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Abstract 
In this paper, we advocate the use of uncompressed form of i-
vector. We employ the probabilistic linear discriminant analysis 
(PLDA) to handle speaker and session variability for speaker 
verification task. An i-vector is a low-dimensional vector 
containing both speaker and channel information acquired from 
a speech segment. When PLDA is used on i-vector, dimension 
reduction is performed twice – first in the i-vector extraction 
process and second in the PLDA model. Keeping the full 
dimensionality of i-vector in the supervector space for PLDA 
modeling and scoring would avoid unnecessary loss of 
information. The drawback of using PLDA on uncompressed i-
vector is the inversion of large matrices, which we show can be 
solved rather efficiently by portioning large matrix into smaller 
blocks. We also introduce the Gaussianized rank-norm, as an 
alternative to whitening, for feature normalization prior to 
PLDA modeling. 
Index Terms: speaker verification, i-vector, probabilistic LDA 

1. Introduction 
Over recent years, many approaches based on the use of 
Gaussian mixture models (GMM) in a GMM-UBM framework 
[1] have been proposed to improve the performance of speaker 
verification system. Inspired by the joint factor analysis (JFA) 
approach  [2, 3], it was shown in [4] that the problem of session 
variability can be coped with by confining the variability within 
a low-dimensional subspace, referred to as the total variability 
space, in the parameter space of GMM.  

The idea of defining a total variability space is to extract low 
dimensional identity vectors (the so-called i-vectors), by which 
speech segments of variable-length can be represented as fixed-
length vectors [4]. Such a representation greatly simplifies the 
modeling and scoring processes in speaker verification. For 
instance, we could assume that the i-vectors are generated from 
a Gaussian density instead of the mixture of Gaussian densities 
usually considered for the case of acoustic features [1]. In this 
regard, linear discriminant analysis (LDA) [4], probabilistic 
LDA (PLDA) [5], and the heavy-tailed PLDA [6] have shown to 
be effective for such fixed-length data. In this paper, we shall 
focus on PLDA with Gaussian prior instead of heavy-tailed prior 
as it was recently shown in [7] that the advantage of the heavy-
tailed assumption diminishes with a simple length-normalization 
on the i-vector preceding PLDA modeling.  

Since the total variability space is always spanned by a low-
rank rectangular matrix, a dimension reduction process is also 
imposed by the i-vector extractor. In this paper, we advocate the 
use of uncompressed form of i-vector. Similar to that in [4], our 
extractor converts speech sequence into fixed-length vector, but 
retains its dimensionality in the full supervector space. Modeling 

of speaker and session variability is then carried out with PLDA, 
which has shown to be effective in handling high-dimensional 
data [5]. By doing so, we avoid reducing the dimensionality of 
the i-vector twice – first in the extraction process and second in 
the PLDA model. Any dimension reduction procedure will 
unavoidably discard information. Our intention is therefore to 
keep the full dimensionality till the scoring stage with PLDA 
and to investigate the performance of PLDA in the supervector 
space. 

The downside of using uncompressed form of i-vector (we 
call this i-supervector hereafter to avoid confusion) with PLDA 
is that we have to deal with large matrices. The size of the 
matrices becomes enormous when more sessions are available 
for each speaker in the development data1. One option is to 
estimate the subspaces in a decoupled manner, which might lead 
to suboptimal solution [2, 3]. In this paper, we show how the 
subspaces can be jointly estimated by partitioning large matrices 
into sub-matrices, thereby making the matrix inversion and the 
joint estimation feasible. A significant advantage of PLDA 
approach for speaker verification is the use of Bayes factor [8] in 
computing the verification score. In this regard, we show how to 
manipulate large matrices efficiently in computing the PLDA 
score. In addition, we also look into various normalization 
methods and introduce the use of Gaussianized rank-norm for 
PLDA.  

The paper is organized as follows. In Section 2, we look at 
the scenario where dimension reduction is performed twice when 
PLDA is used on i-vector. Section 3 shows that inversion of 
large matrices encountered in PLDA can be solved by exploiting 
some inherent structure of the matrices. Section 4 deals with 
PLDA scoring and introduces the Gaussianized rank norm. We 
present some experimental results in Section 5 and conclude the 
paper in Section 6.  

2. PLDA for i-vector and i-supervector 

2.1. From i-vector to i-supervector 

An i-vector represents a variable-length speech utterance as a 
low-dimensional vector (low as compared to the dimensionality 
of the mean supervector). The generative equation is given by 
  �m Tx% , (1) 
where m  and %  are the mean supervectors of the speaker (and 
session) dependent GMM and the UBM, respectively. The 
subspace spanned by the columns of the matrix T captures the 
speaker and session variability (hence the name total variability). 

                                                                 
 
1 The number of sessions is usually limited in face recognition 
for which PLDA was originally proposed in [5]. 



The latent variable x  is taken to be a low-dimensional random 
vector with a standard normal distribution. For each observation 
sequence 0, the i-vector is given by the posterior mean I  of the 
latent variable x , i.e., ^ `|E I x 0 . Since T is always a low-
rank rectangular matrix, the dimensionality D of the i-vector is 
much smaller compared to that of the supervector, i.e., 
D C Fu� . Here, F is the dimensionality of the acoustic feature 
and C is the number of mixture in the GMM. 

Consider the case where we allow the latent variable to grow 
into the full supervector space, in which D C F u . The 
generative equation is now given by 
  �m Dz% . (2) 
Similar to that in (1), the i-supervector is taken as the posterior 
mean of the latent variable: ^ `|E I z 0  . The difference here is 
that D is a CF-by-CF diagonal matrix so that the i-supervector 
has the same dimensionality as the mean supervector m. The i-
supervector extractor can easily be implemented by adopting the 
diagonal model in JFA [2, 3] with a slight modification. The 
matrix D is trained per utterance instead of per speaker basis in 
order to capture both speaker and session variability. 

2.2. PLDA 

The advantage of i-vector and i-supervector representations is 
that they represent a speech segment as a fixed-length vector 
instead of a variable-length sequence of vectors. Let i jI  be a 
fixed-length vector representing the j-th session of the i-th 
speaker with the assumption that each speaker has multiple 
sessions in the development set. Taking i jI  as input, PLDA 
assumes that it is generated from a Gaussian density, as follows     

 � � � �T T| ,i j i jp I I � �μ F F GG Σ& , (3) 

where μ  denotes the mean vector and T T � �Γ F F G G Σ  is the 
covariance matrix.  

The modeling capability of PLDA is determined by the 
structured modeling of the covariance Γ . To understand this, 
we rewrite (3) in the form of marginal density, as follows 

 � � � � � � � �| ,ij ij i ij i ij i ijp p p p d dI I ³³ h w h w h w , (4) 

where the conditional and prior densities are given by 
 � � � �| , | ,i j i i j i i jp I I � �h w μ Fh Gw Σ& , (5) 

 � � � �0,ip  h I& , (6) 

 � � � �0,i jp  w I& . (7) 

In the above equations, ih  is the speaker-specific latent variable 
pertaining to the i-th speaker, while i jw  is the session-specific 
latent variable corresponds to the j-th session of the i-th speaker. 
The low-rank matrices F and G are used to model the subspaces 
pertaining to speaker and session variability, while the diagonal 
matrix Σ  mops up the remaining variability. Looking at (5), the 
mean of the conditional distribution is given by 

 ^ ` > @ TT T| ,i j i i j i i jE I ª º � ¬ ¼h w μ F G h w . (8) 

Comparing (1) and (8), we see that both i-vector extractor and 
PLDA model involve dimension reduction via similar form of 
subspace modeling. This observation motivates us to explore the 
use of PLDA on i-supervector in the original supervector space. 
The extraction process serves as the front-end which converts a 
variable-length sequence 0 to a fixed-length vector without 
reducing the dimension.  

3. Joint-estimation of posterior means 
We estimate the parameters ^ `, , ,μ F G Σ  of the PLDA model 
using the expectation maximization (EM) algorithm. To this end, 
we assume that our development set consists of speech samples 
from N speakers each having J number of sessions. Notice that 
the number of sessions J could be different for each speaker. In 
the E-step, the inference of the posterior means involves the 
inversion of the precision matrix L, as shown below: 
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The matrix is large as we consider the joint inference of latent 
variables representing the speaker, ih , and for all sessions ^ ,1iw , 

,2iw , `,, i Jw!  from the same speaker. The size of the matrix 
increases with the number of sessions J, though more sessions is 
always desirable for more robust estimation of parameter. 

The matrix L possesses a unique structure since all sessions 
from the same speakers are tied to one speaker-specific latent 
variable. As shown in (9), the matrix L can be partitioned into 
four smaller blocks. Let A, B, C, and Φ  denotes the four sub-
matrices, the inverse is given by 

    
1 1

1
1 1 1 1

� �
�

� � � �

ª º�ª º
  « »« » � �¬ ¼ ¬ ¼

A B M MBΦ
L

C Φ Φ CM Φ Φ CMBΦ
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Inversion of Φ , in the left hand side of (10), is simple as it is 
block diagonal. Let � � 1T 1 �� �Q G Σ G I  and T 1� Λ QG Σ F , the 
sub-matrix M is given by 

 � � 1T 1J
��ª º � �¬ ¼M F Σ F GΛ I . (11) 

Using above results, it can be shown that the posterior means of 
the speaker and session specific latent variables are given by 

 > @ T 1 T T 1
1 1

J J
i i j ijj j

E I I� �
  

ª º ª ºc c �¬ ¼ ¬ ¼¦ ¦h M F Σ MΛ G Σ , (12) 

 � � > @T 1
i j i j iE EI� cª º  �¬ ¼w Q G Σ Λ h , (13) 

where i j i jI Ic  �μ
 
denotes the i-vectors or i-supervectors 

centralized with the global mean � � ,
1 i ji j

NJ I ¦μ .  
Similarly, the M-step can also be formulated in terms sub-

matrices. Let T
i j i i j

7 7ª º ¬ ¼w h w�  by appending ih  to each session 
i jw  belonging to the same speaker. We update the PLDA model, 

as follows: 
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The second-order moment in (14) is obtained for each individual 
session of all speakers, as follows 

 T
i j i j i j i jE E E

7
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7
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Notice that in  (14), the subspaces F and G are estimated jointly, 
whereby the correlation between speaker and session variability 
are considered. 



4. PLDA verification score  
Given two i-supervectors (or i-vector) ^ `1 2,I I  that correspond 
to the train and test segments, respectively, the verification score 
is calculated as the log-likelihood ratio between two hypotheses 
{H0, H1}: 

 � � � �1 2 0 1 2 1log , | log , |s p H p HI I I I � . (17) 

Here, 0H  and 1H  correspond to the models as shown in Fig. 1. 
The model 0H  hypothesizes that ^ `1 2,I I  belong to the same 
speaker and hence share the same speaker-specific latent 
variable 1,2h . On the other hand, the model 1H  hypothesizes 
that they belong to different speakers and hence have separate 
latent variables 1h  and 2h . The solution for (17) can be given 
by  

� � � � � � � �
2T2 21 T 1

1 1
1

1 12
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l
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ª º ª ºcc cc cc cc � � � �¬ ¼ ¬ ¼¦ ¦ ¦K K (18) 

where K is a constant consisting of the determinant of matrices, 
which diminishes when score normalization is applied. The 
other two variables are defined as follows: 

 � � 1T �7 �K F GG Σ F , (19) 

  � � � �1T
l lI I

�7cc � �F GG Σ μ . (20) 

The matrix inversion � � 1T �
�GG Σ  can be solved using the 

matrix inversion lemma, as follows 

 � � � �1 1T 1 1 T 1 T 1� �� � � ��  � �GG Σ Σ Σ G G Σ G I G Σ . (21)  

Notice that in (20), the centralized vector is projected onto the 
subspace F where speaker information co-vary the most (i.e., 
dimension reduction), while de-emphasizing the subspace 
pertaining to channel variability. Notice that the transformation 
matrix � � 1T �7 �F GG Σ , in (19) into (20), should be computed by 
multiplying 7F  to the right-hand-side of (21).  

Another prerequisite for good performance with PLDA is 
that the i-supervectors have to follow a normal distribution, as in 
(3). It has been shown in [7], for the case of i-vector, that 
whitening followed by length normalization help toward this 
goal. However, whitening is not feasible for i-supervector due to 
data scarcity. To this end, we propose in this paper a 
Gaussianized version of rank norm [9]. The i-supervector is 
processed element-wise with warping functions mapping each 
dimension to a standard Gaussian distribution (instead of 
uniform distribution as in rank norm). To put it mathematically, 
let � �m

iI , 1, 2, ,m CF ! , denotes the elements of the i-
supervector lI . We first get the normalized rank of � �m

lI  with 
respect to a background set � �mB , as follows 

 � �
� � � �^ `

� �

:m m
lm

m

b B b
r

B

I� �
 , (22) 

where �  denotes the cardinality of a set. The Gaussianized 
value is then obtained by using the inverse CDF of a standard 
Gaussian distribution (i.e., the probit function), as follows 

 � � � �� �12 erf 2 1m m
l rI �m � , (23) 

where � �1erf � �  denotes the inverse error function. This can then 
be followed by length normalization prior to PLDA modeling. 

5. Experiment 
Experiments were carried out on the core task (short2-short3) of 
NIST SRE08. We use two well-known metrics in evaluating the 
performance, namely, equal error rate (EER) and minimum 
detection cost (MinDCF). Two gender-dependent UBMs 
consisting of 512 Gaussians were trained using data drawn from 
the SRE04. Speech parameters were represented by a 54-
dimensional vector of mel frequency cepstral coefficients 
(MFCC) with first and second derivatives appended. 

The total variability matrix T in (1) and D in (2) were both 
trained with similar set of data drawn from Switchboard, SRE04 
and SRE05. We use 500 factors for T, while D is a diagonal 
matrix by definition. The dimensionality of i-vector is therefore 
500, while i-supervector is of dimensionality CF = 27648. The 
rank of the matrices F and G in the PLDA model is set to 300 
and 200, respectively, for the case of i-supervector. For i-vector, 
best result is found with the rank of F set to 300 and using a full 
matrix for Σ , in which G is no longer required. This 
observation is consistent with that reported in [6]. 

5.1. Feature and score normalization  

The first set of experiments is to investigate the effectiveness of 
different normalization methods on i-vector and i-supervector 
prior to PLDA modeling (i.e., length normalization, whitening 
and Gaussianized rank norm) and on the score (we used s-norm 
as reported in [6]). For simplicity, we used only telephone data 
and report the results on det6 (i.e., tel-tel subtask) in 
TABLE I. Length normalization (len) always outperforms raw 
for both i-vector and i-supervector. Whitening followed by 
length normalization (white+len) further improves the 
performance for i-vector. Similarly in the case of i-supervector, 
we used Gaussianized rank-norm followed by length 
normalization (grank+len) to cope with the high 
dimensionality. Finally, we also notice that s-norm gives 
consistent improvement for both i-vector and i-supervector.  

Without any normalization (raw) i-supervector performs 
better than i-vector. One possible reason is that the Gaussian 
assumption in (3) can be better fulfilled in the supervector space 
with higher dimensionality compared to that of the i-vector. 
However, after applying a full normalization (white 
+len+snorm, grank+len+snorm), i-vector outperforms i-
supervector. This is consistent for both MALE and FEMALE 
sets in terms of EER and MinDCF. Notice that i-vector gain 
huge improvement from length normalization. For the MALE 
case, we observed 20.0% and 6.5% of relative improvement in 
EER when length normalization was applied on i-vector and i-
supervector, respectively. One avenue to explore for i-
supervector is a better normalization method beside length 
normalization and Gaussianized rank-norm.    

 
Figure 1: PLDA for verification task. The null hypothesis H0 states 
that the observations ^ `1 2,I I  are from the same speakers. The 
alternative hypothesis states that they are from different speakers. 

1,2h 1h 2h

1I2I1I 2I

0 :H 1:HSame speaker Different speakers



5.2. Performance comparison 

We compared the performance of i-supervector and i-vector 
using JFA as baseline and under different train-test channel 
conditions, namely, det1 (int-int), det4 (int-tel), det5 
(tel-mic) and det6 (tel-tel) as defined in NIST SRE08 
short2-short3 core task. The PLDA models used for i-vector and 
i-supervector were the same as described in Section 5.1. In 
addition, we included microphone data (drawn from SRE05 and 
SRE06) for the whitening transform, Gaussianized rank-norm 
and s-norm to handle the interview (int) and microphone (mic) 
channel conditions. The JFA was trained as follows. The 
eigenvoice loading matrix (with 300 factors) was train on 
telephone data drawn from Switchboard. The eigenchannel 
loading matrix (with 150 factors) was trained using both 
telephone and microphone data drawn from SRE04, SRE05 and 
SRE06. Finally, the diagonal model was trained using telephone 
data drawn from SRE04. 

TABLE II shows the results when full normalization (i.e., 
white+len+snorm for i-vector, grank+len+snorm for i-
supervector, and zt-norm for JFA) was applied. Here, we 
consider the EER and MinDCF by pooling together the male and 
female scores. Similar to the observation in Section 5.1, i-vector 
gives better performance than i-supervetor for the case with full 
normalization, except in det5 where i-supervector gives a much 
lower EER though the MinDCF is slightly worse. This again 
shows that current normalization strategy (Gaussianized rank-
norm followed by length normalization) thought effective, has to 
be further improved. Compared to the JFA baseline, PLDA 
methods (both i-vector and i-supervector) give competitive 
performance with slightly lower EER and MinDCF in det4, 
det5 and det6.  

6. Conclusions 
We have introduced the use of uncompressed form of i-vector 
(i.e., the i-supervector) for PLDA-based speaker verification. 
Similar to i-vector, an i-supervector represents a variable-length 
speech utterance as a fixed-length vector. But different from i-
vector, we keep the total variability space having the same 
dimensionality as the original supervector space. To this end, we 
showed how manipulation of large matrices can be done 
efficiently in training and scoring with the PLDA model. We 
also introduced the use of Gaussianized rank-norm for feature 
normalization prior to PLDA modeling. 

Compared to i-vector, we found that i-supervector performs 
better when no normalization (on both feature and score) was 
applied. This suggests that Gaussian assumption imposed by 
PLDA becomes less stringent and easier to fulfill in the higher 
dimensional i-supervector space. However, the performance 
improvement given by the high dimensionality diminishes when 
full normalization is applied. As such, current normalization 
strategy, though effective, has to be improved for better 
performance. This is a point for future work. Finally, it is also 
evident that PLDA methods based on i-vector or i-supervector 
give competitive performance compared to the state-of-the-art 
JFA. 
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TABLE I: Performance comparison of various normalization methods 
on i-vector and i-supervector evaluated on NIST SRE08, det6 subtask 
of short2-short3. 

I-VECTOR 
MALE FEMALE 

EER MinDCF EER  MinDCF
raw 6.1785 3.1206 8.1486 3.7028 
len 4.9411 2.6286 6.4409 3.0581 
white+len 4.5458 2.4546 6.3193 3.0065 
white+len+snorm 4.3478 2.2155 6.1530 3.0034 

I-SUPERVECTOR 
MALE FEMALE 

EER MinDCF EER  MinDCF
raw 5.2632 2.6605 6.7976 3.3368 
len 4.9199 2.6271 6.3667 3.3624 
grank+len 4.8982 2.6676 6.0976 3.2588 
grank+len+snorm 4.5888 2.3737 6.2639 3.1132 
 
TABLE II: Performance comparison under various train-test channel 
conditions: det1, det4, det5 and det6 subtasks of short2-short3, 
NIST SRE08. 

 
det1 (int-int) det4 (int-tel)

EER MinDCF EER MinDCF
i-vector 7.2964 3.5189 5.7919 2.7576 
i-supervector 7.8769 3.6724 5.9421 3.0541 
JFA 7.1404 3.7991 7.6815 3.0350 
 

 
det5 (tel-mic) det6 (tel-tel)

EER MinDCF EER MinDCF
i-vector 6.0462 2.0975 5.5602 2.7556 
i-supervector 4.7554 2.2475 5.7740 2.8949 
JFA 7.2690 2.6126 6.8126 3.0960 


