
HAL Id: hal-01928179
https://hal.science/hal-01928179

Submitted on 29 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fixed-Wing MAV Adaptive PD Control Based on a
Modified MIT Rule with Sliding-Mode Control

A. Espinoza-Fraire, Yangquan Chen, A. Dzul, Rogelio Lozano, R. Juarez

To cite this version:
A. Espinoza-Fraire, Yangquan Chen, A. Dzul, Rogelio Lozano, R. Juarez. Fixed-Wing MAV Adaptive
PD Control Based on a Modified MIT Rule with Sliding-Mode Control. Journal of Intelligent and
Robotic Systems, 2018, 91 (1), pp.101-114. �10.1007/s10846-018-0856-y�. �hal-01928179�

https://hal.science/hal-01928179
https://hal.archives-ouvertes.fr


Abstract
This paper presents an adaptive PD control law by using a modified MIT rule. The adaptation of the controller gains is 
based on the adjustment mechanism of the MIT rule by the gradient method with three types of sliding-mode control, 
i.e., first order sliding-mode control, second order sliding-mode (2SM), and high order sliding-mode control (HOSM). The
proposed adjustment mechanism with the PD controller have been designed for the altitude movement, directional and lateral
dynamics of a fixed-wing miniture aerial autonomous vehicle (MAV). Several simulations have been carried out in order to
analyze the response of the modified MIT rule.

Keywords Adaptive control · Adjustment mechanism · Sliding mode control · PD controller

1 Introduction

In control theory, there exist several dynamic systems possessing constant uncertain parameters or parameters 
varying slowly [1]. For example, when we develop an MAV (Mini Aerial Vehicle), we can add or remove sensors or 
batteries, then we modify the weight and consequently the inertia parameters. In the same way, when an MAV
flies in bad weather, it is exposed to changes in the air density which are usually considered as a constant value. In 
order to solve the aforementioned problems, several control laws could be designed. One of such options is the 
use of an adaptive controller [2] allowing the MAV performs a stable flight under such conditions. The adaptive 
control has been applied in areas as the robot manipulators, airplanes, rockets, chemical process, electronic systems, 
ships, bioengineering and other applications [1, 3].

Exist a lot of literature about adaptive control, but in this work we are going focus in works related to the MIT 
rule, thus, as in [4], where it has been applied the MIT rule based on model reference adaptive control (MRAC) for the 
regulation of a second order system; the contribution of [4] is the modification of the MIT rule with the objective to 
obtain a major amplitude of reference desired, due to the MIT rule tends to be unstable with large reference values, 
and this is one of the inconvenient in work with the MIT rule and even more, is sensitive to big numerical changes in the 
adaptation gain, that is, even with decimal changes in this gain, the system tends to be unstable. In [4] only show an 
example to make one gain adaptable of the control law, and the other gain of the control law proposed is not adaptable 
(constant value).

Also, [5] the MIT rule has been applied to a distillation process, considering a linearized model, in addition to 
applying an adaptive feedback control for two parameters of the controller, and by considering as reference a unitary
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step signal. In [6], they have presented a comparison of the
MIT rule with the gradient method and by the Lyapunov
method. In [6] has been designed a control law for tracking
and regulation for an aspheric tank with selecting a small
reference for the input, and they have not presented a
modification to the MIT rule.

By other hand, [7] applied a Model Reference Adaptive
Controller (MRAC) based on the MIT rule in the roll
angle for a very large four engine passenger jet aircraft,
the authors of [7] mentioned a very important point about
the adaptation gain, that is, based on the simulation results
obtained with MatLab software, with high values on the
adaptation gain it is obtained a fast response on the system
but with larger overshoots, and with low values of gamma
the system response is slow with small overshoot. The
interval of this gain is from 1 to 5 Beyond this interval the
system performance is not satisfactory.

In [8] a MRAC with a LQR has been applied to stabilize
a quadrotor with parametric uncertainties, this union was
proposed because the authors of [8] mentioned that the
adaptive control is a method for ensuring the stability of
the quadrotor, but the adaptive control working alone is
not ideal because fast adaptation can lead to undesirable
oscillations and instability. The work presented in [9]
is shown a design based on feedback linearization and
adaptive control (MRAC), the controller has been applied
to control the attitude of fixed-wing UAV, the control laws
is applied for decoupling dynamics which defines the UAV,
that are, pitch, yaw and roll angles, respectively. In [9] used
the same reference for the three angles and even realized a
linearization of the decoupling model.

The works mentioned at the top have shown results using
the Matlab software (simulation results).

In summary in this work, we have applied the MIT rule
with the sliding modes theory, the objective of this union
is to obtain a robust adjustment mechanism in presence of
wind gusts to change the gains of a PD controller. The
union of the MIT rule with the sliding mode theory implies
a first order sliding mode, and due to that with this union
is presented the chattering effect, we have added a second
order sliding mode in order to reduce this effect, and finally
we have appreciated than the chattering effect is presented
still with two sliding modes, so we have added a high order
sliding mode in order to reduced the effect chattering in the
design of the adaptive control. Thus, the adaptive controller
obtained, is applied in order to lead the altitude movement,
yaw and roll angles to a desired values.

With the union mentioned before (MIT rule with
sliding mode theory), we have obtained a lower sensitivity
in the adaptive gain, and it is possible to vary the
reference required with different desired values, unlike the
aforementioned works. Furthermore, we have proposed a
different definition of the adjustment mechanism based

on the MIT rule with sign function and with sign − sign
functions than the presented in [1, 3]. We also added a
disturbance which acts on the process input [3], with the
objective of test the robustness of the adjustment mechanism
for the adaptive PD controller in presence of not modeled
disturbances in the fixed-wing MAV. Such disturbances are
small wind gusts, but are unknown and random.

The paper is organized as follows: Section 2 shows the
equations that define the dynamical model of the MAV; in
Section 3, it is presented the control law design for the fixed-
wing MAV dynamics. In Section 4, is shown the simulation
results and an analysis of the error signals and the efforts of
the control inputs, Section 5 presents the conclusions of this
work.

2 AirplaneModel

In order to obtain the model equations, by omitting any
flexible structure of the MAV, the fixed-wing MAV can
then considered as a rigid body. Also, we do not consider
the curvature of the earth, it is considered just as a plane
because we assume that the fixed-wing MAV will only
fly short distances. With the previous considerations, we
obtain the model by applying the Newton’s laws of motion.
It should be mentioned that the model presented in this
work represents a pure motion pitch to achieve the desired
altitude, and the same concept of pure motion is applied to
the yaw and roll angles.

2.1 Longitudinal Dynamics

The used dynamical model to control the altitude of the
MAV is given by [10]:

θ̇ = q (1)

q̇ = ρSV c̄2

4Iyy

Cmq q + ρV 2Sc̄

2Iyy

Cmδe
δe (2)

ḣ = V sin(θ) (3)

where V is the magnitude of the airplane speed (for
the simulations presented in this work is considered as
constant), θ denotes the pitch angle. q is the pitch angular
rate with respect to the y-axis of the aircraft body, h defines
the airplane altitude and δe represents the elevator deviation
[10]. We can see these variables in the in Fig. 1.

2.2 Directional-Lateral Dynamic

The lateral dynamics generates the roll motion and, at the
same time, induces a yaw motion (and vice versa), then
a natural coupling exists between the rotations about the
roll and yaw axes [11]. In our case, to solve it, we have



Fig. 1 Pure pitching motion

considered a decoupling of the yaw and roll angles [2].
Thus, each angle can be controlled independently. Gene-
rally, the effects of the engine thrust are also ignored [11].
In the Fig. 2, the yaw angle (directional dynamics) is repre-
sented, which can be described by the following equations:

ψ̇ = r (4)

ṙ = ρV Sb2

4Izz

Cnr r + ρV 2Sb

2Izz

Cnδr
δr (5)

where ψ represents the yaw angle and r denotes the yaw
rate with respect to the center of gravity of the MAV. δr is
the rudder deflection. The following equations describe the
dynamics for the roll angle (lateral dynamics):

φ̇ = p (6)

ṗ = ρV Sb2

4Ixx

Clpp + ρV 2Sb

2Ixx

Clδa
δa (7)

where p denotes the roll rate, φ describes the roll angle, and
δa represents the deviation of the ailerons. In the Fig. 3 are
shown the variables of the roll motion. In Fig. 4 is shows
a Solidworks model designed to calculate the moments of
inertia.

Remark 1 It should be mentioned that the mathematical
model defined in this work, only represents the Euler angles
and the angular rates, due to that with this approximation
in the mathematical model has been obtained a good

Fig. 2 Pure yawing motion

Fig. 3 Pure rolling motion

performance in real-time flight tests (see [12, 13], and [14]).
And the control design presented in this work needs the
knowledge of only such physical variables.

Remark 2 The parameters of the wingspan, fuselage, etc, of
the aeromodelling model T-28 Trojan, were provided by the
manufacturer (http://www.horizonhobby.com/), see Table 1.

Remark 3 The validation of the model has been proved with
the design of the backstepping controller presented in [12]
and with the design of nonlinear observers presented on
[13], that is, the backstepping controller needs the complete
knowledge of the model for its design process and the same
situation can be consider for the design of the nonlinear
observers (see [13]), otherwise it is not possible to obtain
a stable flight with the fixed-wing MAV, namely, it is not
possible to achieve the control objective. Therefore, in this
sense, we can prove the validity of the aerodynamic model.

2.3 Change of Variables of the Directional-Lateral
Aerodynamic Model

In order to design the adaptive control law, we have
conducted a change in the variables notation for the altitude,
directional and lateral dynamics; this is due to the fact that
the dynamics are similar. Then, the directional dynamics is
represented in the new variables by:

ẋ1l = x2l (8)

ẋ2l = C1lx2l + C2lul (9)

Fig. 4 SolidWorks software model

http://www.horizonhobby.com/


Table 1 Fixed-wing MAV
parameters Name Parameter Value

Air density ρ 1.05 kg/m3

Wing area S 0.09 m2

Standard mean chord c̄ 0.14 m

Wingspan b 0.914 m

Moment of inertia in roll Ixx 0.16 kg · m2

Moment of inertia in pitch Iyy 0.17 kg · m2

Moment of inertia in yaw Izz 0.02 kg · m2

Dimensionless coefficient for longitudinal movement, obtained experimentally Cmq − 50

Dimensionless coefficient for elevator movement, obtained experimentally Cmδe
0.25

Dimensionless coefficient for the yaw angle, obtained experimentally Cnr − 0.01

Dimensionless coefficient for the rudder movement, obtained experimentally Cnδr 0.0005

Dimensionless coefficient for roll angle, obtained experimentally Clp − 0.15

Dimensionless coefficient for ailerons movement, obtained experimentally Clδa 0.005

Velocity V 60 km/h

with l := θ, ψ, φ for the pitch, roll and yaw angles,
respectively. The definition of the acronym l is with the
objective of known or differentiate which dynamic model is
been used in the control law. ul defines the control input,
that is, uθ := δe, uψ := δr and uφ := δa . The same subindex
are going to use in the description of the adaptive control
presented in the Section 3.

3 Design of the Adaptive Control

We have designed a PD control law with adaptive gains,
thus, the adaptive part of the controller is given by the
proportional and the derivative gains. These gains are
defined as k̂pla and k̂vla respectively. The methodology to
design the adaptive control is based on the MRAS, in order
to design the adjustment mechanism by the MIT rule based
on the gradient method with sliding-mode theory, that is, we
have modified the MIT rule based on the gradient method
by inserting the theory of first order sliding-mode, second
order (2-SM) and high order sliding-mode (HOSM), with
the purpose of obtaining a robust adjustment mechanism
for the adaptive control law and to stabilize the system
in presence of unknown perturbations (wind gusts), and
trying to reduce the chattering effect. The block diagram
representing the MRAS proposed is shown in Fig. 5, where
the Plant is the aerodynamic model which represents the
fixed-wing MAV, and the block called as Model represents
the model-reference.

Consider the Eqs. 8–9, The adaptive control is given by:

ul = k̂plael + k̂vla ėl (10)

where k̂pla and k̂vla are called as the position and velocity
gains, respectively, thus, these are the adaptive gains. The

error of the directional and lateral dynamics has been
defined as el = xd

1l − x1l . The gains of the PD control have
implicit a subscript to indicate the algorithm that has been
applied as adjustment mechanism, a = a1, a2, a3, a4 where
a1 corresponds to the MIT rule, a2 corresponds to the MIT
rule with sliding-mode (MIT-SM), a3 uses the MIT rule
with 2-sliding-mode (MIT-2SM), and finally a4 represents
the MIT rule with high order sliding mode (MIT-HOSM).
Therefore, for the design of the MIT rule, it is introduced an
error given by:

elm = x1lm − x1l (11)

where x1lm is the output from the reference model. We have
followed the methodology that has been presented in [3]
for the MIT rule, taking this into account, the aerodynamic
model has been transformed into the representation of a
transference function in order to develop the derivatives of
sensitivity; these have been obtained by computing partial
derivatives with respect to the controller parameters k̂pla

Fig. 5 Block diagram of the MRAS



and k̂vla . Thus, the closed-loop transfer function with the
adaptive PD controller has been defined as:

x1l = k̂plC2l

s2 + (C2l k̂vl − C1l)s + C2l k̂pl

xd
1l (12)

and the model of reference has been defined as:

x1lm = ω2
n

s2 + 2ζωns + ω2
n

xd
1l (13)

where ζ = 3.17 and ω = 3.16. Consider (11)–(13) and
calculate the partial derivatives with respect to k̂pla and k̂vla ,
then it is obtained:
∂elm

∂k̂pl

= C2l

s2 + (C2l k̂vl − C1l)s + C2l k̂pl

(
x1l − xd

1l

)
(14)

∂elm

∂k̂vl

= C2ls

s2 + (C2l k̂vl − C1l)s + C2l k̂pl

(
x1l − xd

1l

)
(15)

Generally, the expressions (14) and (15) cannot be used
due to the unknown parameters k̂pla and k̂vla . Thus, an
optimum case has been assumed, it is defined as:

s2 + (C1l + C2l k̂vl)s + C2l k̂pl = s2 + 2ζωns + ω2
n (16)

thus, after these approximations, we have obtained the
differential equations of the adaptive PD controller.

˙̂
kpla1 = −γ1l

(
1

s2 + 2ζωns + ω2
n

(
x1l − xd

1l

))
elm (17)

˙̂
kvla1 = −γ2l

(
s

s2 + 2ζωns + ω2
n

(
x1l − xd

1l

))
elm (18)

Now, it is proposed an MIT rule with second order
sliding-mode; this approach is different than the defined
in [3], and then, it is defined a sliding-mode surface as
s1l = ẋ1lm −x2l + k1lelm (we search to increase the stability
to the adjustment mechanism), where k1l > 0. Then, the
differential equations of the adaptive controller, with the
methodology by sliding-mode, are given by:

˙̂
kpla2 = −γ1l

(
1

s2 + 2ζωns + ω2
n

(
x1l − xd

1l

))
(βp1l sign(s1l ))

(19)

˙̂
kvla2 = −γ2l

(
s

s2 + 2ζωns + ω2
n

(
x1l − xd

1l

))
(βv1l sign(s1l ))

(20)

where the gains are βp1l , βv1l > 0. Due to the chattering
effect of the first order sliding-mode, let us design
an adjustment mechanism with a second order sliding-
mode. These second order sliding-mode includes a robust
differentiator of first order [15]. This differentiator is
defined by:

ẋ0 = v0 = −λ0|x0 − s1l |1/2 sign(x0 − s1l ) + x1

ẋ1 = −λ1 sign(x1 − v0)

where x0 and x1 are real-time estimations of s1l and
ṡ1l , respectively. The values of λ1, λ2 are constants and
positives. Thus, the differential equations of the adaptive PD
controller with a second order sliding-mode are defined by:

˙̂
kpla3 = −γ1l

(
1

s2 + 2ζωns + ω2
n

(
x1l − xd

1l

))

×(βp1l sign(s1l ) + βp2l sign(ṡ1l )) (21)

˙̂
kvla3 = −γ2l

(
s

s2 + 2ζωns + ω2
n

(
x1l − xd

1l

))

×(βv1l sign(s1l ) + βv2l sign(ṡ1l )) (22)

where the gains are βp1l , βp2l , βv1l , βv2l > 0. In order
to reduce or eliminated the chattering effect in the second
order sliding-mode, we have designed an adjustment mech-
anism with HOSM. To design the adjustment mechanism,
it is necessary a robust differentiator of second order [15],
which is given by:

ẋ0 = v0 = −λ0|x0 − s1l |2/3 sign(x0 − s1l ) + x1

ẋ1 = v1 = −λ1|x1 − v0|1/2 sign(x1 − v0) + x2

ẋ2 = −λ2 sign |x2 − v1|
where x0, x1 and x2 are real-time estimations of s1l , ṡ1l

and s̈1l . The values of λ0, λ1 and λ2 are defined as positive
constants. Finally, the differential equations of the adaptive
PD controller with HOSM are defined by:

˙̂
kpla4 = −γ1l

(
1

s2 + 2ζωns + ω2
n

(
x1l − xd

1l

))

×(αpl[s̈1l + 2(|ṡ1l |3 + |s1l |2)1/6

× sign(ṡ1l + |s1l |2/3 sign(s1l ))]) (23)

˙̂
kvla4 = −γ2l

(
s

s2 + 2ζωns + ω2
n

(
x1l − xd

1l

))

×(αvl[s̈1l + 2(|ṡ1l |3 + |s1l |2)1/6

× sign(ṡ1l + |s1l |2/3 sign(s1l ))]) (24)

where the gains are αpl, αvl > 0.

4 Simulation Results

In this work we are going to use the L2 − norm to describe
the results obtained with the different adaptive mechanism
based on the MIT rule with the sliding mode theory. Such
L2 − norm is applied to the error between the model
reference and the aerodynamic model that describe the
fixed-wing MAV, and even the same norm is applied to
know the control effort. Then, the L2 − norm for the error
is defined as

L2[elm ] =
√

1

T − t0

∫ T

t0

‖el‖2dt (25)



Fig. 6 Adaptive PD controller
response in altitude movement
(with disturbances)
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And the L2 − norm to know the control effort of the
adaptive law with the different adaptive mechanisms, the
L2 − norm is given as

L2[δs] =
√

1

T − t0

∫ T

t0

‖δs‖2dt (26)

4.1 AltitudeMovement

In the Fig. 6 is shown the results obtain with the different
adaptive mechanism designed to obtain an adaptive PD
controller. In this altitude simulation, we have set different
desired altitude, such altitude or control objectives are 10,
15 and 20 meters. It is appreciates at the first desired altitude
(10 meters) the adaptive controller achieves the desired
altitude of critically damped form, and after that, the other
altitudes achieves in a soft signal due to the desired altitude
signal, see the Fig. 6.

The smaller error obtained in altitude is with the
adjustment mechanism based on MIT-SM, this is 7.39,
10.77 and 10.71% smaller than the adjustment mechanism
based on MIT, MIT-2SM and MIT-HOSM respectively.

The control signals generated by the PD adaptive with the
different adjustment mechanism are presented in the Fig. 7.

Then, the control effort of the adaptive mechanism based on
MIT-HOSM is 86, 90, and 99% smaller than the generated
by the adjustment mechanism based on MIT, MIT-SM, and
MIT-HOSM, respectively (see Table 2).

By other hand, the mechanism which presented a bigger
error in altitude was the MIT-2SM in altitude, that is, the
MIT-2SM is bigger than the adjustment mechanism based
on MIT, MIT-SM and MIT-HOSM, that is, 4.23, 14.33
and 0.06%, respectively. Also, the control effort generated
by the adjustment mechanism based on MIT-SM is bigger
than the presented by the adjustment mechanism based on
MIT, MIT-2SM and MIT-HOSM, that is, 28.57, 98.57 and
98.57%, respectively (see Table 2).

In the Fig. 8 is presented the minimization of the cost
function with the different adaptive mechanism, and is
proved in the figure that J (θ) → 0. In the Fig. 9 is presented
the performance of the adaptive proportional gain k̂p and in
the Fig. 10 is appreciated the performance of the adaptive
derivative gain k̂v in altitude movement for the different
adaptive mechanism.

The response of the sliding manifold for the adjustment
mechanism based on sliding mode theory for the adaptive
PD controller in altitude are presented in the Fig. 11 for
the adaptive proportional gain and in the Fig. 12 is for the
adaptive derivative gain.

Fig. 7 Control signal of the
Adaptive PD controller in
altitude (with disturbances)
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Table 2 L2 − norm for the error and the control effort

Altitude movement

Adaptive mechanism L2[ehm ] L2[uθ ]
MIT 0.1583 0.0050

MIT-SM 0.1466 0.0070

MIT-2SM 0.1653 1.7873×10−4

MIT-HOSM 0.1652 1.7872×10−4

Yaw angle

Adaptive mechanism L2[eψm ] L2[uψ ]
MIT 0.0760 0.0132

MIT-SM 0.0865 0.0109

MIT-2SM 0.2501 0.0363

MIT-HOSM 1.2323 0.2083

Roll angle

Adaptive mechanism L2[eφm ] L2[uφ]
MIT 0.1964 0.1272

MIT-SM 0.1892 0.1177

MIT-2SM 0.1768 0.3523

MIT-HOSM 0.0780 2.6101

4.2 YawMovement

In the Fig. 13 is shown the results obtained with the
PD adaptive controller with the different adjustment
mechanism. In this figure the objective of control is achieve
three different values for the yaw angle, such values are 5◦,
10◦, and 10◦. The MIT presented an error 12.13, 69.61 and
93.83% smaller than the adjustment mechanism based on
MIT-SM, MIT-2SM and MIT-HOSM, respectively. By other
hand, the control effort of the adaptive mechanism MIT-
SM is 17.42, 69.97 and 94.76% smaller than the adjustment
mechanism based on MIT, MIT-2SM and MIT-HOSM,
respectively (see Table 2). In the Fig. 14 is presented the
control response of the adaptive PD controller with the
different adjustment mechanism.

The adjustment mechanism based on MIT-HOSM
presented a bigger error in the yaw angle, that is, 93.83,
92.98 and 79.70% than the MIT, MIT-SM and MIT-2SM
respectively. Even more, the control effort generated by the
PD adaptive control with the adjustment mechanism based
on MIT-HOSM is bigger than the adjustment mechanism

Fig. 8 Minimization of the cost
function in altitude (with
disturbances)
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Fig. 9 Response of the adaptive
proportional gain in altitude
(with disturbances)
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Fig. 10 Response of the
adaptive derivative gain in
altitude (with disturbances)
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Fig. 11 Response of the sliding
manifold in the adaptive
proportional gain in altitude
movement (with disturbances)
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Fig. 12 Response of the sliding
manifold in the adaptive
derivative gain in altitude
movement (with disturbances)
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Fig. 13 Adaptive PD controller
response in yaw angle (with
disturbances)
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Fig. 14 Control signal of the
Adaptive PD controller in yaw
angle (with disturbances)
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Fig. 15 Minimization of the
cost function in yaw angle (with
disturbances)
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Fig. 16 Response of the
adaptive proportional gain in
yaw angle (with disturbances)
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Fig. 17 Response of the
adaptive derivative gain in yaw
angle (with disturbances)
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Fig. 18 Response of the sliding
manifold in the adaptive
proportional gain in yaw angle
(with disturbances)
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based on MIT, MIT-SM, and MIT-2SM, that is, 93.66,
94.76, and 82.57%, respectively, see the Table 2.

In the Fig. 15 is presented the result of the minimization
of the cost function for the yaw angle, it is appreciated
that J (ψ) → 0. In the Fig. 16 is shown the performance
of the adaptive proportional gain k̂p, and in the Fig. 17 is
appreciated the performance of the adaptive derivative gain
k̂v in yaw angle for the different adjustment mechanism.
The response of the sliding manifold for the adjustment
mechanism based on sliding mode theory for the adaptive
PD controller in the yaw angle are presented in the Fig. 18
for the adaptive proportional gain and in the Fig. 19 is for
the adaptive derivative gain.

4.3 Roll Movement

In the Fig. 20, is presented the response of the adaptive
PD controller with the different adjustment mechanism. In
this figure the references of roll angle to archive by the
adaptive PD controller are 5◦, 25◦, and 40◦. Then, It is
appreciated that the error presented by the MIT adjustment
mechanism is 16.04, 66.84 and 92.99% smaller than the
adjustment mechanism based on MIT-SM, MIT-2SM, and

MIT-HOSM, respectively. Also, the control effort of the
adaptive PD controller with the adjustment mechanism
based on MIT-SM is 3.17, 67.60 and 94.76% smaller than
the adjustment mechanism based on MIT, MIT-2SM and
MIT-HOSM respectively, see the Table 2 and Fig. 21.

The adjustment mechanism based on the MIT-HOSM
rule, the error in roll angle is 92.99, 91.65, and 78.88%
bigger than the adjustment mechanism based on MIT, MIT-
SM, and MIT-2SM, respectively. Even more, the adjustment
mechanism based on the MIT-HOSM, it is 94.59, 94.76, and
83.84 bigger than the adjustment mechanism based on MIT,
MIT-SM, and MIT-2SM, respectively (see the Table 2).
The minimization of the cost function in the roll angle is
presented in the Fig. 22, it is appreciated that J (φ) → 0.
Also, in the Fig. 23 is shown the performance of the adaptive
proportional gain k̂p, and in the Fig. 24 is appreciated the
performance of the adaptive derivative gain k̂v in roll angle
for the different adjustment mechanism.

The response of the sliding manifold for the adjustment
mechanism based on sliding mode theory for the adaptive
PD controller in the roll angle are presented in the Fig. 25
for the adaptive proportional gain, and in the Fig. 26 is for
the adaptive derivative gain.

Fig. 19 Response of the sliding
manifold in the adaptive
derivative gain in yaw angle
movement (with disturbances)
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Fig. 20 Adaptive PD controller
response in roll angle (with
disturbances)
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Fig. 21 Control signal of the
Adaptive PD controller in roll
angle (with disturbances)
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Fig. 22 Minimization of the
cost function in roll angle (with
disturbances)
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Fig. 23 Response of the
adaptive proportional gain in
roll angle (with disturbances)
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Fig. 24 Response of the
adaptive derivative gain in roll
angle (with disturbances)
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Fig. 25 Response of the sliding
manifold in the adaptive
proportional gain in roll angle
(with disturbances)
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Fig. 26 Response of the sliding
manifold in the adaptive
derivative gain in roll angle
movement (with disturbances)
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5 Conclusions

In this work has been proposed an adjustment mechanism 
based on the union of the MIT rule using the gradient 
method with the sliding mode theory, this adjustment mech-
anism was development to obtain an adaptive PD controller. 
Thus, with the adjustment mechanism based on the MIT 
rule with high order sliding mode (MIT-HOSM) was pos-
sible reduce the chattering effect and even the unknown 
perturbation is reduced significantly in the altitude move-
ment and in the roll angle. Also, for yaw angle was possible 
some reduction in the chattering effect by the use of the 
MIT rule with high order sliding mode (MIT-HOSM). Then, 
with the use of the adjustment mechanism based on in the 
MIT rule with the gradient method is not possible reduced 
the unknown perturbation and in consequence is not possi-
ble achieve an stable or equilibrate flight. The adjustment 
mechanism based on the MIT rule with first order sliding 
mode (MIT-SM) presented the undesired chattering effect, 
but with the MIT with second order sliding mode (MIT-
2SM) was possible attenuate in a better way in the altitude 
movement. By other hand, for the yaw and roll angles 
exist some reduction but not enough to reduce the chat-
tering and the unknown perturbation with the MIT with 
second order sliding mode (MIT-2SM). Thus, designing an 
adjustment mechanism based on the union of the MIT rule 
by the gradient method with the high order sliding mode 
is possible design a robust adjustment mechanism for a adap-
tive PD controller in order to attenuate the chattering effect and 
reduce the perturbations (wind gusts) which affect the perfor-
mance of a fixed-wing miniature unmanned aerial vehicle.
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Avanzados del InstitutoPolitécnico Nacional (CINVESTAV-IPN) in
Mexico city. He has written somes cientific publications on scientific
journals and conferences. His research is directed to the investigation
of mathematical models supported by ICTs to generate business
development and management; the management of knowledge and
transmission of technology to vulnerable groups supported in the
innovation; the generation and transfer of scientific and technological
innovation supported on sustainability; optimal control, non-linear
control, robust control, hybrid systems, switched, implicit and with
delays, applied in the area of economy, administration and finance;
game theory, intelligent control, stochastic control and control of
unmanned aerial vehicles (UAV); the development of computational
algorithms for the modeling, optimization and control of economic and
financial systems: Econometrics; and the modeling of physical systems
and economic.


	Fixed-Wing MAV Adaptive PD Control Based on a Modified MIT Rule with Sliding-Mode Control
	Abstract
	Abstract
	Introduction
	Airplane Model
	Longitudinal Dynamics
	Directional-Lateral Dynamic
	Change of Variables of the Directional-Lateral Aerodynamic Model

	Design of the Adaptive Control
	Simulation Results
	Altitude Movement
	Yaw Movement
	Roll Movement

	Conclusions
	Acknowledgements
	Publisher's Note
	References




