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ABSTRACT
Short speech duration remains a critical factor of performance
degradation when deploying a speaker verification system. To
overcome this difficulty, a large number of commercial ap-
plications impose the use of fixed pass-phrases. In this con-
text, we show that the performance of the popular i-vector
approach can be greatly improved by taking advantage of the
phonetic information that they convey. Moreover, as i-vectors
require a conditioning process to reach high accuracy, we
show that further improvements are possible by taking ad-
vantage of this phonetic information within the normalisation
process. We compare two methods, Within Class Covariance
Normalization (WCCN) and Eigen Factor Radial (EFR), both
relying on parameters estimated on the same development
data. Our study suggests that WCCN is more robust to data
mismatch but less efficient than EFR when the development
data has a better match with the test data.

Index Terms— Speaker verification, Phonetic constraint,
i-vector , short duration

1. INTRODUCTION

Initially introduced for speaker recognition, i-vectors [1]
have become very popular in the field of speech processing
and recent publications show that they are also reliable for
language recognition [2] and speaker diarization [3]. Indeed,
i-vectors extraction can be seen as a compression process
aiming at representing speech segments variability in a low-
dimensionality space. Hence, i-vectors convey the speaker
characteristic among other information such as transmission
channel, acoustic environment or phonetic content of the
speech segment.

In [4], it was shown that for short duration (down to 2s)
text-independent speaker verification, i-vector systems could
reach the same performance as the classical Joint Factor Anal-
ysis (JFA) approach but do not provide noticeable improve-
ment. Thus, short duration constraint still poses a serious
issue for text-independent speaker verification. One way to
improve speaker verification accuracy in the context of short
duration is to constrain the lexical content of training and test

speech in order to harness the phonetic and temporal struc-
ture of the utterances [5, 6]. By nature, the Total Variability
framework does not take advantage of the temporal structure
of speech and an i-vector extracted from a sufficiently long
speech segment would have the speaker information charac-
terized uniformly under all the phonetic classes. This is not
the case for short utterances, where the i-vector will be em-
phasized toward certain phonetic classes depending on the
content of the utterances. This phonetic constraint conveyed
by the i-vectors could be used to reinforce the speaker charac-
terisation when dealing with short duration utterances. This
work focuses on the effect of phonetic-constraint in speech
utterances shorter than 3 seconds, on speaker verification per-
formance within the i-vector paradigm.

Several normalisation approaches have been proposed
for session compensation and i-vector conditioning [1, 7, 8].
Two methods that have shown significant improvement for
speaker verification are Within Class Covariance Normalisa-
tion (WCCN) [1] and Eigen Factor Radial (EFR) [7] which
includes also the length normalisation proposed in [8]. Both
of these methods are based on dilating the Total Variability
space as the mean to reduce the within-class variability. For
text-independent speaker verification, the within-class vari-
ability corresponds to the speaker inter-session variability.
Now that the focus is on phonetically-constrained utterances,
we propose to re-define the within-class variability according
to both speaker identity and phonetic content of the utterances
and to compare its benefits for both WCCN and EFR. Finally,
we extend our comparison in order to assess the robustness of
WCCN and EFR to data mismatch as such comparison does
not exist in the literature according to our knowledge.

Section 2 describes the i-vector fundamentals and the ses-
sion compensation algorithms while Section 3 presents the
corpora and experimental protocol used for this study. Sec-
tion 4 shows the effect of phonetic constraint on speaker veri-
fication performance. In Section 5, we show the benefits of
including phonetic information in the definition of within-
class variability and present a preliminary study of WCCN
and EFR robustness to data mismatch. Finally, Section 6 pro-
vides conclusions and avenues for future work.



2. TOTAL VARIABILITY PARADIGM

2.1. I-vector extraction

I-vectors are now very popular in the field of speaker recog-
nition and detailed descriptions of the Total Variability
paradigm could be found in [1, 2, 4]. The i-vector extrac-
tion could be seen as a probabilistic compression process
that reduces the dimensionality of speech-session super-
vectors according to a linear-Gaussian model. The speaker-
and channel-dependent super-vector m(s,h) of concatenated
Gaussian Mixture Model (GMM) means is projected in a
low dimensionality space, named Total Variability space, as
follows

m(s,h) = m + Tw(s,h) (1)

where m is the mean super-vector of a gender-dependent Uni-
versal Background Model (UBM), T is called Total Variabil-
ity matrix and w(s,h) is the resulting i-vector .

Compared to Eigenvoice modeling, which has been
shown to capture mainly the speaker characteristics with
very short utterances [9], i-vectors convey, in addition to the
speaker characteristics, other information such as transmis-
sion channel, acoustic environment or phonetic content of the
speech segments. Session compensation or i-vector normal-
isation should thus be applied in order to isolate the targeted
speaker information from other unwanted variability.

2.2. I-vector normalisation

In order to condition i-vectors for a specific task, different
normalisation process have been proposed recently [1, 7, 8].
Two of them, WCCN [1] and EFR [7], are especially dealing
with session compensation.

WCCN scales the Total Variability space by a matrix B in
order to suppress high within-class covariance. For speaker
verification, B is obtained by the Cholesky decomposition
of the within-class covariance matrix Wwccn, i.e. W−1

wccn =
BBt. The matrix Wwccn is calculated over a large data set by
using:

Wwccn =
1

S

S∑
s=1

1

ns

ns∑
i=1

ws
i (2)

where S is the number of speakers in the data set, and there
are ns number of sessions for each of these speakers. Each
utterance is compactly represented as an i-vector ws

i . Dis-
tance between speech segments could then be computed with
a weighted Cosine Similarity Score (CS) given by:

CS(w1, w2) =
< Btw1|Btw2 >

||Btw1|| ||Btw2||
(3)

EFR has been introduced in [7] to condition i-vectors and re-
duce session variability, as follows

w ← V − 1
2 (w − w)√

(w − w)V −1(w − w)
(4)

where V and w are respectively the covariance matrix and
the mean vector estimated from a large development set of i-
vectors (note that this normalisation could be iterated to prop-
erly condition the data but that does not provide any benefits
here). A Mahalanobis-based scoring function could then be
used as speaker detection scoring:

score(w1, w2) = (w1 − w2)tW−1(w1 − w2) (5)

where W is the within-class covariance matrix computed on
the EFR normalized vectors.

The main drawback of these two methods comes from
their dependency on the development set that has to be repre-
sentative of the unseen test material.

3. EXPERIMENTAL SET-UP
3.1. Corpora

Experiments are performed on the RSR20151 database, a
new corpus designed to evaluate text-dependent speaker ver-
ification engines. This database contains recordings from
100 male speakers using six different cell-phones or tablets.
Thirty pass-phrases (each less than 3s) and thirty short com-
mands (each less than 1s) are recorded in nine sessions for
each speaker. The pass-phrases and command are the same
for all 100 speakers in order to simulate imposture attacks
and each speaker records on a minimum of three different
devices. A more detailed description of RSR2015 could be
found in [10].

Two others corpora were also used in our experiments.
We used the entire Switchboard provided by LDC and an
in-house corpus which includes the recordings of 118 male
speakers recorded in similar condition as RSR2015 but using
different portable devices and texts.

3.2. Experimental protocol

Our experiments operate on 19 Mel-Frequency Cepstral Co-
efficients (plus energy) augmented with 19 first (∆) and 11
second (∆∆) derivatives. The bandwidth is limited to 300-
3400Hz. The analysis window is 20ms with 10ms shifting.
Lower energy frames are removed and cepstral mean subtrac-
tion is applied to the remaining features.

A 512 mixtures UBM and the Total Variability matrix are
estimated using 790 speakers and 12,422 sessions taken from
Switchboard and the in-house database. The dimensionality
of i-vectors is 400. The RSR2015 database is divided in two
partitions, namely, RSR2015 norm and RSR2015 eval, each
containing 50 speakers. Both WCCN and EFR parameters
are estimated for three different development sets:

PASS-PHRASES, which is composed of all pass-phrases
from the 50 speakers of the RSR2015 norm data set
(13,500 utterances).

1http://www1.i2r.a-star.edu.sg/˜kalee/RSR2015_
WEB/RSR2015.html



COMMANDS, which is composed of all short commands
from the 50 speakers of the RSR2015 norm data set
(13,500 utterances).

SWB, which is composed of 672 speakers from Switchboard
databases recorded through telephone channel (6,522
utterances).

Note that the PASS-PHRASES development set has the clos-
est match to the test data (derived from the RSR2015 eval) in
terms of channel, duration and phonetic content are similar.
The COMMANDS set match on the channel of the test set since
the duration and phonetic content are different. Finally, the
SWB set is strongly mismatched with the test data in terms of
channel and duration, thus it could be considered as the most
different one. The average duration of utterances for the three
development sets (PASS-PHRASES, COMMANDS,SWB) are
0.75s, 0.43s and 79.66s, respectively. The test segments, as
described below, has an average duration of 0.93s.

The test set is derived from the RSR2015 eval. For all the
50 speakers, the three first recordings are used for training and
the remaining six sessions are used as test segments. A trial
would simply involves comparison of i-vector extracted for
a training utterance of a speaker with the i-vector extracted
from test segment. We use all the cross-pairs between train-
ing and test segments made available in the RSR2015 eval
partition. As we consider phonetically-constrained speaker
verification task, we separate the trials into four categories
according to the condition whether the user is the target client
or an impostor and whether the phonetic content is the same
for training and test segments. Table 1 shows the number
of each type of trials resulting from our protocol. Notice

Same phonetic contain Different phonetic contain

Target User
CLIENT-same CLIENT-diff

(26,913) (390,185)

Impostor
IMP-same IMP-diff
(659,286) (19,119,255)

Table 1. Different types and numbers of trials in phonetically-
constrained speaker verification

that the Same phonetic content condition of our protocol only
considers the case where the full utterances are the same (i.e,
text-dependent speaker recognition). Future work has to in-
clude cases where the phonetic content still the same when
sequences differ.

4. INFLUENCE OF THE PHONETIC CONTENT ON
I-VECTOR SPEAKER VERIFICATION

The first experiment is performed in order to assess the contri-
bution of phonetic constraint for short duration speaker verifi-
cation. Figure 1 shows the performance of the i-vector system
using the Cosine Scoring without any normalisation process
depending on the nature of the target and impostor trials. The

first configuration, similar to text-independent condition, is
provided as a baseline. The phonetic content used during test
for both target speakers and impostor is different from the
one used for training (CLIENT-diff / IMP-diff ). The Equal
Error Rate in this case, 43.06%, drops by 74% to 15.38% in
a second configuration where both target and impostor users
pronounce the same phonetic-content that was used for train-
ing (CLIENT-same / IMP-same). A third configuration shows
that EER falls to 8.02% in the optimal case where only target
users know the proper phonetic content and impostors pro-
nounce a different one (CLIENT-same / IMP-diff ). This ex-

Fig. 1. EER for different trials configuration.

periment shows that the phonetic information conveyed by
i-vectors could be used to improve accuracy of speaker veri-
fication in short duration context. All experiments in the rest
of this paper consider the case where both target users and
impostors pronounce the same phonetic content as the one
used for training (CLIENT-same / IMP-same). Indeed, this
configuration is closer to the realistic case of a phonetically-
constrained application.

5. INFLUENCE OF THE NORMALISATION
TRAINING SET

The second experiment is designed to compare the influence
of development dataset and class definition on both WCCN
and EFR.

Rows 1, 2 and 3 of Table 2, shows the performance of the
i-vector system using these two normalisation methods when
moving the development dataset closer to the test set. Within-
class variability is defined according to speaker identity only.
Performance of i-vectors using Cosine Scoring without nor-
malisation is reported as a baseline and is enhanced by all
normalisations. As expected, the performance improves when
the development set get more similar to the test data for both
WCCN and EFR. EER reduces from 13.85% to 10.54% and
9.37% for EFR and from 13.36% to 10.42% and 10.01% for
WCCN when moving from SWB to COMMANDS and then
PASS-PHRASES respectively. These results highlight the im-
portance of development set for i-vector normalisation as the
reduction of Equal Error Rate observed when moving from
SWB to PASS-PHRASES is more than 33% relative for EFR
conditioning.

When comparing the methods, results suggest that WCCN



tends to be slightly more robust than EFR to the mismatch be-
tween development and test data. When training the normal-
isation parameters on SWB, EER obtained by using WCCN
(13.36%) is 3.6% less than when using EFR (13.85%) rela-
tively. For normalisation parameters trained on COMMANDS
(closer to test data), the gap between normalisation methods
is less but still in favour of WCCN with EER of 10.42% and
10.54% for EFR. However, when development share similar
phonetic content, channel and duration with test data (PASS-
PHRASES), EFR outperforms WCCN. The EER obtained
with WCCN is 10.01% when it is 9.37% for EFR (−6.4%
relative). This result suggests that EFR is more effective than
WCCN but less robust to data mismatch.

Development Set i-vector scoring
EFR CS + WCCN CS

SWB 13.85 13.36

15.38COMMANDS 10.54 10.42
PASS-PHRASES 9.37 10.01
PASS-PHRASES 7.88 9.67speaker + phonetic

Table 2. Performances of Eigen Factor Radial (EFR) and Cosine
Scoring (CS) with and without WCCN in terms of EER (%) for dif-
ferent development datasets and classes definitions.

In the context of short duration, speaker identity and pho-
netic content could be expected to be the main sources of
variability. For applications where the text pronounced dur-
ing training and test is fixed, it is possible to use this knowl-
edge in order to improve the i-vector normalisation. Indeed,
both WCCN and EFR are conditioning the i-vectors in or-
der to minimize the within-class variability. In this work,
we propose to define those classes according to both speaker
and phonetic content instead of grouping all sessions from a
same speaker. Rows 3 and 4 of Table 2 respectively show the
performance of the two normalisation methods when using
the classical definition of within-class variability or when in-
cluding the phonetic information. Defining the normalisation
classes by using speaker and phonetic information improves
the accuracy for both WCCN and Eigen Factor Radial. As
observed above, when the classes defined for normalisation
training exactly match the test classes, i.e. one speaker and
one phonetic content per class, we observe that the gain for
EFR is more important than in the case of WCCN, respec-
tively 15, 9% and 3, 4% of relative improvement.

Further experiments has to be performed in future works
in order to distinguish between the effect of duration, channel
and phonetic mismatch and to confirm the benefit of adding
phonetic information in the within-class definition when deal-
ing with channel mismatch.

6. CONCLUSION

In this paper we focused on the influence of phonetic con-
straint in short utterances for speaker verification. We showed

that using the phonetic information conveyed by i-vectors
could lead to substantial improvement, up to 74% in terms
of EER. We underlined the importance of an adequate devel-
opment dataset on WCCN and Eigen Factor Radial methods.
Our analysis suggests that WCCN is more robust to data mis-
match when Eigen Factor Radial performs better for similar
conditions. This preliminary work needs to be continued as
several questions remain regarding the importance of indi-
vidual factors such as duration, channel or phonetic content
on the robustness of the different normalisations. Finally we
showed that it is possible to take advantage of a phonetic
constraint for i-vector normalisation by using a phonetic clas-
sification of the development data. This adaptation of WCCN
and Eigen Factor Radial has led to relative reduction of EER
of 3.4% and 5.9% respectively. In the future, we intend to
continue exploring the impact of phonetic information on
i-vector normalisation by considering the correlation between
the existing speaker discrimination scoring and different be-
tween -utterances phonetic distances for very short durations.
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