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Abstract—Embedded speaker recognition in mobile devices
could involve several ergonomic constraints and a limited amount
of computing resources. Even if they have proved their efficiency
in more classical contexts, GMM/UBM based systems show their
limits in such situations, with good accuracy demanding a rela-
tively large quantity of speech data, but with negligible harnessing
of linguistic content. The proposed approach addresses these
limitations and takes advantage of the linguistic nature of the
speech material into the GMM/UBM framework by using client-
customised utterances. Furthermore, the acoustic structure is
then reinforced with video information.
Experiments on the MyIdea database are performed when
impostors know the client utterance and also when they do not,
highlighting the potential of this new approach. A relative gain
up to 47% in terms of EER is achieved when impostors do not
know the client utterance and performance is equivalent to the
GMM/UBM baseline system in other configurations.

I. INTRODUCTION
The efficiency of speaker recognition systems in a realistic

application could be influenced by several constraints. For
example, an application which should be immediately usable
will strongly limit the enrolment material and hence could
lead to poor recognition accuracy. Given that limited data
can greatly reduce the recognition performance, ergonomic
constraints could also impose short test sequences influencing
similarly performance. Some other constraints can be the
memory and computational resource limitation or the use in
variable environments. Embedded systems might well present
these conditions.
State-of-the-art speaker recognition engines tend to be as-
sessed on text-independent inputs and follow often the
GMM/UBM (Gaussian Mixture Model/ Universal Background
Model) paradigm [1]. This solution gives a high level of
performance as shown during the NIST evaluations [2]. Un-
fortunately, the UBM/GMM depends strongly on the quantity
of training data available to enrol a speaker in contrast to the
context considered here which involves relatively short dura-
tion speech material. A solution to this problem is to increase
the amount of information taken into account by the system
by including text dependencies, like in a user-customised
utterance scenario [3]. In this case, the Temporal Structure
Information (TSI) gathered from the utterance can help to

compensate for the short duration of the audio sequences. In
order to model the TSI of speech while achieving statistical
modelling, a word recognition system could be combined with
a speaker recognition system[4], [5].
To satisfy application ergonomic constraints and to allow the
speaker to chose is own customised-utterance, the system
should accept all kinds of utterances, especially short duration
ones, and also be language-independent. Adding language
options when using a phoneme-based word recognition system
would seem viable with an appropriate choice of phonemes
covering the languages. However, this solution could be ex-
pensive in terms of storage and computational cost.
Furthermore, an embedded system could be confronted with
strongly variable environments. Due to this constraint the
acoustic modelling used in the recognition system has to be
adapted to the environment and the computational cost of
the adaptation has to follow the targeted context resource
constraints. HMM adaptation does not seem well suited as
it normally requires a relatively large amount of training data.
The solution proposed in this paper tries to associate the well
known advantages of a GMM based statistical acoustic model
with an original architecture able to deal with the application
context constraints and to incorporate external temporal in-
formation. It uses the GMM/UBM paradigm for the general
acoustic space modelling and its text-independent speaker
recognition capabilities. It also involves an HMM/Viterbi
approach in order to incorporate the text-dependent and TSI
aspects using a Semi-Continuous HMM (SCHMM) [6]. Such
a combined system was originally proposed in [7] for speaker
recognition and extended to word recognition in [8].
Two mains approaches are possible to take into account the bi-
modal aspect of speech (audio-video) for speaker recognition.
Generally, this problem is view as a fusion process between
the two modalities. An early fusion at the data level is
difficult due to the different nature of the parameters and their
asynchronism. Several works were proposed, mainly in speech
recognition [9] [10] and show a performance improvement
only when noisy audio data are used. The fusion at the score
level is more often proposed due to its simplicity [11], but such
a fusion process does not take advantage from he temporal



joint-information and it is still costly in terms of computational
resources (separate systems are needed). Finally, an interesting
alternative to a fusion process consists in a joint decoding
processing of both modalities. However the asynchronism
aspect of audio-video modalities leads to complex algorithms
like in [12] and [13].
In this paper we propose a such joint-decoding which, thanks
to the specific aspects of our system, shows an acceplevel of
complexity. In order to reinforce the relaxed synchronisation
between states and frames due to the SCHMM structure of
the TSI modelling, we propose to embed video information
during the audio decoding by adding further time-constraints
gathered from a video synchronisation process.
The specific three stage architecture and the enrolment al-
gorithms are described in Section II as well as the way of
reinforcing the TSI with an video-learnt synchronisation. The
experimental protocol and results are described in Section III
including a description of the audio-video database, MyIdea.
Section IV summarizes the benefits of this approach and
presents possible future work directions.

II. DESCRIPTION OF THE APPROACH

The proposed approach, called EBD for Embedded
LIA SpkDET takes advantages of three mechanisms which
contribute to the overall scoring process.
• GMM/UBM, the architecture of the two first layers of the

EBD is similar to a classical GMM/UBM speaker recog-
nition system. Speaker text-independent model of every
client is trained by adapting the Universal Background
Model. This adaptation is described below.

• SCHMM, the previous text-independent speaker model
is then used to obtain an SCHMM with the goal of har-
nessing the TSI of the utterance chosen by this speaker.
Each state of the SCHMM is trained from a part of
that utterance using an iterative Viterbi decoding process.
During the test, Viterbi decoding is again performed with
this SCHMM. Details of the training and test are given
below.

• Video-Learnt information, the goal here is to use further
information to assist in the overall verification task by
adding additional constraining components. These con-
straints are computed during the training phase and used
to constrain both the training and test Viterbi decoding.
As the video information is only computed during the
train, it could be computed off line. This information
is here labelled ”video-learnt” to reflect that it is only
computed during the training phase.

A. EBD Hierarchical Architecture

Figure 1 shows the architecture of the EBD system. Nodes
of this structure are GMM models. The upper layer is the least
specialised one. It is a classical UBM which aims at modelling
the acoustic space.
The middle layer contains speaker specific text-independent
models. These GMMs are obtained by a classical GMM/UBM
adaptation process. Each model is derived from the UBM

by using the EM algorithm and following the Maximum A
Posteriori (MAP) criterion [14]. Only the mean parameters
are adapted and other parameters are shared with the UBM.
The bottom layer uses the ability of the left-right SCHMM to
capture the TSI of the user-customised utterances. Each of the
SCHMM states is a GMM derived from the corresponding
middle level model. As explained below, the transformation
function works only on the weights of the GMMs, the other
parameters are taken from the middle layer model.
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Fig. 1. General view of the EBD model architecture.

B. Training Step

The EBD model is trained in three steps, each corresponding
to one level of the architecture. The UBM is firstly trained to
model the largest part of the acoustic space. It is built off
line using a suitably large amount of representative data. It is
trained with a classical EM/ML algorithm [15]. The training of
the speaker text-independent models consists in adapting the
UBM/GMM with the available data pronounced by the client.
An energy labelling is performed on the signal and only the
frames deemed to be speech are kept. The model is obtained
by adapting the UBM using the EM algorithm with the MAP
criterion.
In order to initialise an utterance SCHMM model, the ut-
terance sequence is cut into S segments {segi} of the
same length. Each state i of the SCHMM is adapted from
the speaker text-independent model using the speech-labelled
frames of segi. An EM/MAP algorithm is applied on the
weight parameters. Then the SCHMM is optimised using a
classical Viterbi algorithm (a new segmentation is achieved
by Viterbi and is used to adapt the state models). The number
of states of the SCHMM is experimentally determined. Finally,
the transition probabilities of the SCHMM are computed using
the relative length of each segment.
One advantage of this process is that all parameters except
weights are tied between the states of the SCHMM and the
text-independent speaker model. The log-likelihood for an
input frame is only computed for each Gaussian component
of the text-independent model. Then the log-likelihood of this
frame with each state of the SCHMM only involves a weighted
sum which is negligible compared to the full log-likelihood
computation.



C. Testing Step

During a test, the score between the input signal and an
utterance SCHMM model is derived from the corresponding
Viterbi path. All the input frames are used during this Viterbi
decoding phase. The log-likelihood of a frame sequence could
be expressed as a sum of two log-likelihood accumulations,
one using speech-labelled frames and the other using non-
speech-labelled frames, as shown in Equation 1.

log p(X|λ) = log p(Xspeech|λ) + log p(Xnon−Speech|λ) (1)

The final speaker matching score corresponds to the log-
likelihood computed with the log p(Xspeech|λ) only.
As for the training, the log-likelihood for an input frame
is only computed for each Gaussian component of the text-
independent model. The computation of the log-likelihood of
this frame with each state of the SCHMM which involves a
linear combination is negligible. This scoring process equiva-
lent in terms of computation to a classical GMM/UBM system
produces two scores. The first is obtained with only the text-
independent speaker model and the second is computed with
the SCHMM model, which itself has two operational modes,
namely without further constraints or constrained by the video-
learnt information from the initial training phase. These two
scores are normalised using the log-likelihood of the UBM.
They are then combined to give a final score for the decision
stage. An empirically-tuned weighted linear combination is
used.

D. Video-Learnt Synchronisation

Synchronisation points are extracted from a very simple
video process. The video stream is first pre-processed to obtain
a black-and-white sequence which is the Y component of the
sequence resulting of an RGB to YCbCr transformation.
A mono-dimensional temporal signal is issued from this black-
and-white video stream in order to estimate the quantity of
change between successive frames. Subtractions are processed
between the pixels of one image and thus of the following one.
The absolute values of pixel subtractions are summed to obtain
a value of the discrete temporal signal S. This computational
process is described by Equation 2.

S(n) =
W∑

w=0

H∑
h=0

abs(In
(w,h) − I

n+1
(w,h)) (2)

where W and H are respectively the width and the height of
the video images, In and In+1 are two consecutive images of
the video stream and In

(w,h) is the value of the pixel (w, h) of
the image In. S(n) is the discrete temporal signal from which
the synchronisation points are extracted.
Local maxima of the signal S are found by applying a sliding
window algorithm. These local maxima are stored to become
the video-learnt synchronisation points.
These points, which could be generated off-line during the
training phase only, are subsequently used during both the
training and test phase to strongly constrain the Viterbi de-
coding. This result is obtained by allowing or forbidding

transitions of the SCHMM corresponding to the synchroni-
sation points and labelled V , for video, in Figure 2. Other
transitions, labelled A are computed from the Audio and
not modified when adding the video-learnt segmentation. The
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Fig. 2. Use of an Video-Learnt Segmentation in the bottom layer of the
EBD system to constrain the Viterbi decoding and reinforce the TSI in the
utterance SCHMMs. The V labelled transitions are constrained by the video-
learnt segmentation as the A labelled ones still unchanged

number of synchronisation points depends on both the speaker
and utterance he pronounced.

III. EXPERIMENTS

A. MyIdea Database

Experiments are performed on the BIOMET part of the
MyIdea database. This database contains audio-video records
from 30 male speakers. In this subpart of MyIdea, 25 sentences
are recorded in 3 sessions for each speaker. Twelve of these
sentences are the same for all the speakers, ten short (about
3 seconds) and 2 long sentences (about 6 seconds). Other
occurrences are speaker or session dependent. The three ses-
sions are recorded under controlled acoustic and illumination
conditions. However, MyIdea presents several drawbacks for
our work. The recordings are not made in a real environment.
The sentence duration variability is limited (2 or 3 seconds
for the utterance occurrences), the sentences are too long for
a real password dedicated system, and the number of speakers
is small for a speaker verification experiment.

B. Protocol

The 30 male speakers are separated into two groups -A and
B- each with 15 speakers. Each group is successively used
as the Client-set with the others used to train the UBM. The
UBM is trained using the whole recorded material of the 15
speakers of the UBM-set.
When using the A-group data set to train the UBM model, the
speakers from the B-group are used for enrolment and tests.
Due to the small number of speakers available, a jacknifing
process is used by training a client model for each available
speaker session. Each of the 15 speakers of this Client-set
is successively considered as a client for which the 14 other
speakers of the Client-set are impostors. Two conditions are
defined:



• 1-occ in this condition, each client text-independent
GMM model is derived from the UBM by using two
long sentences and one occurrence of the selected short
sentence (around 8 seconds of speech). The utterance-
dependent model is trained with the same short sentence
occurrence (around 2 seconds of speech). With the jack-
nifing process, 900 utterance models are trained (10 short
sentences, 3 sessions and 30 clients).

• 2-occ this condition is the same as above except that
an additional occurrence of the selected short sentence
(which is the chosen utterance) is used to train both the
text-independent and the utterance models. The number
of utterance models is still the same as above.

The number of target trials is condition-dependent. The short
sentences not used for utterance training are compared to the
client model. 1,800 client tests are performed in the 1-occ
condition (2 test occurrences for each of the 900 utterances)
while 900 client tests are performed in the 2-occ condition (1
test occurrence for each of the 900 utterances).
Three configurations of impostor tests are proposed. The
speaker and utterance models are compared to the 14 impos-
tors who are the remaining speakers of the same group.
• UNKNOWN configuration the linguistic content of the

test occurrences is different from the training material of
client models. Each speaker model is compared to three
randomly selected short sentences (one per session) out
of the 9 remaining sentences of each of the 14 impostor
speakers. 37,800 impostor tests are performed in this
configuration.

• KNOWN configuration the linguistic content of the test
sequences is the same as the occurrences used to train
the client models. Each utterance model is compared to
three randomly selected sentences from each of the 14
other speakers of the Client-set. 37,800 impostor tests
are performed in this configuration.

• ALL configuration the tests are from both the KNOWN
and the UNKNOWN configurations. The number of im-
postor tests in this configuration is 75,600.

C. System Configuration

Mel-scaled frequency cepstral coefficients (MFCC) are used
here, computed every 10ms. An energy labelling is applied
to separate the speech frames from the non-speech frames.
Acoustic feature frames are 32-dimension vectors, 15 cepstral
coefficients, the log-energy and the corresponding ∆ coeffi-
cients.
In the experimental configuration, the number of components
in GMMs is fixed to 128 and all mean parameters of the text-
independent speaker models are adapted. Only the 32 most
significant weights parameters are adapted for each SCHMM
state.
The linear-combination of the two scores described in Section
II-C is computed with: 0.3 for the score computed with
the text-independent speaker model; 0.7 for the final EBD
text-dependent score. These coefficients are empirically de-
termined.

D. Results

Experiments are conducted to assess the contributions
coming from the three components, GMM/UBM, SCHMM
and video-learnt information. The GMM is regarded as the
baseline and the benefits of the other two are predicted
to come from TSI. The experimental results presented in
Table I, expressed in terms of equal error rates (EER), show
performance of the EBD system depending on the number
of states, the nature of the impostor tests and the quantity of
training data. No video-learnt synchronisation is used in these
experiments. Performance of the baseline GMM in the same
conditions is provided for comparison. It is important to note
that the GMM system reflects the middle layer of the EBD
system. The first two rows in Table I show the results when
the impostors do not know the speaker utterances. Error rates
fall from 2.72 down to 2.00 and 0.87 to 0.55 for the 1-occ
and 2-occ respectively when SCHMM is used. Increasing the
number of states up to 20 allows successive improvements
in reducing EER. Unfortunately this result is not confirmed
when the impostors know the client utterances (KNOWN). A
loss of performance is observed when the number of states
increases. It seems that, in speaker matching scores, the TSI
is dominated by the utterance content information rather than
the speaker specific information, i.e. the system recognises
the utterance instead of the speaker.
This results are confirmed in Table I when two utterances
occurrences are used for the training (2-occ). Indeed, the
GMM system performs better than the EBD and seems to
gain more from the increase in training data than the EBD
except in the UNKNOWN condition where the increase of
training data also increases the advantage of the EBD by
reinforcing the TSI exploited by the SCHMM models.

Configuration GMM
baseline

Number of states of the EBD
5 10 20

UNKNOWN 1-occ 2.72 2.39 2.22 2,00
UNKNOWN 2-occ 0.87 0.67 0.56 0.55

KNOWN 1-occ 4.49 4.56 4.56 4.72
KNOWN 2-occ 2.22 2.64 2.78 2.87

ALL 1-occ 3.72 3.62 3.61 3.55
ALL 2-occ 1.58 1.91 1.90 1.97

TABLE I
EER OF GMM AND EBD SYSTEMS (WITH DIFFERENT NUMBERS OF

STATES) USING ONE OR TWO TRAINING OCCURRENCES IN DIFFERENT
TEST CONFIGURATIONS

In order to evaluate the effect of a video-learnt synchroni-
sation, a new experiment is performed. Results of this experi-
ment are presented in Table II. The first column is the original
GMM baseline and the next two columns give the EBD results
as above in Table I for the 20 state case, and then with the
use of the video-learnt information. As expected, performance
of the EBD improves when using video-learnt segmentation.
This is particularly highlighted in 1-occ conditions where the
system possesses less speaker specific data. The EER in the



ALL configuration fall from 3.72 down to 3.16. Moreover
performance of the EBD system is greatly increased in the case
of impostor knowing the utterances (KNOWN configuration),
since performance of the EBD becomes equivalent to the
baseline GMM/UBM in this configuration (the EER in 1-
occ KNOWN configuration are 4.49 for the baseline GMM
and 4.44 for the EBD). It seems that the video segmentation
provides information on the utterance but also on the speaker.
Moreover, the EBD using an video-learnt synchronisation
gains more from the increase of training data than the same
system without this temporal information.

Configuration GMM
baseline

Video-Learnt Information

None Active
UNKNOWN 1-occ 2.72 2.00 1.78
UNKNOWN 2-occ 0.87 0.55 0.43

KNOWN 1-occ 4.49 4.72 4.44
KNOWN 2-occ 2.22 2.87 2.33

ALL 1-occ 3.72 3.55 3.16
ALL 2-occ 1.58 1.97 1.57

TABLE II
EER OF GMM COMPARED TO THE EBD SYSTEM IN 20 STATE CONDITION,

WHEN USING OR NOT A VIDEO-LEARNT SEGMENTATION

IV. CONCLUSIONS AND FUTURE WORKS

The approach proposed in this paper is designed for em-
bedded applications. It takes advantages of a GMM/UBM
text-independent approach and the HMM/Viterbi speech-
recognition power. In addition we propose to reinforce the
Temporal Structure Information modelling by a synchronisa-
tion issued from a video stream. The use of the temporal
information in a speaker recognition system allows to improve
performance particularly when a relatively small quantity of
speech data is available for training and test.
Performance of our approach is equivalent to the GMM/UBM
baseline system when not considering the linguistic con-
tent (example of EER in KNOWN condition, GMM: 4.49,
EBD 4.56 ) whereas the proposed approach outperforms the
GMM/UBM when impostors do not know the client utterance
(EER in UNKNOWN condition, GMM: 0.87, EBD: 0.56).
Furthermore, the video-learnt synchronisation leads to a gain
in all situations, when impostors know or not the client-
utterance, and outperforms or is equivalent to the GMM/UBM
baseline in all situations.
Future work will focus on the multi-modality by using the
video segmentation even during the testing phase. By incor-
porating this strong constraint in the training and also in the
testing phases we aim at increasing performance and to thwart
replay attacks. The EBD approach will be tuned to better
balance the speaker and utterance specific information in order
to outperform the baseline GMM in all conditions. Moreover,
as the first results show the ability of the EBD approach to take
advantage of the temporal structure of customised utterances,
more tests have to be performed to evaluate the performance of

the EBD system with more utterance-variability, for example
considering the utterance duration.
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