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Using spreadsheets to teach probability in French high school 
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Including a ‘frequentist’ point of view has resulted in experimentation becoming an important issue 

in the teaching of probability in high school. Spreadsheets are now widely used, but the status of the 

results produced and how to use them are not always clear for the students, since two domains are 

at play in turn: statistics and probability. Through the French example – but this can also be applied 

to the teaching of probability in other countries − this paper reviews some questions about 

spreadsheets, namely simulating random experiments and shifting from discrete to continuous 

distributions.  
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In France as in many other countries, probability has become a prominent subject in the teaching of 

mathematics, in link with the growing importance of numerical data in everyday and professional life 

and the development of technologies allowing to process them. Conversely, the point of view on 

probability has evolved, taking into account a ‘frequentist’ point of view implying students making 

experiments. Among the technological tools spreadsheet has become much used in the teaching of 

probability, the main reason being that it makes getting a large number of tries of a random experiment 

very easy and fast. This paper is based on the French current situation, but it certainly can apply to 

many other countries all over the world. Its aim is to give some insights on how new didactic questions 

have occurred and have now to be tackled by teachers in their classes. As it has already been noticed, 

“it is not good enough to only consider which technology to use, but (…), in order for effective 

learning to take place, it is how the technology is integrated into the curriculum and learning process 

and how the teacher uses it that are vital” (Pratt, Davies & Connor, 2008, p. 98), the more so that 

“most teachers have little experience with probability and share with their students a variety of 

probabilistic misconceptions” (Batanero et al., 2005, p.1). I shall discuss some questions about the 

use of spreadsheet in high school, namely: 

- the nature of simulation, implying using a model of the random experiment and making in turn 

intervene probabilistic and statistical paradigms; 

- possible purposes of a simulation: visualize the law of large numbers, make conjectures, bring out 

the notion of stochastic model, help solving probability problems… 

- the suitability of spreadsheet for introducing continuous distributions (exponential, Gaussian…). 

For this, I shall use a theoretical framework including Kuzniak’s Mathematical Working Space 

(MWS), Kuhn’s paradigms and Duval’s semiotic registers.  

Theoretical framework 

In order to get a holistic view of the work undertaken by somebody solving a mathematical problem, 

one has to take into account not only the domains at play but also the cognitive processes involved. 

The Mathematical Working Spaces, or MWS, framework (Kuzniak, 2011) considers two “planes” 

−epistemological and cognitive−, each one having three components: 



- in the epistemological plane: a set of representations (‘real space’), a set of artefacts (instruments) 

and a theoretical reference system; 

- in the cognitive plane, three processes: visualization, construction and proof 

An important feature of the model is the interaction between these two planes according three 

dimensions, semiotic, instrumental and discursive, linking each component of one plane to a 

corresponding component of the other (Figure 1). The model also assumes that efficient mathematic 

work results from involving the 3 dimensions together with interactions between them. 

 

Figure 1: The MWS model (after Kuzniak, 2011) 

Kuzniak distinguishes 3 main MWSs: 

- reference MWS, defined by the syllabus, 

- suitable MWS, planned by the teacher to be implemented in his/her class, 

- personal MWS of the student. 

Kuhn (Kuhn, 1962) defined scientific paradigms as "universally recognized scientific achievements 

that, for a time, provide model problems and solutions for a community of researchers," (page X of 

the 1996 edition). This notion was adapted by Kuzniak to taught mathematics, regarding the 

epistemological plane. In the case of probability several paradigms can be distinguished (Parzysz, 

2011): 

- a realistic paradigm (R), i.e. the real (‘concrete’) random experiment itself; 

- a paradigm (P1) resulting from a first (“light”) modelling of the real experiment by establishing 

a precise protocol, a list of issues and assigning a probability to each of them; 

- a paradigm (P2), in which notions of random experiment and probability are defined, together 

with properties of probability which can be used for solving problems. 

- a paradigm (P3) of the axiomatic type, taught in university. 

N.B. In France, at secondary level, only P1 and P2 paradigms are considered, the latter being possibly 

extended with some elements of calculus at the end of high school  (P2+) for the study of continuous 

distributions. 

Regarding the semiotic dimension I shall refer to the notion of ‘semiotic register’, i.e. a coherent 

semiotic system allowing 3 cognitive activities: produce identifiable elements (representations), 

transform an element into another of the same register, convert an element into an element of another 

register (Duval, 1995). For Duval, a better knowledge is obtained through the use of several registers 

interacting one with another. He also indicates that the shift from one representation to another one 



is more efficient when there is a ‘semantic congruence’ between them, i.e. when there is a one-to-one 

correspondence between signifying elements of the two representations. 

Simulation 

In the beginning of its being studied in high school, probability was taught as an application of 

combinatorics, through Laplace’s formula (probability = number of favorable issues / number of total 

issues). This ‘cardinalist’ point of view implies that all the issues have the same chance to appear, 

and then other random phenomena had to be left aside. For instance this is the case for drawing pins: 

when tossed, they may come down in two ways, like coins, but no argument of symmetry can help 

and one cannot assign a plausible a priori probability to each of them. In such a case you have to 

observe the relative frequencies of the issues, assuming that they will ‘converge’ toward their 

probability when the number of tries grows ‘to infinity’. This is the ‘frequentist’ point of view, 

theorized by the law of large numbers. This point of view was introduced in French high school 20 

years ago. Anyway, whatever is the point of view on probability, one has to decide which probability 

will be allocated to each issue of the experiment, the difference being that the decision is made: 

- either on a priori ground (e.g. ‘symmetry’ of the issues) in a cardinalist approach; 

- or on a posteriori ground (frequencies of the issues) in a frequentist approach. 

In past days, teachers were reluctant to let their students perform sequences of a random experiment, 

mostly because it was noisy and requested too much time, but the coming of computers in classrooms, 

namely spreadsheet including a so-called ‘random’ generator (see for instance Kroese et al., 2011), 

provided them with an alternative path (although starting with real experimentation remains necessary 

to materialize the link with reality). Spreadsheet is now widely used to simulate random experiments, 

with various purposes. 

1) Spreadsheet can be used to visualize the compatibility of the cardinalist and frequentist points of 

view, and finally get the students confident in the generator. For this purpose one has to introduce 

into the machine a probability for each issue. Then the evolution of the relative frequencies on fairly 

large numbers of tries can be observed (Figure 2), this process being in fact a visualization of the 

‘law’ of large number (belonging to the P3 paradigm). 

 

Figure 2: Relative frequencies of heads in 1000, 2000, …50000 tries of heads and tails  

Thus performing a simulation implies constructing at least a simple probabilistic model (within the 

P1 paradigm), in order to implement it in the machine. Hence simulation is a ternary process: what is 

implemented in the software is not the real experiment but a theoretical model of it (Figure 3). 
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Figure 3: The ternary process of simulation 

In such a task several registers are appealed to in turn: natural language, symbolic language (software) 

and Cartesian graphs. The semiotic-instrumental plane of the MWS is at play, involving the initial P1 

paradigm (finding a model of the experiment), then shifting to another paradigm: descriptive statistic 

(DS) (results of the simulation). It is only when a conjecture about the experiment is asked that the 

discursive dimension appears (within P2 paradigm). 

Both as teacher and teacher trainer, I could observe that some students find it difficult to distinguish 

between statistical and probabilistic paradigms (the more so than some notions are similar), somewhat 

analogous with geometrical paradigms.  Here, like with GDS, the dynamic feature of spreadsheet, 

allowing an easy and fast observation of many samples −and consequently many different results 

(Figure 4)−, can help distinguishing the P2 paradigm (theoretical value) from SD (observed value).  

But French textbooks do not put the stress on the distinction between the two domains, in particular 

using the notions in a very loose way (e.g. confusion average / expectation), this probably reflecting 

actual teaching in classrooms. Similarly, about the instrumental dimension a tendency of textbooks 

to ‘overguide’ the students, in order to help them deal with the software, must also be noticed. 

 

Figure 4: Relative frequencies of heads in 50 samples of 100 tries of heads and tails 

2) Simulation can also be used to estimate the value of a probability. For instance, if various models 

of a same experiment give different probabilities for a given event, a simulation mimicking the 

concrete experiment can tell which model(s) can be discarded. This is the case with the following 

problem, which was the basis of an action research with high school students introducing the 

frequentist approach (Parzysz, 2007): 

Toss a well-balanced coin; if head (H) happens you win and if tail (T) happens you toss the coin 

again; then if H happens you win and if T happens you lose. What is your probability of winning? 

In 1754, Jean Le Rond d’Alembert thought that one has 2 chances against 1 to win, at variance with 

“all authors” claiming that one has 3 chances against 1; Mimicking the process with spreadsheet leads 

to some difficulty, since one has to distinguish between the two possible results of the first toss. For 

an easier implementation in the computer the teacher may decide that the coin would be tossed in 

every case. From a probabilistic point of view the two processes are equivalent but all students are 

not convinced. (Historically, a similar argument opposed Blaise Pascal with Gilles Roberval in 1654). 
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The reason for such a reluctance is that the second process is not semantically congruent with the real 

experiment. 

Table 1 shows the corresponding spreadsheets. 

Try n° 1st toss Again? 2nd toss Result 

1 H no  won 

2 T yes H won 

3 T yes T lost 

4 T yes T lost 

5 T yes H won 

6 H no  won 

7 H no  won 
 

Try n° A coin B coin Result 

1 H T won 

2 T H won 

3 H T won 

4 T T lost 

5 H T won 

6 T T lost 

7 T H won 
 

Table 1: Spreadsheets of the two simulations 

 When comparing the sheets, one can see that putting anything (H or T) in the empty boxes of the left 

sheet has no influence on the final result. After that one can forget the “Again?” column and have a 

second toss in all cases, i.e. replace the initial procedure by the second one without any inconvenience 

(Figure 5). 

 

Figure 5: From experiments to model 

Thus a visual comparison within the register of double entry tables, in the semiotic-discursive plane, 

can be a means for deciding if two models are equivalent. And for younger students this can be a 

possible path towards the bnotion of stochastic model. 

3) A most widespread type of activity in French 10th and 11th grades describes a random experiment 

and then asks the student to simulate it a number of times with the spreadsheet, observe the results 

and formulate a conjecture about the probability of one of the issues or the possible value of a 

parameter. Then he/she is asked to solve the problem using the probability theory and compare the 

theoretical results with the initial conjecture. 

In this process several paradigms are at play. As seen above, starting from reality (R), the student 

shifts to probability (generally P1), then moves to descriptive statistic (DS) to extract information 

from the spreadsheet (frequency, mean, etc.) and back to P1 to formulate a conjecture; solving the 

problem within P2 will imply the discursive dimension (Figure 6). 

N.B. In such activities the spreadsheet is used as a multi-purpose tool: it intervenes in turn as logica l 

tool (instructions for software), random generator (simulation), copying machine (results of tries), 

calculator (statistical parameters) and plotter (diagram). 



 

Figure 6: The paradigms and processes involved in the activity 

Continuous distributions 

N.B. This point is based on a recent research (Derouet & Parzysz, 2016). 

The French syllabus for 12th grade includes an introduction to continuous probability laws, and the 

official resource document for that level suggests starting with a statistical continuous variable, in 

order to approximate the histogram of a sample by a continuous curve “which fits the histogram, the 

area under the curve being equal to 1”. The general idea is to link a random variable X, not with a set 

of isolated probability values as was previously the case, but with a function f  (density) verifying : 

P(a ≤ X ≤ b) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 for any a and b with a ≤  b. This modelling process, which seems quite 

sensible, implies also a shift from statistics (DS paradigm) to probability (here P2+) and an essential, 

though transitional, point is histogram. This rises a difficulty, since spreadsheet cannot produce 

histograms, or rather what it calls histogram is in fact a bar chart. In order to overcome this problem 

one may widen the bars till they become contiguous (Figure 7), but this trick is restricted to cases in 

which all intervals have the same width. But the notion of density gets sense only with unequal 

intervals, since in a histogram the basic notion is area, not height. Thus in this case spreadsheet 

appears to be of no help if the software does not permit producing real histograms.  

 
 

Figure 7: From bar chart to pseudo histogram 

This same syllabus includes the study of normal law and recommends introducing the standard law 

N(0, 1) from the observation of the distribution of Zn= 
𝑋𝑛−𝑛𝑝

√𝑛𝑝(1−𝑝)
, where Xn follows the binomial law 

B(n, p). Then the bar chart for Zn is approximated by the curve of a function of the x → λ.exp(-ax2) 

type. As above a shift from discrete to continuous law occurs, but this time spreadsheet can help since, 

contrary to the general case, the values of Zn are equidistant (the distance being 1 √𝑛𝑝(1 − 𝑝)⁄  ) and 

then a pseudo histogram is suitable. 

All textbooks follow this scheme, in which three types of diagrams are at play in turn: first bar chart 

(for Zn), then pseudo histogram, then bell curve. Spreadsheet is necessary at every stage of the process, 

first to get the values of P(Xn = k) for 0 ≤ k ≤ n) and various values of n and p, then the corresponding 
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bar charts of Zn, then its pseudo-histogram and finally the (pseudo-)curve of the standard normal law 

(in fact a polygon). The main difficulty comes from the histogram and the curve looking proportional 

but not equal (Figure 8) because the distance between the values of Zn is different from 1 (see above). 

  

Figure 8: Pseudo-histogram and pseudo-curve 

This problem of scale is tackled rather awkwardly in textbooks, as is the standardization of the 

binomial variable. However, the question appears when one wants to compare the shapes of the bar 

charts for several binomial distributions (Figure 9); one may then think of a ‘calibration’, i.e. changing 

the units on the axes, in order to get diagrams with the same average and height. 

 

Figure 9: Comparison of binomial distributions (B(100, .1) and B(50, .4)) 

In the process the semiotic and instrumental dimensions of MWS are much appealed to, but the 

discursive dimension is not much present, due to the students’ lack of knowledge. 

Conclusion 

The current French high school curriculum starts with descriptive statistics (from 6 th grade on) and 

later goes on with probability (at 9th grade), introduced through a dual, frequentist and cardinalis t, 

point of view involving several mathematical paradigms (DS, P1, P2, P2+). Experimentation has 

become a central issue in teaching probability and in this process spreadsheet extends real tries, for 

the reason that it is incomparably faster once its use (language, gestures) is mastered. It is now 

included in the semiotic-instrumental plane of the MWS and can play an important role in many ways 

and for multiple purposes. Some points are of importance for teaching with simulation, namely pay 

attention to the model subjacent to the ‘real’ random experiment (even when it does not clearly 

appear), help students distinguish between the statistical and probabilistic paradigms, bring out the 

idea of stochastic model…  When coming to continuous probability a sensible way to introduce it 

consists of approximating a histogram by a continuous curve. Unfortunately usual spreadsheet cannot 

produce general histograms –i.e. with unequal classes− but only bar charts, becoming possibly 

‘pseudo histograms’, and histograms should have to be produced with another software. However 

class experimentation showed that a pseudo histogram may prove useful as a transitory artefact in the 

particular case of shifting from binomial to normal law. 

On the whole, although spreadsheet was not conceived for educational but for professional purposes, 

it has now become a quite appreciable, if not indispensable, tool for the teaching of probability in 

high school. 
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