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Abstract

The concept of causal nonseparability has been recently introduced, in opposition to that of causal
separability, to qualify physical processes that locally abide by the laws of quantum theory, but cannot be
embedded in a well-defined global causal structure. While the definition is unambiguous in the bipartite
case, its generalisation to the multipartite case is not so straightforward. Two seemingly different
generalisations have been proposed, one for a restricted tripartite scenario and one for the general
multipartite case. Here we compare the two, showing that they are in fact inequivalent. We propose our
own definition of causal (non)separability for the general case, which—although a priori subtly different
—turns out to be equivalent to the concept of ‘extensible causal (non)separability” introduced before, and
which we argue is a more natural definition for general multipartite scenarios. We then derive necessary,
as well as sufficient conditions to characterise causally (non)separable processes in practice. These allow
one to devise practical tests, by generalising the tool of witnesses of causal nonseparability.

1. Introduction

The notion of a causal order between events is an essential ingredient in our understanding of the world. Our
conventional view of causality is that events are ordered according to some global time parameter, with past
events influencing future events, but not vice versa. One may however wonder whether this concept is really
fundamental, or whether scenarios without such an underlying background causal structure are conceivable.
The situation is particularly interesting in quantum theory, where the properties of physical systems are not
always well-defined, and where the question arises of whether the causal structure itself can be subject to
quantum effects in a similar way. These questions are of great importance for the foundations of physics [ 1-3],
but they are also motivated by a more practical point of view, as new resources for quantum information
processing become available when the assumption of a definite causal structure is relaxed [4]. Recent works have
demonstrated that, for instance, indefinite causal orders can enable advantages in regard to query complexity
[5-8], communication complexity [9, 10] and other information processing tasks [11-13].

A particular model describing causal relations between quantum events is the so-called process matrix formalism
[2]. In this framework, quantum events are assumed to take place locally, but the causal order between them is not
specified a priori. The physical resource relating the local events is described by a process matrix, which, broadly
speaking, is a generalisation of a multipartite density matrix allowing also for the description of signalling scenarios,
such as quantum channels. As it turns out, some scenarios arising within this formalism are indeed incompatible with
any definite causal order. The process matrices corresponding to these scenarios are called causally nonseparable, while
the process matrices describing scenarios compatible with a well-defined causal structure are called causally separable.

The process matrix formalism was initially introduced for two local events. In that bipartite case, the notion
of causal (non)separability is clearly defined and well understood. In particular, the causal (non)separability of
any bipartite process matrix can be determined using witnesses of causal nonseparability [14, 15], similar
conceptually to entanglement witnesses. In order to comprehensively understand causal indefiniteness from a
fundamental perspective, and to explore more deeply the question of how they can be harnessed as a quantum
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information processing resource, it is essential to clarify how the absence of a causal order can be described,
characterised and certified also in multipartite scenarios. While the formalism of process matrices generalises
rather easily to more parties [14, 16, 17], the notion of causal (non)separability becomes less clear. In fact, several
different definitions have recently been proposed to generalise the bipartite case [ 14, 17] which, as it turns out,
are not equivalent.

In this work, we clarify the definition of causal (non)separability in multipartite scenarios. After recalling the
framework and definitions in the bipartite case, we compare the generalisations of causal (non)separability that
have been proposed so far, before proposing and motivating our own definition for the multipartite case
(Definition 5). We then provide a characterisation of multipartite causally (non)separable processes via
necessary as well as sufficient conditions (Propositions 3, 4 and 5), allowing us to generalise the tool of witnesses
of causal nonseparability.

2. Process matrix formalism: the basics

The process matrix formalism is perhaps most easily understood in the bipartite case [2]. To begin with, let us
briefly recall its framework for this case, before turning to the generalisation to multipartite scenarios.

2.1. Bipartite process matrices

The formalism of process matrices was introduced in [2] to study correlations between events that locally obey
the laws of quantum theory, but which are not a priori embedded into any global causal order. In the bipartite
scenario, two parties, who we shall call Alice (A) and Bob (B), are each associated with closed laboratories. The
parties perform an experiment during which their interactions with the ‘outside world’ (and hence with each
other) are restricted to opening their laboratories only once to let an incoming physical system enter, and once to
send out an outgoing system. Alice and Bob may choose local operations to perform within their laboratories,
possibly depending on some external (classical) input x or y for A and B, and producing (classical) measurement
outcomes a and b, respectively. The correlations established between the parties after repeating the experiment
many times are described by the conditional probability distribution P (a, b|x, y).

While no assumption is made about the global causal order between the parties, we assume that the local
operations performed inside the laboratories are described by standard quantum theory. We can therefore
assign some ‘incoming’ and ‘outgoing’ Hilbert spaces to the parties, which we denote H4, H4o (for Alice) and
HB1, HPo (for Bob), of dimensions d4,, da,, dg, and dp,, respectively. The spaces of Hermitian linear operators
over these Hilbert spaces will simply be denoted by A;, Ao, By and Bo. For convenience we also define
Ajo == A; ® Ap, Bio = By @ Bo, da,, = da,da,and dg,, := dp dp,. Inthis paper, we will only consider finite-
dimensional Hilbert spaces; for a generalisation of the framework to infinite-dimensional systems, see [18].

According to quantum theory, Alice and Bob’s local operations can most generally be described as quantum
instruments [19]—that is, sets of completely positive (CP) maps that sum up to CP trace-preserving (CPTP)
maps. The Choi—Jamiotkowski (CJ) isomorphism [20, 21] allows us to represent these CP maps as positive

semidefinite matrices M a/? o, Mﬁ’;’, and the CPTP maps as positive semidefinite matrices M0 := 3> M af? o,
Mffo =3 Mﬁ’;’ that satisfy Try, M° = 14 and Trg, Mme = 1B, Here, T1y denotes the partial trace over the

system X, and 11X denotes the identity operator in the space X (in general, superscripts on operators, which may
be omitted when clear enough, denote the system(s) they apply to).

As shown in [2], requiring compatibility with quantum mechanics locally and assuming the non-
contextuality of the probabilities imply that the probabilities P (a, b|x, y) must be bilinear in the CP maps
associated with the operations of A and B—or, equivalently, bilinear in their C] representations. (Throughout
this paper we will often refer to CP maps by their equivalent CJ representation and vice versa.) It follows that the
overall process can be described by a Hermitian operator, a ‘process matrix’ W € Ajp ® Bjo [2], such that the
correlations are obtained via the generalised Born rule

P(a, blx, y) = Tr[Mjj© @ M, - W] 1)

(where Tris now the full trace).

The framework also permits the parties to share, in addition to the process matrix, some (possibly entangled)
ancillary quantum state that can be accessed via their local operations. The parties may thus have access also to
some extra incoming Hilbert spaces H4" and HP?" of arbitrary (finite) dimension, and be able to perform CP
maps M;?ﬁ’o € Ao =A; ® Ay ® Apand MblT’}"’ € Biro :== By ® By ® Bp, respectively (where as before, Ap
and By are the spaces of Hermitian linear operators over H4r and H5r). This implies that any process matrix
W € Ajp ® Bjp canbe extended to a process matrix W ® p € Ao ® Bypo, for any extra incoming spaces

Ap, Bpandany p € Ay ® By [2].
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Requiring equation (1) to yield valid (i.e. nonnegative and normalised) probabilities, even when the parties
share arbitrary ancillary states, is equivalent to W satisfying the following constraints:

W>0, We LAB and TrW = d, dp, )

for some particular linear subspace L1458} of A;o ® Bjo; see section 4.1 and appendix A.1 for an explicit
characterisation [2, 14]. In the following we will refer to a matrix satisfying the first two constraints above (i.e.
without necessarily imposing the normalisation constraint Tr W = d 4 dp,) as a valid process matrix, and
whenever we talk about a process matrix Wwe always implicitly assume it is valid. Hermitian matrices that are
not valid process matrices will simply be referred to as ‘matrices’.

2.2. Bipartite causal (non)separability
One may now consider the question, whether the situation described by a process matrix can be embedded ina
well-defined causal structure, with a fixed causal order between the events happening in each party’s laboratory,
or not.

A process matrix is said to be ‘compatible with (the causal order) A < B’ (sometimes abbreviated to just
‘A < B’,e.g.in superscripts) if all the correlations it generates are compatible with a causal order where A acts
before B, which is to be understood operationally: such a process matrix WA= does not allow for any
signalling from B to A. More precisely, whatever the CP and CPTP maps M‘}°, M f(i)” of A and B, the resulting

alx >

correlations respect the no-signalling condition P(alx, y) = P(alx, y'), or Tr[Ma/T;O ® Mo . WASB] =
Tr[Ma/T;O ® My[flo - WA=B]according to equation (1). This constrains W4=5 to be in a linear subspace
LA=B c LIABlof Ajg ® Bjo; see section 4.1 and appendix A.2 for an explicit characterisation of £A=5,

Likewise, process matrices that do not allow signalling from A to B are said to be compatible with the causal
order B < A, and will typically be denoted W2=4 € £B=4, One can also conceive of situations where the causal
order is not fixed to be the same for all experimental runs, but where there is instead a probabilistic mixture of
the two possibilities. Such a scenario is described by a convex combination of process matrices compatible with
A < Band B < A, respectively. Process matrices of this form remain compatible with an underlying causal
framework and are the subject of the following definition, first introduced by Oreshkov, Costa and Brukner [2]:

Definition 1 (Bipartite causal (non)separability [2]). A bipartite process matrix W is said to be causally separable
ifand only if it can be written as a convex combination

W=q WA 4+ (1 — q) WP4, 3)

with ¢ € [0, 1]and where WA=8 and W2=4 are two process matrices compatible with the causal orders A < B
and B < A, respectively.
A process matrix that cannot be decomposed as above is said to be causally nonseparable.

Causally separable process matrices thus describe the most general bipartite situations where one can identify a
definite causal order between the parties, be it fixed for all experimental runs or subject to classical randomness. In
contrast, if a process matrix is causally nonseparable, it is incompatible with any causal order between A and B. In the
bipartite case, causal (non)separability can be easily and efficiently verified; in particular, any causally nonseparable
process can be detected using a witness of causal nonseparability [ 14, 15] (see section 4.4).

2.3. Towards generalising to more parties
The process matrix framework itself generalises rather easily to the multipartite case.

Let us first introduce some generalised notations. We shall consider N parties denoted by A, for
k € {1, ..., N} :== N, with corresponding inputs and outputs denoted by x;, and a, respectively. We define the
input and output vectors X := (xj, ..., xy)and d := (ay, ..., ay). The ‘incoming’ and ‘outgoing’ Hilbert spaces
for each party are denoted by HA', HAb (of dimensions d Abs d, ks respectively), while the spaces of Hermitian

linear operators over these Hilbert spaces are denoted by Af, AX. Wealso define Af, = AF ® A,
andd i = dkd i

Forasubset K C N of parties, we will denote by ¥ and di the vectors of inputs and outputs restricted to
the parties in /C, and use shorthand notations like A% := Qgcr Ak, ERIfFK = @), IF := Qe oo = 140,
and Tr for the trace over all (incoming and outgoing) systems of the parties in K—i.e. Tr ,x or Tr 4« ,as
appropriate (see below), and with Try the identity operation and Try the full trace. For notational simplicity, we
shall identify the parties’ names with their labels, and singletons of parties (e.g. { A }) with the parties themselves
(e.g. Ay) or the correspondinglabel, so that V"= {1, ..., N} = {A, ..., Ay}, M\ {A} = Mk, Trpa,y = Try,
etc.
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k
The CP maps corresponding to the parties’ operations are then denoted by M, ,:: 1o , the corresponding CPTP

x>
maps M,ﬁlk@ =3, M, a/: ’lkf;k ,and the overall process is represented by a process matrix W & A/g . The resulting
correlations are then obtained through a generalised Born rule as before:
. A, AR
P@d|x) = Tr[Mulf%@ ®Mul\{?xN - W1 4)
As in the bipartite case, the parties may also share some ancillary state p in some extra incoming spaces

Al® - @AY = Ai/rv ,and extend their local operations to act on these spaces as well. Requiring again the
nonnegativity and normalisation of all obtainable probabilities, including for arbitrary extensions W @ p of W,
imposes validity constraints on W. In the general multipartite case, they read

w>0, We £V, and Ttw= [] d,x (5)
keN

for some particular linear subspace £V of A/g ; see section 4.1 and appendix A.1 [2, 14]. As for the bipartite case,
in this paper a matrix will be called a (valid) process matrix whenever it satisfies the first two constraints above,
without necessarily requiring that it is correctly normalised.

The no-signalling constraints can readily be generalised to the N-partite case, allowing the notion of
compatibility with a fixed causal order to be extended accordingly. For instance, a process matrix is said to be
compatible with the fixed causal order A; < A, < --- < Ay if no party or group of parties can signal to other
parties in their causal ‘past’ (as defined by the specified causal order)—which translates into the constraint that
P(ay, ..., a1lX) = P(ay, ..., alxy, ..., x¢) forallk = 1, ..., N — 1. Asbefore, this constrains such a process
matrix WA= <4 to be in a linear subspace L4 =<4 [V of A{Y; see section 4.1 for an explicit
characterisation of £~ =<4~ (and appendices A.2—A.4 for further discussions and characterisations of process
matrices compatible with other fixed causal orders).

What is not so straightforward, however, is to generalise the concept of causal (non)separability, which turns
out to be much more subtle for more than two parties. In particular, additional complexity arises in the
multipartite case because the causal order can be dynamical as well as probabilistic—that is, the causal order of
parties in the future can depend on operations of parties in the past [16, 17, 22]. Simply considering a convex
combination of process matrices compatible with different fixed causal orders does not include scenarios with
such dynamical causal orders, and is therefore too restrictive to capture all scenarios that should be considered
compatible with a well-defined causal order. Perhaps more strikingly, as we shall see the possibility to extend
process matrices with ancillary quantum states has nontrivial implications for the definition of causal (non)
separability for more than two parties [17]. The main objectives of this paper are precisely to discuss how the
concept of causal (non)separability should properly be generalised to the multipartite case, and to characterise
causally separable and causally nonseparable process matrices.

3. Defining multipartite causal (non)separability

3.1. Araijo et al’s definition

The multipartite case was first considered in a restricted tripartite situation in which one party has no (or,
equivalently, a trivial) outgoing system. This particular scenario was studied because of its relevance for a
practical protocol where the causal order between two parties A and B, which perform some unitary operations
U, and Up on a target system initialised in a state [¢)), is controlled by another (two-dimensional) quantum
system. If this control qubit is initialised in the state |0)°, the operation U, is applied before U, while for a
control qubit in the state 1), Ugis applied before U,. If the control qubit is initialised in a superposition state
|[+) = %(|O>C + |1)9), the overall transformation on the joint state of the target and control systems is thus

W) ® |+) — %(UBUA 10) @ [0) + UUs [¢)f @ [1)°), ©)

i.e. the unitaries are applied in a ‘superposition of orders’. The output state is then sent to a third party C (Charlie)
who can measure the control qubit, and possibly also the target system. The protocol just described can
straightforwardly be generalised to the case where A and B’s operations are general quantum instruments instead
of unitaries. This so-called quantum switch can be understood as a quantum supermap [23], or higher order
transformation, that maps A and B’s local operations to the overall global transformation. It cannot be realised
by inserting the local operations into a circuit with a well-defined causal order, and therefore constitutes a new
resource for quantum computation that goes beyond causally ordered quantum circuits [4]. It has attracted
particular interest as a consequence of being readily implementable, and indeed several implementations have
been experimentally realised [24—28]. Consequent work has sought to clarify whether such implementations can

4
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really be seen as genuine realisations of indefinite causal orders, and [29] gives arguments clarifying why they
can be.

The quantum switch can naturally be described in the process matrix formalism [14, 17] where it indeed
corresponds to a tripartite process matrix for parties A, B and C, where Charlie has no outgoing system and
therefore cannot signal to the other parties. The situation is thus relatively similar to the bipartite case, since the
only relevant causal orders are those where Charlie actslast,i.e. A < B < Cand B < A < C. This observation
led Aratjo et al to propose the following definition (as an initial, ‘1-step’ generalisation of definition 1) for this
particular scenario:

Definition 2 (Aratjo et al’s causal separability [14]). In a tripartite scenario where party C has no outgoing
system, a process matrix Wis said to be causally separable if and only if it can be written as a convex combination

W = q WA—<B-<C + (1 _ q) WB—<A-<C, (7)

with ¢ € [0, 1]and where WA=B=Cand WB=4=C are two process matrices compatible with the causal orders
A < B < Cand B < A < C,respectively.

It was shown that the process matrix describing the quantum switch is causally nonseparable as per
definition 2 [14], and this definition has subsequently been used e.g. in [15, 18, 27].

3.2. Oreshkov and Giarmatzi’s definitions

While Aratjo et al’s definition recalled above applied only to a particular tripartite situation, Oreshkovand
Giarmatzi (OG) considered in [17] the general multipartite case—taking into account, in particular, the
possibility of dynamical causal orders. They defined in fact two possible generalisations of bipartite causal (non)
separability, namely what they called the notions of ‘causal (non)separability’ and ‘extensible causal (non)
separability’.

The definition they proposed for causal separability is recursive, in analogy with the definition of
multipartite ‘causal correlations’ [17, 22]—correlations that are compatible with a definite causal order. In
[17,22], these were characterised as those for which it is possible to identify, up to some probability, a party that
acts first, and such that, for any behaviour of this first party, the conditional correlations shared by the remaining
parties are again causal. Oreshkov and Giarmatzi invoked an analogous ‘unravelling argument’ for causally
separable processes.

More specifically, their definition is based on the concept of a ‘conditional (process) matrix’, defined for a

k
given matrix Wand a given CP map M; = M, u’: %, applied by a party Ay as
Winge = Tri Mg @ P\F - W, ®)

In general, even if Wis a valid process matrix, W, thus defined may not be a valid process matrix (in which case

we shall just talk about a ‘conditional matrix’). In fact, as we will see in section 4.1, a process matrix Wis

compatible with party A, acting first (i.e. it does not allow signalling from the other parties to Ay) if and only if for

any CP map M; the conditional matrix W, as defined in equation (8), is (up to normalisation') a valid

(N — 1)-partite process matrix for the parties in A/\ k. In that case, the conditional process matrix W)y, then

represents ’:[he process shared by these N — 1 parties, conditioned on party A, performing the CP map

M, =M a/i 1%, (i.e. conditioned on both receiving the input x; and obtaining the outcome ay).
Oreshkov and Giarmatzi then proposed the following (recursive) definition:”

Definition 3 (Oreshkov and Giarmatzi’s causal separability [17]). For N = 1, any process matrix is causally
separable. For N > 2, an N-partite process matrix Wis said to be causally separable if and only if it can be
decomposed as

W= 2 4 W ©)

keN

with g, > 0, 3", g, = 1, and where for each k, W, is a process matrix compatible with party Ay acting first, and
is such that for any possible CP map M; € Ak, applied by party Ay, the conditional (N — 1)-partite process
matrix (W, = Tre[Mi ® Pk Wil is itself causally separable.

! For a properly normalised process matrix W compatible with Ay first (i.e. which always gives P (ax|X) = P (ax|x¢)) and a trace-non-
increasing CP map My = My, onehas Tr Wiy, = P (axlxz) ngm\k dA(j), so that W)y, must be divided by the factor P (ax|x;) to also be
properly normalised according to equation (5).

% More precisely, what we present here as their definition is actually presented in [17] (in a slightly different, but equivalent way) as a

characterisation following from a more fundamental recursive definition of causally separable processes (not necessarily quantum
mechanical).
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As outlined in the previous section, the process matrix framework allows for process matrices to be extended
by providing additional ancillary states the the parties. Taking this into account, OG introduced a second
definition of causal separability for process matrices that are causally separable even under arbitrary such
extensions:

Definition 4 (Oreshkov and Giarmatzi’s extensible causal separability [17]). An N-partite process matrix Wis
said to be extensibly causally separable if and only if it is causally separable (as per definition 3 above), and it
remains so under any extension with incoming systems in an arbitrary joint quantum state—i.e. if and only if for
any extension A,jr\/ of the parties’ incoming systems and any ancillary quantum state p € A//\/ , W ® piscausally
separable.

Itis easy to see that OG’s causal separability (CS) and extensible causal separability (ECS) are equivalent in
the bipartite case, and, indeed, equivalent to definition 1 given in section 2.2: the process matrix W ® p obtained
by attaching an ancillary state p to a causally separable process matrix W of the form of equation (3) remains of
the same form, with WA=8 @ p (WB=4 @ p) compatible with A acting before B (B before A), and for both terms
WA=B @ pand WB=4 @ p, whatever operation the first party applies, the resulting conditional process matrix
for the other party is single-partite, hence trivially causally separable.

However, OG’s CS and ECS are not equivalent in the general multipartite case and thus indeed represent two
different possible multipartite generalisations of the same bipartite concept. Of course ECS implies CS, but the
converse is not true in general—the result of a phenomenon called ‘activation of causal nonseparability’ in [17].
An explicit example of a CS process that is not ECS was indeed given in [17], in a tripartite scenario where one
party has no incoming system; we will see another example in the following subsection.

3.3. Comparison

We thus now have three potential generalisations of the concept of causal separability to the particular tripartite
situation where one party has no outgoing system—namely, the two different definitions of causal separability
(Definitions 2 and 3), and that of extensible causal separability (Definition 4). How do they relate to one another?
Are the two definitions of causal separability indeed equivalent? These questions are answered by the following
result:

Proposition 1. In a tripartite scenario where party C has no outgoing system, Araiijo et al’s definition of causal
separability (Definition 2) is equivalent to Oreshkov and Giarmatzi’s definition of extensible causal separability
(Definition 4), but nonequivalent to their definition of causal separability (Definition 3).

The equivalence between definitions 2 and 4 for this particular tripartite scenario is proved explicitly in
appendix B.1.1, which we refer to for more details; we simply summarise the argument here as follows. Clearly,
any process matrix W of the form of equation (7) is ECS, as any W ® p is also of that form (and of the form also
of equation (9)), and for any WA~<B=€ and any M, the conditional process (WA<B=C),,/ is compatible with the
order B < C (hence it is causally separable; similarly for any W5=<4<C¢ and any Mg). The proof that an ECS
process matrix W necessarily has the form of equation (7) is based on a ‘teleportation technique’ (see lemma B1
in appendix B), already used in [17], that consists in introducing an ancillary system in a maximally entangled
state p shared by two parties, e.g. A and C. By definition, the global process W © p , ., hasa decomposition of
the form (9). Itis then easy to see that the terms W, and Wy compatible with parties A or B acting first are in fact
compatible, since Chas no outgoing system, with the causal orders A < B < Cand B < A < C, respectively,
and thus contribute to the terms WA<B~C and WB=4<C in equation(7). For the term W compatible with C
acting first, letting C project his systems Gy := C; ® Cp onto the maximally entangled state effectively
‘teleports’ his system to A. By definition, the conditional bipartite process then shared by A and B must be
causally separable, and must therefore have a decomposition of the form (3), which also leads to a
decomposition of the form (7) for W.

In order to prove the nonequivalence between Araujo et aland OG’s definitions of causal separability, we
will now show that OG’s CS and ECS are nonequivalent—i.e. that there can be ‘activation of causal
nonseparability’ (according to OG’s terminology)—in the scenario where party Chas no outgoing system.
Note that this scenario differs from that in which OG already gave an example of activation of causal
nonseparability: they indeed considered a tripartite case where Chas no incoming system, rather than no
outgoing system.
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Consider for that the following process matrix:

wact .= é[u(m — 23)ll + ? IG% + §9)(1 + 18) + %2(2]1 — B+ ifc(fc}? — 901 — 112)], (10)

where the subsystems are written, for convenience, in the order C;A;BjApBo (i.e. W € G ® A; ® Bi®
Ao ® Bp).Here, as in the other examples presented in this paper, X, ¥, Z denote the Pauli matrices, 1 denotes
the2 x 2 identity matrix and tensor products between all matrices are implicit.

We note first that W<t is compatible with Charlie acting first—i.e. with the order C < {A, B}’. (Indeed, it
satisfies equation (18) given later, for Ay = C.) Any CP map applied by Charlie—i.e. since Chas no outgoing
system, any element of a positive-operator valued measure (POVM) in his qubit incoming space C—can be
writtenas Mz = 1 + ¢ - ¢, where G := (X, ¥, 2) and ¢ := (cy, ¢y, ¢,) isa three-dimensional real vector with
|¢] < 1,s0that Mz > 0 (and where we ignore the trace-nonincreasing constraint, and indeed the overall
normalisation of Mg, since it is irrelevant for our argument). The resulting conditional matrix for parties A and B
(as defined in equation (8)) is then

(Wact.)lMF = TfCI[M;C' ® 1ArBrAoBo . Wact.] — %M]ﬁ\\/ljB + %M]Illi/le (11)
with (written in the order A;B;ApBo)
Wins? = i[(m — )1l + g(ﬁﬁ + W)2ﬂ+%(iﬂ — I+ Cz—"(@ — 9&)2]1] (12)

and with W3 of a similar form, obtained from W3*” by changing 24010 to 140750 and ¢, to —c.
Note that Wﬁé,,jB and WﬁKEA are valid, causally ordered process matrices, compatible with A < Band

2 2
B < A, respectively (their eigenvalues are found to be 0, %(1 £ 3“% ) > 0for|c] < 1,and they satisfy

the appropriate form of equation (19) given later). From equation (11) and the definition of causal separability in
the bipartite case (Definition 1), we conclude that for any CP map (i.e. here, any POVM element) M; applied by
Charlie, (W), is a (bipartite) causally separable process. Therefore, according to OG’s definition 3, W2 isa
tripartite CS process (with a single term in the decomposition (9),corresponding to Cfirst).

A crucial feature of the decomposition (11)is that (W), Wﬁ\‘,,jB and Wﬁf,fEA all depend on Charlie’s
A<B B<

operation M. Even though any valid process matrixin C;A; By Ao Bo (including Wjy,~~ and Wiy ") is
compatible with Cactinglast (since Chas no outgoing system), the decomposition (11) still does not allow us to
obtain a decomposition of the form W3t = %WA““ ¢+ %WB =A=C for Wa< (or even with different weights
g1 — q), asin equation (7). Indeed, such a decomposition for W2, with WA=B<C and WB=4=<Cvalid process
matrices compatible with the indicated causal order, does not exist. This can be shown using Aratjo et al’s
technique of ‘witnesses of causal nonseparability’ [ 14, 15]: one can construct a witness for W2, and we give one
explicitly in appendix C.

Since, as stated above, the existence of such a decomposition (as in definition 2) would be equivalent in the
scenario considered here to OG’s ECS (Definition 4), this implies that although W2 is CS according to OG’s
definition (see above), it is not ECS. This provides an explicit example of ‘activation of causal nonseparability’ in
that scenario.

Hence, OG’s CS does not reduce (contrary to OG’s ECS) to Aratjo et al’s definition of causal separability in
this particular scenario. Definitions 2 and 3 of causal separability are therefore inconsistent. Our aim now is to
rectify this inconsistency.

3.4. Our choice of definition

To fix this, we now propose our own definition of multipartite causal separability, which indeed resolves the
inconsistency pointed out above, and which we argue is a more natural definition for general multipartite
scenarios. Similarly to OG, we choose a recursive definition, based on the concept of a conditional process
matrix and very much in the spirit of the recursive definitions that have been given for multipartite causal
correlations [17, 22]. For a process matrix to be compatible with a definite causal order, there should, in any run
of the experiment, be a designated party that acts first (which party this is can be determined probabilistically,

? As Chas no outgoing system, W2 is also compatible with Cacting last (see appendix A.2.3). But to prove that W< is CS (according to
OG’s definition) as we do below we need to consider Cacting first.
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justlike in the bipartite case) and the conditional process matrix for the remaining parties, which depends on the
action of the first party, should again be causally separable for any CP map that the first party applies.

For several reasons, we consider it important to allow extensions with extra incoming systems, similar to
OG’s extensible causal separability. Firstly, the whole process matrix framework is constructed so as to allow for
shared ancillary systems between the parties. For consistency, we should thus take into account such extensions
with shared incoming quantum states when defining causal (non)separability. Indeed, entanglement is a very
different resource from causal nonseparability: entangled systems do not by themselves allow signalling between
parties, and should be able to be distributed between parties prior to an experiment without ‘activating’ causal
nonseparability. (Note, however, that entanglement can still play a crucial role in causal nonseparability, as e.g.
in the quantum switch, where the control and target systems can end up being entangled after the parties’
operations.) While a ‘resource theory’ for causal nonseparability has not yet been developed, it is reasonable to
expect that providing additional shared (entangled) incoming states should be a free operation in such an
approach. These considerations lead us to propose the following definition.

Definition 5 (N-partite causal separability). For N = 1, any process matrix is causally separable. For N > 2,
an N-partite process matrix Wis said to be causally separable if and only if, for any extension AIJ/V of the parties’
incoming systems and any ancillary quantum state p € A{r\/ , W ® p canbe decomposed as

Wep= 3 q W, (13)
keN

with g, > 0,3, q, = 1,and where for each k, W, € A{I\/fo is a process matrix compatible with party Ay acting

first, and is such that for any CP map M; € AII}/O applied by party Ay, the conditional (N — 1)-partite process
matrix* (W(i))| M, = T [My ® P\K W(’,’()] is itself causally separable.

Note that there is a subtle difference between our definition here and that of OG’s ECS (Definition 4). We
indeed require all conditional process matrices appearing at all levels of the recursive decomposition to remain
causally separable under extension with arbitrary ancillary states, while OG impose this a priori only for the
original process matrix. In fact, although prima facie different, these definitions turn out to be equivalent; the
proof of this is given in appendix D.

From definition 5 we recover the natural, intuitive definition of Aratjo et al[14] in the particular tripartite
case where one party has a trivial outgoing system—a case of practical relevance, as the quantum switch is the
first example of a causally nonseparable process that has been demonstrated and studied in laboratory
experiments [24, 25, 27]. One can also readily verify that process matrices that are causally separable by
definition 5 cannot generate noncausal correlations (as defined in [17, 22]); an explicit proof is given in
appendix E.

From now on, whenever we talk about causal (non)separability we will refer to our definition 5.

4. Characterising multipartite causal (non)separability

With the definition of causal (non)separability given above, we now turn to addressing the question of how to
characterise causally separable process matrices in terms of simple conditions and how to demonstrate
multipartite causal nonseparability in practice.

For that we will start by reviewing the characterisations of valid process matrices and of process matrices
compatible with fixed causal orders, before recalling the characterisations of causally separable process matrices
in the bipartite and tripartite cases, where we will give conditions for causal separability that are both necessary
and sufficient. We will then present a generalisation to the N-partite case which, for N > 4, gives two
conditions, one necessary and one sufficient, whose coincidence remains an open question.

In this section we will not concern ourselves with the normalisation of process matrices (which can always be
imposed later). Our characterisations will then be given in terms of linear subspaces of matrices (e.g. the spaces
LV and £4 = =4 introduced already in section 2); when adding the requirement of positive semidefiniteness,
the corresponding sets of (nonnormalised) process matrices will thus be closed convex cones of positive
semidefinite matrices. This will allow the conditions we give to be checked efficiently with semidefinite
programming (SDP) techniques. In particular, by generalising the techniques used for the bipartite and
restricted tripartite cases in [14, 15], we will extend the idea of witnesses of causal nonseparability to the
multipartite case and show how multipartite witnesses can be constructed efficiently, allowing this causal

4 . 5 / i
Note that compared to equation (8), we take here Af., == Af, ® Af, My = M;Z’lle, Trk::TrAIkw and IM\F .= Qe 1470 in the
definition of the conditional matrix.
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nonseparability to be verified experimentally by having each party perform appropriately chosen
measurements [25,27].
Following [ 14], we adopt the following notation, which will be used heavily throughout the rest of the paper:

1X
xWi= (Trx W) @ = W= W, 5 W= ) ax xW, (14)
X X
with dy the dimension of the Hilbert space of system X (note that W — xW defines a CPTP map). In particular,
constraints of the form [, _x;W = 0 (which will appear regularly) therefore mean that Wis of the form

W=0® %(withQ — T W).

4.1.Valid process matrices and compatibility with a fixed causal order
Recall from section 2 that the conditions for a process matrix W to be valid arise from requiring that the
generalised Born rule (4) should give valid probability distributions, even when the parties share arbitrary
ancillary systems. The fact that these probabilities should be nonnegative imposes that W must be positive
semidefinite, while the requirement that these probabilities must sum to 1 implies that any valid (but, once
again, not necessarily normalised) W must be in a subspace £V of A [2, 14]. In appendix A.1 we recall the
proof (following [14]) that this subspace can be characterised as follows:

WeN e VAXCN X=0, ToaxWe LY and  [poagW=0 (15)

ieN

mxW = 0. (16)

10

=V Xg M X = g, H[I—A(’.)]A
i€eXx

Written in the form of equation (15), the validity constraint for W says that all reduced matrices Tryy y W shared
by the parties of any strict subset X’ of A/ (obtained after tracing out the parties that are notin X’) must be valid,
and that W must further satisfy the additional constraint that j_ 1 47;W = 0. The form of equation (16)
expresses explicitly all the (linearly independent) constraints that these recursive validity conditions imply on’
W. Denoting by P the convex cone of positive semidefinite matrices, the set of valid process matrices is then the
convex cone

wW=pPncLVN. (17)

In order to discuss the causal separability of process matrices, it is necessary to also characterise the subspaces
of such matrices that are compatible with certain fixed causal relations between (subsets of) parties. Such causal
relations, as for the particular cases of fixed causal orders discussed in the previous sections, are understood via
the notion of signalling: if a (group of) parties is in the causal future of some others, then there is no way for them
to signal to those earlier parties.

We first consider the case of process matrices that are compatible with a given party Ay acting first’:
regardless of the operation performed by the other parties Ay (forall kK’ = k), the marginal probability

v

distribution for Ay obtained from (4) must not depend on the CPTP maps Mx/:{O chosen by those other parties.
As already mentioned in the previous section and shown in appendix A.2, a given process matrix W satisfies this
condition if and only if, whatever CP map M is applied by Ay, the conditional process matrix W)y, as defined in
equation (8),isavalid (N — 1)-partite process matrix for the remaining parties in \V\ A;.

We can in fact ignore here the assumption that M > 0, and the above constraint is equivalent to imposing
that Wy, € £\ forany M; € AK.. Such a constraint defines a linear subspace of Aljg . Taking its intersection
with the subspace £V, we denote the linear subspace of valid process matrices compatible with party Ay first by
LA4=MNA)_ We find, using equation (16) above (and after removing redundant constraints; see equation (A13)
inappendix A.2):

We LA o We N and VY M € Ay, Wiy, € L\

S poagaW =10 and V X C Nk X=0 VW = 0. (18)

> [T-AblA
icX
In appendix A.2 we also derive constraints for more general causal orders of the form K, < IC; < -+ < K,
for various disjoint subsets /C; of A/. Of particular interest is the specific case in which each K; is a singleton,
which gives constraints on a process matrix Wbeing compatible with a fixed causal order such as

A < Ay < -+ < Ay.Such a Wmust be compatible with A; acting first (and must therefore satisfy

5 C . . . .

Note that the constraint in equation (16) can also be written as T xl1-Ad] (T v W) = 0. In this paper we generically use the form of
equation (16) for ease of notation; it may be useful, however, to keep in mind that this type of constraint is in fact a constraint on the reduced
matrix Try\ v W shared by the parties in X', as written more explicitly in equation (15).

Note thata process matrix can be compatible with several different causal relations between parties. For example, if a matrix W does not
allow any party to signal to another, then itis compatible with any party or group of parties acting first.
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equation (18) for k = 1—in particular, the constraint on its third line); then, whatever CP map M, party A,
applies, the resulting conditional process matrix W), must then beavalid (N — 1)-partite process matrix,
compatible with party A, acting first (and must therefore satisfy equation (18) for k = 2—in particular, its third
line—with A replaced by A\ {1}); etc. By iterating this argument (up until the party A ), we find that the linear
subspace L4~ =4~ of process matrices compatible with the causal order A; < --- < Ay is characterised by
(see equation (A17)) [14, 30, 31]

We LA =AN oV k=1,..,N, n-abaghW =0, (19)

with AGR = Akl M (with AGN = AP = 1).

4.2, Bipartite and tripartite causally (non)separable process matrices
In the bipartite scenario, the above characterisation of the subspaces £4~<8 and £8~4 allows us, from definition
1, to give the following explicit characterisation of causally separable process matrices.

Proposition 2 (Characterisation of bipartite causally separable process matrices). A matrix W € Ajp ® Bjois
avalid bipartite causally separable process matrix if and only if it can be decomposed as

W = Wa,p + Waa), (20)
where, for each permutation (X, Y) of the two parties A and B, Wx, v is a positive semidefinite matrix satisfying
[1-XolYie Wix, 1) = 05 (1-351 Wi,y = 0 @D

(i.e. Wix, vy is avalid process matrix compatible with the causal order X < Y ).

Note that, in contrast to equation (3) in definition 1, we did not write the weights gand 1 — ¢ explicitly in
equation (20). Instead, for convenience and consistency with the characterisations of tripartite and N-partite
causally separable processes which will follow, we decomposed W in terms of nonnormalised process matrices,
writing ‘/V(A,B) =q WA=B and WB,A) =1 - q) WB=A,

As we discussed in section 3, the tripartite case of causal separability was already studied by Oreshkovand
Giarmatzi under the name ‘extensible causal separability’ in [17]. In their Proposition 3.3 they provided a
characterisation of tripartite (extensible) causal separability, albeit describing the constraints in a different way.
In our approach, this characterisation can be expressed as follows:

Proposition 3 (Characterisation of tripartite causally separable process matrices). A matrix
W € Ajp ® Bio ® Co isavalid tripartite causally separable process matrix (as per definition 5) if and only if it can
be decomposed as

W = W(A) + VV(B) + W(C) (22)

= W,y +Wucn + Wisac) +Weca + Wear +Wes,a)

where, for each permutation of the three parties (X, Y, Z), Wix, v,z and Wix) == Wix,v,z) + Wx,z,v) arepositive
semidefinite matrices satisfying

[1—Xol YioZio Wix) = 05 (23)
N-YolzoWx,v,2) = 0, 1zt Wix,v,2) = 0. (24)

The proof of this characterisation was sketched in [ 17] using a somewhat different terminology to what we
employ; in particular, they express causal constraints in terms of restrictions of what terms are ‘allowed’ ina
Hilbert—Schmidt basis decomposition of a matrix (see appendix A.4). We give a more detailed proofin
appendix B.1.2, which is again based on a ‘teleportation technique’ (see lemma B1 in appendix B), similar in
spirit to the one briefly sketched in section 3.3.

Let us break down and analyse the terms appearing in the decomposition (22) to understand better this
characterisation.

From the constraints in equation (24) it follows that, that for each party X, the matrix Wix,(=Wx,v,z) +
VV(X,Z,Y)) satisfies [1—YolZio ‘/V(X) = [1-ZolYo ‘/V(X) = [1-Yol[1—Zo] VV(X) =0. Together with equation (23) and the
fact that Wiy, is positive semidefinite, this implies that W) is a valid tripartite process matrix compatible with
party X acting first (since it satisfies equation (18) for Ay = X). Wis thus decomposed in equation (22) as a sum
of three valid process matrices, which ensures in particular that it is itself a valid process matrix.

On the other hand, the matrices Wy, y, z) in the decomposition (22) are not necessarily valid process
matrices. Nevertheless, the constraints (24) imply that whatever the CP map My applied by the first party X, the
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conditional process matrix (Wix,y,z))m, = Trx[Mx ® "2 - Wix,y,z)]is avalid bipartite process matrix,
compatible with the causal order Y < Z (indeed, it satisfies equation (19) for this causal order:
e.8 [1-volzol (Wix, v, 2m] = (11— vo120 Wi, v, 2 v = 0)-

The fact that the matrices W(x, v, z) are not necessarily valid process matrices, and thus that equation (22) does
not simply decompose W into a combination of process matrices compatible with fixed causal orders, is a
consequence of the possibility of dynamical (but still well-defined, albeit not fixed) causal orders (recall the
discussion at the end of section 2.3). In section 4.5 we will consider in more detail a concrete example of a process
matrix allowing for such dynamical causal orders.

4.3. General multipartite causally (non)separable process matrices

As we will see below, it is possible to generalise the decomposition of proposition 3 to the case of N-partite causal
separability. While the generalisation clearly provides a sufficient condition for causal separability, it turns out
that the proof that it is also a necessary condition does not readily generalise. Indeed, the proof for the tripartite
case in appendix B.1.2 relies on the fact that each term Wy, in equation (22) is the sum of only two ‘base’ terms,
something that is not true in the natural generalisation of this decomposition. (To understand this better, we
encourage the interested reader to look at the subtleties of that proof.)

For the general multipartite case, we therefore provide the following, separate, necessary and sufficient
conditions. Since these arise from different considerations, we will present and discuss these individually.
Indeed, although these coincide in the bipartite and tripartite cases, it remains an open question whether this is
the case in general (or if one is both necessary and sufficient but not the other, or if neither are).

4.3.1. Necessary condition
The necessary condition we present here is based on the teleportation technique and is a generalisation of the use
of this approach in the proof of the tripartite characterisation. The teleportation technique is more formally
described inlemma B1 in appendix B, but we briefly outline how it leads to the necessary condition to help
understand the condition itself. The idea is to consider, in equation (13) of definition 5, a specific shared
incoming ancillary state, as well as specific operations M applied by the parties Ay, for which thereisa
straightforward relation between the forms of the respective N-partite process matrices in which Ay acts first,
and the corresponding (N — 1)-partite conditional process matrices that we obtain after A; has operated. As the
latter are by definition causally separable (and satisfy thus the necessary conditions for (N — 1)-partite causal
separability), this allows us to infer necessary conditions for the causal separability of the original N-partite
process matrix.

More precisely, we provide, as ancillary incoming systems, a maximally entangled state between every pair of
parties, defining an overall ancillary state p. If W is a causally separable process matrix, then, by definition,
W ® p canbe decomposed into a sum of process matrices Wj, compatible with a given party Ay acting first (see
equation (13) in definition 5); furthermore, as p is pure, one can write W(’,i) = Wy ® pwith W, itself being
compatible with A, first. For each such process matrix Wy, the party Ax can then ‘teleport’ the part of W, on
their systems A%, to another party Ay by applying an appropriate CP map M. The effect is that the resulting
(N — 1)-partite conditional process matrix (W(i) )jm, formally has the same form as W, (tensored with what is
left over of the, now reduced, ancillary state p), except that the systems A%, are instead attributed (‘teleported’) to
the ancillary incoming system Af of A From the definition of causal separability, (W) ), must itself be
causally separable, so the necessary condition can be recursively applied to this (N — 1)-partite process matrix
until the base case of N = 3, given by proposition 3, is reached.

We give the full details of the proof of the necessary condition in appendix B.2.1. However, in order to state
more formally the condition itself, let us introduce the following notation. For a given matrix W € A/(\)/ ,we
denote by WAL—Ar ¢ AIJ(V)\k ® Alk// the same matrix, where the systems A%, are attributed to some other system

AIk// (of the same dimension as A%,). More formally,
WAL=AT .= SOTr[li) (jl4 © P\ W] @ |j) (A7 (25)
i,j
where {|i)} is an orthonormal basis of HA' ® HAo.

We then obtain the following recursive necessary condition:

Proposition 4 (Necessary condition for general multipartite causal separability). An N-partite causally
separable process matrix W € Ay (as per definition 5) must necessarily have a decomposition of the form

W= 3" W (26)
keN
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where each Wy, is a valid process matrix compatible with party Ay acting first, and such that for each k' = k,

W(‘,?;OHA’k’ isan (N — 1)-partite causally separable process matrix.

Hence, any constraints satisfied by (N — 1)-partite causally separable process matrices must also be satisfied by
Wk after re-attributing the system AF back to Af,—i.e. after formally replacing AF by AF AX and then AY by Ak,
in the constraints written using the notation defined in equation (14).

The decomposition of equation (26) follows from that of equation (13) in our definition of causal
separability, for the appropriate choice of ancillary state and CP maps, as described above (see appendix B.2.1).

To further clarify this condition, let us illustrate, in the fourpartite case (with parties A, B, C, D), how one
can use it to obtain explicit constraints on causally separable process matrices. Proposition 4 implies thata
fourpartite causally separable process matrix W must be decomposable as

W= W) + W) + W) + Wop 27)

with each Wy, (for X = A, B, C, D)beinga valid process matrix compatible with party X acting first—hence
satisfying equation (18) for Ay = X.” For each X and every other party Y = X, the recursive constraint that
WX"’ "is a tripartite causally separable process matrix further implies, according to proposition 3 (for the
three parties Y, Z, T = X) and after re-attributing the system Yy to Xjo (i.e. replacing Y;o by Yy Y;p and then Yy
by X;o in the constraints), that there must exist a decomposition of Wy, of the form®

[X—Y] [X—Y] [X—Y]

Woo = Weer) + Wexzy + Weer)
[X—Y] [X—Y]
=Wx,yvzm + W(XYTZ) + W(XZYT)

[X—Y] [X—=Y]

+W(XZTY) + W(XTYZ) + W r,zv) (28)

. . oy . o . . [X—Y [X—Y] [X—Y]
where each term appearing in the decomposition is positive semidefinite, Wiy vy = Wixy 7 1) + Wix v, 1.2

etc,andwith(forall X = Y= Z = T)

[X—Y] [X—=Y]
1Yol ZoToWx,v) = 1-ZolXioYieToWx,2) = 05
[X—=Y] [X—=Y]
n—zoltoWix,v,zmy = n-1We,v,z,m) = 0
[X—Y] [X—Y]

n-voltoWx,zv,ry = 1-1o1Wex,z v,y = 0,
X—Y] X—Y]
n-TolXeWx,z vy = n1-vo1Wx,z,1,v) = 0- (29)

Finally, we remark that the constraints obtained by considering teleporting each party X’s system to justa
single other party Y (i.e. by just demanding the existence of a decomposition of the above form for some other
party Y, rather than for all other parties Y = X) yields conditions that are still necessary for the causal
separability of W, but which are generally weaker than those given in proposition 4. Indeed, in appendix F.1 we
give an example of a fourpartite process matrix which satisfies those weaker conditions but not all of those given
above.

4.3.2. Sufficient condition
A sufficient condition for causal separability can be obtained by considering a stricter form of the recursive
decomposition (26) in proposition 4. In particular, we demand that Whas a decomposition into W,
compatible with A, acting first and such that each Wy, itself recursively satisfies the sufficient constraints for an
(N — 1)-partite process matrix without A%, being traced out. One can easily verify that the decomposition (22)
in the tripartite case is a generalisation of this kind from the bipartite case. In the fourpartite case described
explicitly above, this means that for each party X there should be a single decomposition of the form (28) (i.e. no
longer dependent on Y) such that the constraints (29) are satisfied without tracing out X;o on the first and fourth
lines. The fact that, unlike in the necessary conditions, we only consider a single (recursive) decomposition of
each W) means that we can give a more explicit formulation for the sufficient condition.

Before stating the sufficient condition, let us introduce some more notations. Let I denote the set of
permutations (generically denoted by 7) of A/. For an ordered subset (k;, ..., k,,) of N with n elements (with
1 <n <N,k = kjfori = j),let Iy, . i, betheset of permutations of A for which the element k, is first, k,

7 Note that the existence, for all Y, of a decomposition of the form of equation (28) satisfying equation (29) implies all the constraints of
equation (18), except for the third line (i.e. (1 —xo1vi0z0T0W = 0).

8 Here the superscripts [X — Y] are simply labels to indicate that, for each matrix Wx), there are potentially different decompositions of the
form (28) foreach Y = X. (The sufficient condition below will in fact precisely be obtained by assuming that these decompositions do not
dependonY.)
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issecond, ..., and k,, is nth—i.e. Mg, .. k) = {r e n(1) =k, ..., m(n) = k,}. With these notations, we have
the following sufficient condition, that directly generalises the decomposition of proposition 3.

Proposition 5 (Sufficient condition for general multipartite causal separability). If a matrix W € AIJ(\)/ can be
decomposed as a sum of N! positive semidefinite operators W,. > 0 in the form

w=> W, (30)

mell

such that for any ordered subset of parties (ky, ..., k,) of N (with1 < n < N, k; = kjfori = j), the partial sum

Wy k= 2, Wi (31)
TE€Mg, ..y k)
satisfies
(1= aka\ Gl Wik, k) = 0, (32)

then W is a valid causally separable process matrix (as per definition 5).

This decomposition was also suggested independently by Oreshkov as a possible generalisation of
proposition 3 [32] (although following the approach of [2, 17], Oreshkov expressed it differently, namely in
terms of allowed terms in a Hilbert—Schmidt basis decomposition of the matrices Wy, .. . «,); see appendix A.4).
The proof that the condition above is indeed sufficient is given in appendix B.2.2. In order to understand it
better, it is nonetheless worth discussing the form of the decomposition and the terms appearing within in a little
more detail.

Firstly, note that one can easily show by induction (see appendix B.2.2), that if equation (32) is satisfied for all
(ki, ..., k,,), then one also has, forall (k, ..., k,) with1 < n < N, that

vV XC N\ {ky ..., kn}, X = @, TTi-Aba\ ek \ AW, k) = 0. (33)
ieX
Note also that sinceall W, > 0,all W, . ¢, = 0aswell.

Forn = 1, equations (32) and (33) imply that each matrix Wy, (=0) is a valid process matrix compatible
with party Ay, acting first; indeed, equation (18) is satisfied for Ay = Ay. AsW = 37 W) according to
equations (30)—(31), this ensures in particular that Wis indeed a valid process matrix.

Note, however, that in general the matrices Wi, . k) for n > 1are not valid processes matrices compatible
with the causal order Ay < --- < Ag,.Indeed, as we already observed in the tripartite case, Wi, .., x,) may not
generally be a valid process matrix at all. Nevertheless, comparing with equation (18), one can see that equations (32)
and (33) imply that whatever the CP maps My,, ..., My, ,appliedbythe n — 1parties Ay, ..., Ax, ,the
conditional matrix (Wi, ..., k)Mo - oM, | = Tk, .k, [Mk® - @M, | @ Aokt g lisa
valid (N — n + 1)-partite process matrix, compatible with party Ay, acting first.

As we have noted already, the condition of proposition 5 coincides, in the bipartite and tripartite cases, with
those given in propositions 2 and 3, respectively. Indeed, for these cases, the necessary and sufficient conditions
given here coincided. For four-or-more parties it remains an open question whether this is also the case. We
performed several numerical searches for process matrices satisfying the necessary but not sufficient conditions
(see appendix F.2) and failed to find any such examples, although the complexity of the numerical searches
means that we caution against interpreting this as evidence that the conditions coincide in general. In
appendix B.3, however, we show that they do coincide in the specific fourpartite case with d,, = 1. Thisisa
rather restricted scenario (where any process matrix is compatible with D acting last), but nonetheless includes
cases of interest such as the fourpartite variant of the quantum switch we discuss at the end of this section.

Finally, we note that the decomposition in proposition 5 has consequences beyond the definition of causal
separability meriting additional interest: as we show elsewhere [33], it characterises precisely (i.e. providing a
necessary and sufficient condition for) quantum circuits with classical control of causal order.

4.4. Witnesses of causal nonseparability

While the previous characterisations provide mathematical descriptions of causally (non)separable process
matrices, an important problem is the ability to detect and certify causal nonseparability in practice. One
approach that has been explored extensively is to show the violation of causal inequalities [2, 16,22, 34, 35],
which is indeed only possible (within the process matrix formalism) with causally nonseparable process matrices
(see appendix E), and provides a device-independent certificate of noncausality. However, certain causally
nonseparable process matrices are known not to violate any such inequalities—this is, e.g. the case for the
quantum switch [14, 17].
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Another approach, firstintroduced in [14] for the bipartite and restricted tripartite scenarios, and further
studied in [15], is to construct witnesses of causal nonseparability—or ‘causal witnesses” for short. Here, we outline
this approach before describing how the conditions given in the previous subsections allow us to construct
causal witnesses for general multipartite scenarios. This will permit a full analysis of the examples in the
following section, as well as the verification of certain results already claimed in previous sections. While the
overall approach of causal witnesses—and their formulation as efficiently solvable SDP problems—in the
general case mirrors that of the specific scenarios previously studied [ 14, 15], the validity of the generalisation
rests on certain technical details which we prove in appendix G.

A causal witness is defined as a Hermitian operator S such that

Tr[S - W] > 0 (34)

forall WP € WP, where WP C W is the set of causally separable process matrices. For any causally
nonseparable W, it is known that there exists a causal witness S such that Tr[S - W™] < 0[14, 15]. Givena
process, a causal witness S can be ‘measured’ by having each party implement suitably chosen operations or
measurements, providing a now device-dependent test of causal nonseparability. This approach has been used, e.g.
to verify experimentally the causal nonseparability of two different implementations of the quantum switch [25, 27].

Propositions 2, 3, 4 and 5 allow for the characterisation of the convex cone WP of causally separable
processes—or, for the latter two propositions, outer and inner approximations W4¥ and W*? thereof—in
terms of Minkowski sums and intersections of linear subspaces and of the cone of positive semidefinite
operators P. The set of causal witnesses is then precisely the dual cone of WP, § = (WWsP)*[14, 15]. A
characterisation of S can, in general, be obtained from the description of YV*P by using the following duality
relations for any two nonempty closed convex cones C; and C, [36]:

G+ C)*=Cfnct, @nC)*=Cf+C} (35)

(where C; + C, = {a + ola € G, 6 € C,}is the Minkowski sum of the two cones C; and C,; note that all the
cones we shall consider will be nonempty, closed and convex).

Since these cones are convex, the construction of causal witnesses (or of explicit decompositions of causally
separable process matrices) can be efficiently performed with SDP, as first described in [14]; we will follow here the
slightly different approach of [ 15]. The question of whether a given Wis causally separable can be reformulated as
the optimisation problem of how much white noise can be added to a process matrix before it becomes causally
separable. Let I° = 14 / [Ixe d 4 be the ‘white noise’ process matrix (which corresponds to each each party just

receiving a fully mixed state 1 / d 4+, and is causally separable), and consider the noisy process matrix
W(r) = ;(W + rl°). (36)
L+7

Since the normalisation is irrelevant to membership of YW*P, determining whether W is causally separable can
be thus phrased as the SDP optimisation problem
minr
st. W rle € Wb, (37)

which can be efficiently solved using standard software by writing YV*P in terms of SDP constraints (see [15], the
examples below and appendix G for further details). The solution to this problem, r*, gives the random robustness
max(r¥, 0) of W, and avalue r* > 0 implies that W is causally nonseparable [14, 15].

Equation (37) is known as the primal problem, and is related to the dual problem

min Tr[S - W]
st. S€8 and Tr[S-I°] =1, (38)

defined over the dual cone S of W5 [14, 15]. The optimal solution S* is a witness of the causal nonseparability
of Wwhenever Tr[S$* - W] < 0. The Strong Duality theorem for SDP problems moreover relates these two
problems, stating that their solutions satisfy

r* = —Tr[S* - W]. 39)

In appendix G we show that (38) is indeed the dual of (37) and that the Strong Duality theorem is indeed
applicable for arbitrary scenarios, as well as giving some further details. This implies in particular that the witness
S* thus obtained is optimal when W is subject to white noise, in the sense that it witnesses the causal
nonseparability of all noisy process matrices W(r) with r sufficiently small (r < r*) so as for W(r) to remain
causally nonseparable.

For more than three parties, the witnesses in the set S, = VP)* obtained from the cone W5 D Wsep
arising from the necessary condition of proposition 4 are also valid witnesses of YW*P since S, C S.On the other
hand, by solving the primal SDP problem over the cone W*? arising from the sufficient condition in proposition 5,
one can show the causal separability ofany W € W** C W (through the construction of an explicit causally
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separable decomposition for W of the form given in proposition 5). Recalling the claim that such process matrices
correspond precisely to quantum circuits with classical control of orders [33], the dual cone S_ is thus the set of
‘witnesses for no classical control of causal order’ (which can thus be found by solving the dual SDP problem).

In appendix G we give some concrete characterisations of the cones YW*P and S for different scenarios in
terms of SDP constraints, and which are relevant for the examples that we shall now give in the following section.

4.5. Examples

In the bipartite scenario and restricted tripartite scenario in which Chas no outgoing system, several examples of
causally nonseparable process matrices have previously been formulated and studied in detail [2, 14, 17]. The
characterisations of the cones of causal witnesses that we give in appendix G.2 for these bipartite and restricted
tripartite scenarios (see equations (G3) and(G5)) are equivalent to those given in [14, 15], and can readily be used
to verify the causal nonseparability of these examples, following the approach just outlined.

As mentioned already in section 3.1, the quantum switch is a particularly interesting example of a causally
nonseparable process matrix in the second of these scenarios. In that same scenario we have in fact also already
looked at another explicit example: the process matrix W2 (10) introduced in section 3.3 to show the
‘activation of causal nonseparability’ under OG’s definition of causal separability. An explicit witness from the
cone (G5)is given in appendix C, equation (C2), which could thus have been equally well found with the
approach of [14, 15].

Another example of ‘activation of causal nonseparability’ under OG’s terminology was given in [17] in the
different tripartite case in which one party, say now A, has only a nontrivial outgoing system, and can thus always
be seen as acting first. A witness for this example can be found by solving the dual SDP problem (38) using now
the cone of witnesses (G7) corresponding to this restricted tripartite scenario.

Ofmore novel interest is the fourpartite scenario, in which causal separability has not previously been
characterised. A particularly interesting and simple example here is a fourpartite version of the quantum switch, in
which a party A(lice) has no incoming system (d », = 1) and always acts first, while another party D(orothy) has no
outgoing system (dp, = 1) and always acts last. Let us describe more precisely this version of the quantum switch.

The switch is composed of two qubits: a control qubit and a target qubit. Initially, Alice prepares the control qubit in
some state of her choosing (in general as a function of her input x). (Note that it is here that the fourpartite switch
described here differs from the tripartite one, where the control qubit is in a fixed superposition.) The target qubit,
initially prepared (externally to the four parties) in some state |¢)), is then sent to Bob and Charlie, who act in an order
that depends on the state of the control qubit: if it is |0) then Bob acts before Charlie (B < C), whileifitis|1) then
Charlie acts before Bob (C < B).Ifitis in a superposition, then Bob and Charlie can instead be seen toactina
superposition of different orders. Finally, both qubits are sent to Dorothy who can perform a measurement on them
(for simplicity, we will consider that D simply ignores the target qubit and thus will trace it out, as this will not change the
discussion that follows)’. Labelling the relevant incoming and outgoing systems (where the superscripts indicate control
and target qubits) AS, By, B, Cp, Co, Dj, Df, the process matrix for the quantum switch can be written [14, 17, 29]

Wswitch — TrDIt|W> <W|
with |w) = 0)40[1h)Bi |L)BoCH|1)CoPE|0)Pi
+ [1)40|)Cr [I)COBH L) EOPI 1)Pr, (40)

where |1)) == [0)]|0) 4 [1)|1)is the pure CJ representation (in the computational basis {|0), |1)}) of an identity
qubit channel. Note that, while Alice has control over the causal order of the other parties, this switch differs
from a classical dynamical control of causal order in that she has coherent quantum control over the control
qubit (and thus the causal orders).

In this particular restricted fourpartite scenario, our necessary and sufficient conditions for the causal
separability of a process matrix W coincide and reduce to the existence of a decomposition of the form
W = Wa,Bc,0) + Wa,c, 0 With Wi s c,0)» Wa,c,0) = 0 (which need not be valid process matrices)
satisfying (15,1 o0, Wia,B,c.0) = [1-colpWia,B,c.0) = [1-ColBioDy Wia,C,B,D) = [1-Bo1D, Wia,c,8,0) = 0 (and with
[1—AolBCoD; W = 0 to ensure, with the previous constraints, that Wis valid); see proposition B7 in
appendix B.3. These conditions thus characterise precisely the cone YV*P in the scenario considered here, and

? We note that the quantum switch was also described as a fourpartite process in [25], with one party acting first, and one acting last.
However, in that reference the first party was controlling the target qubit, rather than the control qubit as we consider here. In that case (with
the first party controlling the target qubit), the random robustness is increased to 2.767. One could also have here a first party that controls
both the target and control qubits (as in [29]), which further increases the tolerable white noise to 4.686; for simplicity we do not consider
this possibility, as our goal here is just to illustrate the role of the control qubit. Note also that Rubino et al [25] used yet another definition of
causal nonseparability, different from the ones discussed in section 3, which did not allow for dynamical causal orders. As argued before and
discussed in [17, 22], such a definition is however too restrictive to really characterise processes that are compatible with a well-defined causal
order, as one would like the notion of causal separability to do. Nevertheless, it turns out that the witness constructed and experimentally
tested in [25] is not only a witness for fixed (nondynamical) causal orders, but also witnesses causal nonseparability as per our definition 5.
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the dual cone of causal witnesses S is then readily obtainable (see equation (G11) for the explicit
characterisation).

The causal nonseparability of W*¥ih can thus be verified by solving the dual SDP problem (38) and thereby
obtaining a witness of its causal nonseparability. Doing so, we find that (up to numerical precision) the random
robustness of W"ith of 2,343 (note that this does not depend on the choice of initial state of the target qubit, so
in solving the SDP problem numerically we can take, e.g. [¢/) = |0)). In experimental efforts to measure a
witness and verify the causal nonseparability of a process matrix, one may only have access to a restricted set of
operations for the parties. Many natural such constraints can also be imposed as SDP constraints, as described in
[15], allowing one to find implementable causal witnesses. A particularly natural such constraint is to restrict B
and C’s operations to unitary operations (as in the experimental implementation of the tripartite switch in
[24, 27]); we find that the tolerable white noise on Ws*ih to witness its causal nonseparability is reduced, under
such a restriction, to 0.746.

It is important to note that if we trace out the last party from W*¥ith (i.e. Dfin addition to Dj), we obtain

Trp With = |0) (0[40]3)) (tbIPH L) (AP0 1% + [1) (1[A0]p) (]G ) (1O 1Po, (41)

which is causally separable since it is of the form of equation (22) with just the first two terms being nonzero:

Trp WWith = W) = Wi s.c) + Wa.c,py With W g c), Wia,c,5) (defined as the first and second terms in

equation (41) above, respectively) and W satisfying the constraints of equations (23)—(24). This was also the case with
the original tripartite version of the quantum switch (in which the control qubit is in the fixed state % (10) + [1))).
There, one is left with a simple probabilistic mixture of channels in two different directions after tracing out the last
party [14, 17]. In contrast here, equation (41) is not compatible with any probabilistic mixture of fixed causal orders:
indeed, W4 5,c) and W4, ¢, g) are not valid process matrices, as (1 A, BGo WiA,B,.C) = —[1-AolBioGo Wia,c,B) = 0
(these terms cancel in the sum W4 p,c) + Wa,c,p), 50 that [1-4,18,,co W) = 0 as required for W4) to be a valid
process matrix). Rather, Trp W"ith is a ‘classical switch’ in which A can incoherently control the causal order between
Band C, which thus allows for dynamical causal orders.

5. Discussion

In this paper we studied the question of how to generalise the concept of causal (non)separability to the
multipartite case. We reviewed several definitions that had been proposed for multipartite scenarios in previous
works, namely the definition of causal separability introduced by Aradjo et al [ 14] for a particular tripartite
situation, and Oreshkov and Giarmatzi’s definitions of causal separability (CS) and extensible causal separability
(ECS) [17] for the general multipartite case. We established the equivalence between Aratjo et al’s (restricted)
definition of causal separability and Oreshkov and Giarmatzi’s definition of ECS in the particular tripartite
situation considered by Araujo et al, thus linking two a priori different definitions for that case. Moreover, by
showing that ECS and CS are different in that scenario, we found that the two definitions of causal separability
proposed by Aratijo et al [14] and by Oreshkov and Giarmatzi [17] were inconsistent, a problem that thus needed
to be addressed.

We proposed a new general definition of N-partite causal nonseparability, similar in spirit to the recursive
definitions that have been proposed for multipartite causal correlations [17, 22], and more consistent with the
fact that the process matrix framework always allows for parties to share additional ancillary systems. Our
definition thus avoids some unwanted features of the definition of CS in [17], such as the ‘activation’ of causal
nonseparability by shared entanglement. Moreover, we showed that our definition, although a priori different,
in fact reduces to the notion of ECS proposed in [17], which also reduces to the definition of Aratjo etal [14] in
the particular restricted scenario considered there.

We then focused on characterising causally separable process matrices, giving (in the general multipartite
case) two conditions—one necessary and one sufficient (Propositions 4 and 5, respectively)—for a given process
matrix to be causally separable. These conditions allowed us to characterise the corresponding sets of process
matrices through SDP constraints, and to generalise the tool of witnesses for causal nonseparability to the
multipartite case. In the bipartite and tripartite cases, our necessary and sufficient conditions coincide and
reduce to those previously described [2, 14, 17]. The principal open question raised by this work is whether this
also holds in the general N-partite case with N > 4, or whether one of the two is both necessary and sufficient
(or if one could derive yet another distinct condition, that would we both necessary and sufficient).

As we show elsewhere, our sufficient condition characterises precisely the processes that can be realised as a
quantum circuit with classical control of causal order [33]. If that condition is in fact also necessary, this would
thus confirm the conjecture of Oreshkov and Giarmatzi, that causally separable process matrices (or ‘extensibly
causally separable processes’ using their terminology) are those realisable by such ‘classically controlled
quantum circuits’ [17]. This would provide more solid founding for our understanding of the notion of causal
separability, which would then indeed correspond to our intuition (quantum circuits with possibly dynamical
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causal orders that are classically controlled). Furthermore, the proofin [33] would also provide a general explicit
construction to realise any given causally separable process matrix in practice.

However, the forms of our necessary and sufficient condition, and the fact that the proof for the necessity of
the conditions in the tripartite case does not generalise straightforwardly to more parties, indeed leave open the
possibility that our sufficient condition may turn out to not be necessary. If this is the case, it would mean that
there exist causally separable process matrices that are not realisable as classically controlled quantum circuits—
and which we would not currently know how to realise experimentally. It would certainly be interesting to
understand what kind of situations such process matrices correspond to—and if (and how) they can be realised
quantum mechanically. This question is reminiscent of the open problem of whether process matrices that allow
for the violation of causal inequalities are realisable with ‘standard’ quantum mechanics. Here the question
would concern even less extreme situations: causally separable process matrices.

Another question that arises naturally in the multipartite case is whether a given phenomenon is genuinely
multipartite, in the sense that its occurrence truly requires the coordinated action of a certain number of parties.
It would be important for our understanding of multipartite process matrices to define a notion of ‘genuinely
multipartite causal nonseparability’, similar to the concept of ‘genuinely multipartite noncausality’ for
correlations [35] and analogous to the notions of genuinely multipartite entanglement [37] and nonlocality
[38—40]. It would then also be interesting to study whether the definition can be refined to give a hierarchy of
degrees of causal nonseparability, similar to the approach in [35] for correlations, and whether the
characterisation of the corresponding process matrices and the construction of ‘witnesses of genuinely
multipartite causal nonseparability’ are still possible with SDP techniques. These questions are left for further
research.

Finally, our clarification of the definition of causal separability in the N-partite scenario, as well as
characterisations of causally separable process matrices, should be helpful in the study of causal nonseparability
as a computational and information processing resource [4—13]. Indeed, since multipartite scenarios offer
significantly richer structure, understanding these scenarios is a prerequisite to grasping the full possibilities of
causal indefiniteness as a resource, and an important step towards developing a resource theory of
noncausality [41, 42].
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Appendix A. Characterisation of process matrices

In this first appendix we show how the valid process matrices, as well as those compatible with a given causal
order, can be characterised. We then discuss some properties of process matrices, and alternative
characterisations.

Recall that in the construction of the process matrix framework (as in section 2.1), the CJ isomorphism
[20, 21]is used to represent the parties’ operations. Different versions of the CJ isomorphism exist; following [2],
one may for instance define the C] representation of alinear map M: A; — Agp as

T
M = [T & MYKIDT' = > Im) (m'| @ M(Im><m’l)] € A ® Ao, (AL)

m,m'’

where 7 is the identity channel, {|m)} ,, is a fixed orthonormal basis of H, |1)) := 3", |m) @ |m),and T
denotes transposition in the chosen basis {|m) } ,, of H* and some fixed basis of H4o. From its C] representation
M itis easy to recover the map M, using M(p) = [Try [M - p @ 140]]" ; see for instance appendix A in [14] for
more details. Referring to this isomorphism, in the following we always identify linear maps with their CJ
representation; recall in particular that alinear map is CP if and only if its C] representation is positive
semidefinite, and it is trace preserving if and only if its CJ representation satisfies Try, M = 1%,

A.1.Valid process matrices

A given matrix W € A}y defines a valid N-partite process matrix if and only if it generates nonnegative and
normalised probabilities P (d]X) through the generalised Born rule of equation (4)—including in the case where
an ancillary quantum state p in some extension A//v of the parties’ incoming spaces is attached to W (and thus
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shared among the N parties), and the parties’ operations are allowed to act on their joint incoming
systems AI}}/ = AIk ® AIk/.
The constraint that the probabilities in equation (4) are nonnegative for any set of CP maps—i.e. any positive

k
semidefinite matrices a/z i,—and that this remains the case when attaching any ancillary quantum state

k
AII/O

pE A/r\/ (and for any e > 0), translates into the constraint that W must be positive semidefinite [2, 14].
As for normalisation, the constraint is that equation (4) must give a total probability equal to 1 for any set of

CPTP maps—i.e. any positive semidefinite matrices M. Q’O satisfying , M. ;:'0 = dL, using the ‘trace-out-and-
45
replace’ notation x- defined in equation (14). It is easy to see that the constraint of positive semidefiniteness does
not play any role here; furthermore, note that for any matrix M € Ajg, M’ := dL + [1-4,M satisfies
Ao
1 . . 1 . 1
aM = T and thatany M € Ajq satisfying 4, M = 7, s oftheform M = T + [1—aoM.The

normalisation constraint thus translates into the constraint that
1 1
Tr[(@ + [1A(5]Ml) R ® (m + [1A3’]MN) : W] =1 (A2)

for any set of matrices M; € A}y, ..., My € AR . Expanding this constraint, and using the fact that the map [1—aky 18
self adjoint with respect to the trace (Hilbert-Schmidt) inner product (i.e. Tr[j; _o5yM - W] = Tr[M - [, _45;W]),
one finds that this is equivalent to

Trw = H dAS and (A3)
keN
\ Xg./\[,XI g, H[I,A(f)]TI'j\/\XW: 0. (A4)
ieX

Note that for simplicity we did not explicitly attach an ancillary state p to Where; doing so would have led to the
same conclusion. Full details for this whole argument can be found in appendix B of [14].

We shall in general ignore the normalisation constraint (A3) when talking about valid process matrices. The
2N — 1linear constraints of equation (A4) define a linear subspace of Aljg , which we denote by £V, the subspace
of valid process matrices: explicitly (noting that the constraints 1,_, 1 Ttvy ¥ W = 0 are equivalent to

Mol -abiag W = 0),

WeN eV XCN,X=0 naW =0, (A5)

> [I1-4614)
ied

asin equation (16) of the main text. It is furthermore straightforward to check that this is equivalent to the

following recursive characterisation, as in equation (15):

WelV e VXCN X=0a, TnnyWe LYand [7p_ayW = 0. (A6)

ieN

Summing up, the set of (nonnormalised) valid process matrices is the convex cone W = PN £V, where P
is the cone of positive semidefinite matrices.

A.2. Compatibility with fixed causal orders
Let us now analyse the constraints imposed on process matrices by requiring that they are compatible with a
given causal order.

A.2.1. Causal order between two subsets of parties. Consider two nonempty disjoint subsets of parties
K1, Ky © N.Wesay that the correlation P (d]X) is compatible with the causal order K; < K, ifand only if
there is no signalling from the parties in /C, to the parties in X,—i.e. the marginal probability distribution for the
outputs of parties in K does not depend on the inputs of parties in K,: P (d,[X) = P (dq|Xw\ «,) forall X, di.
We then say that a (valid) process matrix Wis compatible with the causal order K; < /C, ifand only if it only
generates correlations (through the generalised Born rule (4), possibly allowing for extensions of W with some
ancillary state p) that are compatible with IC; < IC,.

Formally, this means (ignoring again for simplicity the possibility of attaching an ancillary state p; as before,

the same reasoning also goes through if we allow for this possibility) that whatever the CP maps M A applied

a|xg
.o Ak Ak Ake/3 1
by the parties in K and whatever the CPTP maps M/ and M (such that , ’;z/sMxk’;;} =
( 2/3
Ao

parties in X, and in I, == M (G U K») (which may be empty), respectively, one must have

) applied by the
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AR AR Af 1 Ak

Trl X ﬂk1|xk1 Q@ Mo @ Mo W= Trl X M, X ™ & Mo W (A7)
kek; kek, kseCn kek, e, YAT kekis

(i.e. the probabilities should be the same if the parties in K, apply the CPTP maps — 1nstead of M. AIO) Asinthe

previous subsection, the constraint of positive semidefiniteness of the CJ] matrices M x does not play any role
here, and we can equivalently write the above constraint as

1 1
Tfl X M, ® (@ + [1A52]Mk2) ® (Tgs + [1A53]Mk3) : W]

ek, ek, k€K,

[ Q My, & —k 02 (dlks + [1—A53]Mk3) : W] (A8)

ke, ek, A0 kseKp\ Ao

for any matrices My € Af,. Expanding this constraint in a similar way as above (or as it was done in more details
in appendix B of [14]), we find that it is equivalent to the following 2N~ %1l — 2N=IKil=IX:l [inear constraints:

vV A, C N\Kl, XNK, =9, I [I_A(S]Aig\Kl\A’zW =0. (A9)

i€y

Combining these conditions with those from equation (A5) to ensure that Wis a valid process matrix, and
removing redundant constraints'’, one can then characterise the subspace £X1<X2 of (valid) process matrices
compatible with the causal order K; < K, through the following 2N=1%2l — 1  2N=Ikil _ oN=IKil =Kl

constraints:

We Lh=Kr ey X C N\ICZ) X =g, 11 [17A(")]A;X\X‘W =0
icX]
andV XZ g N\IC], Xz N ICZ = J, H [1*A6]AiB\K1\X2W =0. (Alo)

i€X

Let us assume now that K, and X, cover the full set A/, sothat K; U K, = N. The characterisation above
then simplifies to the following 211 4 21%2l — 2 constraints:

[FOI’ Kl U ]Cz = N]
We b o VX CK, X =0, s\ iagW =0
ieX]
and V X, C Ky, Xy = &, il [1—A(")]A1’3\’¥2W: 0. (A11)

icdy

Comparing these constraints with equation (A5), one can see that the third line of equation (A11) is equivalent to
imposing that the reduced process Try, W isin £, the subspace of valid | K|-partite process matrices for parties
in KC;; while the fourth line is equivalent (using the fact that W = 0 ifand only if Tri [Mx, ® 12 - W] = 0 forall
M) to imposing that whatever CP maps My, € AI applied by the parties in X}, the conditional matrix

Win, = Trig[Mg, @ 12 . W] must be in the subspace £X2 of valid process matrices for the parties in /C, (note
that My, may or may not be ofa product form )y, < i, My, here, and that its complete positiveness is in fact
irrelevant)''. We thus equivalently have the following characterisation:

[For Ky |J Ky =NIW e LN=K & Tre,We LK and V My, € A, Wi, € L5 (A12)

These constraints are indeed quite intuitive: they simply correspond to the fact that for a process matrix
correlation P (@|X) to be compatible with the causal order K < K, (with K; U K, = N'), the probability
distributions P (@ |Xx,) and P (d,|X, dx,) == P(d|X) /P (dx|Xx,) can be calculated from Trx, W and Wy, and
must be well-defined.

In particular, for Ky = {A} (asingleton of just one party coming first) and &, = N\ A, equation (A11)
becomes

1% One can easily see that the constraints from equation (A5) for which XN K, == @ are already implied by those of equation (A9): indeed, defining

A= XN Kiand & = XYNMN\K) C MK}, insuchacaseonehas XN K, = @ and HeXU*Ah]A%\XW = Mooy, - 451400

A,V\Kl\A’ZW) = 0 according to equation (A9). Only the constraints from equation (A5) for which YN /C;, = @,ie. X' C N\IC2 asin
10

K\

( i, [1-AH]
the second line of equation (A10) (where X’ was renamed A} ), are nonredundant.

Although the constraints in the fourth line of equation (Al 1) are written exactly as those that would define £*2, we emphasise that they
apply here to some matrix W € A,O ,rather thanto W € A ? as in the definition of £%2. This is why they must of course not directly be
interpreted as implying that W € £%2,but W, My, € Lk for all My, asinequation (A12).
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We LA o W =0 and V X C Mk X'=0 W = 0, (A13)

> TT-AblAp
icX

asin equation (18) of the main text. For K; = ./\/\Ak and IC, = {A;} (asingleton of just one party coming last),
equation (A11) becomes

We LNAW=A o v X C Mk, X = 2, [Ti-aias a,W =0 and ;_ayW=0. (Al4)

ieX

A.2.2. Causal order between several subsets of parties.  Consider now K disjoint subsets /C; of /. Generalising the
idea of causal order between two subsets of parties, we say that the correlation P (&]X) is compatible with the
causal order K} < K, < -+ < Kk ifand onlyif there is no signalling from ‘future parties’ to ‘past parties’—i.e.
ifforany k = 1, ..., K — 1, the outputs of partiesin Ky := X, K; do not depend on the inputs of the
parties in k(s = Uf:k+1 Kj: P(dx ., |X) = P(dx, %0 k., forall X, di_, , or equivalently, the correlation
is compatible with the causal order K<) < Ky forallk =1,..., K — 1.

As before, we then say that a process matrix Wis compatible with the causal order ; < --- < Ky ifand only
ifit only generates correlations that are compatible with that order. Similarly to £X1<X2, we define the subspace

K-1

£K1<“‘<}CK = ﬂ £}C(gk)-</C(>k) (Als)
k=1

of (valid) process matrices compatible with the causal order K < -+ < K.
In the case where the subsets /C; define a full partition of A/ (i.e. where [ JX | K; = N), we easily obtain,
from equations (A11)and (A12) (after removing redundant constraints as in footnote 10), that

K
[For JK; = N:] W € LK<=Ke = ¥V k=1,..,K, ¥ My, € Aig™, Trg, W, € LK

i=1 (A16)
S Vk=1.,K VX, CK, Xj = 9, H [I_Aé]A%/XkA}(a>k)W: 0

i€ Xk

with Kcpy = U Kifork = 2, .., K, Kiepy = Koy = @, Wi, = W.

In particular, in the case where all subsets Ky are singletons—i.e. Ky = {A )} for some permutation 7 of
N —we find that the subspace £t <" =4x of process matrices compatible with the causal order
Arqy = Ar@) < -+ < Arischaracterised by [14, 30, 31]

W e LA =24 & YV k=1,..,N, 1-ag®oapeh W= 0 (A17)

with 7 (>k) = {n(k + 1), ..., t(N)}fork =1, ..., N — 1, 7(>N) = & (asinequation (19) when 7 is the
identity permutation).

A.2.3. Particular caseswith d ;s = lord ;- = 1. Suppose there exists a party A;which has a trivial incoming
space, i.e. such that d 4/ = 1.The constraints of equation (A5) can be written, depending on whether Ay € X or
1-Af1 Tt —agia W = O forall

X C M\Asand AN Tyl -3 AI.E’\Af\A’W = Oforall ¥ C M\Ay, X = &, respectively. Summing up these two

Ay ¢ X andrenaming X\ Ay — X in the former case, in the forms

constraints in the case where X = @& (and keeping the first one for the case where X = &), we find that £V is
characterised by the same constraints as those characterising £47 <" \47) in equation (A13), namely

[Ford,r=1:]W e N o We LA=WNA)

= [1—A5]A1‘g\A/WZ 0 andV X C ./V\Af, X =g, H[I_A(i)]A;g\Af\XW: 0. (A18)

ieX

Hence, in that case any valid process matrix is compatible with party Aacting first. This corresponds indeed to
the natural intuition that, because party Ardoes not receive any physical system from anyone, they do not need to
wait for any other party to act before them.

In the case where several partiesin Ay := {Ay, ..., Ay } have trivial incoming spaces (such that d A= 1for

all j = 1, ..., n), equation (A18) easily generalises to'

12, . . . . . . . /. . . .
This implies in particular that for an extension of the outgoing systems only, W @ Wt with Wet € A2 is valid only if W is
proportional to the identity operator: see footnote 12.
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[For dAf]- =1V Af], € AplWe LV e We £ATMNAY Y j

G adan W =0 and V X C M\ A, X = @ W = 0. (A19)
10

> TI1—AblAL
ieX
Instead of d ;7 = 1, suppose now that there exists a party A, which has a trivial outgoing space, i.e. such that
d, c=1 and consider the causal order (W\A;) < A,. Note thatin this case themap W — , gW reduces to the
identity, so that any constraint of the form [;_4¢1.. W = 0is trivially satisfied. The nontrivial constraints from
equations (A5) and (A14) then reduce to the same set of constraints, namely,

[Ford,:=1:]W e LV & W e LW\ =4
SV X C ./\/\A{, X = o, H[I_A(i)]Aig\Af\XAIfW: 0. (A20)
ieXx

Hence, similarly to the previous case, here any valid process matrix is compatible with party A, acting last. This
is again rather intuitive: as party A, sends no physical system out and cannot signal to anyone, then they can
always come last—see, e.g. the motivation for only considering fixed orders with party C coming last in Aradjo
et al’s definition of causal separability [14].

If now several partiesin A, := {Ay, ..., Az } have trivial outgoing spaces (such that d , 5= 1forall
j =1, ..., n), then one can easily check that any process matrix is compatible with all those parties acting last,
with any causal order among them: for any permutation 7 of {1, ..., n},
[Ford,; =1,V Ay, € Al W € LN o We LONA)=Ag ) < <An,
(0]
SV XC ./\/\Af, X= o, H[I_AZ)]A%\A/\XAIA,»W: 0. (A21)

ieXx
Itis worth emphasising that no similar property holds for several partiesin Ay = {Ay, ..., A } having trivial
incoming spaces, as considered previously: any process matrix is compatible in that case with any causal order
Ap < MA £) (asin equation (Al 9)), but not necessarilywith Ay < --- < Ay < (N\Ay) (or withany other
permutation of the first parties)."”
To finish here, note, furthermore, that ifa party A; has both d A= d, E=1, then clearly one can just ignore

itinsuchacase, W € &V & W e N4,

A.2.4. Comment on our use of the notation <. Let us comment briefly here on our use of the notation <. Recall
that for two disjoint nonempty subsets K and /C, of A/, a probability distribution P s said to be compatible with
the causal order K; < Ky ifand onlyif P(di|X) = P(dx|%w\ k,) forall ¥, d. It should be noted that the
relation ‘compatible with &, < C,’ thus defined is not transitive, and therefore it does not define a partial order
between events. For instance, P(a, b, c|x, ¥, z) := 8, Op,0 0 (With § the Kronecker delta and a, z takingat
least two different values) is compatible with A < Band B < C,butnotwith A < C. Thisjustifies why,
considering more subsets, we defined the notation K; < IC; < -+ < K toformally mean K<y < Ksp—
rather thanjust ; < Ky, —forallk=1,...,K — 1.

We note also that the notation < was used differently in [17], where it denoted a strict partial order (and was
hence transitive). Our use of the notation < here is consistent e.g. with that of [ 14, 15, 18, 22, 27, 34, 35, 43, 44],
and would instead correspond to the notation % in [17] (also used in [2]).

A.3. Operations on process matrices

In this section we clarify how process matrices behave in general, with respect to their validity and their
compatibility with fixed causal orders, when tracing out subsystems or attaching extensions, and when tracing
out, adding or grouping parties.

A.3.1. Tracing out subsystems/Attaching extensions. ~ Suppose that the incoming and outgoing spaces of N parties
canbe decomposed as AI/(\)/ ® A%/ (possibly with some trivial spaces A, A, AIk, or Ag/), and consider a given
matrix W/ € AII’OO’ If W’is avalid process matrix, thensois W := Tr , X W’ similarly, if W' is compatible
with a causal order K; < /Cy, then so is W. Both properties are quite 1ntu1t1ve * clearly, ignoring some parts of

13 . .
We use here, in particular, the fact that (-4 fi, MAW = 0V jisequivalent to 0 7AA, '\\Af = 0. Note thatifall incoming spaces are
trivial, i.e. Ay = N, then [, _, py W=0 1mp11es that the only valid process matrices are those proportional to the identity operator 149,

M Note indeed, in a similar fashion, that while compatibility of a probability distribution P with the orders (KC; U K,) < K5 and

(K1 U K5) < K, implies compatibility with K; < (K, U K), and therefore with both K < Ky < KC3and K; < K5 < Ky, itisnot the
case that compatibility with £, < (IC; U K5)and K, < (K U K3) necessarily implies (K, U K,) < K3, and it therefore does also not
necessarily implycompatibilitywith K1 < Ky < Ksor £; < K; < Ks. As acounter-example, one can see for instance that

P(a, b, c|x, y, z) = ; wob,z 0,0 (With binary inputs and outputs, where 6 the Kronecker delta and @denotes addition modulo 2) is
compatiblewithboth A < {B, C}and B < {A, C},butnotwith {A, B} < C.
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the incoming and outgoing spaces cannot make a process matrix invalid, and cannot induce some signalling
where there was none before. Note, however, that the converse is in general not true: if W = Tr ,.» W’isavalid
10’

process matrix (or is compatible with K < K,), this does not guarantee in general that W' is also a valid process
matrix (or is compatible with & < K;).

There is nevertheless a case, where the validity of a process matrix W ensures that a ‘larger’ matrix W’
(defined on more subsystems) is valid: namely, when one attaches to W some ancillary state p. Indeed, in
constructing the framework of process matrices, it is always assumed that one can consider some extensions of
the incoming spaces of each party, and distribute (possibly entangled) ancillary states shared by all parties.
Hence, by definition, ifa matrix W € A7} isa valid process matrix, then for any quantum state (i.e. any positive
semidefinite matrix, up to normalisation) p in any extension A,j/v ,thematrix W/ = W® p € A{I\{O definesa
valid process matrix. Similarly, if Wis compatible with a given causal order K; < K, between two disjoint
subsets of parties, thensois W ®@ p.

One may then wonder if instead of attaching an ancillary state p € AI//V to the incoming spaces, one could
attach any other positive semidefinite matrix W € AI/NO/ in some extension of both incoming and outgoing
spaces. It is clear, from the previous remarks on the partial trace of subsystems, that for a valid (nonzero) process
matrix W, a necessary condition for W/ := W ® W to define a valid process matrix is that We* itselfis also a
valid process matrix'”. For two parties and more, this condition is however not sufficient (as noted also in
[41,42]): for instance, W = %(JleB' + 2403B)and Wet = %(}IAI’BO’ + 24r3B80) are both valid, but W @ W is
not (due to the fact that Wand W= allow for some signalling in two conflicting directions). Similarly, for a
(nonzero) process matrix W compatible with K; < IC,, a necessary condition for W/ := W @ Wt tobea
process matrix compatible with K < /C, is that W is also a process matrix compatible with 1, < IC;. As
before, this condition is however not sufficient for three parties and more.

A.3.2. Tracing out/adding/separating/grouping parties. In the previous observations we were keeping the set of
parties under consideration N fixed. Let us now consider how process matrices behave when changing the set of
parties.

Consider a nonempty subset Aj of A/ Clearly, if W € Afg is a valid N-partite process matrix, then its
restriction to the parties in the subset A, defined as W}, := T W isavalid | Vol-partite process matrix.
Similarly, if Wis compatible with a causal order K; < /C,, then Wy is compatible with the
order (K; N Np) < (KN Np).'°

Let AV and A, be two disjoint sets of parties. If W, € A/gl and W, € A,NO2 are two valid process matrices for
the parties in NV and N5, respectively, thensois W = W, @ W, € AIJ\O/1 UM for all parties in A; U N;. (Note
however that if ; and N; are not disjoint, this may not hold any more, as in the case with A = N, = N
considered in the previous subsection.) If say W is compatible with a causal order K; < K (with K, Ky’ two
disjoint nonempty subsets of A}), then so is W. Furthermore, for any nonempty subsets K; C Ajand K, C A5,
W is compatible with both orders K; < K, and KC; < K.

Suppose now that the incoming and outgoing spaces of a party, say A, can be factorised into
AR = AII\O’(U ® A}(ﬂ(”. One can then virtually ‘separate’ Ay into two new parties, A y» and A y@,with incoming
and outgoing spaces A,I\O]“) and A%m, respectively, and thus consider the new set of N + 1 parties
N = {A, ..., An_1, Ayo, Ay ). IfW € AI%/ is avalid N-partite process matrix,one can then verify that when
considering the set A, W € A{(\)ﬂ isalsoisavalid (N + 1)-partite process matrix, i.e. W € £V.If Wis
compatible with a causal order K, < /5, then Wis also compatible with K/ < IC,/, where K’ is obtained from
IC; (like A" from N') by replacing Ay by Ao, Ayo (when Ay € K;)."

Conversely, for a given set of N > 2 parties NV, let us finally consider a set A7 obtained from A by now
grouping two or more of the parties, e.g. A7 = {Ay, ..., Ay_2, {An_1, An}}, where {Ay_1, Ay} is considered
to form a new effective party. Then Wis not necessarily a valid (N — 1)-partite process matrix for the parties in
M. The reason for this is that valid process matrices are required to give valid probability distributions only for
product operations of the parties; if two parties are grouped together and perform a joint operation, that may no
longer yield valid probabilities. An explicit counterexample is for instance W = %(IIAC)BI + 2402B1), which

15 They can be verified straightforwardly using for instance equations (A5) and (A10), respectively, by writing (in the first case)

_ . o n— . oy W — : / : :
i1l 7A(XJ]A;2;\XW = TrAf:VO/[Hfg,r[l 7A6]A;2,)'\XW ] TrAifMo'[l'Lgx[l ’Abo']Afl\'\c;clrW ] = 0 (and by noting that W/ > 0 implies W > 0).
16 Again, both properties can easily be checked by using for instance equations (A5) and (A10), and the fact that W > 0 implies W, > 0.

7 Both properties are straightforward when recalling that the validity and compatibility with a fixed order constraints are obtained by
imposing certain conditions for all operations M € AR of party Ay: clee}lr)ly, these(zconstraints are also satisfied if Ay is separated into two
parties Ay and Ay, and M takes the form M = MO @ M@ € AfJ" ® Af)” (and by noting thatif M) and M are CPTP, thenso is
M). These properties can also be verified formally using the characterisations of equations (A5) or (A10), after noting in particular that

[17A5(1>Ag<2>]mw = Oisequivalentto [PAS,(UJWW:[FASJ(Z)JWW = 0.
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represents a (dephasing) channel from A to B and is indeed a valid bipartite process matrix, but not a valid single-
partite process if A and B are grouped together (as ;_4, W = 0; e.g. the joint CPTP map
M= %(JIAOB' — 24038 gives Tr[M - W] = 0).'®

A.4. Allowed and forbidden terms in the Hilbert-Schmidt basis decomposition of process matrices
In[2, 17], the constraints characterising the set of valid process matrices and the set of process matrices
compatible with a fixed causal order between two complementary subsets were formulated in a different way,
namely by specifying which terms can appear in the decomposition of the corresponding operators in a Hilbert—
Schmidt basis. To complete this appendix, we now establish the connection between these two alternative
characterisations, and we prove their equivalence.

A Hilbert-Schmidt basis of some space of linear operators X (acting on a dx-dimensional Hilbert space) is
given by a set of generalised Pauli matrices, i.e. a set of Hermitian operators {crff } Z’Z‘;OI, with oy = 1%,
Tr[crff Uf] = dx 6y, forally, v =10, ..., di — 1,and Tr[aff] = Ofor p > 1.Insuchabasis, a process matrix
We A}y ® Al ® Ay ® ---canbe expanded as

1 1 2 2 3 3
_ Ab A} AL A A
W= Z Wupgvapgvs O Ou 04 Oy 00y 000
[ V15 [y V2s oo
with W, v € ROV g, v, iy, 2y s, Vs, (A22)
. A AL A AL A AL . .

The approach of [2, 17] looks at which terms o 07,001 07,00, 07,0+ can appear with a nonzero coefficient
Wy pyvapsrs--- (1€ are ‘allowed’) in the above decomposition. According to Proposition 3.1 0f[17],a Hermitian

operator Wis in the linear subspace £V of valid process matrices if and only if, in addition to the identity term
IV, it contains only terms for which at least one party A, has a nontrivial operator o, = llon A¥ and the identity
operator 1 on A"

To see that this statement is indeed equivalent to our own characterisation of LN letus first verify that all
terms of this kind fulfil all the constraints of equation (A5). This is clearly the case for the identity IV, since
[1—4 6]J1N = 0 for any party A;. Consider then some generic Hilbert-Schmidt term T} of the form -- -aﬁ{ 146- .-
(with g, = 1). Sucha term satisfies [, 4Ty = Afko];‘ = 0,sothatforany X C N, X = & wehave
Moo [1—44] A;};’\”‘Tk = 0, whether k € X or k € N\ X. By linearity, any operator W whose Hilbert-Schmidt
decomposition (A22) only contains the identity or such terms Ty thus satisfies all the constraints (A5).
Conversely, suppose that the Hilbert—Schmidt decomposition of W contains a term F (with a nonzero weight)
that s ‘forbidden’ according to Proposition 3.1 of [17], thatis, a term such that for all parties Ay, there is either a
nontrivial operator o, = 1 on AX, oran identity operator on both AXand A% (and where there is atleast one
party for which the former is true). Consider then the nonempty subset X C N of parties A; for which
0{:5 = 40inF.Fori € X,one thushas i—ai)F = F,whilefor j € /\/\X, AIJ'OF = F;allinall,

M —apa\F = F. By the linear independence of all Hilbert—Schmidt terms, W then cannot satisfy
Micx[1-Af] A;(N;\XW = 0, and thus violates the constraints of equation (A5).

The process matrices that are compatible with the causal order K; < K5, with K; U K, = N, were likewise
characterised in [17] in terms of allowed terms in a Hilbert—Schmidt basis decomposition. The following
terminology was used: the restriction of a Hilbert—Schmidt term onto certain subsystems is the pazrt OE theaterlzl
A AL AL AL A A

(0} T (0}
My UVI O—Nz JVZ O—Nf} UV}

corresponding to the respective subsystems—for example, the restriction of the term o
2 2

onto the subsystems A7 ® Ajisjust Uﬁé o 0. According to Proposition 3.2in [17], the (valid) process matrices

that do not allow signalling from /C, to K, are those that contain only Hilbert-Schmidt terms whose restriction

to the (incoming and outgoing systems of) parties in /C, are of the allowed type for a |/C,|-partite process matrix

for those parties—that is, terms with either the identity operator 147145’ for all parties in /C,, or for which there

issome party Ay, € K, with anontrivial generalised Pauli operator o, = 1on AP and the identity operator
on Agz.

To see that this proposition is indeed equivalent to our characterisation of £ <2 given by equation (A11)
or (A12), note that the restriction of a Hilbert—Schmidt term T'to /C, is precisely obtained, up to a multiplicative

18 . . s . . ..
Nevertheless, from equations (A19) and (A21) one can see that parties who all have trivial incoming spaces, or parties who all have trivial
outgoing spaces, can be grouped together without changing the validity of the process matrix in question.

19 As clarified in [45], valid process matrix can indeed only contain terms that, except for the identity, do not appear in the Hilbert-Schmidt
decomposition of @e y M0, for any CPTP maps M. ,310 (as otherwise it is always possible to find some GPTP maps M. ,f;fo that give
nonnormalised probabilities via the generalised Born rule of equation (4)). Given the constraint Tr , x M, 3(10 = for CPTP maps, one can
see that the only forbidden terms in any Mfi’o are of the form Uﬁ’f 146 with o, = 1. Thus, only terms that contain af,\{ 140 for atleast one
value of k cannot appear in the Hilbert-Schmidt decomposition of Qe y-M 10, and are thus allowed (in addition to the identity) in the

Xk 2
decomposition of a process matrix.
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factor (which may be 0), by taking the partial trace Tjy;,, := Tri,[Mx, ® 1% - T, forany My, € AIKO‘. Hence,
imposing that all Hilbert—Schmidt terms T'in the decomposition of W = Y~ wr T have restrictions to XC; that
arein £, asin the characterisation of [17] just recalled, is equivalent to imposing that for any My, € AIKO‘,
Winy, = 21 wr Tim,, only have terms Ty, € L%, 1.e. that W My, itselfisin L£%2, asimposed in equation (A12).
Note that Proposition 3.2 in [17] pre-supposed that the process matrix under consideration was valid. If this is
not pre-supposed, one must in addition impose, according to the previous characterisation, that for Hilbert—
Schmidt terms in the decomposition of W whose restriction to K, is the identity operator 1"z, there must either
also be the identity operator for all parties in Ky, or there must be some party Ay, € K; with arestriction

k k k k . .

oﬁilJIAol = 14'140'—in other words, one must impose that Trc, W € £, so that one also recovers the first
1

constraint of equation (A12).

Appendix B. Characterisation of causally separable process matrices

In this appendix we prove the propositions that allow us to characterise causally separable process matrices in
terms of simple conditions. We start by proving the first part of proposition 1, namely that in the particular
tripartite scenario with d¢, = 1, Aratjo et al’s definition of causal separability (Definition 2) is equivalent to
OG’s notion of extensible causal separability (Definition 4), and thus also to our definition 5. Then we provide
the proofs for the characterisation of general tripartite causally separable process matrices (Proposition 3)
as well as for the necessary condition (Proposition 4) and the sufficient condition (Proposition 5) in the general
N-partite case. Note that all the special cases follow from propositions 4 and 5, and we could just give the proofs
of those two general propositions. However, for pedagogical reasons we start with the simpler proofs, which may
entail some repetition in the arguments, but allows for greater clarity in presenting the core ideas.

All of the proofs below (of increasing complexity) make use of the same type of argument to prove the
necessity of the respective conditions. This argument is based on the ‘teleportation technique’ that follows
from the lemma below. Before stating it, let us introduce some further notation. For two Hilbert spaces 1, HX'

with the same dimension d, and denoting by {|i)*”} ¢ _ , an orthonormal basis of either ¥ or H*X', we will

consider the maximally entangled state |§+)X/X" := %Z,ﬁ)x ® |i)X'. Wealso recall that for a given matrix

W € A}, we denote by WA —47 the matrix in (Rjemk Ap) ® A} that has formally the same form as W,
except that party A;s system A%, is now attributed to an extension Af; of party A’s incoming space. Formally
(recalling equation (25)),
WAb—Al = SOTrlli) (iAo @ P W @ |j) (A, (B1)
ij
where {|) } is an orthonormal basis of HA @ HAo.
Lemma B1 (‘Teleportation technique’). Consider a process matrix W € £V, to which one attaches a maximally
entangled state |&+) (& A4 shared by parties Ay and Ay, with dimensions d ah = d v = d i, and possibly
some other ancillary state p in some further extension A,/,v\k/ ® Afy. Consider then the case where party A applies
the CP map represented by the positive semidefinite C] matrix My = |®) (PF |[Alo/Al @ 147 The resulting
conditional matrix for the other N — 1 parties is then
(W @ [@F) (@F A4 @ Phvt=iat) (@ o/ ot

= Tri[|+) (T |A/AF @ 147 @ Nk W @ |<1>+> (BFAFAT @ p]

1

- 2

(d k)

Proof. For clarity, let us write explicitly as superscripts the spaces in which the various operators act. We have:

WA=l @ Trpl. (B2)

N 3 A NK
(WHiS @ |@F) (BHAR/ A @ ph A =iy (@ Ao/ e
kK y kAR MK K
=Tr, 5 [|@+> <¢+|A,O/AI,, ® 147 ® HAH,O Af WAl ® |3+) <@+|A,,,/A,, @ pAr " A

. Mk K N N
<d @ Z RFTRIDEC o @ Ji) (714 @ 146" @ 147 - WAB @ |j) (14 @ ) (j1%] © Tr Ak ;afy

:—ZZTrAk [1i) Gt & 146" - WAB) @ ) (A @ Tr plpA 4] = L wab—al @ Trgp).
N r 10 (CN)

(B3)
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We shall also use the following facts in (some of) the proofs below:

Proposition B1. Without loss of generality, each W}y, in Definition (5) can be taken to be of the form Wiy @ p.
Equation (13) then implies the direct decomposition W = 3" - \rq, Wiky, with each W,y € A}y beinga process

matrix compatible with party Ay acting first (and such that for any CP map M, € AI’}/O, Wiy ® p)m, is causally
separable).

Proof. If pis pure, then from the extremality of pure states it follows that W) = W) ® p. If pis mixed one can
first purify it by introducing an additional incoming system for some arbitrary party, obtain the appropriate
decomposition (13) for its purification, and then trace out the additional incoming space just introduced to
reach the same conclusion. As W('Z) is compatible with A acting first and W) = Tr A W(’,’c) , then Wy itself must

also be compatible with A acting first (see remarks in appendix A.3.1). O

Proposition B2. In a scenario where the parties’ incoming spaces are decomposed as AIN ® AIJ/\/ (possibly with some

trivial spaces AF or AIk/ ), if a process matrix W € AIJI\//O is causally separable, then sois Try W € A{g
(with Try==Tr ,x).
;)

Proof. For N = 1 party any process matrix is by definition causally separable, so that the claim is trivial.

Suppose the claim holds true in the (N — 1)-partite case. If W € AIJ,\,/O is causally separable then by definition
5, for any extension AI//\/ of the parties’ incoming systems and any ancillary quantum state p € A//Y ,W® phasa
decomposition of the form W @ p = 37 g, W}, with each W} avalid process matrix compatible with party A
first, and such that for any possible CP map M’ € AI]}/ o applied by party Ay, the conditional (N — 1)-partite
process matrix (\/V(’,’C) v = Tr My & K W&)] is itself causally separable.

Onethenhas Ty W ® p = 35 g, (Tt WG, ), with Ty W) avalid process matrix compatible with party Ay
first (see remarks in appendix A.3.1). For any possible CP map M € Ak, applied by party Ay, one has

k

(T W g, o= TrslMi @ PV - (T Wi )l = Ty TrdMe @ 19 @ I - W = TolOWE g
As stated above, (W}, ),y — p,14) 18 causally separable, and by the induction hypothesis so is
TI'[/[(VV('Z) )| My =meris] = (T W('}’() )im,- We thus have a valid causally separable decomposition of Try W & p
for any extension p, which proves that Tty W is causally separable, and which thus proves, by induction, the
claim of proposition B2. O

Again, this property is quite intuitive: clearly, discarding some parts of the incoming systems cannot induce
some causal nonseparability where there was none previously. As for the similar statements for valid process
matrices and for process matrices compatible with a fixed causal order discussed in appendix A.3.1, the converse
is not necessarily true: if Tr;y W is a causally separable process matrix, then W may not necessarily be causally

N A
separable’’—unless W is of the product form W = WJ‘ 0 Q pAI"\ , in which case by our definition 5 if Wyisa
causally separable process matrix thensois W = W, ® p.

B.1. Tripartite causally separable process matrices

B.1.1. Particular tripartite case with dc, = 1. Let us start by considering the tripartite case where party Chas no
outgoing system (or equivalently, a trivial outgoing system, i.e. dc, = 1). The following proposition directly
implies (after proper re-normalisation with appropriate weights g, 1 — ¢g) the first part of proposition 1, namely
the equivalence in that case between Aratjo et al’s causal separability and OG’s extensible causal separability
(which, we recall, is what we simply call causal separability here).

Proposition B3 (Characterisation of tripartite causally separable process matrices with dc, = 1).Ina
tripartite scenario where party C has no outgoing system, a matrix W € Ao ® Bio ® Cpisavalid tripartite causally
separable process matrix (as per definition 5) if and only if it can be decomposed as

W= Wauso + Waacp (B4)
where, for each permutation (X, Y) of the two parties A and B, W, v, ¢) 1s a positive semidefinite matrix satisfying
[1-XolYio G Wi, v,0) = 0> 1-vo16Wx,v,00 = 0 (B5)

(i.e. Wx,v,c) is a valid process matrix compatible with the causal order X < 'Y < C).

20 psa counterexample, consider some causally nonseparable bipartite process matrix W € Ayg ® Bjo. The process matrix
Tra, W € Ap ® Bjo is then compatible with the order A < B and thus causally separable (see appendix A.2.3), although Wis not.
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Proof. Consider a causally separable process matrix W € Ajg Bjp C;. Let us then introduce an extension

Ap ® Gy of parties A and C’s incoming spaces, of dimensions d 4, = dc,, = d¢,,and consider attaching to W
the maximally entangled ancillary state p = |®+) (®+|Gr/4r,

As Wis assumed to be causally separable, according to definition 5 and proposition B1 it must be

decomposable as
W= Wa) + W) + Woy (B6)

where each term Wx) € AjoBio G is a (nonnormalised) process matrix compatible with party X acting first, and
such that whatever CP map that party applies to their share of W(x) ® p, the resulting conditional process matrix
for the other two parties is causally separable.

As W4 is compatible both with A first and with Clast (since d¢, = 1, see appendix A.2.3), it is compatible
with the fixed causal order A < B < C; formally, it satisfies 1 4,18, Wa) = [1-Bo1c Wia) = 0, see
equation (A17). Similarly, Wp, is compatible with the order B < A < C.

Consider now the term W, Letting party Cact firston Wic) ® p = W) ® |®+) (&F|4"/4 and project his
incoming systems onto the maximally entangled state |®*)%/C”", according to lemma B1 (with a trivial extra
ancillary state p), parties A and B are then left with the conditional process matrix

C—Ap
(VV(C) ® P)|MC:|<I>+) @*jere’ W(C{) T (B7)
By assumption this conditional process matrix must be a (bipartite) causally separable process matrix: according
to proposition 2, there must therefore exist a decomposition for W(%f A of the form
Ci—Ayp Ci—Ayp Ci—Ayp
W ™ =W as + Wosa (B8)

with W(%f(ffl’;), W(%)f(g)’;\) € A oBio two process matrices compatible with the fixed orders A < Band B < A,
respectively—i.e. satisfying

Ci—Ayp Ci—Ap
llonJBloW(é),(A,lB) = [1-Bol W(Cl),(A,'B) =0,
Ci—Ayp Ci—Ap
1-BolAroWB.a) = 1-40l WG,y = 0. (B9)

Recall now that W(%T A1'is formally the same matrix as Wc), except that system C; is replaced by Ap. Changing

back Ay into C;in equation (B8), we obtain the decomposition
W) = Wonap + Wos.a) (B10)
with two positive semidefinite matrices Wcy,(4,8)> Wc),8,4) € AroBro G satisfying

(1-AolBio W), a8 = 11-Bot W0),(4,8) = 0,
(1-BolaoG Wo)B.4) = 1-a0Wo)B.4) = 0, (B11)

asimplied by equation (B9) after replacing Ay by Cy. These constraints further imply that

[1-401Bio G W0),4,8) = 11-Bo1cWie),a,8) = 05
(1-Bolaioa WO),B,4) = 11-401aW0),B,4) = 0, (B12)

i.e. that Wy, (4,5 and Wc) p,4) are process matrices compatible with the fixed causal orders A < B < Cand
B < A < C,respectively (see equation (A17)).

From equations (B6) and (B10), and by defining W4 5,¢) := Wia) + Wc),a,5 = 0and
Ws,a,c) = W) + We,i,a) = 0, wethus find that Windeed has a decomposition of the form of equation (B4),
with each term satisfying the constraints of equation (B5).

Conversely, any process matrix W that can be decomposed as in equation (B4), with process matrices
Wa,B,c) and Wip 4, ¢ satisfying the constraints of equation (B5)—i.e. being compatible with the causal orders
A < B < Cand B < A < C—isclearly causally separable, which concludes the proof of proposition B3. O

B.1.2. Generaltripartite causally separable process matrices. 'We now turn to proving proposition 3, which
characterises causal separability in the general tripartite scenario where all three parties have nontrivial incoming
and outgoing systems.

Proof. Consider a causally separable process matrix W € Ajo Bjp Co- Let us introduce here an extension
Ay ® Ap @ By ® By ® Cp ® G ofall three parties’ incoming spaces, with dimensions d 4, = dp, = da,,»
dp, = dg, = dg,and d¢, = d,, = d¢,,andlet usattach to Wthe
state p = |OF) (OF[Ar/Br @ |F) (OF|Br/CGr @ |O+) (OH|Gr/Ar,
According to definition 5 and proposition B1, Wmust be decomposable as
W= Wa) + We) + Woy (B13)
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where each term Wx) € AjoBjo Cio is a process matrix compatible with party X acting first—so that it satisfies in
particular 1 x,1v,,z0Wix) = 0 (with X = Y = Z, see equation (A13)), as in equation (23)—and such that
whatever that party does on Wx) ® p, the resulting conditional process matrix for the other two parties is
causally separable.

Consider the first term in equation (B13). Letting party A act first on W[4y ® p and perform the operation
described by the CJ operator My = |®*) (®F[40/4r @ 14 > 0, we find, usinglemma B1 (with p = Try,5,[p]),
that the remaining parties B, C are left with the conditional process matrix

Ajp—Bp
W) ® plimu=1o+) @+ o grar o Wi & Tra,,py[p]- (B14)
By assumption this conditional process matrix—and therefore W(ﬁ’)OHB " itself (according to proposition B2,

after tracing out Try,,,, /[ p] completely)—must be a (bipartite) causally separable process matrix: there must
therefore exist a decomposition of the form

Ajpo— By Ajp— By Ao— By
Way ™ = Wiso' + Wies s (B15)

where W(g{%}? g W(ﬁ{%}l; " € Bjpo Cpo are bipartite processes compatible with the causal orders B < C and
C < B, respectively. After re-attributing the system By to A;o, we obtain a decomposition for W),

Wy = Wa,s,0) + Wa,cpy (B16)

with the positive semidefinite matrices Wi 5,c), Wia,c,5) € AroBio Cro satisfying the following constraints,
obtained (as we did in the previous subsection) after replacing By by Ajo in the constraints satisfied by W(ﬁ"%,_c’?”

Ap—Br,
and W(A,C,B) H

[1-Bol GoWa,B,0) = [1-Col Wia,B,0) = 0,
[1-ColABio Wa,c.8) = 11-Bo1Wia,c,) = 0. (B17)

Furthermore, since W4, is compatible with A acting first it satisfies in particular 1 _ )5, Wa) = 0 (see
equation (A13)), and because of equation (B17), we also have [; ¢ 15, Wa,5,c) = 0. Given that
W8 = Way — Wa,s,c)» wehave (1-c.8,Wa,cp = 0as well”'. Together with equation (B17), we thus find
that all constraints of equation (24) for X = A are satisfied. One can similarly show that they are satisfied for
X = B, C,which proves (since we noted before that equation (23) is also satisfied) that the decomposition of
proposition 3 is indeed a necessary condition for any causally separable process matrix W.

Conversely, suppose amatrix W € Ajp ® Bjp ® Cjo hasadecomposition of the form (22) that satisfies
equations (23)—(24). Then as we noted right after proposition 3, each term Wy is a valid process matrix,
compatible with party X acting first. For any CP map M applied by party X on its share of Wy, the resulting
conditional process matrix for the other two parties Y, Z is

Wiy = Trx[My @ 1M0Zi0 - Wiy] = Trx[My @ 141070 - (Wix v,z + Wx.zv)] = W v,z + Wi,z v) vy

(B18)
with (Wix,y,z))m, = 0 satisfying
1= Yol Zol(Wix, v, 2)im) = [11=Yo120 Wix, v, 2) M, = 0,
-zl W, v, 20im] = -zt W v, 20l = 0 (B19)

(and similarly for (Wix, z,v))jamy)s as follows from equation (24). This shows that (Wix, v, z))m, and (Wix, 2, v))imy
are valid bipartite process matrices compatible with the orders Y < Z and Z < Y, respectively, so that (Wx))jas
is causally separable. Note that for any ancillary state p, W ® p also has a decomposition as in equation (22),
obtained simply by attaching the ancillary state to every individual term in the decomposition of W. Therefore,
the same reasoning as above applies, which implies that W is causally separable. This thus shows that the

21 .. . . . . . .

Note that this is the step where the tripartite proof does not generalise straightforwardly to N > 4 parties. In particular, we cannot use the
same argument to prove that the constraints (29) that appear in our necessary condition are satisfied without tracing out the X;o on the first
and fourth lines (as one would need if the terms in equation (28) were to satisfy equation (32) and thus specify a decomposition satisfying also

. . » . . X Y] X—Y]
our sufficient condition for causal separability). One indeed obtains e.g. {1z, Y,oTwW(X,Z) = n-zolvoTioWxy — Wix,v,zm) —
X—Y] X—Y] [X—¥] X— . . .
Wavito — Waryz — Werzy) = —(1-zovotioW, 1,2, v)) which, a priori, may still be nonzero.
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decomposition of proposition 3 is also a sufficient condition for a matrix W to represent a causally separable
process matrix, which concludes the proof of that proposition. O

Let us mention here that proposition B3, for the particular tripartite case where d¢,, = 1, could also be
obtained as a corollary of the general tripartite case considered by proposition 3. Indeed, in the case where
dc, = 1the matrices W4y and W3, in equation (22) are compatible with the fixed causal orders A < B < Cand
B < A < C,respectively (as they are compatible with both A or B first, and Clast); furthermore, the matrix
Wic,a,5) satisfies (14,15, Wc,a,8) = [1-Bo)Wic.a8) = 0and therefore (14,1506, Wca8 = 1-8o16Wcan = 0
which implies that it is also compatible with A < B < C; and similarly, the matrix Wic p 4) is also compatible
with B < A < C.The decomposition of equation (22) thus provides a decomposition in the form
W= ‘/V(A,B,C) + ‘/V(B,A,C) with ‘/V(A,B,C) = ‘/V(A) + ‘/V(C,A,B) and ‘/V(B,A,C) = ‘/V(B) + ‘/V(C,B,A) satisfying the con-
straints of equation(B5).

B.1.3. Particular tripartite case with d,, = 1. Another particular tripartite case of interest is one where one
party, say now A, has no incoming space (or a trivial one, with d,, = 1). The following characterisation is also
obtained as a corollary of the general tripartite case above.

Proposition B4 (Characterisation of tripartite causally separable process matrices with d,, = 1).Ina
tripartite scenario where party A has no incoming system, amatrix W € Ag ® Bjo ® Co isavalid tripartite
causally separable process matrix (as per definition 5) ifand only if

[1-AolBioCoW = 0 (B20)

and W can be decomposed as

W = Wasc) + Wa.cny (B21)

where, for each permutation (X, Y) of the two parties Band C, W4 x,v) is a positive semidefinite matrix satisfying
11— XolYio Wia,x,v) = 05 1-vo1 Wi, x,v) = 0. (B22)

Note already that contrary to the decomposition of proposition B3, the two summands W4 p c)and Wu ¢ 5
above are not necessarily valid process matrices: indeed, they are not required to satisfy 1 _ a,15,c0, Wa,x,v) = 0
(only their sum must satisfy equation (B20)). This allows for dynamical causal orders, where A (incoherently)
controls the causal order between the next parties Band C.

Proof. According to proposition B7, a causally separable process matrix W € Ap ® Bjp ® Cjo musthavea
decomposition of the form (22) that satisfies the constraints (23)—(24).

In particular, the constraints ;) Ws,c,a) = [1-co1aoWiB,c,a) = 0imply 1-¢,)Wis,c,4) = 0. The con-
straints on Wip 4,c) and Wg, ¢ 4y in turnimply that ; _ 4,16, Ws) = 11-c,1 Wis) = 0, which, together with
[1-BolAoCo ‘/V(B) = 0, further 1mply that [1-Ao] BloClo‘/V(B) = [1-Bo] Cl()M/(B) = 0. Slmllarly, one also
has (14018060 Wo) = 1-CotBoWe) = -0t Wie) = 0-

It then follows, since W = ‘/V(A) + ‘/V(B) + ‘/V(C) and [I_AO]BIOCIOM/(A) = 0, that [1—AO]BIOCIOW = Qaswell;
furthermore, by defining W(A) 5.0) = Wanc) + Wa and Wac s = Wa,cp) + W) we obtain the decomposi-
tion W = Ws 5c) + Wa,c,p of theform (B21), with W4 5 ) and Wiy ¢ p) satisfying the constraints (B22).

Conversely, itis clear that the decomposition of proposition B4 is a particular case of that of proposition 3
(with Wiz = W) = 0), so that any process matrix that can be decomposed as in equation (B21) and satisfies
equations (B20) and (B22) is causally separable according to proposition 3. O

B.1.4. Allowed and forbidden terms in a Hilbert—Schmidt basis decomposition. We note that [17] already
provided a characterisation of general tripartite causally separable process matrices—or ‘extensibly’ causally
separable process matrices, in their terminology. Let us prove here the equivalence with our own
characterisation (Proposition 3) explicitly.

According to Proposition 3.3 in[17], every tripartite (extensibly) causally separable process matrix
W € Ajp ® Bjo ® Cjo can be written in the form

W= W) + W) + Woy (B23)

where each Wy, contains only Hilbert-Schmidt terms (see appendix A.4) that are allowed in a process matrix
compatible with party X acting first as per Proposition 3.2 in[17]—i.e. Wy, € £={¥*?}in our language—and
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has the form
W) = Q2 ® 170 + Qx zy) @ I, (B24)

where Q(x,y.z) € Xjo ® Yo ® Zrand Qx,zv) € Xijo ® Y1 ® Zjo are positive semidefinite. (We changed here
the notations of [ 17] to match ours; note in particular that unlike in [17], we again ignore the normalisation
constraints in the decomposition of W.)

Any such process matrix can thus be decomposed as in proposition 3, with Wx v, z) = Qx,v,z) ® 10 > 0 (which
also implies Wix) = Wix,v,z) + Wix,zy) = 0).As W, € L2 it satisfies in particular [ - x,) v, Wix) = 0
(see equation (A13)), as in equation (23). It is furthermore immediate to see that each Wx y,z) = Qx,v,z) ® 1%0
satisfies the second constraintin (24),i.e. [; - z,) Wx,v,z) = 0. Finally,one has [, _y,; 7, Wx) = 0 (see again
equation (A13)) and [1—Yo] VV(X,Z,Y) =0, which 1mphes [1— Yo]ZIOM](X)Y>Z) = [1- YOIZIO(VV(X) - VVEX,Z, y)) =0, Le.the
first constraint in equation (24). Thus, any process matrix that satisfies the characterisation of proposition 3.3 from [17]
also satisfies that of our proposition 3.Conversely, let Wbe a process matrix that has a decomposition as in proposition
3. As discussed after that proposition, the conditions (23)~(24) imply that Wx, € £X={¥-Z), Furthermore,

‘/VEX,Y,Z) 2 Oand [1-Zo) ‘/V(X,y)z) =0 1mp11es that ‘/V(X,y)z) is of the form Q(X,y,z) ® ﬂZO with Q(X,Y,Z) 2 0, so that
Wixy = Wx,v,z) + Wx,z,)is of the form (B24). This indeed establishes the equivalence of Proposition 3.3 in [17]
with our proposition 3.

As emphasised before, the matrices Wix,y,z) = Qx,v,z) ® 170 need not be valid process matrices (the only
requirement is that Q(x y,z) > 0). Both individual summands in equation (B24) can thus contain terms that are
forbidden in a process matrix compatible with party X acting first, as long as these terms cancel out in the sum.
More precisely, in addition to the terms that are allowed in a process matrix with X first, Wx v, zyand W 2 v)
can contain terms of the form U/)fl ool 0%0 with g X0 = 1¥o (i.e. v > 1). Any other term that is forbidden in a
process matrix with X first has a nontrivial o operator on either Y, or Zo, and thus cannot appear in (x vy, z) or
Qx,z,v) and cannot be cancelled out in equation (B24). In the explicit example of equation (41) given at the end
of section 4.5, for instance, on can check indeed that W5 p ) and W4 ¢ p) contain the Hilbert-Schmidt term
740]BioCio, which come with opposite signs and cancel out in the sum.

B.2. General multipartite causally separable process matrices
B.2.1. Necessary condition for causal separability.  Let us now prove the necessary condition for general
multipartite causal separability given by proposition 4.

Proof. Consider an N-partite causally separable process matrix W € A/g . Letus introduce now, for each party A, an

. k k .. . . . . - ) o
extension Qe Mk(A T ® A i ) of their incoming space, with dimensions d , I:Lkn =d Al andd , ’t’bkn =d AL
Af, / Af Al / A . .
and let us attach to Wthe state p = Q. e Ak (|PT) (DT rr / iy @ |DT) (DT M-k / PHik) )—i.e. we provide
each pair of parties with two maximally entangled states, which will allow us to use the teleportation technique in
either direction.

According to definition 5 and proposition B1, Wmust be decomposable as

W= >" W, (B25)
keN

where each term W, is a process matrix compatible with party Ay acting first, and such that whatever that party
does on W) ® p, the resulting conditional process matrix for the other N — 1 parties is causally separable.
Consider, foragiven k € A/, the process matrix W) ® p, and let party A, perform, for a given k’ = k, the

Al /AL Ak . k k k
CPmap M; = |®) (DF| IO/ 1 @ 1% > 0, with Ar = AI(L;«) ®k”€N\ (k') (AIIFLW) & AI(ka,,) ). The
resulting conditional process matrix for the other N — 1 parties is then, according to lemma B1 (with

p="Tras 4 [pD
(k) (k)

Ak Ak
Wiy @ P, W' 0 @ TreTr v [pll. (B26)

(k)

As this conditional process matrix must be causally separable, it then follows from proposition B2 that

Aly—Af Ap—Af
( kio b jtself must be causally separable, which concludes the proof of proposition 4 (where W, k;O b
k Ak
was simply denoted W(‘,?;O AN, 0

B.2.2. Sufficient condition for causal separability. Here we shall prove the sufficient condition for general
multipartite causal separability given by proposition 5. Let us however first prove the claim that was made just
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after that proposition, namely that if equation (32) is satisfied for all (k;, ..., k), then one also has, for all
(ki, ..., kp)with1l < n < N, that

vV XC Mk, ..., k,}, X= @, H[1—A5]A;?_-;\”‘"""""’\"'M](kb ik = 0. (B27)

ieX

Proof. This can be seen (by induction) as follows. Assume that equation (32) is satisfied for all (ky, ..., k).

Equation (B27) is indeed satisfied for all (k;, ..., k,) forn = N — 1, asin that case
Wik kv = Wik .., ky_1ky) Satisfies =AWk, - ko = 0 by assumption (32).

Suppose then that for a given value of n > 2, equation (B27) is satisfied for all (ki, ..., k,). Consider a given
ordered subset of parties (ki, ..., k,_1) and a given nonempty subset X C M\ {k;, ..., k,_1}, and define for ease
of notation the linear function f{)]fl k) (W) := [l [1— A AN o nrW.

Letthen k, € N\ {ki, ..., kp_1}. X = {k,} then fX(‘/v(kl, k) = [1— Ak AN\ ko b vkn) Wk, ...,
according to equation (32). If on the other hand X = {k,}, then depending on whether k, € X ork, € X,
wehave fy (Wi, ..., k) = 11-an ([, 11-agjai ke W, k) with X = X\ky,or
fr W k) = (= agpai kb \ YW, k). In both cases, YO C M\ {ki, ..., k,}, XO = @,s0
that by the induction hypothesis f,,(Wy, .., x,)) = 0, which thusholds forall k, € M\ {k;, ..., k,_1}. As
Wik, k) = anej\/\{kl, k) Wik s k) WE alsohave f,, (Wi, ..., x, ) = 0, which, byinduction,
concludes the proof of equation (B27) for all ordered subsets (k, ..., k,) with1 < n < N. O

In particular for the case n = 1, equation (B27) together with equation (32) imply that each matrix Wy, isa
valid process matrix compatible with party Ay, acting first (see equation (A13)).
Let us now prove proposition 5 by induction.

Proof. Clearly, it trivially holds for N = 1 (in which case equation (32) ensures in particular that Wis a valid
process matrix). (Note also that for N = 2 and 3, it reduces to the sufficient conditions of propositions 2 and 3,
respectively.)

Suppose proposition 5 holds in the (N — 1)-partite case, and consider a matrix W € A/(\)/ that can be
decomposed as in equation (30), with all partial sums Wy, .., «,) satisfying equation (32). Then we have

AN

W= > W (B28)
keN
with (as noted above) each W, being a valid process matrix compatible with party A, acting first.
Consider a CP map My, applied by party Ay, on W) = > cpy,,, Wr- The resulting conditional process
matrix for the remaining N — 1 parties is
(Wi, = Trig[Mig @ PR Wopl = 57 (Wolg, (B29)

ﬂGH(kl)
with (Wo)yuy,, = Try[My, ® MK . W], By denoting by [IM\k the set of permutations of M\ k (and by
Hﬁg b x,) the set of those that start with ky, ..., k), by writing any permutation 7 of " that starts with k, as

PN

7 = (k, 7)with 7’ € Tk, and by defining [(Wik))m; Ir = (Wik,x1))ja,» We can re-write equation (B29) as
Wz, = 2 [(W)ag I (B30)
W/EHN\I{]
in a similar form to equation (30). For n = 2, ..., N, and for any ordered subset of parties (k,, ..., k,) of M\ {k},
the partial sums

[(Wodmte Jor ook = D (W I = Do W, = Wk ooy k)M, (B31)

/ N
m'elly

AN 7€k ko, ..., k)

then satisfy

[1— Ak e kol [(Woa)ing Jeks, s k) = (1 afad\ take ok (Wi b, o )i, ]

= (uoafga ke ki Wik b, - k)M, = 0 (B32)

by assumption (32). Thus, equation (B30) provides a decomposition of the (N — 1)-partite process matrix
(W) m;, of the same form as in equation (30), with positive semidefinite matrices [(Wx,)) um, I and with all
partial sums satisfying the analogue constraints as those of equation (32). By the induction hypothesis, this
implies that (Wy,)) v, is causally separable.
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Note that the exact same reasoning also goes through if instead of Wwe consider W & p with any ancillary
state p. Indeed, W ® p also has a decomposition as in equation (30) obtained simply by attaching the p to every
individual term in the decomposition of W. This shows that Wis causally separable, and by induction this proves
that the decomposition of proposition 5 is indeed a sufficient condition for W to be causally separable. O

For clarity and to get some better intuition on how it generalises the characterisation of proposition 3 for the
tripartite case, let us write the sufficient condition of proposition 5 explicitly in the fourpartite case:

Proposition B5 (Sufficient condition for fourpartite causally separable process matrices). If a matrix
W € Ajp ® Bjo ® Cio ® Djg can be decomposed as

W = VV( A) + VV( B) + VV(C) + W, (D)
—~ = —~ = —~ =
= Wa,B) + LV(A,Cv) + Wia,p) + o+ e+
ANANAS AN AAA
= W.s,cp)+*Waspc) + Wacspy+Wacenps + WapsoytWapes + -+ + - +
(B33)

with, for each permutation of the four parties (X, Y, Z, T), positive semidefinite matrices Wiy, z,1),
Woey) = Wooy,zm) + Wiy, 1,2 and W) = W, y) + Wix,z) + W) satisfying

[1-XolYioZio Tro Wix) = 05 (B34)
[1—YolZio Tio Wi, v) = 0, (B35)
Nzl ToWxv.zm) = 0, -1 Wix,v.zm) = 0, (B36)

then W is a valid fourpartite causally separable process matrix (as per our definition 5).

It follows from equations (B35)—(B36) that for each party X, Wx, also satisfies
[1-Yo1ZoTio WMX) = 11-¥o111 - Zo1 Tio W) = 11— Yol1—Zoll1 - o) Wix) = Oforall X = ¥ == Z == T (see
equation (B27)). This, together with equation (B34) and the fact that W[x) > 0, implies that Wx) is a valid
process matrix, compatible with party X acting first (see equation (A13)).

Similarly, it follows from equation (B36) that for each pair of parties X, Y, Wx,y) also satisfies
1—ZolTo WX, Y) = [1—Zoll1—-To] Wix,v) = Oforall X = Y = Z = T. This, together with equation (B35) and the
factthat Wy yy > 0, implies that whatever CP map My party X applies, the conditional process matrix
(Wix,v)) My is a valid tripartite process matrix for parties Y, Z, T, compatible with party Yacting first.

Finally, equation (B36) implies that whatever CP maps My, My parties X and Yapply, the conditional matrix
(Wix,v,z,1))|Me@ My 18 @ valid bipartite process matrix for parties Z, T, compatible with party Zacting first.

B.3. Fourpartite causally separable process matrices in the particular case with dp, = 1

Consider now a fourpartite situation where party D has no outgoing system (or a trivial one, with dp, = 1).1t
turns out that in such a case our sufficient condition above is also necessary, and it simplifies as follows (note the
similarity with proposition 3).

Proposition B6 (Characterisation of fourpartite causally separable process matrices with dp, = 1).Ina
fourpartite scenario where party D has no outgoing system, a matrix W € Ajp @ Bjo ® Cjo ® Dyisavalid
fourpartite causally separable process matrix (as per definition 5) if and only if it can be decomposed as

W = VV( A) + VV( B) + VV( c)

(B37)
= Wa,s,c.p)+Wacnsp) + Wiacop +Wsceap + Weanp) +Wesab
where, for each permutation (X, Y, Z) of the three parties A, B and C, Wix v, z,py and
Wixy = Wix,v,z,0) + Wix,z v,D) are positive semidefinite matrices satisfying
[1-XolYioZoDs Wty = 0, (B38)
1-YolzioD,Wix,v,z0) = 0> 11— 2010, Wix,v,2,0) = 0. (B39)

Proof. According to the necessary condition of proposition 4, a causally separable process matrix
W € Ajp ® Bio ® Co ® Dymusthave adecomposition of the form W = Wy + Wy + Wy + Wp) where
each Wiy, is a process matrix compatible with X first, such thatforany Y = X, Wé’)o ~ Y js causally separable.

Consider first X = A, and note already that as W4, is compatible with A first, one has, from equation (A13),
[1-AolBioCoD; Wia) = 0. (B40)
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Taking now Y = B, we have that W(%O_‘B" € Bro ® Go ® Dyisatripartite causally separable process matrix
in a scenario where one party (D) has no outgoing space. Using the characterisation of proposition B3, and re-
attributing the system By’ back to Ay (as we did, e.g. in the proof of proposition B3), we obtain that W4, must
have a decomposition of the form

Wy = Wa,.c,0) + Wa,c.8,0) (B41)
with Wia,s,c.0) Wa,c,5.0) 2> 0 satistying
(1-Bol GoDs Wia,B,C,0) = 1-ColD;Wa,B,c,0) = 0,
[1—ColAwBioD; WA,C,B,D) = [1—BolD; Wa4,c,8,0) = 0. (B42)

The first line further implies that [; _ c.5,0,Wa,5,¢,p) = 0; noting that ; _c,5,,0,Wa) = 0 as well (as Wiy is
compatible with A first, see again equation (A13)) and that Wiy ¢ 5 py = Wa) — Wa,5,c,p)> wealso have

[1-ColBioD; Wia,c,8,0) = 0. (B43)

Hence, the term W4 can be decomposed as in equation (B37), with the corresponding constraints being
satisfied. The same holds, in a similar way, for the terms W) and W¢).

Consider now Wjp). Takinge.g. Y = A, we have that W(gI)HAI' € Apo ® Bio ® Cppisatripartite causally
separable process matrix, which must have a decomposition as in proposition 3. After relabelling the matrices
Wx,v,z) from equation (22) in the decomposition thus obtained to W&’y 72’ D) Te-attributing the system Ay back
to Dyand applying the map p,- to all constraints of equations (23)—(24), we find that W/p, also has a
decomposition as in equation (B37) that satisfies the constraints (B38)—(B39).

Altogether, Wis thus a combination of terms that have a decomposition as in proposition B6; combining
these decompositions, it directly follows that Witself has a decomposition of the form of equation (B37) that
satisfies the required constraints.

Conversely, it is easy to see that if a matrix Whas a decomposition of the form (B37), then itis also of the
form (B33) (where all terms Wx, v,z ) with D = T are 0, and thus only the terms Wx v,z py = Wx,v) remain).
Furthermore, if the decomposition satisfies the constraints of equations (B38)—(B39), then it also satisfies those of
equations (B34)—~(B36). According to proposition 5, this implies that such a process matrix Wis causally separable. [

One can further simplify the characterisation above in the particular fourpartite case where, in addition to one
party (D) having no outgoing system, one also has a party (A) with no incoming system. We then obtain the following:

Proposition B7 (Characterisation of fourpartite causally separable process matrices with d,, = 1and

dp, = 1).Inafourpartite scenario where party A has no incoming system and party D has no outgoing system, a
matrix W € Ap ® Bio ® Co ® Dy isavalid fourpartite causally separable process matrix (as per definition 5) if
and only if

[1-AolBoCoD/W = 0 (B44)
and W can be decomposed as
W = Wiu,,c,0) + Wia,c.5,0) (B45)
where, for each permutation (X, Y) of the two parties B and C, Wu x,v,p) is a positive semidefinite matrix satisfying
[1-Xol VoD Wa,x,v,0) = 0, 1-vo10,Wia,x,v,0) = 0. (B46)

We emphasise again that the two summands W4 p,¢,py and W4 ¢, 5, py above are not necessarily valid process
matrices, thus allowing for dynamical causal orders. We omit the proof of proposition B7 here, as it follows that
of proposition B4 very closely. We note, as an aside, that both propositions B3 and B4 could be obtained as
corollaries of proposition B7 after removing one party. Namely, by imposing d 4, = 1above (which, in
particular, makes equation (B44) trivial), ignoring A and relabelling (B, C, D) — (A, B, C) we obtain
proposition B3; by imposing dp, = 1instead in proposition B7 we directly obtain proposition B4.

To conclude this section, we further note that propositions B6 and B7 generalise straightforwardly to cases
with more parties D, E,... that have no outgoing spaces (by simply replacing D;by D; E;---). Hence, we can give
necessary and sufficient conditions for causal separability in any N-partite scenario in which at most three
parties have nontrivial outgoing spaces.

Appendix C. Explicit witness of causal nonseparability for W

In this appendix we provide an explicit witness of causal nonseparability for the process matrix W< introduced
in section 3.3.

32



10P Publishing

NewJ. Phys. 21(2019) 013027 JWechsetal

According to equation (G5) in appendix G.2 below, in the tripartite scenario in which W?<" is defined, where
dc, = 1, the cone of causal witnesses can be characterised as

S= {S e A[oB[oCﬂS = SI(;) + Sgl) + ng) with SXL) >0, [1— AO]BIOCISA = Six ), [1—Bol G S( ) — S(z)
§ =S + S5 + S with S > 0, n-poana S’ = S5 n-aaiaSE = S5}, (CD

Using the approach of section 4.4, we obtained the following causal witness for W3, written, as in the
definition (10) of W3, in the order C;A; B;ApBo:

et = i[u(m — 2)( — 22) — %ll(f(f( + 99z + 20)

1 1 1
+ —2(12 — 2Dl — 22) + —KE&Y — U2 — 21) + = FEX + $9) (12 — 21) |. C2
5 ( )( ) Nei &y — 9%)( ) 3Y( §9( )] (C2)

To see that $*" indeed defines a valid causal witness, one can verify that it admits decompositions as in

equation (C1) above, with (still written in the same order) S(D =0, 5(2) = i[fgll(f(f( + y9)1z],

S{7 = st — S and similarly S{" = 0, S{? = [ Jl(” + §9)2l], S5 = 2t — SP. One can easily check
that all constraints in equation (C1) are satisfied.
With St thus defined, one finds Tr[S3¢t - Wat] = —(% — 2) < 0, which proves that W3 isindeed

causally nonseparable according to our definition 5—or equivalently, to Aratjo et al’s definition 2, or ‘extensibly
causally nonseparable’ according to definition 4—even though, as proven in section 3.3, it is causally separable
according to OG’s definition 3.

Since the causal witness S** above was obtained with the SDP optimisation technique described in
section 4.4, it allows us to determine the robustness of W2t to white noise. From equation (39) we thus find that

its random robustness is r* = —Tr[S$*t . Wat] = T 2 ~ 0.31.

‘Activation’ of causal nonseparability with W2
It is instructive to see explicitly how causal nonseparability can be ‘activated’ by attaching an entangled ancillary
state to WAt

Recall that W3<" is compatible with party Cacting first. As shown in section 3.3, it is such that for any CP map
(or POVM element) M; applied by C, the conditional bipartite process matrix (W), is causally separable.
This is precisely why W3 is considered to be causally separable according to OG’s definition 3.

Consider now attaching an ancillary maximally entangled state p = |®*) (®+|4/C shared by A and C with
dimensions d, = d¢, = dc,,and letting C project his two incoming systems onto |®T) (®+|%/ . The resulting
conditional process matrix (W*" & p) y.—|o+) @+ shared by A and Bis then (up to normalisation) (Waet)G—Ar,
i.e. itis formally represented by the same matrix as W, equation (10), with party C’s incoming system now
given to party A (see lemma B1 of appendix B). One can verify that (W @ p) .- a+) (@+| thus obtained is
causally nonseparable by constructing a (bipartite) causal witness using, for instance, the explicit
characterisation of equation (G3) below, in a similar way to what we did for W3 above.

Note, however, that this argument is not sufficient to conclude that W2 is (extensibly) causally
nonseparable' one indeed needs to prove that for any possible decomposition of the form
Wt @ p = Wiy + W, + W("é) with each W/ ) compatlble with party X acting first, there exist CP maps My,
Mg, or M, that make either (W ( oM (W (B) )im; or (W, C) )M, causally nonseparable””. Our construction of a

2 Indeed, a process matrix compatible with Cfirst (in short, of the form W = W), and such that for some CP map M the conditional
process matrix W)y is causally nonseparable, may still be causally separable if it also has another, causally separable, decomposition of the
orm = Wa)' + Wg)' + Wce)'. Anexampleis for instance =W® 1"/ 41" with (written again in the order C;A; BfApBo
form W = W' + W/ + We)'- A pleis fori W = Wy @ |®+) (®*+[Ar/ < with (written again in the order C;A; BjAo Bo)

Wy = [(Mﬂ + 122 + z1Z + 2zD1 + ‘F(fé{f( Xy — yxy — yy0x1 + —(yyy YRX — Xy% — xxy)le] (C3)

One can check that W € £¢<48) and thatwith M¢ = |®*) (®*|9/ ", the bipartite conditional process matrix W]y, is causally
nonseparable—even though Wis also compatible with the fixed order A < B < C (and is hence causally separable). (Here the ancillary
entangled state attached to W, and the CP map Mallow party Cto ‘teleport’ their incoming system in W, to A; the same observation holds if
Cteleports his system to Binstead.) A similar observation can be made at the level of correlations: a tripartite correlation P(a, b, c|x, y, z)
compatible with Cfirst and such that the bipartite conditional correlation P, .(a, b|x, y) := P(a, b|x, y, z, ¢) isnoncausal for some z, ¢ may
in general still be causal. An example with binary inputs and outputs 0, 1is P(a, b, c|x, y, z) := 51, x0c.amy» Which is indeed compatible with
Cfirst(as P(clx, y, z) = 3 does not depend on x, y)and is such that conditioned on C’s output c = 0, the resulting conditional bipartite
correlation P, .—y(a, blx, y) = 6y x0,, shared by A and Bis noncausal (it violates the ‘Guess Your Neighbour’s Input’ inequality [34]
maximally). Nevertheless, Pis clearly also compatible with the fixed order A < B < C, and is hence causal. Note that the argument given by
OGin [17] to show activation of causal nonseparability consisted precisely in proving that, after attaching an ancillary state, the correlations
generated by a given tripartite process matrix were compatible with C first and such that the bipartite conditional correlation B, . (a, b|x, y)
was noncausal. In that case, however, C was performing a deterministic operation (i.e. c could only take a single fixed value), so this argument
was enough, in their case, to prove that the tripartite correlation under consideration was indeed noncausal [22, 46].
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causal witness for W2 confirms nonetheless that this must indeed be the case, which allows us conclude, using
OG’s terminology, that the entangled ancillary state p introduced here indeed ‘activates’ the causal
nonseparability of W2,

Appendix D. Equivalence between Oreshkov and Giarmatzi’s extensible causal (non)
separability and our definition of causal (non)separability

In this appendix we prove that OG’s definition 4 of extensible causal (non)separability and our definition 5 of
multipartite causal (non)separability are equivalent.

Proof. Let Wbe an N-partite process matrix that is causally separable as per our definition 5. The conditional
(N — 1)-partite process matrices (W(’j())| M, = Tri[My ® K W(/,’()] in definition 5 are again causally
separable (as per our definition), and thus fulfil in particular definition 3. Therefore, W ® p is causally separable
as per OG’s definition 3 (OG-CS) for any A//\/ and any ancillary quantum state p € AI//\/. Thatis, Wis extensibly
causally separable as per OG’s definition 4 (OG-ECS).

The proof of the converse is more involved. The idea is to consider, for an N-partite OG-ECS process matrix
W and two ancillary quantum states p’ and p”, the extended process matrices W ® p’and W ® p’ ® p”, which
are both OG-CS. By comparing the corresponding decompositions we will show that the conditional
(N — 1)-partite process matrices obtained from the decomposition of W ® p’ are not only OG-CS, but also
OG-ECS. From there, one can conclude by induction that W then also satisfies our definition 5.

The difficulty here is that the causally separable decomposition of W ® p (for p = p’or p = p’ ® p” inour
case here) depends, a priori, on p. The following proposition states, however, that there exists a decomposition of
W that provides a unique causally separable decomposition of W ® p forany p.

Proposition D1. Any N-partite extensibly causally separable (OG-ECS) process matrix W, as per definition 4, can be
decomposed as
W= 3 4 Wi (D1)
keN
with g, > 0, 3" q, = 1, and where for each k, Wiy is a process matrix compatible with party Ay acting first, and is
such that for any extension AI//V , any ancillary quantum state p € AIJ/\/ and any possible CPmap M, € AII}/O applied

by party Ay, the conditional (N — 1)-partite process matrix (W) @ p)m, = Tre[My @ MNE - Wy @ plis
causally separable (OG-CS) as per definition 3.

Proof. Consider an N-partite OG-ECS process matrix W. By definition 4, for any extension A,/,\/ and any state
pE A/,\/, the extended N-partite process matrix W ® p must have a decomposition of the form
Wep= 2 4 Wi (D2)
keN

where for each k, W, is a process matrix compatible with party Ay acting first, and such that whatever that party
does, the resulting conditional process matrix for the other (N — 1) parties is OG-CS.

By an argument similar to that of proposition B1, it is easy to see that W}, can without loss of generality be
taken to be of the form W}, = W) ® p. We emphasise again that the convex decomposition of
W = > c v Wik that then follows from equation (D2) could a priori depend on the ancillary state p. We will
however now show that for all extensions and ancillary quantum states one can choose the same decomposition
of W.

First, note that for any finite set of extensions { A I{\/ VA IJZ\/ LA IJ}/ } and ancillary quantum states

{peA If\/ » P €A é\/ s P, €A Ij,\/ } under consideration, one can indeed choose the same decomposition—
consider the ancillary state p, ® ---® p, € A 1{\/ QA Ijn\/ ,and the corresponding decomposition

WRp & Qp,= > g Wip® p Q- ®p, (D3)
keN

with each Wy ® p; ® --- ® p,—and therefore, each Wj;,—a process matrix compatible with party A; acting
first, and such that for any operation M; applied by A the resulting conditional process matrix

Wiy @ p; @ -+ @ p,)m, for the other (N — 1) parties is OG-CS. Proposition B2 now implies that these
conditional process matrices remain causally separable when tracing out all but one ancillary states in the tensor
product. Therefore, the decomposition of W obtained from equation (D3) can be chosen for any of the
individual p, € A va .

Next, one uses the following result from basic topology:
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Theorem 2.36 in. [47] If { K.} is a collection of compact subsets of a metric space X such that the intersection of every
finite subcollection of { K, } is nonempty, then [ K, is nonempty.

Here, let the index set be the set of all possible ancillary quantum states (of any dimension), and the set K ,,
indexed by some quantum state p, be the set of possible causally separable decompositions of W corresponding
to the ancillary state p. The finite intersection property follows from the observation above—for any finite set of
ancillary states { p, ..., p,}, there exists a common decomposition, that is, the intersection K, N---MK, is
nonempty. As the conditions of the above theorem are satisfied”’, it guarantees that the intersection (K, over all
quantum states p is nonempty. That is, there exists indeed a convex decomposition of W,

W= 3" g Wy (D5)
keN

with g, > 0, 3", q, = 1,and where for each k, Wy, is a process matrix compatible with party Ay acting first, and
is such that for any extension AIJ/\[ ,any ancillary quantum state p € AI//\/ and any possible CP map M € A,’}fo
applied by party Ay, the conditional (N — 1)-partite process matrix (W) ® p)ja, is OG-CS. O
One can now prove by induction that any OG-ECS process matrix is causally separable according to our
definition 5. In the single-partite case (N = 1), the claim is trivial. Suppose, for N > 2, that the claim holds true
inthe (N — 1)-partite case. Let then Wbe an N-partite OG-ECS process matrix. According to proposition B8,
Whas a decomposition of the form (D1), such that for any k, for any arbitrary extensions Alj/\/ , A,W‘, any
ancillary quantum states p’ € A}, p € AIJ,Y\k, and any CP map M € Afy, applied by party A, the
conditional (N — 1)-partite process matrices (W) @ p")pgand (W @ p' @ oM, = Wiy @ 0, @ p”
are OG-CS. That s, for any A,j/\/ , p'and M, (Wi ® p)m, is OG-ECS—and therefore, by the induction
hypothesis, it is causally separable according to our definition 5. Summing up, we thus have, for any A//v and any
p e AIN, adecomposition of the form W @ p’ = 37, ¢, Wiy ® p’ such that forany M; € L Wiy @ pm,
is causally separable. This means that Wiitselfis causally separable as per our definition 5, which concludes the
proof. O

Appendix E. Causally separable process matrices can only generate causal correlations

Here we show explicitly that causally separable process matrices, according to our definition 5, can only generate
so-called ‘causal correlations’ (even when attaching ancillary entangled states).

Let us first recall the definition of N-partite causal correlations given in [22] (which is equivalent to that first
introducedin [17]):

Definition E1 (N-partite causal correlations). For N = 1, any correlation P (a|x;) is causal. For N > 2,an N-
partite correlation P (d|X) is said to be causal if and only if it can be decomposed as

P@l%) = Y gy Pr(alxi) Prpa, (@ il 0)» (E1)
keN

with g, > 0, ", q, = 1, where (for each k) Py (ay|xy) is a single-partite (and hence causal) correlation and (for
each k, X, ax) Pi,x,,a, (G\\ k1X\7 ) s a causal (N — 1)-partite correlation.

By this definition, for N = 1, any correlation—and in particular, any correlation generated by a (trivially)
causally separable single-partite process matrix—is causal.

Assume, for N > 1, thatany correlation generated bya (N — 1)-partite causally separable process matrix is
causal. Consider then an N-partite process matrix W € A{g ,some ancillary state p € A/,\[ ,and some CP maps
M s € AIJI\{O (forany k, xx, ax), which all together generate the probability distribution

3 More precisely, let X be the space of N-tuples of Hermitian matrices W = (Ways ---» Way), equipped with the standard Euclidean metric,
and let the sets K, be defined as

N
K, = {(M{l), oo Wowy) (Z Wiy = W) and (Wyy € LAXMNAD Vk) and (W, > 0 V) and (Wi ® pliag, is OG — CS Yk, My)).
k=1

(D4)

It follows from the positivity of the Wy)’s and the normalisation of W that the sets K, are bounded. One can further easily convince oneself
that the sets characterised by the four individual conditions in equation (D4) are closed, and thus, as it is the intersection of closed sets, that
K, is closed. The sets K, being bounded and closed, it follows from the Heine-Borel theorem that they are compact, as required for theorem
2.361n[47] to be applicable here.

35



10P Publishing

NewJ. Phys. 21(2019) 013027 JWechsetal

P@@|X) = Tr[Mgx, @ -+ @ Mayjxy - W ® pl, (E2)

asin equation (4). Assuming that Wis causally separable, according to definition 5 W ® p can be decomposed as
in equation (13), which allows us to write

P(L_I'IQ_C') = Z dx Tr[Ma1|x1 K& MaleN : Vv(ﬁ];)] (ES)
keN

Here W}, is compatible with party A, acting first, so that for any set of CPTP maps M, with k" = k,

1 1
Tr[Maklxk ® Mxkr : ‘/Vv(/]i)] = Tr[Maklxk ® F M/(/;()] = d—W‘Tr[(VV{;C))lMﬂkIXk]’ (E4)
Ap

K eN\k KeM k46

which does not depend on the choice of CPTP maps M,,,, and defines a probability distribution Py (a|xx) for
party Ag.
The conditional process matrix (Wg, ), ,, for parties in N\ k can be renormalised (when nonzero) by

. oep 1 o o2p . . .
defining (W) )\u,,., = W(W(k) )My 50 that (W )jar,, . is now a properly normalised process matrix

(according to equation (E4) above that defines Py (ai|x;), we indeed have Tr[(W(g) Y

nm] =d A0 as required

by equation (A3)). We can then write equation (E3) as

P@x) = > q,Tr| @ Mappwe - Wit | = D Gk Pre(@lxi) Prxa @\l 1) (E5)
keN K'eNM\k keN
with
P (@ B0\ 1) 3= Tr[ Q® Muyx, - (V“VQZQWW}. (E6)
K'e NM\k

Now, by assumption and according to definition 5 (WJ(Z) )M, musta causally separable process matrix; by
the induction hypothesis it can only generate causal correlations, which implies that Py, ,, (ZiN\ k@\/\ %) is causal.
Equation (E5) thus provides a causal decomposition of P (d|x) as in equation (E1) of definition E1, which proves
that the correlation P (d]X) obtained from the N-partite causally separable process matrix W is causal, and
which, by induction, concludes the proof.

Appendix F. Relationship between our necessary and sufficient conditions for causal

separability

F.1. A necessary but not sufficient condition
In our recursive necessary condition of proposition 4 for general multipartite causal separability, we require the

(N — 1)-partite process matrices W(’go_'Afk’ to be causally separable for each k” = k. In the tripartite case, it is
not necessary to impose this explicitly, since considering the teleportation of A;’s systems to some arbitrary Ay
yields necessary conditions that already coincide with the sufficient conditions for tripartite causal separability
(see the proofin appendix B.1.2). In the general case, however, considering the teleportation to just one or some
of the parties yields weaker necessary conditions that may not be sufficient. In this appendix we present an
explicit fourpartite example.

We consider the fourpartite scenario where A has a trivial incoming space (d4, = 1) and D has a trivial
outgoing space (dp, = 1), and define the following matrixin Ao ® Bjo ® Cio ® Dy:

1] .. 1
Wwep .= | 196 + — 2(1221 + 20%2)1|. F1
8[ N ( ) (F1)

Itis easy to verify that W#® satisfies equation (18) for Ay = A, i.e. thatitis a valid process matrix compatible
with party A acting first (note its similarity with the original process matrix of Oreshkov, Costa and Brukner [2]).
Furthermore, it satisfies 1 _p,ja, o, W8P = [1-Co1aoD, WP = [1-p,) W8P = 0 (as well as
[1—ColAoBioDy W8P = [1_Bo1aoD, W8P = 0). Thus, W8P can be decomposed as in equations (27)—(28) with
Y = Dand asingle term in the decomposition, W8P = W, = W([AA’E’)D] = W(%ECD’]D) (or
WEP = Wy = W&‘BD ] = W([I?EE,]D)) satisfying equation (29). In other words, the tripartite conditional
process matrix that we obtain by teleporting Ag to Dy is causally separable (it is compatible with both fixed
causalorders B < C < Dand C < B < D).

However, this is not the case when teleporting Ap to By, or to Cpr. W€ indeed cannot be decomposed as in
equation (28) with Y = Bor C, and is thus causally nonseparable. This can be certified by the causal witness
(obtained as described in section 4.4, with the characterisation of equation (G11) in appendix G.2)
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Se = %[Jl@% — 531531 + 2182)1], (F2)
for which we obtain Tr[WeP . §8P] = 1 — /2 < 0.

This shows that, in the general multipartite case, there is indeed a gap between the necessary conditions
obtained by teleporting to just some of the parties and those obtained by teleporting to each of the parties, and
that the former are not sufficient.

(Note that in the example above D; did not play any role, as we always had 1”: in all terms We could in fact
consider the case where Dyis also trivial, dp, = 1. We kept here a nontrivial system Dy to clarify the fact that W&
was defined in a fourpartite scenario, and that party D does play a role in the argument.)

F.2. Numerically investigating the (in)equivalence of our necessary and sufficient conditions

In order to investigate whether the (full version of the) necessary condition in proposition 4 and the sufficient
condition in proposition 5 differ in general, we conducted numerical testing to see whether we could find
process matrices contained in the cone WP but notin W*® (i.e. the outer and inner approximations of WP
arising from the necessary and sufficient conditions, respectively). To this end, we considered the following
general approach: we first generated a large number of random process matrices. For each process matrix W, we
then solved the primal SDP optimisation problem (37) over the cones WP to obtain the corresponding
random robustnesses r. If we were to find r* = r* (up to numerical error; note that, since W* C WP, one
always has r < r*), this would imply the cones differ since one would have W + r1° € W5P

but W+ rfl° ¢ WP,

The size of the SDP problems associated with finding the random robustness of a process matrix meant that
we could not solve these problems for the ‘complete’ fourpartite scenario with qubit incoming and outgoing
spaces for each party (recall that, for three parties, the conditions are already known to coincide). We therefore
considered the restricted scenario in which d 5, = 1 while the remaining Hilbert spaces are two-dimensional, so
that Wis thus (128 x 128)-dimensional. We note that in any simpler scenario, the necessary and sufficient
conditions can be be proven to coincide, making this the simplest case of interest. Indeed, in appendix B.3 we
already showed that they coincide if one of the four parties has a trivial outgoing space. If, on the other hand, a
second party were to have a trivial incoming space (e.g. dg, = 1), itis not difficult to show they again coincide by
writing explicitly the necessary and sufficient conditions of propositions 4 and 5, by using the fact that they
simplify to proposition B4 in a tripartite case where (at least) one party has a trivial incoming space, and by using
the linearity of the subspaces appearing in the constraints. We leave the explicit proof of this as an exercise for the
reader.

To generate random process matrices, one could follow the hit-and-run approach of [43]. Although this
approach is guaranteed to sample process matrices uniformly, the high dimensionality of the space of valid
process matrices (in this scenario it is 7597-dimensional) renders this approach intractable. Instead, forgoing
uniformity, we generated matrices by randomly sampling Hermitian positive semidefinite matrices, projecting
them onto the space £V of valid process matrices before adding white noise (i.e. 1°) until the resulting matrix
was again positive semidefinite.

We solved the SDP optimisation problems for the necessary and sufficient conditions for approximately
1000 randomly generated process matrices (including several hundreds in which an additional constraint,
namely the symmetry of Wbetween permutations of the parties B, Cand D, was imposed). These numerical tests
failed to provide any potential counterexamples: in all cases we found 7 = r* up to numerical precision.

However, since the space of valid process matrices is so high-dimensional and our sampling method non-
uniform, we do not believe that our results on this number of samples provide enough evidence to reasonably
conjecture that the necessary and sufficient conditions coincide in this scenario.

Appendix G. Construction of witnesses of causal nonseparability through SDP

In this appendix we give some further details relating to the construction of witnesses of causal nonseparability
through SDP. Firstly, we discuss the duality of the two SDP problems given in section 4.4, showing that they are
indeed dual and that the Strong Duality theorem is satisfied. We then give some additional details on how the
characterisations of causal separability can be explicitly translated into SDP constraints in order to find witnesses
in practice, giving some explicit examples that both illustrate this and, at the same time, allow the results in
section 4.5 to be readily verified.

G.1. Duality of SDP problems

Since both the set of causally separable process matrices YW*P and its dual S = (W*P)* (or the inner and outer

approximations WP of WP arising from propositions 4 and 5 and their respective duals S+ = (W5F)*, see
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section 4.4) are convex cones, the problems of minimising the amount of white noise that must be added to
make a process matrix causally separable and finding the witness of causal separability with the most negative
value for a given process matrix can be formulated as SDP problems as in equations (37) and (38), respectively.
For these problems to be efficiently solvable with standard algorithmic techniques for SDP, however, one must
show that they have no duality gap (i.e. no difference between the optimal values of an SDP problem and its
dual). Here, we will show that equations (37) and (38) are indeed a primal-dual pair, and that the Strong Duality
theorem holds [48], implying that that their optimal solutions indeed coincide and can therefore be efficiently
obtained. This shows, in particular, that the solution to the SDP problem (38) is the optimal witness with respect
to the random robustness.

Reference [14] showed the duality of two variations of the SDP problems (37) and (38) in the bipartite case:
rather than consider the robustness to white noise of a process matrix, they considered the robustness of mixing
agiven Wwith any valid process matrix. The optimal solutions to the corresponding SDP problems give the
generalised robustness of W. Nevertheless, their approach to proving duality, and the applicability of the Strong
Duality Theorem, is easily adapted to (and even simpler for) the random robustness, and the bipartite and some
restricted tripartite versions of equations (37) and (38) were already given in [15]. The same approach can be
used in the more general multipartite case to show that these problems (considering the cones WP or WP)
satisfy the required properties. Rather than repeating these (somewhat technical and lengthy) arguments, we
instead refer the reader to appendix E of [14] and prove explicitly only the main technical lemma needed to
generalise their approach.

First, as noted already in [ 14, 15], it is sufficient just to consider the restriction SV = SN £V of witnesses in
£V . Indeed, for any S* in the orthogonal subspace (£V) of £V and any process matrix W one has
Tr[St - W] = 0,and thusforany S € & thereexists S’ € SV such that Tr[S - W] = Tr[S" - W]forall
W € V. The formulations given in equations (37) and (38) are only formally dual when YW*P and S are
considered as subsets of the vector space £/ [or when S is replaced by S in equation (38)]. However, the fact
that the restriction to SV does not change the optimal value of the problem ensures that the optimal solutions
coincide in the more general formulation.

The primary element of the proofin [14] which needs to be generalised beyond two parties is the need to
show that WW*P has a nonempty interior (within LN | see their lemma 7; we also need to check that it is pointed,
which is trivial). To this end, it is sufficient to show that the white noise process matrix I° is in the interior of
WP ie. that there exists ¢ > 0 such that forany W € £V with||W|us < e (where ||-||izs is the Hilbert—
Schmidtnorm), onehas I° + W € W5,

Recalling from appendix A.4 the characterisation of £V in terms of ‘allowed’ terms in a Hilbert—Schmidt

k
basis decomposition, let us first note that any allowed Hilbert—Schmidt term T} which contains -- -a;‘; 146- -

(with aﬁ{ = ) for some k € N is compatible with any fixed causal order where party A; comes last—i.e. that
Ti € LAw0 = <Ane-v=4 for any permutation 7, of parties such that 7 (N) = k (the same also trivially holds
for the allowed identity term V). Indeed, n-af Tk = 0Oand Afkoﬂ‘ = 0, so that equation (19) holds for any such
order. It follows thatany W € £V canbe writtenas W = ZIILI Q, where each . € LAmw < =Anw- <4 (for
some arbitrary 7, for each k); furthermore, the terms €2 can be taken to be orthogonal, so
that | W|[Es = S0 1%l fs-

Note that the €;’s may not, in general, be positive semidefinite. Nevertheless, if we take W such that

([Wias < € := N%},with dr = [lgen d 4> then each | || < [|Qflus < NLdl(where||'||isn0wthe spectral

norm), so that ﬁ]l + 4 > 0.Foranysuch W, we thus obtain a decomposition
1

N
P+ W= Z(NLH + Qk) (G1)

k=1 1

with NLdIJl + Y € PN LAw0 = =Ane-n =4 which proves that 1° + W is the sum of (valid) process matrices
compatible with fixed causal orders, and hence is causally separable: I° + W € W*P, as desired.

With this verified, the approach of [ 14] can be applied, with the appropriate modifications for the random
robustness*, to show that the required duality indeed holds and that the conditions of the Strong Duality

theorem are satisfied.

G.2. Explicit SDP constraints and example constructions

In order to characterise S more explicitly for a given scenario, as well as to solve both the primal and dual SDP
problem using convex optimisation algorithms [49], it is helpful to write YV* explicitly as intersections and
Minkowski sums of convex cones corresponding to individual constraints on causally separable process

24 Namely, one can change equations (E.3)—(E.7)in[14]to E = LY, K =W, L = {rl°lr € R},b = Wand c = Jl/ ien dA(A)» (using
their notations for E, K, £, b, ¢)and then adapt the proof accordingly.
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matrices. The duality relations (35) can then be exploited to describe S. Here we give some examples to illustrate
this procedure.

The simplest example is the bipartite scenario. From the definition in equation (3) we see that
Weeb = WA=B L WB=4 where WA=B = PN L4=8 and similarly for WWB=4. Using equation (19) to write
L£A=B and £8=4 in terms of spaces defined by individual linear constraints, or directly referring to proposition 2,
we see that

WP =P 0 Ly—aoiso NV Lu-pol + PN Li—poja N Li-aop (G2)
with ’C[I*A()]Blo = {We AIOBIOI[lon]BIOW =0}, ’CU*BO] = {We AIOBIO|[lfBo]W = 0}, etc. It follows that
S= W =P+ Lii_agso + Lii-so) NP+ Lii_poiae, + Lii—ao)> (G3)

where we used the fact that P is self-dual, and where Eﬁ —AolB = 1S € AoBiolii-a01B,S = S}isthe
orthogonal subspace of Ly _ 4,15, Eﬁ _Bo) = {S € AoBolj1-B,)S = S}is the orthogonal subspace of Ly, _p,,
etc.

Note that a slightly different, but equivalent, characterisation was given for the bipartite scenario in [14, 15].
Although their formulation is slightly simpler, we choose to give the above form as it shows more clearly the
procedure of obtaining explicit SDP characterisations from the characterisations of causally separable process
matrices given in the main text, and it generalises more directly to the multipartite scenario.

The next simplest case is the tripartite scenario with d¢, = 1. In this case, causally separable process matrices
are characterised by proposition B3, from which it follows that

WP =P N0 Ly-aglboc N Lu-soic + PN Li—polane N Li-agco (G4)
with similar notations for L1 _ 4,18, £1-Bo]c;» €tc as before. Similarly to the bipartite case, this leads to
1 L 1 1
S=P+ Lii agoc T Lit-soc) P+ Li poiana + Lii-amc)- (G5)

We note again that two slightly different, but once again equivalent, characterisations were given in [14, 15] for
this particular tripartite case.

In the tripartite scenario with d 4, = 1instead (as, e.g. in the example of ‘activation of causal nonseparability’
given by Oreshkov and Giarmatzi [17]), proposition B4 leads to

WP = Lii—aolBioco NP N Lii-poico N Lii-col +P N Lii—colo N Li1-oll- (G6)
It follows that
S= L[Llon]BmClo + P+ L[LI*BO]CIO + ‘C[LI*CO]) NP + E[Ji*CO]BIO + L[LI*BO])' (G7)

In the general tripartite case, the characterisation of proposition 3 shows that we can write YW as

WP = Li—agiBiocio (PN Lii—poico N Lu—col +P N Lii—colo N Lii—o)
+ Li-Bolanco NP N Li-agico N Lii—col P N Li—colan N Li—ao)
+ Li—colanbo NP N Li—aoise N Li-sor +P N Li-polae N Lii-ao) (G8)

from which it follows that cone of witnesses is

S = Lii-agsoco + P+ Lit-pgco + Lii-co) NP+ Lii—coso + Lii-sa)
n (ﬁ[Ll*Bo]Aloclo + (7) + ‘C[llon]Cm + [’[LI*CO]) ﬂ(P + ‘C[LI*CO]AIO + ‘C[llon]))
N (Lt coanto + P+ Lit—aobe T Lit-so) NP+ Lii-pojap + Lii-ag)- (G9)

Finally, in the fourpartite scenario with d 4, = dp, = 1(as, e.g. in the version of the quantum switch in
equation (40)), proposition B7 leads to

WP = L aiboconr NP OV Lu-soicop, N £n-con, +P N Ly corson; N Lii-soini] (G10)

and
S= Lii-agsocon; + P+ Lii-pocep, + Lii-cop) WP + Lii_copon, + Lii-poip)- (G11)

Once again, for more general scenarios it remains an open question whether the necessary and sufficient
conditions of propositions 4 and 5 coincide. Nonetheless, the same approach here can be applied to our
necessary condition, which defines the cone WP that is an outer approximation of YW, to characterise a
subset S, of causal witnesses. Solving the dual SDP problem (38) over this set allows one to find valid witnesses
of causal nonseparability for a given process matrix W, even though (without proof that the necessary and
sufficient conditions coincide) such a witness may not be optimal amongst the full set of causal witnesses S.
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