been widely explored in unmanned systems due to the property of insensitivity to parametric uncertainties, model uncertainties and external disturbances [START_REF] Parker | Decentralized sliding mode control for flexible link robots[END_REF], [START_REF] Espinoza | Modeling and Sliding Mode Control of a Micro Helicopter-Airplane System[END_REF]. Control strategies based on First Order Sliding Modes have shown to be an effective method for controlling dynamic systems with uncertainties, unfortunately, these First Order strategies induce signals with chattering due to the discontinuous terms in the control law. In order to overcome these drawbacks, techniques known as Higher Order Sliding Modes Control have been developed [START_REF] Emelyanov | Higher order sliding modes in the binary control systems[END_REF]- [START_REF] Edwards | Advances in Variable Structure and Sliding Mode Control[END_REF]. These High Order strategies have improved the controllers' performance with respect to chattering effects.

The Second Order Super-Twisting Controller has been the most popular High Order Sliding Mode Controller used for controlling Quadrotor aircrafts, see for example [START_REF] Luque-Vega | Robust block second order sliding mode control for a quadrotor[END_REF]- [START_REF] Jayakrishnan | Position and Attitude control of a Quadrotor UAV using Super Twisting Sliding Mode[END_REF]. In order to improve the convergence of the sliding variable in the Super Twisting algorithm, two linear correction terms are added to the classical Super Twisting to accelerate the approach of the sliding variable to the sliding surface. These modifications have been reported in [START_REF] Moreno | A Lyapunov approach to output feedback control using second-order sliding modes[END_REF]- [START_REF] Yang | A new modified super-twisting algorithm with double closedloop feedback regulation[END_REF]. The Sliding Mode Controllers based on linear sliding mode surface can only guarantee that closed-loop systems converge to the equilibrium asymptotically. In order to force the state of the system to reach the equilibrium in finite time, a terminal sliding mode control has been proposed.

Comparing the sliding mode control with the linear sliding surface, the terminal sliding mode presents important properties such as finite-time convergence. Although finite-time convergence can be guaranteed employing this method, the discontinuous signal will lead to the chattering phenomena caused by the switching control. Moreover, the terminal sliding mode has a singularity problem, that is, the terminal sliding mode control signal requieres to be infinitely large to maintain the ideal motion in some areas of the state space [START_REF] Fhen | On nonsingular terminal sliding-mode control of nonlinear systems[END_REF]. In [START_REF] Mou Chen | Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems[END_REF] a terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems with unknown external disturbances is proposed. In [START_REF] Xhao | Distributed adaptive fixed-time consensus tracking for second-order multi-agent systems using modified terminal sliding mode[END_REF] a modified terminal sliding mode is used for solving a fixed-time consensus tracking for second-order multi-agent system.

In order to overcome the classical singularity problem of the conventional terminal sliding mode, the nonsingular terminal sliding mode has been pro-posed. Moreover, nonsingular terminal sliding mode has a better performance against the controllers based on linear sliding mode surfaces [START_REF] Zhu | Space-based line-of-sight tracking control of GEO target using nonsingular terminal sliding mode[END_REF]- [START_REF] Madani | Non-singular terminal sliding mode controller: Application to an actuated exoskeleton[END_REF]. In [START_REF] Fhen | On nonsingular terminal sliding-mode control of nonlinear systems[END_REF] a nonsingular terminal sliding-mode control for nonlinear systems is presented. In [START_REF] Zhu | Space-based line-of-sight tracking control of GEO target using nonsingular terminal sliding mode[END_REF] an adaptive nonsingular terminal mode controller is proposed for spacecraft attitude tracking. A Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances is presented in [START_REF] Yang | Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances[END_REF]. The Nonsingular Terminal Sliding Mode Control of Uncertain Second-Order Nonlinear System was stuied in [START_REF] Tran | Nonsingular Terminal Sliding Mode Control of Uncertain Second-Order Nonlinear Systems[END_REF]. A Non-singular terminal sliding mode controller applied to an actuated exoskeleton was developed in [START_REF] Madani | Non-singular terminal sliding mode controller: Application to an actuated exoskeleton[END_REF].

In real applications, the performance of the UAVs could be affected by external perturbations. In order to overcome this drawback, many research work are devoted to deal with the estimation of perturbations. In this sense, sliding mode observers provide a robust and finite-time convergence observer, while, high-order sliding mode observers preserves the same performance than standard sliding mode but without the undesired chattering effect. In [START_REF] Levant | Higher order sliding modes, differentiation and output-feedback control[END_REF] author proposes an finite-time arbitrary-order robust differentiator using highorder sliding mode, this differentiator could be used like a robust observer. Authors in [START_REF] Benallegue | High order sliding mode observer for a quadrotor UAV[END_REF] use a feedback linearization-based controller with a high-order sliding mode observer for a Quadrotor helicopter, where the high-order sliding mode observer is employed as an observer and estimator of the effect of the external disturbances such as wind and noise. In [START_REF] Héctor Ríos | High-order sliding mode observers for nonlinear autonomous switched systems with unknown inputs[END_REF] the authors proposed observers using high-order sliding mode for obtaining the reconstruction of the exact non-linear system even in presence of disturbances.

This work is motivated by the tracking control in finite time of an UAS type Quadrotor affected by external disturbances, unmodeled dynamics and partial measurement of the state. Compared with most of the existing sliding mode control methods employed to control a UAS type Quadrotor, the main contribution of this paper are summarized as follows:

• A novel algorithm using a Nonsingular Modified Super-Twisting Controller enable to an aerial vehicle to track a desired trajectory that force the tracking error to reach the zero equilibrium in finite time. • An output feedback Nonsingular Modified Super-Twisting Controller based on a High Order Sliding Mode Observer is developed, for case that only the system output is available. Also, it is show that the tracking error converges to zero in finite-time with the Controller-Observer proposed. In addition, a continuous control signal is obtained with the proposed strategy. • Practical implementation is conducted in outdoor environments using a high preceision RTK-GPS system to show the effectiveness of the control strategy proposed.

The remainder of the paper is organized as follows. The dynamic model of the UAS type Quadrotor is presented in Section 2. The development of the Nonsingular Terminal Modified Super-Twisting Controller based on a High Order Sliding Mode Observer is showed in Section 3. The application of the Nonsingular Terminal Controller to the aerial vehicle is carry out in Section 4. A set of simulation and experimental results to illustrate the performance of the control strategie proposed is presented in Section 5, followed by some concluding remarks in Section 6.

Dynamic Model

The quadrotor is an underactuated four-rotor unmanned aerial vehicle having six degrees of freedom and four control inputs including the total thrust and three angular moments. It has four rotors arranged in a cross shape. The front and rear motors rotate counterclockwise (CCW), while the other two motors rotate clockwise (CW). The main thrust is the sum of the thrusts of each motor, the pitch torque is a function of the difference f 1 -f 3 , the roll torque is produced by the difference f 2 -f 4 , and the yaw torque is the sum of τ M1 + τ M2 + τ M3 + τ M4 (see Figure 1), where τ Mi is the reaction torque of motor i due to shaft acceleration and the blades drag. Let Γ I = {i I , j I , k I } be the inertial frame, Γ B = {i B , j B , k B } denotes a set of coordinates fixed to the rigid aircraft.

Let q = (x, y, z, φ, θ, ψ) T ∈ R 6 = (ζ, η) T be the generalized coordinates vector which describes the position and orientation of the flying machine, so the model could be separated in two coordinate subsystems: translational and rotational. These are defined respectively by The dynamic model is obtained using the Euler-Lagrange approach. We can decompose the equations into translational and rotational displacement. The Lagrangian of the aerial vehicle is given by the following equation L(q, q) = (T trasl + T rot ) -U, where -T trasl : Is the translational kinetic energy of the quad-rotor

T trasl = 1 2 m ζT ζ.
-T rot : Is the rotational kinetic energy of the quad-rotor

T rot = 1 2 ηT J η.
-U : Is the potential energy of the quad-rotor

U = mgz.
In compact form, the dynamic model of the Quadrotor is given as:

m ζ = F I + mg Jη = τη + C(η, η) η.
Afterwards, doing a change of coordinates, we propose new variables to the control input τη :

τ =   τ φ τ θ τ ψ   = J -1 (τ η -C (η, η) η) ,
where F B can be expressed in the inertial frame F I as F I = R B→I F B , R B→I represents the rotation matrix which is defined by

R B→I =   cψcθ cψsθ -sψcφsφ cψsθcφ + sψsφ sψcθ sψsθsφ + cψcφ sψsθcφ -cψsφ -sθ cθsφ cθcφ   ,
where s(•) = sin(•) and c(•) = cos(•).

Finally, the dynamic model of the quadrotor can be described by the following equations:

ẍ = 1 m (cos φ sin θ cos ψ + sin φ sin ψ) u 1 - d 1 m ẋ (1a) ÿ = 1 m (cos φ sin θ sin ψ -sin φ cos ψ) u 1 - d 2 m ẏ (1b) z = 1 m (cos φ cos θ) u 1 -g - d 3 m ż (1c) φ = θ ψ I y -I z I x - ld 4 I x φ + l I x u 2 (1d) θ = φ ψ I z -I x I y - ld 5 I y θ + l I y u 3 (1e) ψ = φ θ I x -I y I z - d 6 I z ψ + 1 I z u 4 , (1f) 
where x, y, and z represent the Quadrotor's translational position in axis X, Y and Z, respectively. The translational velocities and translational accelerations are represented as ( ẋ, ẏ, ż) and (ẍ, ÿ, z), respectively. The Euler angles roll, pitch and yaw are represented by φ, θ and ψ, respectively. The rotational velocities and rotational accelerations are given by φ, θ, ψ and φ, θ, ψ , respectively. The mass of the vehicle is denoted by m, the term g represents acceleration due to gravity, l is the distance of center of mass to the motors. The inertia moments of the vehicle are represented by I x , I y and I z . The control inputs are given by u i , i = 1, . . . , 4. The terms d i , i = 1 . . . 6, represent drag coefficients.

3 Nonsingular Terminal Modified Super Twisting Controller Based on a High Order Sliding Mode Observer

In this section we present the mathematical structure of the Nonsingular Terminal Modified Super-Twisting Sliding Mode Controller and the High Order Sliding Mode Observer, which are the base for the Controller-Observer proposed in this work. Consider a second order dynamic system defined as

χ1 (t) = χ 2 (t) χ2 (t) = f (χ (t)) + h (χ (t)) u (t) + ξ (t, χ) y (t) = χ 1 (t) , (2) 
where

χ (t) = [χ 1 (t) , χ 2 (t)] T ∈ R 2 represents the state vector, y (t) ∈ R is the system output, u (t) is the input control signal, f (χ (t)) ∈ R and h (χ (t)) ∈ R
are known functions. Moreover, the term ξ (t, χ) ∈ R includes both unmodeled dynamics as external disturbances. We assume that disturbance ξ (t, χ) is Lipschitz and satisfies | ξ(t, ξ)| < ξ + for a positive constant ξ + . Hereafter, temporal dependence of the t variable will be omitted for simplicity.

High Order Sliding Mode Observer

The High Order Sliding Mode Observer used to estimate the dynamic χ 2 as well as the disturbance ξ of system ( 2) is given as

χ1 = χ2 + λ 1 | χ1 | 2 3 sign ( χ1 ) χ2 = χ3 + λ 2 | χ1 | 1 3 sign ( χ1 ) + f (χ) + h (χ) u χ3 =λ 3 sign ( χ1 ) , (3) 
where χi , i = 1, . . . , 3, represent the estimated variables. In the subsequent, variables with symbol ˆdenote estimated variables. The estimation errors are defined as χ1 = χ 1 -χ1 , χ2 = x 2 -χ2 and χ3 = -χ3 + ξ. In the subsequent, variables with symbol ˜denote estimation error variables. Now, from ( 2) and (3), we can write the estimation error's dynamics as

χ1 = -λ 1 | χ1 | 2 3 sign ( χ1 ) + χ2 χ2 = -λ 2 | χ1 | 1 3 sign ( χ1 ) + χ3 χ3 = -λ 3 sign ( χ1 ) + ξ. ( 4 
)
The dynamics of the estimation error (4) have the form of the non-recursive exact robust differentiator presented in [START_REF] Levant | Higher order sliding modes, differentiation and output-feedback control[END_REF]. The convergence proofs for (4) have been obtained by geometric methods in [START_REF] Levant | Higher order sliding modes, differentiation and output-feedback control[END_REF], by using homogeneity properties in [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF] and by using a quadratic and strict Lyapunov function in [START_REF] Moreno | Lyapunov function for Levant's Second Order Differentiator[END_REF]. Therefore, the estimation errors χ1 , χ2 , and χ3 will converge to zero in a finite time t ≥ T 0 if gains λ 1 , λ 2 , and λ 3 are chosen appropriately [START_REF] Levant | Higher order sliding modes, differentiation and output-feedback control[END_REF], [START_REF] Moreno | Lyapunov function for Levant's Second Order Differentiator[END_REF]. From the error variables definition, after finite time t ≥ T 0 , it results that χ 1 = χ1 , χ 2 = χ2 and χ3 = ξ.

Nonsingular Terminal Modified Super-Twisting Sliding Mode Controller

It is well known that the main drawback of the First Order Sliding Mode Control is the chattering phenomenon that appears in the control law. As a solution for solving this issue, authors in [START_REF] Emelyanov | Higher order sliding modes in the binary control systems[END_REF] presented Second Order Sliding algorithms, such as the Twisting algorithm, where the idea of acting on the superior derivatives of the sliding variable was introduced. On the other hand, in the case of the Second Order Sliding Mode Control, the following condition should be verified

s (χ) = ṡ (χ) = 0,
where s (χ) represents the sliding variable. In the remainder of the article, the dependence of χ on the s (χ) sliding variable will be omitted. The Modified Super-Twisting Sliding Mode Controller is a Second Order Sliding Mode (SOSM) algorithm introduced firstly by [START_REF] Moreno | A Lyapunov approach to second-order sliding mode controllers and observers[END_REF], and variations of this algorithm have been presented in [START_REF] Yang | A modified super-twisting sliding mode control with inner feedback and adaptive gain schedule[END_REF], [START_REF] Yang | A new modified super-twisting algorithm with double closedloop feedback regulation[END_REF], [START_REF] Defoort | A Lyapunov-based design of a modified supertwisting algorithm for the Heisenberg system[END_REF].

In the following subsections we introduce the tracking control scheme using the nonsingular terminal modified super-twisting sliding mode controller both for the case where all the state variables are available and when the state variables are measured only partially.

A) Nonsingular Terminal Modified Super-Twisting Sliding Mode Controller

A nonlinear dynamic sliding mode manifold for system (2) is defined as follows

s = e 2 + c 1 e 1 + c 2 exp -λt e (1-2β) 1 , (5) 
where c 1 > 0, c 2 > 0, λ > 0 and 0 < β < 1. The sliding mode manifold (s = 0) guarantees the finite-time convergence of the error e 1 via the following dynamic equation

e 2 = -c 1 e 1 -c 2 exp -λt e (1-2β) 1
, where the tracking errors are defined as e 1 = χ 1 -χ 1 d and e 2 = χ 2 -χ 2 d , and the signal references are defined as χ 1 d and χ 2 d . The finite-time convergence of the sliding mode can be proved by the following theorem.

Theorem 1 [START_REF] Tran | Nonsingular Terminal Sliding Mode Control of Uncertain Second-Order Nonlinear Systems[END_REF] For system (2), considering the sliding manifold (5), the tracking error e 1 will converge to zero in finite time if 2βc 1 -λ > 0 and the finite convergence time is

T s ≤ ln 1 + exp 2βc1t V β (0) /a 2 2βc 1 -λ ,
where

a 2 = 2 (1-β) βc 1 2βc 1 -λ > 0 and V = 1 2 e 2 1 .
The temporal derivative of the sliding variable, with the dynamics of the system (2) is given as

ṡ = f (χ) + h (χ) u + ξ -χd 2 + c 1 ė1 + A, (6) 
with A defined as

A = c 2 exp -λt e -2β 1 [(1 -2β) ė1 -λe 1 ] .
Proposition 1. Let the Nonsingular Terminal Modified Super Twisting control input u be defined as

u =h (χ) -1 -f (χ) + χd 2 -c 1 ė1 -A + c 1 χd 1 -k 1 |s| 1 2 sign (s) -k 2 s - t 0 k 3 sign (s) dτ - t 0 k 4 sdτ . (7) 
By properly selecting the gains k 1 , k 2 , k 3 and k 4 , then s = ṡ = 0 in finite time, which implies that the tracking errors e 1 and e 2 will converge to zero in finite time.

Proof . Substituting the Nonsingular Terminal Modified Super Twisting Controller [START_REF] Besnard | Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer[END_REF] in ( 6) we obtain

ṡ = -k 1 |s| 1 2 sign (s) -k 2 s - t 0 k 3 sign (s) dτ - t 0 k 4 sdτ + ξ.
Defining new variables ω 1 and ω 2 as

ω 1 =s ω 2 = -k 3 t 0 sign (s) dτ -k 4 t 0 sdτ + ξ,
it can be obtained the following closed loop dynamic corresponding to the sliding surface

ω1 = -k 1 |ω 1 | 1/2 sign (ω 1 ) -k 2 ω 1 + ω 2 ω2 = -k 3 sign (ω 1 ) -k 4 ω 1 + ξ.
Suppose that for system (2) the derivative of the disturbance is globally bounded by | ξ| < ξ 1 + ξ 2 |x 1 | with ξ 1 > 0 and ξ 2 > 0, assuming that the gains k 1 , k 2 , k 3 , k 4 are selected according to

k 1 > ξ 1 k 2 > 1 2 8ξ 2 k 3 > ξ 1 k 4 > k 1 1 2 k 3 1 (2k 2 -ξ 2 ) + 5 2 k 2 2 + ξ 2 p 1 k 1 p 1 -1 2 k 3 1 ,
where

p 1 = k 1 1 4 k 2 1 -ξ 1 + 1 2 k 1 2k 3 + 1 2 k 2 1 .
Then, the Nonsingular Terminal Modified Super Twisting Controller (7) yields finite-time convergence of the sliding surface s = 0 [START_REF] Moreno | Lyapunov function for Levant's Second Order Differentiator[END_REF], [START_REF] Moreno | A Lyapunov approach to second-order sliding mode controllers and observers[END_REF] and from Theorem 1, the tracking errors e 1 and e 2 will converge to zero in finite time.

B) Nonsingular Terminal Modified Super-Twisting Sliding Mode Controller based on High Order Sliding Mode Observer

Assuming that the state variable χ 2 is unmeasured, the design of the Nonsingular Terminal Modified Super-Twisting Sliding Mode Controller will be based on the High Order Sliding Mode Observer presented in Subsection 3.1.

In this sense, a nonlinear dynamic sliding mode manifold for system (2) by using the estimation χ2 is defined as follows

s = ê2 + c 1 e 1 + c 2 exp -λt e (1-2β) 1
, where the tracking error ê2 is defined as ê2 = χ2 -χ 2 d . The temporal derivative of the sliding variable, with the dynamics of the system (2) is given as

ṡ = ė2 + c 1 ė1 + c 2 exp -λt e -2β 1 [(1 -2β) ė1 -λe 1 ] .
Substituting the dynamics of system (2) and observer (3) in the dynamics of the sliding manifold we obtain

ṡ = t 0 λ 3 sign ( χ1 ) dτ + λ 2 | χ1 | 1 3 sign ( χ1 ) + f (χ) + h (χ) u -ẋd 2 + c 1 χ2 + χ2 -ẋd 1 + c 2 exp -λt e 2β 1 (1 -2β) χ2 + χ2 -ẋd 1 -λe 1 . (8) 
Proposition 2. Let the Nonsingular Terminal Modified Super Twisting control input u based on High Order Sliding Mode Observer (3) be defined as

u =h (χ) -1 - t 0 λ 3 sign ( χ1 ) dτ -λ 2 | χ1 | 1 3 sign ( χ1 ) -f (χ) + ẋd 2 -c 1 χ2 + c 1 χd 1 -c 2 exp -λt e 2β 1 (1 -2β) χ2 -χd 1 -λe 1 -k 1 |s| 1 2 sign (s) -k 2 s - t 0 k 3 sign (s) dτ - t 0 k 4 sdτ -χ3 . (9) 
By properly selecting the gains k 1 , k 2 , k 3 and k 4 , then s = ṡ = 0 in finite time, which implies that by Theorem 1 the tracking errors e 1 and e 2 will converge to zero in finite time.

Proof . Substituting the Nonsingular Terminal Modified Super Twisting Controller based on High Order Sliding Mode Observer ( 9) in ( 8) we obtain

ṡ =c 1 χ2 + c 2 exp -λt e 2β 1 [(1 -2β) χ2 ] -k 1 |s| 1 2 sign (s) -k 2 s - t 0 k 3 sign (s) dτ - t 0 k 4 sdτ + ξ -χ3 .
Therefore, the closed-loop Controller-Observer system is given by the following expressions

Γ =              χ1 =s -c 1 e 1 -c 2 exp -λt e (1-2β) 1 + χ2 + x 2 d ṡ = χ2 c 1 + c 2 exp -λt e 2β 1 (1 -2β) -k 1 |s| 1 2 sign (s) -k 2 s + ξ -χ3 + v v = -k 3 sign (s) -k 4 s, Σ =        χ1 = -λ 1 | χ1 | 2/3 sign ( χ1 ) + χ2 χ2 = -λ 2 | χ1 | 1/3 sign ( χ1 ) + χ3 χ3 = -λ 3 sign ( χ1 ) + ξ. ( 10 
)
The estimation error of observer [START_REF] Modirrousta | A novel nonlinear hybrid controller design for an uncertain quadrotor with disturbances[END_REF] converges to zero in finite-time. Consequently, we obtain for the error variables that χ1 = χ2 = χ3 = 0. After time T 0 , the closed-loop system is given by the dynamics

Γ =        χ1 = s -c 1 e 1 -c 2 exp -λt e (1-2β) 1 + x 2 d ṡ = -k 1 |s| 1 2 sign (s) -k 2 s + v v = -k 3 sign (s) -k 4 s. (11) 
The last two terms of (11) represent a Modified Super Twisting Sliding Mode Controller introduced in [START_REF] Moreno | A Lyapunov approach to second-order sliding mode controllers and observers[END_REF], where choosing the gains as

k i > 0, i = 1, . . . , 4 4k 3 k 4 > 8k 3 + 9k 2 1 k 2 2 ,
then it is obtained s = ṡ = 0 in finite time. This implies that the tracking errors e 1 and e 2 are asymptotically stable. Finally, we obtain that χ 1 and χ2 converge in finite time to χ 1 d and χ 2 d , respectively.

Robust Controller for the aerial vehicle

In this section, a robust controller for position and attitude tracking of the Quadrotor helicopter will be discussed. Position and attitude robust control are designed by considering a time-scale separation between the translational dynamics and the orientation dynamics. This approach is based on the assumption that the closed-loop attitude dynamics converge faster than the closed-loop translational dynamics [START_REF] Bertrand | A hierarchical controller for miniature VTOL UAVs: Design and stability analysis using singular perturbation theory[END_REF], [START_REF] Liu | Robust Tracking Control of a Quadrotor Helicopter[END_REF].

From (1) it can be seen that the Quadrotor dynamics can be divided into two subsystems: i) an underactuated system composed by dynamics ẍ, ÿ, φ, θ and ii) a fully actuated system composed of dynamics z and ψ.

Control Problem Formulation.

For the Quadrotor dynamics (1), it is necessary to design control inputs u 1 , u 2 , u 3 and u 4 using a Nonsingular Terminal Modified Super-Twisting Sliding Mode Controller, such that:

-The position and velocity tracking errors of all system state variables converge to zero in finite. -For the fully actuated subsystem, it is required that yaw angle ψ and altitude z tracking robustly signals ψ d and z d . -For underactuated subsystem controller, it is necessary to guarantee that positions x and y tracking robustly signals x d and y d , respectively, whilst φ and θ tracking robustly φ des and θ des . -Desired references x d , y d , z d and ψ d are generated by a trajectory generator or an upper level controller, whereas references φ des and θ des are generated by using (1a) and (1b).

-Translational velocities ẋ, ẏ, ż cannot be measured online, so they will be estimated by a High Order Sliding Mode Observer.

Position Control

The position controller generates the desired references for the pitch and roll angles φ des and θ des , respectively, and simultaneously, stabilizes the altitude of the Quadrotor.

Altitude Controller. From (1c), we can express the altitude dynamics as

ż1 =z 2 ż2 = 1 m (cos φ cos θ) u 1 -g + ξ z , (12) 
where z 1 = z and z 2 = ż. In this work, we assume that the term -d3 m ż is treated as a unmodeled dynamic and it is included in the term ξ z (external disturbances can also be included in ξ z ). In order to track a desired altitude z 1 d , we employ the Modified Super-Twisting Controller based on the High Order Sliding Mode Observer (3) presented in Section 3. The dynamics of observer (3) applied to the altitude dynamics [START_REF] González-Hernández | Robust trajectory-tracking control design for a small Quad-rotor aircraft via sliding modes[END_REF] are given by

ż1 =ẑ 2 + λ 1z |z 1 | 2 3 sign (z 1 ) ż2 =ẑ 3 + λ 2z |z 1 | 1 3 sign (z 1 ) + 1 m (cos φ cos θ) u 1 -g ż3 =λ 3z sign (z 1 ) , (13) 
where z1 = z 1 -ẑ1 is the observation error of z 1 , ẑ1 and ẑ2 represent the altitude position and the estimated velocity, respectively. The term ẑ3 is the estimated of the disturbance ξ z . Let us define a nonlinear sliding manifold s z as

s z = ẑ2 -z 2 d + c z1 z 1 -z 1 d + c z2 exp -λzt z 1 -z 1 d (1-2βz) ,
where c z1 > 0, c z2 > 0, λ z > 0 and 0 < β z < 1. The control signal u 1 is given by

u 1 = m cos φ cos θ - t 0 λ 3z sign (z 1 ) dτ -λ 2z |z 1 | 1 3 sign (z 1 ) + g + żd 2 -c z1 ẑ2 + c z1 żd 1 -c z2 exp -λzt z 1 -z 1 d 2βz (1 -2β z ) ẑ2 -żd 1 -λ z z 1 -z 1 d -k 1z |s z | 1 2 sign (s z ) -k 2z s z - t 0 k 3z sign (s z ) dτ - t 0 k 4z s z dτ . (14) 
Combining controller ( 14) together with observer (13), ensures that z 1 tracks in finite time to z 1 d under unknown disturbances and estimating on line the altitude velocity z 2 .

Horizontal Controller. The Quadrotor's translational dynamics in X axis represented by (1a) can be rewritten as ẋ1 =x 2 ẋ2 =µ x + ξ x , where µ x = 1 m (cos φ sin θ cos ψ + sin φ sin ψ) u 1 and ξ x = -d1 m ẋ (this term can also include external disturbances). Defining µ xv as a new virtual control input, to track the desired position x 1 d , the following sliding variable is defined

s x = x2 -x 2 d + c x1 x 1 -x 1 d + c x2 exp -λxt x 1 -x 1 d (1-2βx) ,
where c x1 > 0, c x2 > 0, λ x > 0 and 0 < β x < 1. The virtual control input µ xv is given as

µ xv = - t 0 λ 3x sign (x 1 ) dτ -λ 2x |x 1 | 1 3 sign (x 1 ) + ẋd 2 -c x1 x2 + c x1 ẋd 1 -c x2 exp -λxt x 1 -x 1 d 2βx (1 -2β x ) x2 -ẋd 1 -λ x x 1 -x 1 d -k 1x |s x | 1 2 sign (s x ) -k 2x s x - t 0 k 3x sign (s x ) dτ - t 0 k 4x s x dτ . (15) 
Following the same procedure, for the dynamic in Y axis, defining µ y = 1 m (cos φ sin θ sin ψ -sin φ cos ψ) u 1 and ξ y = -d2 m ẏ. The dynamics given in (1b) can be rewritten as ẏ1 =y 2 ẏ2 =µ y + ξ y , the sliding variable s y is proposed as

s y = ŷ2 -y 2 d + c y1 y 1 -y 1 d + c y2 exp -λyt y 1 -y 1 d (1-2βy) ,
where c y1 > 0, c y2 > 0, λ y > 0 and 0 < β y < 1. The virtual control input µ yv is given as

µ yv = - t 0 λ 3y sign (ỹ 1 ) dτ -λ 2y |ỹ 1 | 1 3 sign (ỹ 1 ) + ẏd 2 -c y1 ŷ2 + c y1 ẏd 1 -c y2 exp -λyt y 1 -y 1 d 2βy (1 -2β y ) ŷ2 -ẏd 1 -λ y y 1 -y 1 d -k 1y |s y | 1 2 sign (s y ) -k 2y s y - t 0 k 3y sign (s y ) dτ - t 0 k 4y s y dτ . (16) 
Virtual controllers ( 15) and ( 16) combined with High Order Sliding Mode Observer (3), guarantee that x 1 and y 1 tracks in finite time to x 1 d and y 1 d , respectively.

In order to force the virtual controllers to match µ x and µ y , i. e. µ xv = µ x and µ yv = µ y , it is necessary to obtain a relation between the virtual controllers and the angles φ and θ. Based on (1a) and (1b), we obtain the following expressions

µ xv cos ψ = 1 m cos φ sin θ cos 2 ψ + sin φ cos ψ sin ψ u 1 + cos ψ ξ x µ yv sin ψ = 1 m cos φ sin θ sin 2 ψ -sin φ cos ψ sin ψ u 1 + sin ψ ξ y .
The desired angles φ des and θ des (in function of virtual controllers µ xv and µ yv given by ( 15) and ( 16), respectively) that enables the system to track desired positions x 1 d and y 1 d are given as

φ des = arcsin m sin ψ d µ xv -cos ψ d µ yv u 1 - sin ψ d ξ xv -cos ψ d ξ yv u 1 θ des = arcsin m cos ψ d µ xv -sin ψ d µ yv u 1 cos φ des - cos ψ d ξ xv + sin ψ d ξ yv u 1 cos φ des .
It is worth mentioning that the disturbance terms ξ x and ξ y will be estimated by using the High Order Sliding Mode Observer.

Attitude Control

To develop the controller for the attitude subsystem, we express (1d)-(1f) as

φ = l I x u 2 + ξ φ θ = l I y u 3 + ξ θ ψ = 1 I z u 4 + ξ ψ ,
where

ξ φ = θ ψ Iy-Iz Ix -ld4 Ix φ, ξ θ = φ ψ Iz-Ix Iy -ld5
Iy θ and ξ ψ = φ θ Ix-Iy

Iz

-d6 Iz ψ. The attitude controller for the Quadrotor is developed using the Nonsingular Terminal Modified Super-Twisting Control, which enables the system to follow the desired orientation given by angles φ des , θ des and ψ d . To accomplish this task, the following sliding manifolds are defined as

s φ = φ 2 -φ 2 des + c φ1 φ 1 -φ 1 des + c φ2 exp -λ φ t φ 1 -φ 1 des (1-2β φ ) s θ = θ 2 -θ 2 des + c θ1 θ 1 -θ 1 des + c θ2 exp -λ θ t θ 1 -θ 1 des (1-2β θ ) s ψ = ψ 2 -ψ 2 des + c ψ1 ψ 1 -ψ 1 des + c ψ2 exp -λ ψ t ψ 1 -ψ 1 des (1-2β ψ )
,

where φ 1 = φ, φ 2 = φ, θ 1 = θ, θ 1 = θ , ψ 1 = ψ and ψ 2 = ψ, the gains c φ1 , c φ2 , c θ1 , c θ2 , c ψ1 , c ψ2 are positive, and 0

< β φ < 1, 0 < β θ < 1, 0 < β ψ < 1.
Based on the assumption that the orientation velocities are available, the following controllers are proposed for Quadrotor's attitude

u 2 = I x l -c φ2 exp -λ φ t φ 1 -φ 1 des -2β φ (1 -2β φ ) φ 2 -φ 2 des -λ φ φ 1 -φ 1 des -θ ψ I y -I z I x + φdes 2 -c φ1 φ 2 + c φ1 φdes 1 -k 1φ |s φ | 1 2 sign (s φ ) -k 2φ s φ - t 0 k 3φ sign (s φ ) dτ - t 0 k 4φ s φ dτ , (17) 
u 3 = I x l -c θ2 exp -λ θ t θ 1 -θ 1 des -2β θ (1 -2β θ ) θ 2 -θ 2 des -λ θ θ 1 -θ 1 des -θ ψ I y -I z I x + θdes 2 -c θ1 θ 2 + c θ1 θdes 1 -k 1θ |s θ | 1 2 sign (s θ ) -k 2θ s θ - t 0 k 3θ sign (s θ ) dτ - t 0 k 4θ s θ dτ , (18) 
u 4 = I x l -c ψ2 exp -λ ψ t ψ 1 -ψ 1 des -2β ψ (1 -2β ψ ) ψ 2 -ψ 2 des -λ ψ ψ 1 -ψ 1 des -ψ ψ I y -I z I x + ψdes 2 -c ψ1 ψ 2 + c ψ1 ψdes 1 -k 1ψ |s ψ | 1 2 sign (s ψ ) -k 2ψ s ψ - t 0 k 3ψ sign (s ψ ) dτ - t 0 k 4ψ s ψ dτ . ( 19 
)

Simulation and Experimental Results

In order to show the right performance of the control strategies proposed, a set of simulation as well as experimental results carry out in outdoor environments is presented in this section.

Simulation Results

We present a set of simulation results where a square trajectory of 10 meters is tracked by the Quadrotor aircraft. The control laws ( 14),( 15),( 16),( 17)-( 19) together with observer (3) are applied to the system given by Equation ( 1). The Quadrotor parameters considered in the simulation test are given in Table I. Table II Super-Twisting Controller and for the High Order Sliding Mode Observer, respectively.

Figure 2 shows the position of the Quadrotor in the X -Y plane when a square reference is tracked. The upper graph shows the performance when disturbances are not estimated by observer (3) and compensated in the control law It can be observed the notable degradation in the performance of the vehicle generated by the external disturbances. The lower graph shows the trajectory of the UAS when the external disturbances are estimated and compensated, a significant improvement in the tracking is appreciated. Finally, Figure 4 depicts the estimation of the disturbances, which are induced to the vehicle's orientation dynamics in the form of an acceleration to simulate a more realistic situation. Notice the effectiveness of the high order sliding mode observer in the estimation of the disturbances. 

Experimental Results

In this section we present the real-time results of the proposed controller for trajectory tracking of a desired path subject to external disturbances, as well as a hovering-mode flight in order to demonstrate the good performance of this control strategy when it is applied to the Quadrotor aircraft. For the implementation of the proposed algorithms at outdoors environments we used a Real Time Kinematic-Global Positioning System (RTK-GPS) that provides improved location accuracy, from the 2 -meters nominal GPS accuracy to around 3cm in the XY-plane. We used a Piksi RTK-GPS, which was designed for autonomous vehicle guidance applications, such as, formation flight and autonomous landing, GPS/GNSS research and surveying systems.

We decided to use this kind of GPS because of its effectiveness for locating an object in the 3D space (in our case, the aircraft) and because of its excellent characteristics such as the described below:

-Centimeter-accurate relative positioning (carrier phase RTK) -10Hz position/velocity/time solutions -Open-source software and board design -Low power consumption (-500mW typical) -USB and dual UART connectivity -Integrated patch antenna and external antenna input

The RTK-GPS requires two Piksi receivers to achieve centimeter-level positioning, one called Rover (mounted on top of the Quadrotor aircraft) and one acting as a reference station called the Base, as can be seen in Figure 5.

We use a Quadrotor aircraft propelled by four motors fitted with 10-inch propellers. The RTK-Piksi module is enclosed within a protective carbon fiber triangle that ensures adequate operation of the RTK-GPS. The base antenna of the RTK-GPS is placed on the top of a tripod in order to obtain a better satellite reception (see Figure 5). The rover's position is sent by the Piksi module through a serial port by using the Swift Binary Protocol (SBP) which is a protocol employed for communicating with Swift devices. The SBP is read by an embedded computer (Odroid XU4) which sends to the on-board Pixhawk the 3D position measurements (X,Y,Z) obtained from the RTK module, allowing the Quadrotor aircraft to execute the trajectory tracking or performing hover-mode flight over a specific point depending on the specific escenario. Finally, we have a laptop computer as a ground station which helps us to visualize the current state of all the variables involved in the control of the aerial vehicle when the programmed task is executed. It also allows to see if there is good reception of the GPS signal in the RTK module.

In the following sections we present the obtained results of four experiments performed In order to prove the effectiveness of the proposed controller, -Experiment 1: Hovering-mode test -Experiment 2: Line trajectory-tracking test -Experiment 3: Square trajectory-tracking test -Experiment 4: Circular trajectory-tracking test

Hovering-mode test

This experiment was conducted for performing flight in stationary mode in the cartesian X-Y plane. Initial conditions were set for the Quadrotor aircraft positions as x d = 0 m and y d = 0 m. Figure 6 and Figure 7 show the performance of the controller while flying at stationary mode over a particular point under external disturbances. Figure 6 shows the response in hover-mode subject to small wind gusts as external perturbation. As can be seen, the control successfully takes the helicopter to the desired coordinates (0, 0) and then performs flight in hover mode. Moreover, from this figure, it can be appreciated the accuracy of the hovering flight since the Quadrotor position is always inside a circle of radius of 25cm.

On the other hand, Figure 7 illustrates the behavior of the positions on the X and Y axes, respectively. It can be seen that these variables are maintained satisfactorily close to the given references (in our case the coordinates (x, y) = (0, 0)). For example, at time instants t = 2s and t = 3s on the X-Y axes (respectively) the Quadrotor suffers a disturbance due to a gust of wind, then the control compensates this disturbance in both axes returning the aerial vehicle to the given reference. We can conclude the proper operation of the RTK-GPS for this type of applications under moderated weeather conditions. Fig. 6: Best tuning for hover at (0, 0)

Line trajectory-tracking test

In this experiment, the Quadrotor aircraft performs two specific paths (lines) during the trajectory-tracking stage. Figure 8 and Figure 9 depict the position and velocity of the aerial vehicle in the X-axis in order to demonstrate the effectiveness controller to follow the desired trajectory. We used different trajectories for each experiment described by the following parametric equations 

x (t) = p f 10 t t f 3 -15 t t f 4 + 6 t t f 5 ẋ (t) = p f 30 t 2 t 3 f -60 t 3 t 4 f + 30 t 4 t 5 f
, where x(t) is the position and ẋ(t) is the velocity of the Quadrotor aircraft at time t, respectively. Whereas p f is the final position (length of the path) and t f is the total route time. The following initial conditions are considered to generate the trajectory of the line: (x, ẋ) = (0, 0). As can be seen in Figure 8, the Quadrotor aircraft starts the track-line at t = 0s, and completes the trackline 20 seconds later with a total distance of 20 meters travelled. Also in the same figure you can observe the behavior of the velocity profile programmed in the aerial vehicle in order to properly perform the desired path. In both graphs of the Figure 8, it is possible to clearly observe the good performance of the controller to execute the tracking of the desired path (line) under external disturbances such as wind gusts.

On the other hand, Figure 9 shows the results of position and velocity obtained from the experiment in real-time for trajectory-tracking of a line of 30 meters. As in the previous case, we can observe an excellent performance of the proposed control strategy due to the fact that even if there are disturbances such as wind gusting, the vehicle manages to follow in an adequate way the trajectory given by the parametric equation described above As well as the given velocity profile. Notice that the position and velocity obtained from the performed experiments are very similar. 

Square trajectory-tracking test

For this experiment, the aerial vehicle has the task of performing a squareshaped trajectory. Figure 10 and Figure 11 show in detail the trajectory tracking of a square reference with disturbances induced by the gust of wind present in the moment of carrying out the testing at outdoors environments.

From Figure 10 a good performance of the controller can be observed since the vehicle satisfactorily followed the desired trajectory (square) under external perturbations. Also, it can be clearly seen that in the upper-left and lower-right corners of the square-trajectory there exists small deviations due to the induction of perturbations caused by the gust of wind that occurred at that moment of the testing. While the efficiency of the control algorithm implemented in the Quadrotor aircraft for following the desired square-trajectory can be seen in Figure 10 and Figure 11, one can observer the excellent tracking performance of the proposed controller based on RTK-GPS system for X-axis and Y-axis, respectively.

In addition, the different instants in which the control signal (PWM) efficiently compensates for disturbances affecting the aerial vehicle while executing the desired square-trajectory are appreciated. A clear example of the above occurs on the Y-axis at the instant of time t = 30 s, shown in Figure 11, where the control signal reacts quickly to reject the effect of the disturbance on the Quadrotor aircraft. Finally, the control signals in roll and pitch for the square trajectory tracking experiment are presented in Figure 12. 

Circular trajectory-tracking test

In Figure 13 and Figure 14 the experimental results for tracking a circular path are presented. The circular trajectory has a radius of 5 meters with center in the origin, with constant altitude (2 meters) and constant yaw angle (0 rad). The tracking performance in the X-Y plane can be appreciated in Figure 13 where it can be noted the behavior of the robust control strategies presented in this chapter. The references for X-axis and Y-axis that generate the circular path are shown in Figure 14. In this figure it can be appreciated the real-time position of the Quadrotor aerial vehicle in each one of the X and Y axes, where the system's behavior despite the external disturbances indicates the satisfactory performance of the designed controller. The control signals for roll and pitch angle generated to track the circular trajectory are depicted in Figure 15. 

Conclusions

In this paper, the Nonsingular Terminal Modified Super-Twisting Controller has been proposed for the trajectory tracking problem of an UAS type Quadrotor. To estimate the traslational velocities of the system and to improve the ability of system performance robustness, a High Order Sliding Mode Observer is employed together with the Nonsingular Terminal Controller. The Controller-Observer proposed ensures that the tracking errors converge to zero in finite-time. Finally, experimental results were obtained to show the performance of the control strategy and the experimental setup.

-

  ζ = (x, y, z) T ∈ R 3 : denotes the position of the aerial vehicle's center of mass relative to the inertial frame Γ I . η = (φ, θ, ψ) T ∈ R 3 : describe the orientation of the aerial vehicle and (φ,θ,ψ) are the three Euler angles: roll, pitch and yaw, respectively. These angles are bounded as follows: roll angle by (-π/2 < φ < π/2), pitch angle by (-π/2 < θ < π/2) and yaw angle by (-π < ψ < π).

Fig. 1 :

 1 Fig. 1: Inertial and Body frame of the mini Quadrotor aircraft.

Fig. 2 :

 2 Fig. 2: Square trajectory tracking. Upper graph shows the performance without disturbance compensation. Lower graph presents the performance with disturbance compensation.

Fig. 3 :

 3 Fig. 3: Position in X-axis (upper graph) and Y-axis (bottom graph) without disturbances compensation, when the Quadrotor tracks a square reference.

Fig. 4 :

 4 Fig. 4: Estimation of the disturbances induced on the acceleration dynamics of roll and pitch angles.

Fig. 5 :

 5 Fig. 5: The RTK-GPS setup implemented on Quadrotor aircraft.

Fig. 7 :

 7 Fig. 7: Quadrotor's position in X-axis and Y-axis for Hover experiment.

Fig. 8 :

 8 Fig. 8: Position and velocity of the UAS in X-axis. Tracking a signal reference in a distance of -20 meters from the origin.

Fig. 9 :

 9 Fig. 9: Position and velocity of the UAS in X-axis. Tracking a signal reference in a distance of 30 meters from the origin.

Fig. 10 :

 10 Fig. 10: Real-time experiment of trajectory tracking of a square of 10-meter .

Fig. 11 :

 11 Fig. 11: Reference signal and real-time position of the Quadrotor in X-axis and Y-axis for the square trajectory tracking experiment

  Control signal in roll.

Fig. 12 :

 12 Fig. 12: Quadrotor's control signals for X and Y axes for Square Experiment.

Fig. 13 :Fig. 14 :

 1314 Fig. 13: Tracking performance for a circular reference trajectory in the X-Y plane

  Control signal in pitch.

Fig. 15 :

 15 Fig. 15: Quadrotor's control signals for X and Y axes for Square Experiment.

Table 1 :

 1 and Table III present the parameters employed for the Modified Quadrotor model parameters.

	Parameter	Value	Unit
	m	0.8	kg
	l	0.2	m
	g	9.81	m/s 2
	Ix = Iy	0.0075	Ns 2 /rad
	Iz	0.013	Ns 2 /rad
	k 1 = k 2 = k 3	0.01	Ns/m
	k 4 = k 5 = k 6	0.005	Ns/m

Table 2 :

 2 Modified Super-Twisting Controller Parameters.

	Orientation gains	Value	Position gains Value
	k 1φ	10.0	k 1x	1.5
	k 2φ	7.5	k 2x	3.0
	k 3φ	5.0	k 3x	1.5
	k 4φ	3.5	k 4x	1.5
	k 1θ	10.0	k 1y	2.0
	k 2θ	7.5	k 2y	4.0
	k 3θ	5.0	k 3y	1.5
	k 4θ	3.5	k 4y	1.5
	k 1ψ	10.0	k 1z	5.0
	k 2ψ	7.5	k 2z	3.5
	k 3ψ	5.0	k 3z	2.5
	k 4ψ	3.5	k 4z	1.5

Table 3 :

 3 High Order Sliding Mode Observer parameters.

	Parameter	Value
	λ 1x	6.75
	λ 2x	30.00
	λ 3x	6.75
	λ 4x	1.50
	λ 1y	6.75
	λ 2y	30.00
	λ 3y	6.75
	λ 1z	5.00
	λ 2z	1.00
	λ 3z	10.00
	λ 4z	1.30
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