
HAL Id: hal-01927976
https://hal.science/hal-01927976

Submitted on 25 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

System of Systems design verification: problematic,
trends and opportunities

Mustapha Bilal, Nicolas Daclin, Vincent Chapurlat

To cite this version:
Mustapha Bilal, Nicolas Daclin, Vincent Chapurlat. System of Systems design verification: problem-
atic, trends and opportunities. Interoperability for Enterprise Software and Applications (I-ESA’14),
Mar 2014, Albi, France. �10.1007/978-3-319-04948-9_34�. �hal-01927976�

https://hal.science/hal-01927976
https://hal.archives-ouvertes.fr

System of Systems design verification: problematic,

trends and opportunities

M. Bilal
1
, N. Daclin

1
 and V. Chapurlat

1

1 LGI2P, Laboratoire de Génie Informatique et d’Ingénierie de Production, ENS Mines Alès,

Parc scientifique G. Besse, 30035 Nîmes Cedex 1, France.

{Mustapha.Bilal, Nicolas.Daclin, Vincent.Chapurlat}@mines-ales.fr

Abstract. System of Systems (SoS) Engineering (SoSE) requires to be able to model and to

argue the quality of the modeled solution, thanks to various objectives prior to any other efforts.

This paper presents and discusses the development of an approach to support SoSE activities

and particularly to achieve SoS modeling and verification. First, requested models are

identified and illustrated here on Virtual Enterprise domain (VE). Second, it is proposed to

merge two complementary verification approaches, formal proof and simulation. This allows us

to ensure particularly the stability, integrity and control expectations of the proposed SoS

solution, and must encompass particularly three main SoS characteristics chosen here that can

impact SoS stability, integraty and controllability. These characteristics are connectivity,

particularly subsystems’ interoperability abilities, evolution and emergence of behaviors and

properties which are due to the subsystems’ interactions when fulfilling the SoS operational

mission. For this, a formal properties specification and proof approach allow the verification of

the adequacy and coherence of SoS models with regard to these characteristic and to

stakeholders’ requirements. Then, simulation based on Multi Agents Systems (MAS) allows the

execution of the architectural model of SoS. This allows to detect potential emergent

operational scenarios and then to obtain an approached behavioral model of the SoS. This MAS

is enriched by concepts and mechanisms allowing to evaluate some criteria to facilitate and

guide the identification of such operational scenarios.

Keywords: System of Systems, interoperability, System Engineering, Verifications,

Formalization, Emergence, properties proof, Virtual Enterprise, Multi-Agent System.

1 Introduction

The concept of complex system is defined but also often seen as a little limited by

several authors when considering large and heterogeneous systems involving other

called complex, technical as sociotechnical and interacting systems. The notion of

System of Systems (SoS) has been then introduced. Indeed, these ones, such as

2 M. Bilal, N. Daclin and V. Chapurlat

Virtual Enterprise (VE), military coalition forces or even crisis management system,

have particular characteristics. Moreover, SoS design is distinguished from classical

system design [1]. In SoS design it is required to focus designers’ attention on

interfaces to design, and that to allow subsystems to improve

interoperability.Therefore, SoS Engineering (SoSE) remains today an open issue.

In this paper, we define and focus first on such characteristics. Second, we pro-

pose a conceptual and tooled approach allowing designers to model a SoS and to ana-

lyze the resulting models taking into consideration some of these particular but ex-

pected characteristics of a SoS. Presented here, the first phases of an ongoing research

project mixing modeling concepts coming from System Engineering, Enterprise mod-

eling, formal verification and advanced simulation techniques.

The paper is structured as follow. The problematic, related to the

modeling and verification issues for SoS Engineering (SoSE) and

expected results are presented in section 2. The proposed SoSE

approach is introduced in section 3. Finally, section 4 concludes

this paper, drawing the orientation of future works.2 Problematic

and expected results

2.1 SoS: concept and definition

The short literature review presented below allows us to fix the most relevant

characteristics of a SoS and its subsystems to study, in order to help designers

building SoS models and assuming qualities of the modelled solution. Therefore, a

SoS is seen as a combination of systems (subsystems) together to fulfill some kind of

capability that a system alone cannot fulfill. It can be considered as a complex system

[2]. Furthermore, [3] and [4] mention the following characteristics allowing to

distinguish SoS from large and complex but monolithic systems:

 Operational Independence of the Elements: SoS is composed of subsystems

which are independent and useful in their own right.

 Managerial Independence of the Elements: The subsystems are separately

acquired and assembled but maintain a continuing operational existence

independent of the SoS.

 Evolutionary Development: The SoS does not appear fully formed. Its

development and existence is evolutionary with functions and purposes added,

removed, and modified with experience.

 Emergent Behavior: The SoS performs functions and carries out purposes that

do not reside in any subsystem taken isolated but reside in the various

interactions between these subsystems. The principal purposes of the SoS are

fulfilled by these behaviors considered here then as emergent behaviors.

 Geographic Distribution: The geographic extent of the subsystems is large.

Large is a nebulous and relative concept as communication capabilities

increase, but at a minimum it means that the subsystems can readily exchange

only information and not substantial quantities of mass or energy.

 System of Systems design verification: problematic, trends and opportunities 3

 Connectivity: To enable the SoS, subsystems are capable of building links

among their interfaces and destroying them dynamically. The SoS places a

huge reliance on effective connectivity in dynamic theatres of operations.

 Diversity: The SoS can only achieve its higher purpose(s) by leveraging the

diversity of its constituent systems.

Some SoS characteristics (autonomy, belonging, diversity and geographic distri-

bution) are well defined and several works are developed in terms of methodology

and tools about these ones [5]. Therefore, the here proposed work takes an interest in

three characteristics: Connectivity, Evolution and Emergence.

2.2 SoS Engineering problematic

It is admitted that SoS Engineering (SoSE) can be distinguished from System

Engineering (SE) [1][6]. Indeed, a SoS results essentially from assembling and

interfacing of, in most cases, existing systems in order to fulfill a specific mission (to

provide goods and services in agreements with stakeholders’ requirements). However,

these subsystems must remain independent and have to remain capable of achieving

their own mission while SoS is existing. Therefore, they are selected and involved

under various conditions and constraints, particularly their interoperability and

performances, that have to be characterized prior the assembling. Indeed this

assembly establishes various interactions between the subsystems. In this context,

interoperability takes on its full meaning when considering these interactions that

make these subsystems able to work together. On the one hand, the interactions

between subsystems are expected in order to allow to the SoS to fulfill its mission.On

the other hand, these interactions imposes to have interfaces of various types:

technical (e.g. software), organizational (e.g. communication rules), human/machine

(e.g. touchscreens) or logical at a high level of abstraction (e.g. resource utilization).

Therefore, designers’ attention has to be then concentrated on interfaces-to-design in

order to ensure the connectivity. Furthermore, SoS should be able to evolute, and by

consequence, this evolution, in parallel with the various interactions between the

subsystems, can be at the origin of emergent behaviors and properties that remain not

easy to identify and can be considered eventually as beneficial or damaging.

Various properties, such as proposed in [7], characterizing the SoS cannot be di-

rectly deduced and linked to the set of the properties which characterize separately all

the subsystems. In the same way emergent behaviors remain, by definition, not easy

to detect in a simple and efficient way. The SoS complexity, the determination of

potential interactions and the large number of behavioral scenarios, cannot be totally

explored and analyzed. Therefore, several design verification techniques can be used

with more or less good results from informal to formal ones in order to keep the SoS

characteristics maintained all over its life cycle. Moreover, these approaches and

methods are largely used to help detecting errors or mistakes during design activities.

Hence, avoiding drawbacks in case of SoS design can be solved by defining an effi-

cient SoS model and adopting model verification techniques of various types.

To synthesize, SoSE process evokes a decision when assembling subsystems. It

requires modeling and verification techniques and tools. Therefore, a first barrier is

selecting subsystems considering and checking their capabilities and abilities to be/to

4 M. Bilal, N. Daclin and V. Chapurlat

stay interoperable, and to optimize the impact of a set of properties (functional, be-

havioral, ilities
1
, constraints

2
 and performance expectations), for a more or less long

time while SoS has to fulfill its mission. Defining the requested interactions, the

needed interfaces and, finally, the global architecture of the SoS is a second barrier.

Defining metrics and verification or validation techniques allowing proving and

checking the same set of properties mentioned previously, that affect the so-called

analysis perspectives is a third barrier. The Analysis perspectives are defined as:

 Stability: is the quality that reflects the ability of a system to maintain its

viability (it characterizes the relationship between system’s structure and its

cohesion).

 Integrity: characterizes the relationship between system’s behavior and its

consistency.

 Controllability (performance): is the quality that reflects the system’s ability

to achieve its mission (it characterizes the relationship between the functions

to be performed by the system and the given service’s compliance)

 These three barriers have to be treated keeping in mind (1) that a design process

involves various disciplines, (2) the size and expected characteristics (connectivity,

evolution and emergence) that might impacts the set of properties, and (3) the soci-

otechnical nature of the requested SoS. The next section presents why SE is not suffi-

cient for SoS to respond properly to our problematic.

2.3 SoSE needs

Some authors assume that SE proposes sufficient principles and processes, suitable

for the SoSE [8]. However, according to the specificity of a SoS (size, complexity,

characteristics) and the analysis perspectives we chose, SoSE induces stronger effort

for designers.

First, requirements engineering activities for a SoS (functional as non-

functional) are more complex. In addition to the classical “-ilities” such as reliability,

maintainability, availability etc. , new “-ilities” such as interoperability, flexibility,

adaptability and composeability are imposed during SoSE. Therfore, designers need

an enriched requirement model which includes these new “-ilities”.

Second, choosing and assembling the subsystems, which are able to provide re-

quested capabilities/capacities and they respect model based system engineering

principles, requires having an adapted modelling languages in order to achieve SoS

modelling and verification expectations. Due to the specificity of a SoS, some current

available modelling languages (e.g. behavioral) remain not sufficient for embedding

or representing chosen SoS characteristics. Moreover, existing modelling languages

do not consider emergent phenomena. Hence, a new behavioral modelling language

has to be defined; here based on the enrichment of existing ones. Furthermore, an

architectural model (functional and organic) must be proposed allowing rendering

SoS architecture characteristics. The challenge is then to formalize the modelling

1
 Refers to the non-functional requirements such as maintainability, safety, security etc.

2
 Legal, deployment, implementation, etc.

 System of Systems design verification: problematic, trends and opportunities 5

languages (ML) that can be used in order to allow to model and to assess the interac-

tions between subsystems. ML must permit to design requested interfaces allowing

managing these interactions without inducing huge modifications or dysfunction of

each subsystem. These interfaces can be of various types: technical (respecting gen-

eral standards of physical interconnections of technical systems), physical (hardware),

informational (knowledge, information and data exchange protocols), organizational

(separation process public/private, protocols and rules of organization, control, taking

responsibility, delegation, etc.) or HMI (human machine interface). These interfaces

allow designers to ensure the necessary interoperability of subsystems [9].

Third, SoS model must allow to check if the modelled solution respects the model-

ling systems and stakeholders requirements [10]. Indeed, ML must also allow design-

ers to attest that the SoS model is well constructed, well-formed and coherent with

these requirements. This has to be done by verifying, interpreting and analyzing the

obtained SoS models through various methods (formal and semi-formal ones). Formal

methods [11] mathematically reasons (proves) the correctness of a given design and

the systems specification as well. Formal model verification will allow designers to

establish and justify that the models represents accurately the SoS system. As a result,

when stating that a system has been formally verified, there should be a detailed ex-

planation of what was formalized and what properties where verified. However, it has

been many years since the formal methods are being used but their integration into the

industry is still limited, mainly due to state-space explosion problem and the need of a

significant knowledge in advanced mathematics. Model Checker is a formal method

used for verification of systems. For instance, on the one hand, applying Model

Checking techniques [12] needs to describe the system with a formalized modeling

language, to formalize the properties by a specification language and to apply a de-

ductive algorithm or calculus for the verification. On the other hand, simulation can

be also used simultaneously with formal proof techniques. It is an easy technique that

can be automated and is very scalable. It helps to study designs in its early stages.

Furthermore, the simulation can ensure a partial validation of a model.

The effort to be made in order to deal with the various issues related to the SoSE

process has been presented in this section. The following section shows that to per-

form SoSE process, we need (1) a set of ML to be identified (2) a set of concepts, an

architecture framework –that can be handled by using these ML and (3), to attend to

activities in order to ensure and verify the quality of the design, its adequacy and fea-

sibility by merging, in a complementary way, the formal properties specification and

proof approach with the simulation approach whatever the size of the SoS and the

emergent behavior that might be produced .

3 Proposal of SoS engineering (SoSE) approach

To perform SoSE process, SoS modeling and verification concepts have to be

identified. Starting with the modelling phase, two packages of concepts are

requested: SoS modeling concepts package and SoS model management package.

First, from SE point of view, SoS modeling concepts package is decomposed into

environmental, functional, organic, behavioral and requirement concepts. Second,

6 M. Bilal, N. Daclin and V. Chapurlat

model, refinement principle and view are categorized into SoS model management

package. This package allows us to manage the SoS modeling concepts package.

Environmental concepts group the context, enabling system, resource, flow and stake-

holder. Functional concepts group the function, construct (parallelism, sequence,

iteration, etc.), flow (data, energy and material), item, interaction (characterized by

attributes – Time, Shape or Space), resource, effect and risk. The organic concepts

group the interaction, component, link, interface, resource and technical indicator

(performance, constraint, “-ility”). The behavioral concept groups at least compo-

nent, configuration, transition, capacity, capability, operational scenario, interaction,

risk and effect. The requirement concepts group the role, need, requirement, capabil-

ity, activity, process, capacity, operational scenario, functioning mode, interaction,

life cycle and system/subsystem configuration.

After fixing the most relevant concepts in the modelling phase, we present in the

following paragraph the relationships phase or what we call the bonding phase. In

this phase, a definition of some concepts is given with the relationships between each

other.

Each stakeholder has concerns and needs (functional and non-functional) that are

expected to be met by the SoS. For example, in a virtual enterprise (VE) [13], seen as

a SoS, the company’s stakeholders can be: employee, supplier, community, owner,

investor, government, etc. Each one has its own needs and concerns (e.g. own-

ers’/companies’ needs profitability, longevity, market share, market standing, succes-

sion planning, raising capital, growth, social goal, etc.). These needs are transformed

into a set of requirements to be satisfied by the SoS. A requirement modelling lan-

guage is used in order to formalize the needs into requirements (e.g. –SBVR, natural

language, formal language). Moreover, the requirements are classified into various

categories (functional, operational, performance, human factors, “-ilites”, constraint,

interfaces etc.).

Once the Requirements are well defined, they are evaluated by some technical in-

dicators: criticality, safety, security, interoperability, maintainability, availability,

adaptability, flexibility, ilities, performance, constraints and many others. The stabil-

ity, integrity and control are the analysis perspective (basic principles) which we

consider in our research. The technical indicators are verified in order to determine

how they affect the analysis perspectives of the SoS. This will allow to optimise their

impact. For example and in the context of VE, the performance is strongly related to

three main types: delay, quality and cost. The performance indicator is high: (1) when

the VE is capable of respecting the time constraints (accomplishing a mission in a

given interval of time), (2) when the quality of the accomplished mission is high and

(3) when the cost is low. Moreover, the stability of a VE is the capability of executing

the mission/objective whatever the internal/external changes. The integrity is a con-

cept of expectations’ and outcomes’ consistency in order to keep unambiguous posi-

tion in the mind of various enterprises forming the VE. Therefore, the integrity here is

described as the state of being whole, complete and always in perfect condition.

The model is a concept on which the technical indicators are described. A SoS is

modeled throughout subsystems models. These models have unknown (or partially

known) capacities/capabilities and performances. Their interactions, that allow them

to fulfill their mission and to get connected to other subsystems or with the environ-

ment, remain not clearly identified and modeled. Therefore, this imposes to have a

 System of Systems design verification: problematic, trends and opportunities 7

clear architectural model. This architectural model will allow to the subsystems mod-

els to be represented with the same formalism and a same level of detail.

As stated in the previous section, some modeling languages already exist, each

with their strengths and weaknesses, in order to meet SoS design Verification and

Validation (V&V). In this way, three approaches can be envisaged for our purpose: (I)

the modeling language (ML) is fully adapted and can be directly used, (II) the ML

partially covers the concern and it is required to extend it and (III) no ML related to

the concern exists and it is necessary to develop new model.

As far as requirements models are concerned, existing ones are adapted to model

stakeholders’ and subsystems’ requirements. They enable concurrent engineering

processes to work more efficiently through models and they give a concise picture of

the boundaries and constraints that it is expected to operate within a large and com-

plex systems like the SoS.

An environmental model has to be proposed. It should contain the stakeholders,

the context and the subsystems. However, a global behavioral model is difficult to

build due to the connectivity and interoperability which are a major reason behind the

appearance of emergence. Thus, a behavioral model based on interaction and effects

models has to be proposed.

A behavioral model reproduces the behavior of the SoS. Due to the dynamicity in

the SoS, the behavioral model will never be a global model but it will be able to cover

a wide range of behaviors (including the emergent ones) through a simulation tech-

nique. The approached behavioral model to build will be a description of how the

subsystems will interact together, with the actors and with any entity which is out of

the SoS’s boundary and from here comes our proposal to build this model based on

interactions and effects models, no more described in this paper.

An interaction model is proposed to describe how subsystems have to exchange

flows. Various interfaces are then defined in order to ensure the necessary connec-

tivity (interoperability) of the subsystems respecting or, if needed, managing reverse

effects due to these interactions. These interfaces establish the links (e.g. protocol,

synchronization, collaboration, delegation rules, etc.) which exist between SoS sub-

systems. These links transport a flow (continuous, discrete or hybrid). Moreover, this

interaction model should include the effects, which induce some kind of risks (e.g.

technical, managerial, human, financial etc.).

In our case, the following table (see Table 1) presents all models used to ensure

SoS modeling. These models are consistently related to the concerned views. One of

the main differences between the architecture of a complex system and the SoS archi-

tecture is its dynamic in its reconfiguration [14]. Therefore, an architecture for the

SoS has to be proposed. Proposing an architecture is to define the fundamental organ-

ization, its subsystems, the interactions between these subsystems, the environment,

and the principles which guide SoS design and evolution.

Once the concepts and the models are well identified, a choice of the modeling

languages has to be taken. In that sense, SysML seems allowing requirements descrip-

tion through its Requirement Diagram and interaction description (interoperability)

through its Activity Diagram, Sequence Diagram and State Machine Diagram. How-

ever, SysML is considered as semi-formal modeling language and it remains too lim-

ited for building other models. Therefore, it has to be enriched and formalized in or-

der to permit formal checking and to facilitate simulation. For example, the Require-

8 M. Bilal, N. Daclin and V. Chapurlat

ment Diagram of SysML allows us to collect and organize all the textual requirements

of the subsystems. However, a SoS has its own characteristics/requirements to be

considered (connectivity, evolution and emergence). These new requirements evoke

some new concepts that cannot be modeled by SysML (coordination of communica-

tion between the subsystems, adaptability, confidence etc.).

Verifying the SoS model, whatever may be its size and the complexity of its sub-

systems, is not being yet fully discovered by the research. All the verifications that

have been done concern only specific application domains [15]. We consider that

formal verification is not efficient since: (1) it is not sufficient for the challenge to

establish SoS Integrity, stability and performance such that they fulfill valid require-

ments of their users with expected quality and are constructed in cost effective way

and (2), pure formalization and verification can only prove a correct relationship be-

tween formal specifications and implementations but cannot prove that the SoS meet

valid requirements. Therefore, it is important to have a mathematical formalization of

engineering concepts. Moreover, engineering concepts in systems are mostly complex

and abstract and they are difficult to define properly, to understand and to justify.

Table 1 SoS models and views

views SoS models

Functional, logical and physical

views

Architectural model (including physical,

functionnal, interface and interaction models)

Requirements view Requirement model

External view Environmental model

Behavioral view Behavioral approached model

The verification methodology presented in this paper is based on the use, in a

complementary way, of formal proofs (Model Checker) and simulation techniques

through the Multi-Agent Systems (MAS). However, using Model Checker for

verification requests to have a global and deterministic behavioral model of SoS, but

this model cannot be described when facing emergence phenomenon. Therefore, the

use of Model Checker should be at a definite instant of the simulation. The

methodology to follow is summarized in the following steps:

1. A scenario is initialized (parameter models),

2. Some scenarios are emerged,

3. The simulation is stopped at a time “t”,

4. Information (the set of properties: functional, behavioral, ilities, constraints

and performance expectations) are retrieved from agents,

5. An agent responsible of using Model Checker will verify this set of properties

and their impact on the analysis perspective.

The choice of MAS refers to the fact that it is natural and an effective solution to

deal with complex situation in distributed environments [16], it allows modeling and

simulating the parallel evolution and the interactions of various complex subsystems

 System of Systems design verification: problematic, trends and opportunities 9

independently and it can answer to the individual failure of one of the elements with-

out degrading the whole system. Moreover, it is widely used in various domains

(parking [17], biomedical science, crime analysis, environment evaluation etc.).

In our case, agents represent the active entities of the SoS (subsystems). However,

the subsystems can be of various natures which raises the importance of defining

various kinds of Agents, such as: Intentional Agents, Rational Agents and Situated

Agents. A BDI technology (Beliefs, Desire, Intention), used in some MAS, allows to

model more accurately, the knowledge and rules of behavior to be exhibited by the

agents which model each subsystem.

To model the SoS architecture, Multi-Agent models structure is defined according

to six dimensions:

 Agent model represent the active entities (subsystems)

 Environment model is where the SoS exists and with which they interact

 Interaction model manages the interaction between the subsystems

 Model Checker model uses formal proof techniques applied to a set of

properties

 Evaluation model uses evaluation techniques applied to properties translating

analysis perspective expectations (stability, integrity and controllability)

 Organization model defines constraints and rules on the interaction model

As stated previously, the simulation will allow emerging some scenarios. Howev-

er, an emergence can be beneficial, harmful, or neutral in its effect. It is the primary

mechanism for both success and failure in SoS. Therefore, we need to determine what

the harmful and beneficial ones are.

In our research, we consider two types of emergence out of four proposed by [18].

Detecting and filtering the emergent behaviors is achieved through some criteria: the

emergence need to be observable at some level, novelty, coherence irreducibility (a

complete account of an entity will not be possible at lower levels of explanation and

which has novel properties beyond prediction and explanation), interdependency be-

tween levels, non-linearity, plausibility and credibility. Further details about each

criterion will not be shown in this paper due to the lack of space.

4 Conclusion and prospects

This paper has introduced the importance of SoS design model verification through

the complementarity between the formal proof techniques and simulation in order to

verify SoS design model and to detect errors and emergent behaviors (which are due

to interaction/connectivity and interoperability) in early stages of architectural and

interfaces design. Moreover, we have seen how a set of properties can impact the

analysis perspectives (stability, integrity and control - performance) of a SoS.

The SoSE approach presented consists on identifying the models to verify inside a

SoS, identify the concepts, choose the modeling language and enriched it, and then

start to verify these models by a mathematical formalization and by an adequate veri-

fication tool simultaneously with the simulation.

10 M. Bilal, N. Daclin and V. Chapurlat

We aim to develop a Meta model for SoSE covering architectural model, users’

and systems’ requirements model, behavioral approached model (including interac-

tion and effect based models) and environmental model, then to propose a mathemati-

cal formalization of elements from this Meta model. We are willing to propose as well

a repository of expected SoS properties and a verification techniques in order to sim-

ultaneously check properties and simulate the approached behavioral model.

References

[1] S Blanchard, B., J Fabrycky, W.: Systems Engineering and Analysis. 5th edn.(2011)

[2] Chapman, W.L., Bahill, A.T.: Complexity of the system design problem

[3] Maier, M.W.: Architecting principles for systems-of-systems. Systems Engineering 1(4)

(1998) 267–284

[4] Stevens Institute Of Technology,Castle Point On Hudson, Hoboken, NJ 07030: Report

On System Of Systems Engineering. August 2006

[5] DeLaurentis, D., "Research Foundations," School of Aeronautics and Astronautics, Pur-

due University, West Lafayette, IN, 2007

[6] Sheard, S. 2006. Is Systems Engineering for “Systems of Systems” Really Any Differ-

ent? INCOSE Insight, Volume 9 Issue 1, October 2006

[7] Olivier L. de Weck, Adam M.Ross, Donna H. Rhodes, Investigating Relationships and

Semantic Sets amongst System Lifecycle Properties (-ilities), third International Engi-

neering Systems Symposium CESUN 2012, Delft University of Technology, 18-20 June

2012

[8] Clark, J.O., "System of Systems Engineering and Family of Systems Engineering from a

standards, V-Model, and Dual-V Model perspective," Systems Conference, 2009 3rd An-

nual IEEE , vol., no., pp.381,387, 23-26 March 2009

[9] Mallek, S., Daclin, N., Chapurlat, V.: The application of interoperability requirement

specification and verification to collaborative processes in industry. Computers in Indus-

try 63(7) (September 2012) 643–658

[10] Chapurlat V., UPSL-SE: A Model Verification Framework for Systems Engineering,

International journal Computers in Industry, COMIND, Elsevier pub., 2013

[11] Woodcock, J., Larsen, P. G., Bicarregui, J., & Fitzgerald, J. (2009). Formal methods:

Practice and experience. ACM Computing Surveys (CSUR), 41(4), 19.

[12] Clarke, E., Schlingloff, H.: Model checking. Handbook of automated reasoning, Elsevier,

Amsterdam (2000)

[13] Camarinha-Matos, L.M., Afsarmanesh, H.: The Virtual Enterprise Concept.(1999)

[14] T. Saunders, et al, in “United States Air Force Scientific Advisory Board Report on Sys-

tem of Systems Engineering for Air Force Capability Development” SAB-TR-05-04, Ju-

ly 2005

[15] Drusinsky, D., Michael, J.B., Shing, M.t.: Behavioral Modeling and Run-Time Verifica-

tion of System-of-Systems Architectural Requirements. (2004)

[16] R. Khosla, T. Dillon, “Intelligent hybrid multi-agent architecture for engineering com-

plex systems,” Proceedings of the 1997 IEEE international Conference on Neural Net-

works, vol. 4,pp. 2449-2454

[17] Bilal, M., Persson, C., Ramparany, F., Picard, G., & Boissier, O. (2012, June). Multi-

Agent based governance model for Machine-to-Machine networks in a smart parking

management system. In Communications (ICC), 2012 IEEE International Conference on

(pp. 6468-6472). IEEE. Ottawa, Canada.

[18] Jochen Fromm, Types and Forms of Emergence, Kassel University Press, 2005

