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Abstract

We address the problem of budgeted reinforcement learning, in continuous state-space, using
a batch of transitions. To this extend, we introduce a novel algorithm called Budgeted
Fitted-Q (BFTQ). Benchmarks show that BFTQ performs as well as a regular Fitted-Q
algorithm in a continuous 2-D world but also allows one to choose the right amount of
budget that fits to a given task without the need of engineering the rewards. We believe
that the general principles used to design BFTQ can be applied to extend others classical
reinforcement learning algorithms for budgeted oriented applications.

Keywords: Reinforcement Learning, Budgeted-MDP, Fitted-Q

1. Introduction

Classic reinforcement learning (RL) algorithms focus on the maximization of a unique
expected reward signal. But many applications have multiple, possibly conflicting, objectives.
For example, an autonomous driving car must both optimize its travel time, its fuel
consumption, and the safety of people. In this example, the first two objectives are of the
same nature: although conflicting on short term, they become coherent on the long term: if
the fuel tank is depleted the travel time will be potentially infinite. In practice, by replacing
this infinite value by the time needed to walk to the next fuel station, one gets a reasonable
way to combine these two objectives into a single one. The safety objective is of different
nature because: one cannot afford to work ”on expectation”; It is quite difficult to assess the
cost of a dramatic car accident and it’s often more intuitive to think in term of probability
for a given run to fail the constraints. The car should optimize the expected travel time
while guaranteeing a crash probability strictly lower than the one of a human driver. In this
case, methods using worst percentile scenario criteria like conditional value-at-risk (CVaR)
(Chow et al. (2015)) may help to design a good strategy.

One can also consider a scenario where a military send drones to a survey mission, and
can only afford to lose a known limited percentage. In such scenario, it is difficult to shape
the drone casualties/cost in term of negative rewards but there is no need to deploy the
whole CVaR machinery. The aim of our work is to handle a relaxation of the risk-sensitive
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RL problem where we want to maximize the expected primary reward while keeping a
secondary criterion – on expectation – under a given budget. We formalize this problem as
a Budgeted Markov Decision Process (BDMP) in continuous state-space (Boutilier and Lu
(2016)). Solving a BMDP is a harder problem than solving a Constrained Markov Decision
Process (CDMP) (Altman, 1999) as it requires the budget to be a parameter of the policy.

We introduce Budgeted Fitted-Q (BFTQ), a practical extension of the Fitted-Q (FTQ)
algorithm for BMDP. It takes as input a batch of RL transitions and estimates the optimal
parametric strategies under budget. We experiment BFTQ on 2-D world with holes and we
show that BFTQ performs as well as FTQ and that the obtained policy is not shaped for a
specific budget.

2. Background and Related Works

2.1 Markov Decision Process

A Markov Decision Process (MDP) is formalized as a tuple 〈S,A, R, P, γr〉; where S is
the state set, A is the action set, R : S × A × S → R the (potentially stochastic)
reward function, P : S × A × S → [0, 1] is the transition function, and γr is the re-
ward discount factor. The behaviour of the agent is defined as a (stochastic) policy
π : S × A → [0, 1]1. Solving an MDP consists in finding a policy π∗ that maximises the
γr-discounted expected return Eπ∗ [

∑
t γ

t
rR(st, at, st+1)]. The optimal policy π∗ satisfies Bell-

man’s optimality equation( Bellman (1956)): π∗(s) = argmaxa∈AQ
∗(s, a) where Q∗ (s, a) =

Es′|s,a [R (s, a, s′) + γrQ
∗ (s′, π∗(s′))].

Fitted-Q (FTQ, Ernst et al. (2005)) is a generic algorithm to solve MDPs with continuous
state-space and unknown R and P . It implements Value-Iteration (V.I, (Bellman (1956))
with a regression model as a proxy for the Q-function. It uses a batch of transitions
(si, ai, r

′
i, s
′
i)i∈[0,N ] which covers most of the state space. It trains the Q-function at each

iteration of VI using a supervised learning algorithm that regresses the following supervised
training batch: {(si, ai), r′i + γr ∗maxa′ Q(s′i, a

′)}i∈[0,N ].

2.2 Budgeted Markov Decision Processes

A Constrained Markov Decision Process (CMDP, Beutler and Ross (1985); Altman (1999)) is
an MDP augmented with a cost function C : S×A×S → R, a cost discount γc, and a budget β.
The cost function and its budget represent the “hard” constraint of the problem, while the re-
ward function represents the task to complete. The problem of constrained RL consists in find-
ing the policy which maximizes the expected return while keeping the discounted sum of the
cost under the given budget β. Formally π∗ = argmaxπ Eπ

∑
t γ

t
rRt s.t. Eπ

∑
t γ

t
cCt ≤ β (1)

where Rt = R(st, at, st+1) and Ct = C(st, at, st+1).The Budgeted Markov Decision Process
(BMDP, Boutilier and Lu (2016)) problem is a generalisation of the CMDP problem where
the objective is to find a generic policy π∗β which works for any CMDP of budget β > 0.

A convenient property of MDPs, is that the optimal policy is unique, deterministic, and
greedy: π∗(s) = argmaxaQ(s, a). In a CMDP, and a fortiori in a BMDP, this is in general
not the case. It has been shown indeed that the optimal policy under constraint is a random
mixture of two deterministic policies (Beutler and Ross (1985, Theorem 4.4)). To illustrate

1. We usually write π(s), for s ∈ S, as a random variable in A.
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this fact, let us consider the trivial BMDP on the left of Fig. 1. On this example we have
EπR = 10π1 and EπC = π1. The deterministic policy consisting in picking always the safe
action is feasible for any β ≥ 0, but if β = 1/2, the most rewarding feasible policy is to pick
randomly the safe and risky actions with equal probabilities. If we attempt to cast this
BMDP into an MDP by replacing the costs by negative rewards, the policy we will obtain
will be deterministic, hence suboptimal.

2.3 Related work

Figure 1: On the left hand side, a sim-
ple risky-vs-safe BMDP. The proba-
bility of picking the risky action is π1.
On the right hand side an attempt
to relax the problem with negative
rewards.

Researchers got interested in resolving constrained
sequential problems ( Garćıa and Fernández (2015)),
such as MDP under constraints (Beutler and Ross
(1985); Altman (1999)). Undurti et al. (2010) pro-
poses an algorithm to solve CMDP with a continuous
state-space using the same principles as Fitted-Value-
Iteration but it assumes that the environment (R, C
and P ) is known. Geibel and Wysotzki (2005); Chow
et al. (2015); Achiam et al. (2017) propose algorithms
for CMDP, but they require interactions with the envi-
ronment during training (actor-critic, Q-learning and
Policy Gradient, Constrainted-Policy-Optimization).
Abe et al. (2010) work with constraint-batch RL but
their solution is a Q-learning algorithm adapted to
batch learning, which is known not to be a sample-efficient batch RL algorithm. Thomas et al.
(2015); Petrik et al. (2016); Laroche and Trichelair (2017) introduced batch RL algorithms for
risk sensitive problems but these algorithms were not adapted for continuous environments.
Finally, one of the main drawback of most of all these algorithms is the fact that they resolve
CMDP and not BMDP. The approaches relying on using Lagrangian/KKT conditions would
fall under the same limitation. On the contrary, Boutilier and Lu (2016) resolve a BMDP
using a VI-like algorithm. However it only applies to finite and known environments. The
next section introduce the contribution of the paper: Budgeted Fitted-Q.

3. Budgeted Fitted-Q Iteration

Figure 2: A simple deter-
ministic finite BMDP.

In this section, we introduce Budgeted-Fitted-Q (BFTQ),
a batch RL under constraints algorithm for BMDP, as an
extension of the regular FTQ algorithm.

3.1 Intuition

We illustrate the principle of BFTQ with a simple BMDP
described on Fig. 2. On this example, the transition, reward,
and constraint functions are fully deterministic and finite, and
the state and action sets are of respective sizes 7 and 2. Starting
from the initial state, the goal is to maximise the expected
cumulative reward under constraint that the expected cumulative cost lays under β. There
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are only 3 parameters to optimise: π0 = P(a0 | start), π1 = P(a0 | s2), and π2 = P(a0 | s2).
On the left hand side of the figure, on state s1, the action a0 leads to a better reward
R = 10 > 9 and a lesser cost C = 2 < 3 than action a1: this action is dominant for any
budget. On the right hand side state s2, we retrieve the same safe/unsafe trade-off as in
Figure 1: the best policy has to be mixed between actions a0 and a1.

Assuming γr = γc = 1, the optimization problem of Eq. 1 becomes:

max
π0,π1,π2

π0 · [10π1 + 9(1− π1)] + (1− π0) · [1 + 5π2 + 8(1− π2)]

s.t. π0 · [3 + 2π1 + 3(1− π1)] + (1− π0) · [5 + π2 + 6(1− π2)] ≤ β

In this example, one can see that we may easily separate the constrained optimization
problem into one independent sub-problem for each sub-tree2. For that purpose, a variable
substitution is operated as follows. Intuitively speaking, the agent optimises its budget
distribution over all possible actions:

max
π0,β0,β1

π0Q
π
r (a0, β0) + (1− π0)Qπr (a1, β1) s.t. π0Q

π
c (a0, β0) + (1− π0)Qπc (a1, β1) ≤ β

where


Qπr (a0, β0) = maxπ1 [10π1 + 9(1− π1)] s.t. 2π1 + 3(1− π1) ≤ β0

Qπr (a1, β1) = maxπ2 [1 + 5π2 + 8(1− π2)] s.t. π2 + 6(1− π2) ≤ β1

Qπc (a0, β0) = 3 + β0 and Qπc (a1, β1) = 5 + β1

This simplifies into:

max
π0,β0,β1

10π0 + (1− π0) · (27 + 3β1)/5 s.t. π0(3 + β0) + (1− π0)(5 + β1) ≤ β

3.2 Algorithm

While Fig. 2 illustrates the method on a simple BMDP, it can be extended to non-finite
environments. If the number of states is very large or even infinite, one needs to use
function approximations. In BFTQ, two functions have to be approximated. The regular
Q-function estimates the discounted sum of rewards; it is denoted here by Qr, and is defined
on a state-action-budget tuple. The constraint Q-function estimates the discounted sum of
constraints, denoted here by Qc; it is defined on a state-action-budget tuple as well. For both
Q-functions, the budget variable contextualises with the remaining current budget when
evaluating the function. In the intuition example, budget variables are β0 and β1. In Fig. 2,
the environment transitions, rewards and constraints were assumed to be known. In most
situations, the model of the environment is unknown. FTQ, like many others RL algorithms,
overcomes this problem by using agent’s interactions with the environment through a trial
and error process. Those interactions are collected as transitions (si, ai, r

′
i, s
′
i)i∈[0,N ]. Since

BFTQ solves a BMDP, the transitions are extended to (si, ai, r
′
i, s
′
i, c
′
i)i∈[0,N ]. Because of

the budget dependence of the BFTQ functions, the transitions must be further extended
with budget values precise enough to capture the budget variations of each trajectory. The

2. To the best of our knowledge, for general BMDP – with loops – this separability assumption is still a
conjecture.
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new transitions are denoted as (si, ai, r
′
i, s
′
i, c
′
i, βi)i∈[0,N ]

3. With this method, we will be able

to construct the optimal policy for any input couple (s, β) corresponding to the current
state and budget remaining. The following notations are used: n is the current iteration of
BFTQ, i the index of the ith transition, f(xi)

reg←−− yi is the regression of f using database
{(xi, yi)}i∈[1,N ] and ∆A is the probability simplex over A .

BFTQ relies on two policies. The behavioural-policy π(s, a, β) : S × R → ∆A is the
classical stochastic policy mapping states to distributions over actions, augmented with
the budget dependency. The budget-policy b(s, a, β) : S ×A× R→ R allocates constraint
budget to each triplet (action, state, budget). BFTQ algorithm consists in iterating over its
two Q-functions: the reward action-value Q-function Qnr is evaluated with Eq. 2, and the
constraint action-value Q-function Qnc is evaluated with Eq. 3. Both may be trained with
any supervised learning regression algorithm.

Qn+1
r (si, ai, βi)

reg←−− r′i + γr
∑
a′∈A

πn(s′i, a
′, βi)Q

n
r (s′i, a

′, bn(s′i, a
′, βi)) (2)

Qn+1
c (si, ai, βi)

reg←−− c′i + γc
∑
a′∈A

πn(s′i, a
′, βi)Q

n
c (s′i, a

′, bn(s′i, a
′, βi)) (3)

Ψn =

 π ∈ ∆S×RA , b ∈ RS×A×Rsuch that, ∀s ∈ S,∀β ∈ R,∑
a∈A

π(s, a, β)Qnc (s, a, b(s, a, β)) ≤ β

 (4)

(πn+1,bn+1)← argmax
(π,b)∈Ψn+1

∑
a∈A

π(s, a, β)Qn+1
r (s, a, b(s, a, β)) (5)

Similarly to regular FTQ, BFTQ updates iteratively its greedy policy (πn, bn). Since
taking some actions could exceed the budget, both budget-policy and behavioural-policy
are jointly optimised under the constraint of belonging to set Ψ, described in Eq. 4, which
denotes the search space for admissible (behavioural-policy, budget-policy) couples. Eq. 5
denotes the optimisation process. The optimisation described in Eq. 5 does not need to be
explicitly computed, it can be performed as required. In the BFTQ algorithm, one does
only need to compute Eq. 5 for the transitions in the learning base. A complete method to
solve of Eq. 5 is described in Appendix A and B. The stop criterion of BFTQ is classically
defined as a threshold η on Q-functions’s parameters differences.

3.3 Policy Execution

The way an agent must use the resulting behavioural-policy π and budget-policy b over a
trajectory is formalised in Eq. 6 and 7. Let β0 be any initial budget and s0 be any initial
state. At each time step, the agent determines the distribution over the actions and the
budget repartition. Then, it samples an action according to the distribution and replaces its
current budget according to the budget repartition and the action sampled.

In the next section, we evaluate BFTQ on a set of randomly generated 2-D worlds.

4. Experiments

3. For example, if the maximum cumulative constraint of a problem is 1, then a basic way to create
those transitions is to duplicate each transition of (si, ai, r

′
i, s
′
i, c
′
i)i∈[0,N ] with all β in the set {β : ∃n ∈

N such that β = 0.1n and β ∈ [0, 1]}.
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at ∼ π(st, ·, βt) (6)

βt+1 = b(st, at, βt) (7)

st+1 ∼ P (st, at, ·)
rt+1 ∼ R(st, at, st+1)

ct+1 ∼ C(st, at, st+1)

We carry out experiments on randomly generated continuous
10× 10 2-D worlds. The agent starts in top-left corner (0, 0).
The goal is to reach the bottom-right corner, at coordinates
(9, 9), which ends the episode with an immediate reward of 1.
On its way to the goal, the agent may fall into randomly placed
holes. In that case, it also ends the episode with a constraint
of magnitude 1. There are three available actions: move right,
move bottom and dont move. The two first actions yield stochastic transitions: a Gaussian
noise of mean 0 and standard deviation σ = 0.5 is applied on the direction followed.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
constraint return

1

0
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> 1000.00

0.11

0.22

0.33
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BFTQ( )

Figure 3: BFTQ(β) and FTQ(λ) reward w.r.t
the constraints. Values near the dots are the
budgets β allowed for BFTQ and the value
λ for FTQ. Each dot is the mean on 30 2-D
worlds with 1000 test trajectories on each of
them. The standard deviation plotted refer to
the variability between the random 2-D worlds.

In the following experiments, we use two
different RL agents. The first one, BFTQ(β)
uses BFTQ algorithm to learn its policy. Qr,
Qc, π and b are approximated with regres-
sion trees. The algorithm used for comput-
ing the convex hull is the Graham scan( Gra-
ham (1972), details are left in Appendix B).
β is the budget used when initiating a new
trajectory. Note that all BFTQ(β) agents
use Eq. 2 and 3. The second agent: FTQ(λ)
uses FTQ with a regression tree. λ is used
when penalizing a fall into a hole: r ← r−λc.
We evaluate BFTQ(β) on 30 randomly gen-
erated 10× 10 continuous 2-D worlds. In
each grid world, 25% of the cells are ran-
domly elected as holes. The training dataset
is uniformly distributed over the state-action
sets (30 transitions of 3 actions in 400 states
-each step of value 0.5 -). The trained policy
is evaluated on a total of 104 trajectories.

Since holes are constraints of value 1 and
are absorbing, the constraints can be seen
as failing probability. The same goes for
rewards as success probability. In consequence, we test the policies for each budget β - or
maximal failing probability - from 0 to 1. Results are shown in Fig. 3. From 0.0 to 0.67,
budgets are not exceeded. Actually, the budget is even almost completely spent. This
behaviour is typical of under constraint optimisation where optimal solutions are really close
to the constraints. The reward also increases accordingly, but from β = 0.67 to β = 1.0,
failing probability is capped as well as the reward. The explication is the following: at
some point, the agent had to take some risk to get the reward; but taking more risk won’t
necessary give it more reward, because the path to the reward is not that risky. We can also
observe the phenomena where either FTQ computes a super safe policy for λ ∈ {100, 104}
either it computes a really risky policy when λ ∈ {10, 1}. It seems impossible to find the
right λ in order to stay bellow a budget of value 0.3 for example. On the other hand, the
BFTQ agent is free to choose any budget value it wants to respect without worrying about
the reward design.

6



A Fitted-Q Algorithm for Budgeted MDPs

On Fig 3, BFTQ reaches the same amount of reward return as FTQ. One can even note
that, in this experiment, BFTQ is better than FTQ when budget is unlimited and /λ is
low. In theory, reward returns should be similar. We believe that some generalization errors
occurs for FTQ while BFTQ is more robust to themin this particular context. The impact
of the generalization and the approximate method used to solve Eq 5 will be analysed in
further work .But if one focus on the BFTQ algorithm, assumes regression algorithms used
are perfect and optimisation method find the optimal solution of the non linear program in
Eq 5, then BFTQ fits the requirement of the BMDP task.

5. Conclusion

In this paper we introduce BFTQ, a direct extension of FTQ to solve BMDP problem. We
test the algorithm on 2-D world and we show that BFTQ performs as well as FTQ in terms
of reward/constraint raised couple but also enables to carefully choose the amount of budget
the agent can spend.

We believe that classic single reward oriented reinforcement learning algorithms can be
extended to solve BMDP in the same way. It may also be of interest to find a close form
solution for the program in Eq 5, which would speed up considerably the computation time
of BFTQ.
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Appendix A. Scalability of BFTQ

The downside of Eq. 5 is that one has to solve a non-linear problem under constraints each
time both policies are called (Eq. 6, 7, 2 and 3). For Eq. 6 and 7, this process is online:
it would be disastrous for time-critic applications. To overcome this issue, we propose to
approximate π and b using regressions. For that, instead of Eq. 4, one needs to compute
ψi (Eq. 8), the set of admissible behavioural/budgets policies couple for a set of samples
(si, βi)j∈Ni . One may design those samples using transitions (si, ai, r

′
i, s
′
i, c
′
i, βi)i∈[0,N ] but

it’s not a requirement.

Ψn
i =

 πi ∈ ∆A, bi ∈ RA, such that:∑
a∈A

πi(a)Qnc (si, a, bi(a)) ≤ βi

 (8)

Eq. 9 describes how the budget-policy and behavioural-policy are updated at each iteration
of BFTQ.

πn+1(si, ·, βi),bn+1(si, ·, βi)
reg←−− argmax

(πi,bi)∈Ψn+1
i

∑
a∈A

πi(a)Qn+1
r (si, a, bi(a)) (9)

Appendix B. Solving the non-linear problem

The main remaining challenge is solving the non-linear problem in Eq 9. One may use random
sampling, SLSQP (Kraft and Schnepper (1989)) or some black box optimisation algorithm
such as genetic algorithms to find the optimal budget and action policy for a given transition.
But it would be inefficient, because it would disregard some properties of the Q-functions.
Let Qs,a(β) denote the following parametric function: Qs,a(β) → (Qc(s, a, β), Qr(s, a, β)).
Q is concave and strictly increasing in β along the axis of Qr. Indeed, given a budget β, a
state s and an action a, the expected reward and actual budget consumption for a given
action, Qr(s, a, β) and Qc(s, a, β) will be lower or equals to the ones yield by a larger budget
β′ = β + ε ∀ε ≥ 0. The intuition is as follows: given a budget β′, in worst case scenarios
(when extra budget ε is useless), one can always achieve at least the same performances as
with the lower budget β since the space of admissible policies for β′ contains the one for β.

We need to solve Eq 5 for a state s. For the moment, we assume to have 2 possible
actions a⊥ and a>. The functions Qs,a⊥ and Qs,a> are plotted on Fig 4. The optimal
Qr value is necessarily obtained by the probabilist combination of those actions. This
combination of actions yield values (Qc, Qr) on a straight line. Since Q functions are
concave and strictly increasing, the line defining the optimal and admissible solutions is
actually the tangent of both Qs,a⊥ and Qs,a> , lying on top of both functions as shown
on Fig 4. This line is unique and we need to find both intersections points between the
tangent and the Q functions to define the optimal solution. Let (Qc(s, a⊥, b⊥), Qr(s, a⊥, b⊥))
and (Qc(s, a>, b>), Qr(s, a>, b>)) denote the two intersections points. Then, the optimal
behavioural-policy in s is described in Eq 10 and optimal budget-policy in s is then defined
in Eq 12.

8
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Figure 4: An example of Q-functions. The dot lines are tangent to both curves. The tangent
at the right defines the optimal policy when the budget β is defined between Qc(s, a⊥, b⊥) and
Qc(s, a>, b>). The value yβ is then equal to π(s, a⊥, β)Qr(s, a⊥, β) +π(s, a>, β)Qr(s, a>, β).

π(s, a>, β) + π(s, a>, β) = 1,

if β ≤ Qc(s, a⊥, b⊥), π(s, a>, β) = 0, (10)

if β ≥ Qc(s, a>, b>), π(s, a>, β) = 1,

otherwise, π(s, a>, β) =
β −Qc(s, a⊥, b⊥)

Qc(s, a>, b>)−Qc(s, a⊥, b⊥)
.

b(s, a⊥, β) = b⊥ (11)

b(s, a>, β) = b> (12)

One can extend this reasoning to cases with more than two actions by considering actions
two by two. Finally solving Eq 9 actually amounts to solve the following program:

πn+1(si, ·, βi),bn+1(si, ·, βi)
reg←−− argmax

(πi,bi)∈Ωn+1
i

∑
a∈A

πi(a)Qn+1
r (si, a, bi(a)) (13)
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where

Ωn
i =



πi, bi, such that:
(a⊥, a>) ∈ A2,
(b⊥, b>) ∈ R2,
bi(a>) = b>,
bi(a⊥) = b⊥,
bi(a) = 0 ∀a ∈ A \ {a>, a⊥}
Qnc (si, a⊥, b⊥) ≤ βi < Qnc (si, a>, b>),
πi(a) = 0 ∀a ∈ A \ {a>, a⊥}
πi(a⊥) = βi−Qn

c (si,a⊥,b⊥)
Qn

c (si,a>,b>)−Qn
c (si,a⊥,b⊥) ,

πi(a>) = 1− πi(a⊥),
∆ = ∆⊥ = ∆>



(14)

with

∆ =
Qnr (si, a>, b>)−Qnr (si, a⊥, b⊥)

Qnc (si, a>, b>)−Qnc (si, a⊥, b⊥)
,

∆⊥ =
∂Qr(si, a⊥, b⊥)

∂β
/
∂Qc(si, a⊥, b⊥)

∂β

∆> =
∂Qr(si, a>, b>)

∂β
/
∂Qc(si, a>, b>)

∂β
(15)

One way to solve Eq 13 is to compute the convex hull of the discrete version of Q
functions. We propose an algorithm named SOLVE in Alg 1 to do so and show an example
of its execution in Fig 5. We assume that the function hull returns the convex hull H of a
set in clockwise order starting with the lowest value in Qc, the corresponding budgets B and
the corresponding actions AP4. To operate a reasonable discretization of Q-function and
reduce the search space, we also need to know the maximal budget the environment could
consume, we call it βmax.

Finally, Alg. 2 recalls the complete BFTQ algorithm using Eq. 13. The algorithm should
stop when b and pi don’t change too much between two iterations. The distances may use
parameters of π and b approximations. Note that, since each transition has been extended
with several values of β, at each iteration, you can save extra computations by pre-computing
the convex hulls for each state in the batch of transitions and re-use these hulls for each β.

4. The so-called Graham Scan (Graham (1972)) fits all those criteria.

10
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Algorithm 1 SOLVE

In: s,Qr, Qc, N, β, βmax
Out: π, b
P = ∅
for a in A do

for i = 0 to N do
step = i/N ∗ βmax
p = (Qc(s, a, step), Qr(s, a, step))
P = P ∪ p

end for
end for
H,B,AP = hull(P)
found = True
i = 0
while ¬ found do
qc, qr = H[i]
found = β ≥ qc
i = i+ 1

end while
π = [0 . . . 0]
b = [0 . . . 0]
if i < |H| then
q>c , q

>
r , q

⊥
c , q

>
r = H[i],H[i− 1]

p⊥ = (β − q⊥c )/(q>c − q⊥c )
b⊥, b> = B[i− 1],B[i]
a⊥, a> = AP [i− 1],AP [i]
π[a⊥], π[a>] = p⊥, 1− p⊥
b[a⊥], b[a>] = b⊥, b>

else
a⊥ = AP [i− 1]
π[a⊥] = 1.
b[a⊥] = B[i− 1]

end if

11
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Figure 5: An execution of SOLVE with three actions. Each dot corresponds to the discretiza-
tion w.r.t β. Red dots are considered to compute the convex hull. Blue dots are removed
since they reach a worst value of Qr for greater Qc. Finally, pink cross are the dots retained
to compute the optimal policy.

Algorithm 2 BFTQ

In: {si, ai, βi, r′i, c′i, s′i}i∈[0,N ],
fitr,fitc,fitb,γc, γr,K, βmax
Out: π, b
stop = false, k = 0
Qr, Qc = lambda : s, a, β → 0
π, b = lambda : s, β → 0
∀i ∈ [0, N ] yri , y

c
i , y

b
i , y

π
i = 0,Ψi = ∅

while ¬stop do
for i = 0 to N do
yri = r′i + γr

∑
a′∈A

π(s′i, a
′, βi)Qr(s

′
i, a
′, b(s′i, a

′, βi))

yci = c′i + γc
∑
a′∈A

π(s′i, a
′, βi)Qc(s

′
i, a
′, b(s′i, a

′, βi))

end for
Qr = fitr({si, ai, βi}i∈[0,N ], {yri }i∈[0,N ])
Qc = fitc({si, ai, βi}i∈[0,N ], {yci }i∈[0,N ])
for i = 0 to N do
yπi , y

b
i = SOLV E(si, Qr, Qc, N, β, βmax)

end for
π = fitπ({si, βi}i∈[0,N ], y

π
i )

b = fitb({si, βi}i∈[0,N ], y
b
i )

k = k + 1
stop = k > K or (”π and b didn’t change too much”)

end while
12
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Figure 6: A 4× 4 2D world.

(a) β = 0.1 (b) β = 0.2 (c) β = 0.6

Figure 7: Execution of a BFTQ policy. Test trajectories are in blue, constraints in red and
rewards in green. For a low budget, 0.1, the agent stops its trajectory after 1 or 2 actions.
For β = 0.2, the agent tries to reach the goal with more insistence but still stops some
trajectories prematurely. Finally, for β = 0.3, the agent does not stop until it reaches the
goal.

Appendix C. Experiments

Fig 6 describes an example of small 2-D world. Fig 7 describes the trajectories followed by a
BFTQ policy for several budgets.
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