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Ising-PageRank model of opinion formation on social networks

Klaus M. Frahma, Dima L. Shepelyanskya

aLaboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France

Abstract

We propose a new Ising-PageRank model of opinion formation on a social network by introducing an Ising- or
spin-like structure of the corresponding Google matrix. Each elector or node of the network has two components
corresponding to a red or blue opinion in the society. Also each elector propagates either the red or the blue opinion
on the network so that the links between electors are described by two by two matrices favoring one or the other of
the two opinions. An elector votes for red or blue depending on the dominance of its red or blue PageRank vector
components. We determine the dependence of the final society vote on the fraction of nodes with red (or blue)
influence allowing to determine the transition for the election outcome border between the red or blue option. We
show that this transition border is significantly affected by the opinion of society elite electors composed of the top
PageRank, CheiRank or 2DRank nodes of the network even if the elite fraction is very small. The analytical and
numerical studies are preformed for the networks of English Wikipedia 2017 and Oxford University 2006.

KEYWORDS: voting, PageRank, opinion formation,
Ising spin

1. Introduction

The understanding of opinion formation in demo-
cratic societies is an outstanding challenge for scientific
research [1]. In the last decade the development of so-
cial networks like Facebook [2], Twitter [3] and VKON-
TAKTE [4], with hundreds of millions of users, demon-
strated the growing influence of these networks on so-
cial and political life. Their growing influence on demo-
cratic elections is well recognized and highly debated
[5, 6]. This makes the scientific analysis of opinion for-
mation on social networks of primary importance.

The small-world and scale-free structures of social
networks (see e.g. [7, 8]), combined with modern rapid
communication facilities, leads to a rapid information
propagation over networks of electors, consumers and
citizens generating their instantaneous active reaction
on social events. This puts forward a request for new
theoretical models allowing to understand the opinion
formation process in modern society.

Opinion formation was analyzed in the framework
of various interesting voter models described in detail
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in [9–16]. This research area became known as socio-
physics [9, 11, 13–15] for which a recent overview of
various models is given in [17].

Another type of model, called PageRank opinion for-
mation (PROF) model, was proposed in [18–20]. In
this model each node of a directed network may have
red or blue opinion and the opinion of a each node is
determined by its neighboring nodes (on one link dis-
tance) taken with the weight of PageRank probability in
the global network. Thus the PROF model takes into
account the PageRank concept developed by Brin and
Page [21] which is now broadly used for various types
of networks (see reviews in [22, 23]). This model leads
to a number of interesting properties of opinion forma-
tion for various examples of directed networks. How-
ever, a weak point of the PROF model is that it assumes
that the PageRank probabilities are known to the elec-
tors (nodes). This may be partially true since the elec-
tors know approximately their social positions in the so-
ciety which can be assumed to be proportional to the
PageRank probability. But the exact global PageRank
probabilities of neighbors are most probably not known
for a given local node. Thus a new model based on
PageRank properties and keeping the locality of knowl-
edge about the network structure is highly desirable.

With this aim we propose here a modified model,
called Ising-PageRank opinion formation model (Ising-
PROF), which corrects the above weak point of the
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PROF model determining a more natural local process
of opinion formation still being based on the PageRank
concept. In this model an elector (node) has two opin-
ions (red or blue component) being similar to a spin up
or down state in the Ising model [24, 25]. A fraction
wr of red oriented nodes transfer their red influence via
links to other nodes while a fraction wb of blue oriented
nodes propagates their blue influence (wr + wb = 1).
In this way the size of the Google matrix is doubled
since each node has now red and blue components (up
or down states of an Ising spin). As a result the PageR-
ank vector also has two components per node (of the
original network) and its elector vote is determined by
its largest PageRank components (red or blue). We as-
sume that the top nodes of PageRank correspond to a
political elite of the social network whose opinion influ-
ences the opinions of other members of the society [1].
Our results show that the elite influence, related to the
top PageRank electors, can significantly affect the final
vote on such a social network.

In our studies we consider as typical examples two
types of real directed networks. The first one is the En-
glish Wikipedia network of the year 2017 with N =

5 416 537 nodes and Nl = 122 232 932 links, studied
recently in [26], and the second one is the WWW net-
work of Oxford University from the year 2006 with
N = 200 823 nodes and Nl = 1 831 542 links, studied
in [27]. We use these two real networks to study the
opinion formation governed by the PageRank vector of
a network of double size which describes a random dis-
tribution of red and blue opinions with a fixed fraction
of red (and blue) opinion on network nodes. We use 10
random realizations to average the results for each given
fraction or red (and blue) nodes. We model the interac-
tions of red and blue opinions by the spin-1/2-matrix as
described below.

The paper is composed as follows: the Ising-PROF
model is formally introduced in Sec. 2, numerical and
analytical results for the model without elite are given
in Sec. 3, numerical results for the elite influence are
presented in Sec. 4, the polarization of opinion for in-
dividual nodes and the effect of resistance in opinion
formation are studied in Secs. 5, 6. The discussion of
the results is presented in Sec. 7.

2. Description of Ising-PageRank opinion formation
model

We first remind the usual rules for the construction
of the Google matrix G from a given directed network
with N nodes and Nl links described in detail in [21–
23] (we use here the notations of [23]). For this one

first defines the adjacency matrix Ai j with elements 1 if
node (elector) j points to node (elector) i and zero oth-
erwise. In this case, the elements of the Google matrix
take the standard form Gi j = αS i j + (1 − α) v(i) [21–
23], where S is the matrix of Markov transitions with
elements S i j = Ai j/d j, d j =

∑N
i=1 Ai j , 0 being the

node j out-degree (number of outgoing links from node
j) and with S i j = v(i) if j has no outgoing links (dan-
gling node). Here the vector v (with

∑
i v(i) = 1 and

v(i) ≥ 0) is also called personalization or teleportation
vector [21, 22]. Furthermore the parameter 0 < α < 1
is the damping factor which for a random surfer deter-
mines the probability (1 − α) to jump (or “teleport”) to
any node i (with relative weight v(i)). The usual stan-
dard values are v( j) = 1/N and α = 0.85. For the
teleportation vector it is possible to choose a different
vector and one may also choose two different vectors
for the dangling node columns of S and the columns of
the contribution proportional to (1 − α).

The PageRank is the right eigenvector of the Google
matrix (GP = λP, λ = 1) of the largest eigenvalue λ =

1. It has positive components P( j) normalized to unity
(
∑

j P( j) = 1). We note that the largest unit eigenvalue
is not degenerate for α < 1 and the PageRank can be
efficiently computed from the power iteration method
with a convergence rate ∼ αt (with t being the iteration
time).

We now introduce the Google matrix for the Ising-
PageRank opinion formation model (Ising-PROF).
First, each node of the original network is doubled into
a pair of red and blue nodes giving a total network size
of 2N. Furthermore, we attribute randomly to each node
(of the original network) either a vote preference for red
with probability wr or blue with probability wb = 1−wr

where 0 ≤ wr ≤ 1 is a global parameter for the overall
vote preference. Therefore for each random realization
there is approximately a fraction wr of nodes with red
preference and a fraction wb with blue preference. The
links are also doubled: for each link from a node j to
i of the original network we will have two links from
both j nodes (blue and red) to the red node i if j has a
preference for red or to the blue node of i if j has a pref-
erence for blue. This scheme is also illustrated in Fig. 1
and mathematically it implies that in the (original) ad-
jacency matrix each unit entry Ai j is replaced either by
a certain 2 × 2 matrix σ+ if j has a red preference or by
another 2×2 matrix σ− if j has a blue preference where
the 2 × 2 matrices σ± are given by:

σ+ =

(
1 1
0 0

)
, σ− =

(
0 0
1 1

)
. (1)

This provides a larger 2N × 2N adjacency matrix
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Figure 1: Schematic description of the construction of the Ising-
network from a given directed network. Each node of the original
network is doubled in a red and blue node and gets either (with proba-
bility wr) a preference to point to other red nodes or (with probability
wb = 1 − wr) a preference to point to other blue nodes. Each link
j → i of the original network is replaced by the two links jred → ired
and jblue → ired (if j has a red preference) or the two links jred → iblue
and jblue → iblue (if j has a blue preference); jred ( jblue) designate the
index of the red or blue node of the Ising-network with j being the
node index of the original network.

A2 from which we construct the 2N × 2N Google ma-
trix, noted as G2 in the usual way as described above.
However, we choose a particular teleportation vector
vr(i) = wr/N (vb(i) = wb/N) for the red (blue) compo-
nent vr(i) (vb(i)) (instead of the uniform choice 1/(2N)
for both components).

The above procedure determines our model and inter-
actions of red and blue nodes described by the matrices
in Eq. (1). Thus all links on the network of doubled
size are defined for a given initial distribution of red and
blue nodes. Then by the standard iteration algorithm
we numerically determine the PageRank vector with 2N
components [21–23]. From these vector components we
determine the final vote for red or blue opinions as de-
scribed below.

The PageRank vector P of G2 (defined by G2P = P)
has red (blue) components Pr(i) (Pb(i)) where i belongs
to the set of original nodes and the sum normalization
reads

∑
i[Pr(i)+Pb(i)] = 1. In this work we study in par-

ticular two quantities derived from this PageRank vector
which is the total PageRank probability for red (or the
partial PageRank norm for red nodes) given by :

Pr =

N∑
i=1

Pr(i) (2)

and the total vote for red given by

Vr =
1
N

#
{
nodes i with Pr(i) > Pb(i)

}
(3)

+
1

2N
#
{
nodes i with Pr(i) = Pb(i)

}
which is the fraction of nodes i such that Pr(i) > Pb(i)
(rare cases of Pr(i) = Pb(i) count with a relative weight
of 1/2). The complementary vote for blue is given by
Vb = 1 − Vr. The red opinion wins the global society
vote if the sum over all red votes of electors is larger
than 50%.

We note that the convergence to the exact PageRank
eigenvector is obtained by the iterative algorithm start-
ing from a random vector and multiplying it by G matrix
iteratively. This algorithm is described in detail in [21–
23]. The convergence rate is determined by the damping
factor α and it takes place in about 150 iterations. We
analyze here only the final exact PageRank vector and
do not discuss the convergence process which is rather
standard. In a sense it is assumed that the time interval,
from the moment when two candidate names are known
to the moment of vote, is sufficiently long so that the
opinions of society members are converged and final.

3. Analytical results and estimates

As in the above section we denote by Pr(i) and Pb(i)
the PageRank components for red or blue nodes of G2.
Furthermore, we denote by P(i) the PageRank vector
of the Google matrix G of the original network with N
nodes. Furthermore let P̃(i) = Pr(i) + Pb(i). We first
show that for our model we have exactly P̃(i) = P(i).
The PageRank equation of G2 for red nodes reads:

Pr(i) = α
∑
j∈Li

n j

d j
P̃( j)+α

wr

N

∑
j∈D

P̃( j)+(1−α)
wr

N

N∑
j=1

P̃( j)

(4)
where Li is the set of nodes j such that there is a link j→
i (this set may be empty), D is the set of dangling nodes,
d j is the outdegree of node j being the number nodes k
such there is a link j → k. All these quantities refer
to the original network. Furthermore, wr is the overall
vote preference for red introduced in the last section. n j

is a random number being either 1 (with probability wr)
for nodes j with red preference or 0 (with probability
wb = 1 − wr) for nodes j with blue preference. The
average and variance of n j are obviously given by :

〈n j〉 = wr , 〈δn2
j〉 = 〈n2

j〉 − 〈n j〉
2 = wr(1 − wr) (5)

since n2
j = n j. We also have 〈δn jδnk〉 = 0 if j , k.

The second and third sum terms in (4) take into account
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our particular choice for the teleportation vector for the
Ising-PROF model introduced in the last section.
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Figure 2: Left panel: Total PageRank probability Pr for red nodes
depending on wr for English Wikipedia of 2017; the straight line cor-
responds to the theoretical expression Pr = wr . The data for Oxford
2006, not shown, are on graphical precision identical to the data of
Wikipedia of 2017. Right panel: The vote quantity Vr given as the
fraction of nodes where Pr(i) > Pb(i) depending on wr for English
Wikipedia of 2017 and Oxford 2006. The full lines correspond to the
rescaled expression V (th)

r
(
5/6(wr−0.5)+0.5

)
where V (th)

r (wr) is the the-
oretical expression (10) based on the assumption Gaussian distributed
Pr(i). All discrete data points in this figure (and in all subsequent
figures except Fig. 6) were obtained from an ensemble average over
10 different realizations of different attributions of σ+ or σ− for each
node i and the resulting statistical error bars are below 10−3 (below
size of data points) for both quantities Pr and Vr .

The equation for Pb(i) is similar with the replacement
n j → 1 − n j and wr → 1 − wr. We note that on the right
hand side only the sum P̃( j) = Pr( j) + Pb( j) appears
due to the structure of σ±. If we add the equations for
Pr(i) and Pb(i) we obtain for P̃(i) the exact PageRank
equation of the original network such that exactly P̃(i) =

P(i) and P̃(i) is no longer random which gives a great
simplification. We have also numerically verified that
this property holds up to numerical precision (10−13).

Using (5) we can analytically compute the ensemble
average of (4) which gives 〈Pr(i)〉 = wrP(i) and there-
fore we obtain exactly 〈Pr〉 =

∑
i〈Pr(i)〉 = wr which is

numerically clearly confirmed by the left panel of Fig. 2.
Furthermore, Pr(i) is a sum of random variables n j

(with some coefficients). If we assume that there are
many terms (if #Li � 1, i.e. many incoming links) then
the central limit theorem implies that Pr(i) is approxi-
mately Gaussian distributed (however, in realistic net-
works with modest numbers in the sets Li this is prob-
ably not very exact). Also the variance of Pr(i) can be
computed from (4) and (5):

〈δPr(i)2〉 = α2wr(1 − wr)
∑
j∈Li

P( j)2

d2
j

. (6)

If the assumption of Pr(i) being a Gaussian variable
is valid the known mean 〈Pr(i)〉 = wr P(i) and vari-
ance (6) are sufficient to characterize the full distribu-
tion pgauss(Pr(i)). The node i contributes to a red vote if

Pr(i) > Pb(i) = P(i) − Pr(i) ⇔ Pr(i) > P(i)/2. There-
fore the probability Vr(i) of a red vote of node i can be
obtained as

Vr(i) =

∫ ∞

P(i)/2
dPr(i) pgauss(Pr(i)) (7)

which gives with the help of (6) and the average
〈Pr(i)〉 = wrP(i):

Vr(i) =
1
2

(
1 − erf

(
0.5 − wr

α ai
√

wr(1 − wr)

))
(8)

where

ai =
1

P(i)

√√
2
∑
j∈Li

P( j)2

d2
j

(9)

is a quantity that can be efficiently computed (for all
nodes i simultaneously). We remind that in (6) and (8)
the parameter α = 0.85 is the damping factor. Note
that it is possible that Li is an empty set (if row i of the
adjacency matrix is empty, i.e. if node i is a dangling
node for G∗). In this case ai = 0 and in (8) we obtain
the Heaviside function Vr(i) = H(wr − 0.5) which is
not a problem. It turns out that for English Wikipedia
2017 and Oxford 2006 the quantity ai has a maximal
value of about 1.66 and is typically between 0.2 and 1
for most nodes. The average and variance (with respect
to the node index) of ai are 〈ai〉 = 0.338, 〈δ(ai)2〉 =

0.062 (〈ai〉 = 0.523, 〈δ(ai)2〉 = 0.121) and there is also
a finite fraction of nodes with ai = 0 which is 9.68×10−2

(2.14 × 104) for Wikipedia 2017 (Oxford 2006).
Averaging (8) with respect to all nodes gives the the-

oretical expression for the total vote:

V (th)
r (wr) =

1
N

∑
i

Vr(i) (10)

which can be computed numerically with a modest
effort. The expression (8) corresponds roughly to a
smoothed step function with Vr(i) being 0 (or 1) for
wr = 0 (or wr = 1) and a nonlinear shape such that the
slope at wr = 0.5 is proportional to the parameter a−1

i .
Even though the value of ai depends on the node index
i the total vote (10) has a similar nonlinear shape close
to a smoothed step function. However, due to the small
but finite fraction about 0.1 (0.0002) for Wikipedia (Ox-
ford) of nodes with ai = 0 (i.e. nodes with empty
sets Li) there is a small vertical finite step (with infi-
nite slope) in the curve of Vr versus wr at wr = 0.5.
The vertical size of this step corresponds exactly to this
fraction.

The overall shape and also the small vertical finite
step are confirmed by the numerical data visible in the
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right panel of Fig. 2 for Wikipedia 2017 and the WWW-
network of Oxford 2006. However there is not a perfect
agreement of (10) with the numerical data but if we ap-
ply a slight rescaling by using V (th)

r
(
5/6(wr − 0.5) + 0.5

)
(instead of V (th)

r (wr)) there is a very good matching with
the numerical data. It seems that the Gaussian assump-
tion underestimates slightly the probability of having
Pr(i) values far from its average wrP(i). Most likely the
number of terms in the set Li is too small for many nodes
i such that there is not a perfect justification for the use
of the central limit theorem. Since the distribution of
each ni has only two values we have indeed to add very
many terms to obtain a nice Gaussian. Furthermore, the
coefficients (P( j)/d j) also fluctuate with the node index
j such that even less terms contribute effectively in the
sum of random variables.

One can also try the expression (8) as fit expression
for the numerical data of the total vote (using ai as fit
parameter). It turns out that this does not work very
well. However if we add two such functions (with three
fit parameters: two ai values and the weight between
both terms) there is a quite good (but not really perfect)
fit.

4. Results for elite influence in Ising-PROF model

The results presented above are rather natural and
bring no surprise. However, the Ising-PROF model in-
troduced in Sec. 2 is local and thus has advantages in
comparison to the PROF model proposed in [18]. In
particular, it can be generalized to study the influence
of elite opinion on the final vote. We select three types
of elite on our social network based on different rank-
ings. For the first ranking type all nodes are ordered in
decreasing order of PageRank probability (of the origi-
nal network) noted by the index K( j) (1 ≤ K( j) ≤ N)
with the highest probability P( j) if K( j) = 1 and small-
est probability at P( j) if K( j) = N. Thus the nodes j
with K( j) = 1, 2, 3... are considered as the most influ-
ential electors (nodes) corresponding to party leaders,
government members etc. The second type of elite is de-
termined from the CheiRank probabilities P∗( j) (of the
original network) giving the ordering index K∗( j). The
CheiRank vector is the PageRank vector of the original
network with inverted direction of all links (see detailed
description in [23, 28, 29]). While the PageRank prob-
ability is on average proportional to the number of in-
going links the CheiRank probability is on average pro-
portional to the number of outgoing links. In a certain
sense we can consider the top CheiRank electors j with
K∗( j) = 1, 2, 3... to be analogous to press and televi-
sion. The third type of elite is given by the top nodes of

2DRank which represents a combination of PageRank
and CheiRank top nodes j with index K2( j) = 1, 2, ...N
(see description in [23, 29]).
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Figure 3: Dependence of elite induced variation of red PageRank
probability ∆Pr and red vote ∆Vr on fraction wr of red nodes in the
whole network. The variations ∆Pr = Pr,el − Pr (left panels) and
∆Vr = Vr,el − Vr (right panels) are shown in dependence of wr where
Pr,el and Vr,el are obtained from a model of Nel = 1000 elite nodes
with wr,el = 0 while the other nodes correspond the probability wr .
Top (bottom) panels correspond to English Wikipedia 2017 (Oxford
2006). In each panel the three different type of data points correspond
to the cases where the elite nodes are obtained as the top 1000 nodes
according to K-rank (red plus symbols), K∗-rank (green crosses) or
K2-rank (blue stars).

To determine the influence of elite on the society fi-
nal vote we modify the model of Sec. 2 such that for
Nel elite notes j with 1 ≤ K( j),K∗( j),K2( j) ≤ Nel
the probability of vote preference for red is modified to
wr,el which is different from wr which applies to the re-
maining nodes. (We keep however, since the elite frac-
tion is very small, the same values vr(i) = wr/N and
vb(i) = wb/N for all nodes i for the teleportation vector
as in the initial uniform Ising-PROF model.) Therefore
wr,el will be the approximate fraction of red nodes in the
set of elite nodes while wr is the fraction of red nodes
in the set of remaining nodes. We consider for wr,el val-
ues between 0 and 0.5 and wr values between 0 and 1
(since red and blue can be interchanged there is no rea-
son to consider wr,el > 0.5). Thus for wr,el = 0 all elite
nodes belong to the blue fraction (wb,el = 1 − wr,el = 1).
Usually we consider Nel � N so that these elite nodes
should not affect the global vote Vr if they were ran-
domly and homogeneously distributed over the whole
network of N nodes. But we show that this small frac-
tion distributed only over elite electors significantly af-
fects the final Vr vote. To characterize the influence
of elite we introduce the variation of the total PageR-
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ank probability on red nodes ∆Pr = Pr,el − Pr induced
by elite and respectively the variation of the global red
vote ∆Vr = Vr,el −Vr where Pr and Vr are obtained from
the Ising-PROF model without elite for which analytical
and numerical results were given in the last section.

In principle, the analytical argument for P̃(i) = P(i)
also holds for the case of elite nodes and we can also
try to compute the average and variance of Pr(i) which
requires in (5) to replace wr by w j where w j now de-
pends on the node j and takes either the value wr,el if j
is an elite node or wr otherwise. The resulting expres-
sions are therefore more complicated and depend more
strongly on the particular network structure and also on
the type of elite nodes chosen. Therefore they do not
allow a simple evaluation and in this section will we
concentrate on the numerical results.

−1 −0.5 0.25−0.25−0.75 0

Figure 4: Elite induced variation of red vote ∆Vr = Vr,elite − Vr is
shown by color for different values of wr (corresponding to horizontal
axis with wr ∈ [0, 1]) and of wr,el (corresponding to vertical axis with
wr,el ∈ [0, 0.5]). The numerical values of the top color bar correspond
to the fraction ∆Vr/Vmax with Vmax being the maximum of |∆Vr | in the
range of considered wr and wr,el values. Left (right) panels correspond
to elite nodes given as the top Nel = 1000 nodes for PageRank index
K (CheiRank index K∗). Top (bottom) panels correspond to English
Wikipedia 2017 (Oxford 2006). The values of Vmax for each panel are
0.016 (top left), 0.011 (top right), 0.046 (bottom left), 0.080 (bottom
right).

The dependence of ∆Pr and ∆Vr on wr is shown in
Fig. 3 for Wikipedia 2017 and the WWW-network of
Oxford 2006 for the case when all Nel = 1000 nodes
of elite have a blue preference wr,el = 0 (all three types
of elite are shown). Here we have Nel � N so that a
random distribution of these Nel = 1000 nodes over the
whole network gives a negligible variation of ∆Pr and
δVr. However, when Nel occupies the top rank posi-
tions of K,K∗,K2 we obtain significant changes of ∆Pr

and ∆Vr. The dependence of ∆Pr on wr remains ap-
proximately linear but the red component probability is
reduced in comparison to the Pr value in elite absence

(see Fig. 2 left panel). The change of red vote ∆Vr

has a rather nontrivial dependence on wr with a max-
imum absolute value being about 0.016 for Wikipedia
and 0.075 for Oxford networks. For the critical point
with wr ≈ 0.5 the blue elite induces a vote gain for the
blue party with about an 1.5% advantage for Wikipedia
PageRank or 2DRank elite and a 7.5% advantage for
Oxford PageRank elite (4% for 2DRank elite). The
cases of PageRank and 2DRank elite have a smooth de-
pendence ∆Vr(wr) while for the CheiRank elite this de-
pendence is significantly peaked near wr ≈ 0.5. For the
Wikipedia case the behavior of ∆Vr(wr) is rather simi-
lar between PageRank and 2DRank elite cases while the
CheiRank elite produces a smaller change of vote. For
the Oxford network the situation is a bit different: the
CheiRank elite gives a bit stronger variation of the vote
being strongly peaked near wr ≈ 0.5, the 2DRank elite
gives slightly smaller changes of the vote as compared
to the PageRank elite with a factor of about 0.7 between
the maximal amplitudes for both (at wr ≈ 0.6).

This shows that the network structure plays a certain
role in the elite vote influence even if the difference be-
tween the three elite types is only about about 30-40%.
Of course, in the case of Oxford the fraction of elite
nodes is larger than for Wikipedia (Nel/N ≈ 1/200 and
1/5000 respectively) and due to this the change of vote
∆Vr is larger for Oxford. We investigate the dependence
on Nel/N below.
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Figure 5: The dependence of ∆Vr = Vr,el−Vr on wr for wr,elite = 0 and
for various values of elite nodes Nel obtained as top Nel nodes from
K rank. Top (bottom) panels correspond to English Wikipedia 2017
(Oxford 2006). Left panels show directly ∆Vr versus wr and right pan-
els show the rescaled quantity ∆Vr

√
1000/Nel (top) or ∆Vr

√
125/Nel)

(bottom) versus wr indicating an approximate dependence ∆Vr ∼√
Nel for sufficiently small values of wr .

In Fig. 3 we considered the case when all elite nodes

6



have blue vote preference, i.e. wr,el = 0. The variation
of ∆Vr with wr,el is shown in Fig. 4. We see that for the
PageRank elite the variation of red vote ∆Vr being close
to its maximum value of about 1.5% can be reached also
at wr,el ≈ 0.25. For larger values wr,el > 0.25 the varia-
tion ∆Vr approaches zero at wr,el = 0.5. For the case of
CheiRank elite the distribution of the variation of ∆Vr

is mainly concentrated in a vicinity of the critical prob-
ability wr ≈ 0.5 in agreement with the peaked minima
visible in Fig. 3.

We note that ∆Vr may also have positive values in the
region wr,el > wr (top left triangle in the panels of Fig. 4)
since in this case nodes with red preference in the elite
fraction increase a bit the global red vote. However, in
this region the red vote is small and this variation does
not play an important role.

The dependence of ∆Vr on Nel is shown in Fig. 5 for
wr = 0. The are well described by a square-root depen-
dence ∆Vr ∝

√
Nel/N for sufficiently small values of

wr. To be more precise, from our numerical data in the
vicinity of wr ≈ 0.5 we obtain the dependence

∆Vr = −B(1 − 2wr,el)
√

Nel/N (11)

with a numerical constant B ≈ 1.114 ± 0.003 for
Wikipedia and B ≈ 0.611 ± 0.003 for Oxford in the
case of PageRank elite. For 2DRank (CheiRank) elite
we have approximately B ≈ 1.116 ± 0.003 (B ≈

0.773 ± 0.002) for Wikipedia and B ≈ 0.960 ± 0.002
(B ≈ 1.145 ± 0.003) for Oxford. The numerical val-
ues of B were obtained from a fit at Nel = 1000. For
Wikipedia it also applies to other values of Nel as can
be seen in the top right panel of Fig. 5 confirming the
above square-root dependence of ∆Vr also at wr = 0.5.
For Oxford there are at wr = 0.5 already visible modest
deviations (see bottom right panel of Fig. 5). However,
here the square-root dependence is still rather correct
for wr < 0.2.

We explain the square-root dependence by the fact of
diffusive accumulation of fluctuations, like in the central
limit theorem, as discussed in equations (7)-(9). How-
ever, an exact analytic derivation of the dependence (11)
still needs to be obtained.

5. Polarization of opinion for individual nodes

It is interesting to analyze the polarization of indi-
vidual nodes in presence of elite influence. For this we
determine the polarization of a node j defined as

M( j) =
Pr( j) − Pb( j)
Pr( j) + Pb( j)

. (12)

The influence of elite (with parameters wr,el = 0, Nel =

1000) for Wikipedia on this polarization is shown in
Fig. 6 for wr = 0.5 (top panels) and wr = 1 (bottom
panels) with PageRank elite (left panels) or CheiRank
elite (right panels).

In all four cases the typical value of the polarization
M for the first top PageRank nodes (with K( j) below
102 for PageRank elite or below 103 for CheiRank elite)
are rather close to the ideal values M ≈ 0 for wr = 0.5
or M ≈ 1 for wr = 1 with only weak fluctuations. For
larger values of K( j) the value of M strongly fluctuates
between −1 and 1.

However, for wr = 0.5 and PageRank elite the top
PageRank nodes still remain mostly blue but only with a
weak polarization M ≈ −0.1 (there are only 8 PageRank
elite nodes which change the polarization from blue to
red) while the value wr,el = 0 should suggest M ≈ −1 for
these elite nodes. Apparently the influence of the bulk
value wr = 0.5 from the other nodes reduces strongly
the polarization of the top PageRank (or elite) nodes but
is not sufficient to change the sign.

For the case of CheiRank elite the elite nodes do not
coincide with the top PageRank nodes and their posi-
tions are quasi-randomly distributed on the full horizon-
tal axis (which shows for all elite cases the K rank in
logarithmic representation). Directly inspecting the nu-
merical data we find that there are (for the case wr =

0.5) 305 nodes out of the 1000 CheiRank elite nodes
which change polarization from blue to to red (i.e. the
sign of M from negative to blue) but otherwise their val-
ues of M strongly fluctuate between −1 and 1.

For wr = 1 and both elite cases we have more or less
M ≈ 1 for the top PageRank nodes and also strongly
fluctuating values −1 ≤ M ≤ M for larger values of K( j)
with a preference for positive polarization M > 0 in the
crossover regime (and also very large K rank values).
The crossover regimes start roughly at K( j) ≈ 102 for
PageRank elite or K( j) ≈ 103 for CheiRank elite.

We note that there are nodes which were considered
as initially blue ones and that some of them change their
polarization within the network of doubled size from
blue to red. In such cases it may be argued that their in-
fluence matrix of (1) should also be updated from blue
to red preference. However, this corresponds to some
kind of time dependent model which is more compli-
cated for analytical and numerical analysis. Therefore,
we assume in this work that the memory of the original
blue (or red) preference is preserved and such a node
continues to propagate its blue (or red) influence with
the matrix transitions as described in Fig. 1. The dy-
namical variation of influence, depending on the actual
polarization of nodes, will be considered in further stud-
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Figure 6: Dependence of M( j) = (Pr( j) − Pb( j))/(Pr( j) + Pb( j)) on
rank K index of node j for wr,el = 0 of top 1000 rank nodes for En-
glish Wikipedia 2017 (all panels) and for one individual random re-
alization of attribution of σ± matrices to nodes. Top (bottom) panels
correspond to wr = 0.5 (wr = 1). Left (right) panels correspond to
elite nodes as top 1000 nodes from PageRank K index (CheiRank K∗

index). The green line shows zero polarization; the horizontal axis
shows the PageRank index K (of the original network) in log scale for
all panels.

ies.

6. Effect of resistance in opinion formation

Above we considered the influence matrix described
by Fig. 1 and (1). In these relations it is assumed that
a node with red preference propagates 100% red influ-
ence on red and blue components of other nodes. How-
ever, we can also consider the situation in which for the
blue component there is not a 100% red influence but
e.g. only a 80% influence. This means that a blue com-
ponent realizes a certain resistance to red influence and
vise verse a red component has a similar resistance to
blue influence. This is modeled by a modified form of
the transition matrices which instead of (1) take the form

σ+ =

(
1 0.8
0 0.2

)
, σ− =

(
0.2 0
0.8 1

)
. (13)

This modification corresponds to a 20% resistance to
influence another color. We construct the Google ma-
trix G2 in the same way as described in Sec. 2 but using
the matrices σ± of (13) to replace the unit elements of
the adjacency matrix (of the original network). (The
teleportation vector is the same as in Sec. 2.) We call
this model the modified Ising-PROF model. Due to
the modification of the σ± matrices we obtain in (4)
additional contributions proportional to the difference

Pr( j) − Pb( j) and the analytical argument that provided
the relation Pr( j) + Pb( j) = P( j) is no longer valid for
the modified Ising-PROF model.
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Figure 7: Same as Fig. 2 for the modified Ising-PROF model based on
(13); here in the right panel the full curves correspond directly to the
theoretical expression V (th)

r (wr) given in (10) without any rescaling.

The dependence of total red PageRank probability
Pr and vote Vr on wr are shown in Fig. 7. They are
very similar to those of Fig. 2. For Vr the theoreti-
cal expression for V (th)

r (wr) given in (10) directly fits
the numerical data without rescaling even though this
theoretical expression was derived on the assumption
of Pr( j) + Pb( j) = P( j) which is no longer valid. We
believe that this is due to statistical fluctuations of the
quantity P̃( j) = Pr( j) + Pb( j), which qualitatively re-
places P( j) in (6) and (9), such that the conditions to
apply the central limit theorem are better fulfilled (for
the sum of a modest number of random variables). Of
course, this argument is not rigorous since especially in
(6) the fluctuations of P̃( j) should produce additional
contributions which are very complicated to determine
analytically.
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Figure 8: Same as Fig. 3 for the modified Ising network model based
on (13).

The elite influence for the modified Ising-PROF
model is shown in Fig. 8. We see that in this case the
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variation of vote induced by elite is rather similar to
the initial Ising-PROF model. Only for Wikipedia 2017
(and PageRank and 2DRank elite) the maximal varia-
tion is increased from 1.6% for the Ising-PROF model
to 2.2% for the modified Ising-PROF model. On the ba-
sis of these results we conclude that the particular form
of the influence matrices of (1) or (13) does not affect
the general nature of the obtained results.

7. Discussion

In this work we proposed the Ising-PageRank model
of opinion formation which generates the opinion for-
mation of a directed social network using only the lo-
cal information about the neighbors of a given elector
(node).

For the homogeneous model without elite we obtain
for the vote quantity a smooth step function as a func-
tion of the parameter wr and the finite effective width
of the transition around wr ≈ 0.5 from Vr = 0 (for
wr < 0.5) to Vr = 1 (for wr > 0.5) is roughly the typical
value of the parameter ai given in (9) :

ai =
1

P(i)

√√
2
∑
j∈Li

P( j)2

d2
j

(14)

which takes an average value of about 0.3 (0.5) for
Wikipedia 2017 (Oxford 2006). The right panels of
Figs. 2 and 7 clearly confirm the ratio of this effective
width between the two networks and its overall size.

The most interesting feature of our results in this
model is the existence of the strong influence of elite,
which is given as a small number of top nodes of PageR-
ank, CheiRank or 2DRank. Even a small fraction of
elite electors produces a significant influence on the fi-
nal vote on a society which is close to a 50-50 distribu-
tion of opinions between red and blue options. Thus a
small insignificant fraction of elite nodes can push the
outcome of the final vote to either a blue or a red ma-
jority. The variation of vote induced by elite nodes is
expressed through the analytical relation (11).

In the last years the opinion formation process has
become a hot topic and attracts a significant interest
of researchers from various areas of science (see e.g.
[14, 15, 17, 30, 31]). The development of mathematical
concepts which allow to take into account positive and
negative interactions on complex networks is very im-
portant and interesting (see e.g. [31] and Refs. therein
on signed networks). Our Ising-PageRank approach al-
lows to perform the mathematical analysis of formation
of two opinions on complex directed networks. We be-
lieve that the proposed Ising-PROF model can describe

important features of opinion formation in social net-
works.
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