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A Fast and Accurate Matrix Completion Method
based on QR Decomposition and L2,1-Norm

Minimization
Qing Liu, Franck Davoine, Jian Yang, Member, IEEE, Ying Cui, Zhong Jin, and Fei Han

Abstract—Low-rank matrix completion aims to recover ma-
trices with missing entries and has attracted considerable at-
tention from machine learning researchers. Most of the ex-
isting methods, such as weighted nuclear-norm-minimization-
based methods and QR-decomposition-based methods, cannot
provide both convergence accuracy and convergence speed. To
investigate a fast and accurate completion method, an iterative
QR-decomposition-based method is proposed for computing an
approximate Singular Value Decomposition (CSVD-QR). This
method can compute the largest r(r > 0) singular values of
a matrix by iterative QR decomposition. Then, under the frame-
work of matrix tri-factorization, a CSVD-QR-based L2,1-norm
minimization method (LNM-QR) is proposed for fast matrix com-
pletion. Theoretical analysis shows that this QR-decomposition-
based method can obtain the same optimal solution as a nuclear
norm minimization method, i.e., the L2,1-norm of a submatrix
can converge to its nuclear norm. Consequently, an LNM-QR-
based iteratively reweighted L2,1-norm minimization method
(IRLNM-QR) is proposed to improve the accuracy of LNM-QR.
Theoretical analysis shows that IRLNM-QR is as accurate as an
iteratively reweighted nuclear norm minimization method, which
is much more accurate than the traditional QR-decomposition-
based matrix completion methods. Experimental results obtained
on both synthetic and real-world visual datasets show that our
methods are much faster and more accurate than the state-of-
the-art methods.

Index Terms—Matrix Completion, QR Decomposition, Ap-
proximate SVD, Iteratively Reweighted L2,1-Norm.
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I. INTRODUCTION

THE problem of recovering an incomplete matrix with
missing values has recently attracted considerable atten-

tion from researchers in the image processing [1-10], signal
processing [11-13], and machine learning [14-20] fields. Con-
ventional methods formulate this task as a low-rank matrix
minimization problem. Suppose that M(M ∈ Rm×n, m ≥
n > 0) is an incomplete matrix; then, the traditional low-rank
minimization problem is formulated as follows:

min
X

rank(X), s.t. Xi,j = Mi,j , (i, j) ∈ Ω, (1)

where X ∈ Rm×n is the considered low-rank matrix, rank(X)
is the rank of X , and Ω is the set of locations corresponding
to the observed entries. The problem in Eq. (1) is NP-
hard and is difficult to optimize. Fortunately, the missing
values in a matrix can be accurately recovered by a nuclear
norm minimization under broad conditions [21, 22]. The most
widely used methods based on the nuclear norm are singular
value thresholding (SVT) [23] and accelerated proximal gra-
dient [24]. These methods are not fast because of the high
computational cost of singular value decomposition (SVD)
iterations. Moreover, these methods are not very accurate
when recovering matrices with complex structures. One of
the reasons is that the nuclear norm may not be a good
approximation of the rank function [28] in these cases.

To improve the accuracies of nuclear-norm-based methods,
some improved methods based on the Schatten p-norm [25, 35,
36], weighted nuclear norm [27], γ-norm [33], and arctangent
rank [34], have been proposed. In 2015, F. Nie et al. [25]
proposed a joint Schatten p-norm and Lp-norm robust matrix
completion method. This method can obtain a better conver-
gence accuracy than that of SVT. However, it may become
slow when addressing large-scale matrices because of using
SVD in each iteration. C. Lu et al. [26] proposed an iteratively
reweighted nuclear norm minimization (IRNN) method [26] in
2016. By using nonconvex functions to update the weights for
the singular values, IRNN is much more accurate than SVT.
However, it still relies on SVD to obtain the singular values
for recovering incomplete matrices, which may cause it to be
slow when applied to real-world datasets. Some other methods
in references [33] and [34] also face the same difficulty.

To improve the speed of SVT, some methods based on ma-
trix factorization [13, 17, 18, 31] have recently been proposed.
In 2013, A fast tri-factorization (FTF) method [32] based on
Qatar Riyal (QR) decomposition [29, 30] was proposed. FTF
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relies on the cheaper QR decomposition as a substitute for
SVD to extract the orthogonal bases of rows and columns of
an incomplete matrix and applies SVD to a submatrix whose
size can be set in advance. FTF is very fast when applied
to low-rank data matrices. However, it will become slow if
the test matrices are not of low rank. Moreover, the FTF
method is not as accurate as a weighted nuclear-norm-based
method, such as IRNN [26]. A more recent work, i.e., the
robust bilinear factorization (RBF) method [18], is slightly
more accurate than FTF. However, it is still not fast and not
accurate enough for real applications. Some other methods
based on matrix factorization proposed in references [13],
[17], and [31] also have similar characteristics. Thus, the
traditional methods based on the weighted nuclear norm and
matrix factorization cannot provide both convergence speed
and convergence accuracy.

Recently, the L2,1-norm was successfully applied to feature
selection [37, 38], optimal mean robust principle component
analysis [53], and low-rank representation [39-42]. The feature
selection methods and the method in [53] use a combination
of the nuclear norm and L2,1-norm as their loss function
to extract the subspace structures of test datasets. Because
they use the L2,1-norm, they are more robust with respect to
outliers. However, they are still not fast because they use SVD
to search for the optimal solutions. In low-rank representation,
the outliers among data points can be removed by solving
an L2,1-norm minimization problem, the optimal solution of
which can be obtained without using SVD. However, an L2,1-
norm-based matrix completion method does not exist.

In general, developing a fast and accurate matrix completion
method remains a significant open challenge.

In fact, the singular values and singular vectors can also
be obtained by QR decomposition [51], which is much faster
than SVD. Additionally, the L2,1-norm can be applied to fast
matrix completion methods under the framework of matrix
tri-factorization. Thus, this paper aims to propose a fast and
accurate matrix completion method based on L2,1-norm mini-
mization and QR decomposition to address the aforementioned
open challenge. Our main contributions are as follows:

• A QR-decomposition-based method for computing an ap-
proximate SVD (CSVD-QR) is proposed. It can compute
the largest r(r > 0) singular values of a given matrix.

• A CSVD-QR-based L2,1-norm minimization method
(LNM-QR) is proposed for fast matrix completion. By
using QR as a substitute for SVD, LNM-QR is much
faster than the methods that utilize SVD.

• A CSVD-QR-based iteratively reweighted L2,1-norm
minimization method (IRLNM-QR) is proposed to im-
prove the accuracy of LNM-QR. A theoretical analysis
shows that IRLNM-QR has the same optimal solution as
that of the IRNN method, which is much more accurate
than the traditional QR-decomposition-based methods.

• The L2,1-norm of a matrix is proven to be the upper
bound of its nuclear norm (in Section III.C). Thus,
the proposed methods can also be applied to improve
the performances of the nuclear-norm-based low-rank
representation [42, 44], multi-view data analysis [45-47],
and matrix/tensor completion [54, 55] methods.

II. RELATED WORK

In this section, the SVD of a matrix and some widely
used matrix completion methods based on SVD and QR
decomposition are respectively introduced.

A. Singular Value Decomposition

Suppose that X ∈ Rm×n is an arbitrary real matrix; then,
the SVD of X is as follows:

X = UΛV T , (2)

U = (u1, · · · , um) ∈ Rm×n, (3)

V = (v1, · · · , vn) ∈ Rn×n, (4)

where U and V are column orthogonal matrices, the columns
of which are the left and right singular vectors of X , re-
spectively. Λ ∈ Rm×n is a diagonal matrix with diagonal
entries, where Λii = σi(X), that are assumed to be in order
of decreasing magnitude. σi(X) is the ith singular value of
X .

Many papers on how to compute the singular values of
X exist [48-50]. Here, we introduce a simple SVD method
(SVD-SIM), which was proposed by Paul Godfrey [51] in
2006. In this method, the singular values and singular vectors
can be computed by iterative QR decomposition. The QR
decomposition [30] of X is as follows:

X = LR, (5)

where L ∈ Rm×m is an orthogonal matrix, the columns of
which are the basis of the space spanned by the columns of
X . R ∈ Rm×n is a weakly upper-triangular matrix.

Let Λ1 = XT , U1 = eye(m,m), and V1 = eye(n, n). In
the jth iteration of SVD-SIM, the variables, i.e., Λj , Uj , and
Vj , are alternately updated in two steps.

In step 1, Uj+1 is updated by QR decomposition. Suppose
that the QR decomposition of ΛT

j is

ΛT
j = Q1S1, (6)

where Q1 ∈ Rm×m and S1 ∈ Rm×n are intermediate
variables. Uj+1 is updated as follows:

Uj+1 = UjQ1. (7)

In step 2, the variable ST
1 in Eq. (6) is decomposed by QR

decomposition as follows:

ST
1 = Q2S2, (8)

where Q2 ∈ Rm×m and S2 ∈ Rm×n are intermediate
variables. Λj+1 and Vj+1 are updated as follows:

Λj+1 = S2, (9)

Vj+1 = VjQ2. (10)

Uj , Λj , and Vj , produced by Eqs. (6-10) can converge to U , Λ,
and V , respectively, where Λ is a diagonal matrix with entries
satisfying

||Λii||1 = σi(X), (11)
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where ||Λii ||1 is the l1-norm of Λii. The columns of U and
V are the left and right singular vectors of X , respectively.

The SVD-SIM method offers a simple way to directly obtain
the singular values and singular vectors by QR decomposi-
tion. However, SVD-SIM computes all the singular values
simultaneously, which may limit its suitability for fast matrix
completion (see a deeper analysis in Section III).

B. Methods based on SVD and QR Decomposition for Matrix
Completion

1) Singular Value Thresholding (SVT) Method: A classical
nuclear-norm-based method is the SVT method proposed by
Cai et al. [23]. The minimization problem of SVT is

min
X

||X||∗ + α||X||2F , s.t. PΩ(X) = PΩ(M), (12)

where α>0 and the nuclear norm of X is defined as follows:

||X||∗ = Σn
i=1σi(X), (13)

where σi(X) is the ith singular value of X and PΩ(X) is

(PΩ(X))i,j =

{
Xi,j , (i, j) ∈ Ω,
0, (i, j) /∈ Ω.

(14)

The Lagrange function of the problem in Eq. (12) is

Lag = µ ∥X∥∗ +
1

2
∥X∥2F + tr(Y TPΩ(X −M)), (15)

where Y ∈ Rm×n and µ > 0. The variable X can be updated
by solving the following problem:

X = argmin
X

µ ∥X∥∗ +
1

2
∥X − PΩ(Y )∥2F . (16)

The problem in Eq. (16) can be solved by the singular value
shrinking operator [23] shown in Lemma 1.
Lemma 1 [23] For each τ ≥ 0, Y ∈ Rm×n is a given real
matrix, where Y = UΛV T is the SVD decomposition of Y .
The global solution to

Sτ (Y ) = argmin
X

τ ∥X∥∗ +
1

2
∥X − Y ∥2F (17)

is given by the singular value shrinking operator

Sτ (Y ) = Udiag(P (Λii), i = 1, , n)V T , (18)

where Pi(Λii) = max{Λii − τ, 0} and i = 1, · · · , n.
The SVT method converges efficiently on synthetic data

matrices with strict low-rank structures. However, it is not
always accurate and not always fast when recovering matrices
with complex structures [28].

2) Iteratively Reweighted Nuclear Norm (IRNN) Method:
An IRNN method [26] has been proposed for improving
the convergence accuracy of SVT. This method solves the
minimization problem in its kth iteration as follows:

min
X

Σn
i=1∇g(σi(X)) · σi(X) +

α

2
∥F (X)∥2F , (19)

where F (X) = X− 1
α (Xk−∇f(Xk)), f(X) = PΩ(X−M),

and α > 0. g(x) is a continuous, concave, and monotonically
increasing function on [0,∞). ∇g(x0) is the supergradient of
g(x) at x0, and ∇g(x) obeys

∇g(σi(X)) ≤ ∇g(σj(X)), (20)

where σi(X) ≥ σj(X) and 1 ≤ i < j ≤ n.
Lemma 2 [26] For each τ ≥ 0, Y ∈ Rm×n is a given real
matrix, where Y = UΛV T is the SVD decomposition of Y .
The global solution to

Sτ (Y ) = min
X

τΣn
i=1wi · σi(X) +

1

2
∥X − Y ∥2F (21)

can be given by

Sτ (Y ) = Udiag(Pi(Λii), i = 1, · · · , n)V T , (22)

where Pi(Λii) = max{Λii − τwi, 0}, 0 < wi < wj(i < j),
and i, j = 1, · · · , n.

The reason why the weights wi(i = 1, · · · , n) should be in
increasing order is that Pi(Λii) must obey [26]

(Pi(Λii)− Pj(Λjj))(Λii − Λjj) ≥ 0. (23)

The IRNN method is much faster and more accurate than
SVT. However, it is still not fast enough for real applications
because of the high computational cost of SVD iterations.

3) Fast Tri-Factorization (FTF) Method: An FTF method
based on QR decomposition was recently proposed by Liu et
al. [32] for fast matrix completion. Suppose that X ∈ Rm×n

is a real matrix whose rank is r, which can be decomposed as

X = LDR, (24)

where L ∈ Rm×r, D ∈ Rr×r, R ∈ Rr×n, and r ∈ (0, n]. If
L is a column orthogonal matrix and R is a row orthogonal
matrix, then the following conclusion will be obtained:

∥X∥∗ = ∥D∥∗ . (25)

Consequently, the nuclear norm minimization problem on X
in SVT can be modified as follows:

min
D

∥D∥∗ , s.t.
{

LTL = I,RRT = I,
PΩ(LDR) = PΩ(M),

(26)

where r is a preset parameter that regulates the computational
cost of FTF.

The variables L, R, and D can be alternately optimized
by fixing both other variables. L and R can be updated by
applying QR decomposition, the computational cost of which
is much lower than that of SVD, to two matrices with sizes
of m × r and r × n, respectively [32]. Additionally, D is
updated by applying the singular value shrinking operator to
a matrix of size r× r. Therefore, FTF is much faster than the
traditional methods, such as SVT and IRNN, when it applies
SVD to small-scale matrices. However, it may become slow
when recovering matrices with complex structures, the ranks
of which are full or near full. The reason is that the parameter r
should be given a large value, which makes the computational
cost large in that case. Another disadvantage of FTF is that
it is still a nuclear-norm-minimization-based method, which
is less accurate than a weighted nuclear-norm-based method,
such as IRNN.

In general, we may conclude that the weighted nuclear-
norm-based methods and QR-decomposition-based methods
cannot achieve satisfactory levels of both convergence speed
and convergence accuracy. Thus, a fast and accurate method
for matrix completion should be investigated.
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C. An L2,1-Norm Minimization Solver for Low-Rank Repre-
sentation

Recently, the L2,1-norm was successfully used in low-
rank representation [39] to optimize the noise data matrix
E ∈ Rm×n. The optimal E can be updated by solving the
minimization problem as follows:

min
E

τ ∥E∥2,1 +
1

2
∥E − C∥2F , (27)

where C ∈ Rm×n is a given real matrix and τ > 0. The
L2,1-norm of E is defined as

∥E∥2,1 = Σn
j=1

√
Σm

i=1E
2
ij . (28)

The optimal E(:, j) (denoting the jth column of E) of the
problem in Eq. (27) obeys

E(:, j) =
(∥C(:, j)∥2 − τ)+

∥C(:, j)∥2
C(:, j), (29)

where

∥C(:, j)∥2 =
√

Σm
i=1C

2
ij , (30)

(x)+ = max {x, 0}, (31)

with x ∈ (−∞,+∞) being a real number. The L2,1-norm
minimization solver in Eq. (29) is referred to as LNMS in
this paper for convenience. The computational cost of the
LNMS is much lower than that of the singular value shrinking
operator. In this paper, a fast and accurate matrix completion
method using the LNMS under the matrix tri-factorization
framework is introduced. A deeper analysis is presented in
the next section.

III. OUR PROPOSED METHODS

A. Motivation
This paper aims to investigate a fast and accurate matrix

completion method based on L2,1-norm minimization.
1) Application of L2,1-Norm Minimization to Matrix Com-

pletion: The nuclear norm minimization problem in Lemma
1 is a special case of an L2,1-norm minimization problem.
Suppose that X is a variable whose SVD is X = UΛV T . The
problem in Eq. (17) is equivalent to the following problem:

min
U,Λ,V

τΣn
j=1Λjj +

1

2

∥∥UΛV T − Y
∥∥2
F
, (32)

where τ > 0 and Y is a given real matrix. Because Λ is a
diagonal matrix, we have the following collusion:

Σn
j=1Λjj = ∥Λ∥2,1 . (33)

Thus, the problem in Eq. (32) can be reformulated as

min
U,Λ,V

τ ∥Λ∥2,1 +
1

2

∥∥UΛV T − Y
∥∥2
F
. (34)

Because the variables U and V are column orthogonal ma-
trices, the optimal solution to the problem in Eq. (32) is
equivalent to that of the following problem:

min
U,Λ,V

τ ∥Λ∥2,1 +
1

2

∥∥Λ− UTY V
∥∥2
F
. (35)

The optimal Λ to the problem in Eq. (35) can be given by the
LNMS as follows:

Λ(:, j) =
(∥C(:, j)∥2 − τ)+

∥C(:, j)∥2
C(:, j), (36)

C = UTY V, (37)

where j = 1, · · · , n. The LNMS in Eq. (36) can recover the
columns of Λ one by one, which shows that the matrix C in
Eq. (36) does not need to be diagonal. Therefore, it is suitable
to decompose X into three matrices as follows:

X = LDR, (38)

where L ∈ Rm×r, D ∈ Rr×r, R ∈ Rr×n, and r ∈ (0, n]. The
variables L and R denote a column orthogonal matrix and
row orthogonal matrix, respectively. Specifically, they are the
orthogonal bases of the columns and rows of X , respectively.
The matrix D does not need to be diagonal, which is different
from the matrix Λ in SVD. Then, we formulate the following
L2,1-norm minimization problem:

min
L,D,R

τ ∥D∥2,1 +
1

2
∥LDR− Y ∥2F , s.t. X = LDR. (39)

According to Eqs. (36-37), the variable D can be optimized
very efficiently after obtaining the variables L and R. The
problem in Eq. (32) is a special case of the problem in Eq.
(39). Therefore, the L2,1-norm minimization problem in Eq.
(39) can also be applied to matrix completion. One key issue
is how to extract the orthogonal bases L and R. Because D
does not need to be diagonal, L and R can be obtained via a
method more efficient than SVD.

2) Using QR Decomposition to Extract Orthogonal Bases L
and R: The orthogonal bases L and R can also be computed
by QR decomposition [31, 32], the computational cost of
which is approximately ten percent that of SVD. According to
the SVD-SIM [51] method, the left and right singular vectors
can be directly obtained by QR decomposition. One may
think that the variables L and R in Eq. (39) can be obtained
by SVD-SIM with only a few iterations. However, SVD-
SIM computes all the singular values and the corresponding
singular vectors simultaneously, which allows us to forego this
idea. Obviously, computing all the singular values may reduce
the recovery speed of a matrix completion method [43], which
motivates us to propose a method for computing the largest
r(r ∈ (0, n]) singular values and the corresponding singular
vectors. Some methods have already been proposed, such as
the power method [30, 52]. However, the computational cost
of the power method increases sharply with increasing r as a
result of applying SVD to a submatrix.

In this paper, a method for computing the SVD of a matrix
by iterative QR decomposition (CSVD-QR) is proposed. This
method can compute the largest r(r ∈ (0, n]) singular values
and the corresponding singular vectors of a matrix, which is
different from SVD-SIM. Consequently, the orthogonal bases
L and R in Eq. (39) can be computed by CSVD-QR with only
a few iterations. Then, using the results obtained by CSVD-
QR, two fast matrix completion methods based on the L2,1-
norm are proposed:

Page 4 of 20

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

5

• A CSVD-QR-based L2,1-norm minimization method
(LNM-QR) is proposed for matrix completion. By using
QR decomposition as a substitute for SVD, LNM-QR is
much faster than the compared methods using SVD.

• A CSVD-QR-based iteratively reweighted L2,1-norm
minimization method (IRLNM-QR) is proposed to im-
prove the accuracy of LNM-QR. IRLNM-QR has advan-
tages in terms of both convergence speed and convergence
accuracy over the traditional methods.

We can now introduce the proposed method for computing
an approximate SVD based on QR decomposition and the two
matrix completion methods based on the L2,1-norm.

B. Method for Computing an Approximate SVD based on QR
Decomposition (CSVD-QR)

Suppose that X ∈ Rm×n is a given real matrix. In this
section, we propose a method that can compute the largest
r(r ∈ (0, n]) singular values and the corresponding singular
vectors of X by QR decompositions directly. Specifically, we
aim to find three matrices, i.e., L, D, and R, such that

∥X − LDR∥2F ≤ ε0, (40)

where ε0 is a positive tolerance. Please see Eq. (38) for the
definitions of L, D, and R. Consequently, a minimization
problem is formulated:

min
L,D,R

∥X − LDR∥2F , s.t. LTL = I,RRT = I. (41)

The minimization function in Eq. (41) is convex to each one
of the variables, i.e., L, D, and R, when the remaining two
are fixed. Thus, the variables can be alternately updated one
by one. Suppose that Lj , Dj , and Rj denote the results of the
jth iteration in the alternating method. Let L1 = eye(m, r),
D1 = eye(r, r), and R1 = eye(r, n). In the jth iteration, Lj+1

is updated with fixed Dj and Rj as follows:

Lj+1 = argmin
L

∥X − LDjRj∥2F . (42)

Since Rj is a row orthogonal matrix, the optimal solution to
Eq. (42) is as follows:

Lj+1 = XRT
j D

+
j , (43)

where D+
j is the Moore–Penrose pseudo-inverse of Dj . Be-

cause the optimal L should be a column orthogonal matrix,
Lj+1 can be set to the orthogonal basis of the range space
spanned by the columns of XRT

j D
+
j as follows:

Lj+1 = orth(XRT
j D

+
j ), (44)

where orth(X) is an operator that extracts the orthogonal
basis of the columns of X . In view of Eq. (40), Lj+1 is the
orthogonal basis of the columns of X , which can be set to the
orthogonal basis of XA, where A ∈ Rn×r is a random matrix
[30]. Therefore, the solution in Eq. (44) can also be given as

Lj+1 = orth(XRT
j ). (45)

In this paper, we use QR decomposition to compute the
orthogonal basis of XRT

j in Eq. (45) as follows:

[Q,T ] = qr(XRT
j ), (46)

Lj+1 = Q(q1, · · · , qr), (47)

where Q ∈ Rm×m and T ∈ Rm×r are intermediate variables.
Eq. (46) indicates that the QR decomposition of XRT

j is
XRT

j = QT . Similarly, Rj+1 can be updated as follows:

[Q,T ] = qr(XTLj+1), (48)

Rj+1 = Q(q1, · · · , qr), (49)

where Q ∈ Rn×n and T ∈ Rn×r are intermediate variables.
Since the optimal R is a row orthogonal matrix, we set

Rj+1 = RT
j+1. (50)

Finally, Dj+1 is updated as follows:

Dj+1 = argmin
D

∥X − Lj+1DRj+1∥2F (51)

= LT
j+1XRT

j+1. (52)

According to Eq. (48), we have

TT = LT
j+1XQ. (53)

Because Rj+1 is generated by Eqs. (49-50), we have

Dj+1 = TT (1 · · · r, 1 · · · r). (54)

The sequences of {Lj}, {Rj}, and {Dj}(j = 1, · · · , n, · · · )
generated by Eqs. (46-47), Eqs. (48-50), and Eq. (54) can
converge to matrices L, R, and D, respectively, with matrix
D satisfying

∥Dii∥1 = ∥Λii∥1 , (55)

where i = 1, · · · , r and Λii is the ith singular value of X .
The columns of L and RT are left and right singular vectors
corresponding to the largest r singular values, respectively.
This method of computing an approximate SVD based on QR
decomposition is called CSVD-QR, the main steps of which
are shown in Table I.

TABLE I: MAIN STEPS OF CSVD-QR.

Input: X , a real matrix;
Output: L, D, R (X = LDR);
Initialization: r > 0, q > 0, j = 1; Itmax > 0;

ε0 is a positive tolerance;
C = eye(n, r); L1 = eye(m, r);
D1 = eye(r, r); R1 = eye(r, n).

Repeat:
Lj+1 : Eqs.(46− 47);
Rj+1 : Eqs.(48− 50);
Dj+1 : Eqs.(48, 54); j = j + 1;

Until: ∥LjDjRj −X∥2F ≤ ε0 or j > Itmax .
Return: L = Lj , D = Dj , R = Rj .

Theorem 1 When r = n, the diagonal entries of Dj at the
jth(j > 1) iteration of CSVD-QR are equal to those of Λj in
SVD-SIM. For the proof, please see Appendix A.

Theorem 1 shows that CSVD-QR can converge as fast as
SVD-SIM. In the proposed methods for matrix completion,
we use only the output of CSVD-QR with one iteration (see
more details in Section III.C).
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C. Proposed Methods for Fast and Accurate Matrix Comple-
tion

According to Section III.A.1, the L2,1-norm minimization
problem in Eq. (39) can be applied to matrix completion.
The variable D in Eq. (39) does not need to be diagonal.
Consequently, the variables L and R can be given by CSVD-
QR with only a few iterations. Moreover, the orthogonal
subspace of the recovery result may not considerably change
after two conservative iterations [43]. Thus, we use the orthog-
onal bases of the rows and columns of the recovered matrix
in the previous iteration in the proposed matrix completion
methods to initialize CSVD-QR. By using this smart warm
initialization, L and R computed from CSVD-QR with one
iteration can be used to recover the original incomplete matrix.

1) An L2,1-Norm Minimization based on QR Decompo-
sition for Matrix Completion (LNM-QR): According to the
analysis in Section III.A, the considered matrix X can be
decomposed as in Eq. (38). Moreover, the original incomplete
matrix can be recovered efficiently by solving the L2,1-norm
minimization problem in Eq. (39). The relationship between
∥D∥∗ and ∥D∥2,1 can confirm this conclusion. The matrix D
can be decomposed as follows:

D = Σr
j=1D

j , (56)

Dj
k,i =

{
Dk,j , (i = j),
0, (i ̸= j),

(57)

where i, j, k = 1, · · · , r, and Dj ∈ Rr×r. From Eq. (56), we
have

∥D∥∗ =
∥∥Σr

j=1D
j
∥∥
∗ . (58)

Because the nuclear norm is a convex function, we have

∥D∥∗ ≤ Σr
j=1

∥∥Dj
∥∥
∗ . (59)

Because the Σr
j=1

∥∥Dj
∥∥
∗ term is equal to ∥D∥2,1, i.e.,

Σr
j=1

∥∥Dj
∥∥
∗ = ∥D∥2,1 , (60)

we obtain the following conclusion:

∥D∥∗ ≤ ∥D∥2,1 . (61)

From Eq. (61), the L2,1-norm of a matrix is clearly the upper
bound of its nuclear norm. This conclusion motivates us to
apply the L2,1-norm minimization problem in Eq. (39) to
matrix completion as follows:

min
D

∥D∥2,1 , s.t.
{

LTL = I,X = LDR,
RRT = I, PΩ(LDR) = PΩ(M).

(62)

Please see Eq. (38) for the definitions of L, D, and R.
From the analysis in Section III.A, the variable D does not
need to be diagonal. Because the optimization function in Eq.
(62) is convex, the corresponding problem can be solved by
the alternating direction method of multipliers (ADMM). The
augmented Lagrange function of the problem in Eq. (62) is

Lag = ∥D∥2,1
+ tr(Y T (X − LDR)) +

µ

2
∥X − LDR∥2F ,

(63)

where µ > 0 and Y ∈ Rm×n. Suppose that Xk denotes
the result of the kth iteration in the ADMM. The Lagrange

function is optimized in two steps. In step 1, Lk+1 and Rk+1

are updated by solving the following minimization problem:

min
L,R

∥∥∥∥(Xk +
Yk

µk
)− LDkR

∥∥∥∥
2

F

. (64)

According to the analyses corresponding to Eq. (41), Lk+1

and Rk+1 can be given by CSVD-QR. If CSVD-QR is ini-
tialized by Li and Ri, it will converge within a few iterations
because the matrices L and R will not considerably change
in two consecutive iterations [43]. In our method, Xk +

Yk
µk

is
decomposed in one iteration of CSVD-QR as follows:

Xk +
Yk

µk
= Lk+1DTRk+1, (65)

where DT ∈ Rr×r. By using this smart warm initialization,
LNM-QR can converge very quickly.

In step 2, Xk+1 is updated by solving an L2,1-norm
minimization. First, the variable D can be optimized, with
Xk, Yk, Lk+1, and Rk+1 held fixed, by solving the following
problem:

Dk+1 =argmin
D

1

µk
∥D∥2,1

+
1

2

∥∥∥∥D − LT
k+1(Xk +

Yk

µk
)Rk+1

∥∥∥∥
.

(66)

From Eqs. (65-66), we have the following conclusion:

LT
k+1(Xk +

Yk

µk
)RT

k+1 = DT , (67)

where DT is as shown in Eq. (65). Therefore, Eq. (66) can be
reformulated as follows:

Dk+1 = argmin
D

1

µk
∥D∥2,1 +

1

2
∥D −DT ∥2F . (68)

According to Eqs. (29-31), the minimization problem in Eq.
(68) can be solved by the LNMS as follows:

Dk+1 = DTK, (69)

where K is a diagonal matrix, i.e.,

K = diag(k1, · · · , kr), (70)

where the jth entry kj can be given as follows:

kj =
(∥DT (:, j)∥F − 1

µk
)+

∥DT (:, j)∥F
. (71)

Second, by fixing the variables Lk+1, Dk+1, Rk+1, and Yk,
Xk+1 is updated as follows:

Xk+1 =Lk+1Dk+1Rk+1 + PΩ(M)

− PΩ(Lk+1Dk+1Rk+1).
(72)

Finally, by fixing the variables, i.e., Lk+1, Dk+1, Rk+1, and
Xk+1, Yk+1 and µk are updated as follows:

Yk+1 = Yk + µk(Xk+1 − Lk+1Dk+1Rk+1), (73)
µk+1 = ρµk, (74)

where ρ ≥ 1. The proposed L2,1-norm minimization method
based on CSVD-QR is called LNM-QR, the main steps of
which are summarized in Table II.
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TABLE II: MAIN STEPS OF LNM-QR.

Input: M , a real matrix with missing values;
Ω, the set of locations corresponding
to the observed entries.

Output: Xopt, the recovery result.
Initialization: r > 0, q > 0, k = 0; Itmax > 0;

C = eye(n, r); L1 = eye(m, r);
D1 = eye(r, r); R1 = eye(r, n);
X0 = M , ε0 is a positive tolerance.

Repeat:
Step 1: Lk+1, Rk+1: Eq. (65);
Step 2: Dk+1: Eq. (69);

Xk+1: Eq. (72); k = k + 1.
Until: ∥Xk −Xk−1∥2F ≤ ε0 or k > Itmax .

Return: L = Lj , D = Dj , R = Rj .

Because the convex optimization function in Eq. (62) is
minimized by the ADMM, which is a gradient-search-based
method, LNM-QR can converge to its optimal solution. Sup-
pose that N iterations are required for LNM-QR to converge.
If the updating steps in LNM-QR are continued, then Xk(k >
N) will be equal to XN . Because CSVD-QR is initialized by
matrices L and R in the previous iteration, LNM-QR can fall
back to CSVD-QR. Thus, the sequence of {Dk} produced by
LNM-QR (see Eqs. (69-71)) can converge to a diagonal matrix
D with entries Djj that obey

∥Djj∥1 = σj(XN ). (75)

Therefore, the L2,1-norm minimization function of the LNM-
QR model (in Eq. (62)) can converge to the nuclear norm of
D, which motivates us to improve LNM-QR as an iteratively
reweighted L2,1-norm minimization method.

2) Extension of LNM-QR: Since the L2,1-norm of D can
converge to its nuclear norm and the IRNN [26] method
performs much better than the nuclear-norm-based methods,
it is suitable to use an iteratively reweighted L2,1-norm min-
imization to replace the L2,1-norm minimization in step 2 of
LNM-QR. According to Eq. (60), the weighted L2,1-norm of
X is denoted as

∥X∥w·(2,1) = Σn
j=1wj

∥∥Xj
∥∥
∗ , (76)

where wj > 0 (j ∈ [1, n]). The definition of Xj is the same as
that of Dj in Eq. (56). The minimization problem of LNM-QR
in Eq. (62) can be modified as follows:

min
D

Σr
j=1∇g(

∥∥Dj
∥∥
∗)

∥∥Dj
∥∥
∗ ,

s.t. X = LDR,PΩ(LDR) = PΩ(M),
(77)

Please see Eq. (38) for the definitions of L, D, and R. ∇g(x0)
is the supergradient of g(x) at x0. g(x) is a continuous and
monotonically increasing function on [0,+∞). The problem
in Eq. (77) can be solved by the ADMM. The augmented
Lagrange function of Eq. (77) is

Lag =Σr
j=1 ▽ g(

∥∥Dj
∥∥
∗)

∥∥Dj
∥∥
∗

+ tr(Y T (X − LDR)) +
µ

2
∥X − LDR∥2F .

(78)

Suppose that Xk denotes the result of the kth iteration in
the ADMM. The variables Lk+1 and Rk+1 can be given by

CSVD-QR (see Eq. (65)). The variables, i.e., Xk+1, Yk+1, and
µk, are updated according to Eq. (72), Eq. (73), and Eq. (74),
respectively. The value of Dk+1 can be determined by solving
the following problem:

min
D

1

µk
Σr

j=1∇g(
∥∥Dj

∥∥
∗)

∥∥Dj
∥∥
∗ +

1

2
∥D −DT ∥2F , (79)

where DT is as shown in Eq. (65). In each iteration of IRNN,
g(x) is a concave function[26]. In this paper, we design a novel
function for g(x). In each iteration of this extension model,
the ∇g(

∥∥Dj
∥∥
∗) term obeys

∇g(
∥∥Dj

∥∥
∗) = µj(1− k̄j)

∥∥∥Dj
T

∥∥∥
∗
, (80)

where 1 ≥ k̄1 ≥ k̄2 ≥ · · · k̄r > 0, µ > 0, and j ∈ [1, · · · , r].
Theorem 2 For any given real matrix C ∈ Rr×rand µ > 0,
the optimal solution to the following problem

min
X∈Rr×r

1

µ
∥X∥w·(2,1) +

1

2
∥X − C∥2F , (81)

can be given as follows:

Xopt = CK, (82)

where

K = diag(k1, · · · , kr), (83)

kj =
(Λjj − wj

µ )+

Λjj
, (84)

with j ∈ [1, · · · , r] and Λjj being the singular value of Cj .
The definition of Cj is the same as that of Dj (see Eq. (56)).
For the proof, please see Appendix B.

According to Theorem 2 and Eq. (80), the variable Dk+1

can be updated as follows:

Dk+1 = DT K̄, (85)
K̄ = diag(k̄1, · · · , k̄r). (86)

The proposed iteratively reweighted L2,1-norm minimization
method based on CSVD-QR for matrix completion is called
IRLNM-QR.
Theorem 3 If the weights ∇g(||Dj ||∗)(j = 1, · · · , r) in
Eq. (77) are given by Eq. (80), and if (k̄1, · · · , k̄r) in Eq.
(80) are arranged in decreasing order, then IRLNM-QR will
converge to the optimal solution of an iteratively reweighted
nuclear norm minimization method. For the proof, please see
Appendix C.

According to Theorem 3, the weights in Eqs. (85-86) should
be arranged in decreasing order. In the experiment, k̄j(j =
1, · · · , r) are given as follows:

wj =

{
1, 1 ≤ j ≤ S, 1 < S < r,

θ−1
r−S + wj−1, S < j ≤ r,

(87)

k̄j =
1

wj
, (88)

where θ > 1, r is the row number of K̄, and S(S < r) is a
positive integer. The effects of S and θ were studied by Liu
et al. [4].
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D. Complexity Analysis
In this section, the computational complexities of SVT,

IRNN, FTF, LNM-QR, and IRLNM-QR are analyzed. Suppose
that X ∈ Rm×n is a real matrix. The computational cost
of SVD on X is O(mn2). The main CPU times of SVT
and IRNN are consumed by performing SVD on X . Thus,
their computational complexities are O(mn2). The main CPU
time of FTF is consumed by performing QR decomposition
twice to update L and R and SVD once on submatrix D.
Thus, the computational cost of FTF is O(r2(m + n) + r3),
where r ≪ min(m,n). The main CPU times of LNM-QR and
IRLNM-QR are consumed by performing QR decomposition
twice to update L and R (please see Eqs. (46-50)). Thus,
the computational complexities of LNM-QR and IRLNM-QR
are O(r2(m+n)). Clearly, the computational complexities of
LNM-QR and IRLNM-QR are much smaller than those of
FTF, SVT, and IRNN. Hence, LNM-QR and IRLNM-QR are
much faster than the traditional methods based on SVD.

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed methods,
several comparative experiments are performed. First, the con-
vergence of CSVD-QR is tested. Then, the proposed LNM-QR
and IRLNM-QR methods for matrix completion are evaluated
using synthetic and real-world datasets.

The experiments are performed on a MATLAB 2012a
platform equipped with an i5-6300U CPU and 4 GB of RAM.

A. Convergence of CSVD-QR
In this section, CSVD-QR is tested on a synthetic matrix

X that is generated as follows:

X = Mm×r1
L Mr1×n

R , (89)
Mm×r1

L = randn(m, r1), (90)
Mr1×n

R = randn(r1, n), (91)

where r1 ∈ [1, n] is the rank of X . Suppose that Hk =
(h1, h2, · · · , hr) is a vector, the ith entry of which hi is equal
to Dk(i,i), where Dk (in Eq. (52)) is the submatrix in the kth it-
eration of CSVD-QR. The CSVD-QR method is stopped when
the relative error

Σt
i=1|∥i∥1−σi(X)|

Σt
i=1σi(X) < ε0, (t = min(r, r1)). The

experiments for CSVD-QR are conducted as follows.
First, let m = n = r = 300, r1 = 250, and ε0 = 0.001.

All the singular values of matrix X are computed via the
CSVD-QR and SVD-SIM methods. Because r is larger than
r1, CSVD-QR can compute all the singular values of X . The
CPU times of CSVD-QR and SVD-SIM are 0.830 s and 0.900
s, respectively. Their CPU times are almost equal to each other
because the diagonal entries of Dk in the kth iteration of
CSVD-QR (r = n) are equal to those of Λk in SVD-SIM
(see Theorem 1). More details are shown by the relative error
curve of the CSVD-QR method in Fig. 1.

Fig. 1 shows that the relative errors of CSVD-QR and
SVD-SIM are equal to each other in every iteration, which is
consistent with the conclusion in Theorem 1. The relative error
of CSVD-QR is still shown to sharply decrease during the
first 10 iterations and converge gradually after approximately
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Fig. 1 The Relative Error curve of CSVD-QR.

30 iterations. Thus, the proposed CSVD-QR can accurately
compute all the singular values of X.

Second, let m = n = 300, r1 = 250, r = 50, and
ε0 = 0.0005, with the largest r singular values computed
by CSVD-QR. The variable Dk can converge to a diagonal
matrix when CSVD-QR converges. Suppose that Tk ∈ Rr×r

is a square matrix whose entries Tk(i,j) =
∣∣Dk(i,j)

∣∣(i, j =
1, · · · , r). The convergence of Dk can be shown by plotting
10Tk(k = 2, 10, 30, 60), as in Fig. 2.

(A) k = 2, (B) k = 10, (C) k = 20, (D) k = 60.

Fig. 2 The convergence procedure of Dk in CSVD-QR.

Fig. 2 shows that the sequence of {Dk} can converge to
a diagonal matrix. The relative error of the singular values
computed by CSVD-QR reaches 0.0005 in the 60th iteration,
which means that CSVD-QR can accurately compute the
largest r singular values. In the proposed LNM-QR and
IRLNM-QR methods, the matrices L and R computed by
CSVD-QR with one iteration, are used to recover the original
incomplete matrix. Therefore, the proposed methods are much
faster than the traditional methods based on SVD.

B. Experimental Results of the Proposed Methods for Matrix
Completion

In this section, LNM-QR and IRLNM-QR are tested using
synthetic datasets and real-world images. The convergence
accuracies and speeds are compared with those of the SVT
[23], IRNN-SCAD (IRNN with SCAD function) [26], FTF
[32], and RBF (a nuclear-norm-based method) [18] methods.
The maximum numbers of iterations for LNM-QR, IRLNM-
QR, FTF, RBF, SVT, and IRNN-SCAD are 50, 50, 200,
200, 200, and 200, respectively. The parameters of FTF,
RBF, SVT, and IRNN-SCAD are set to the optimal values.
The total reconstruction error (ERR) and peak signal-to-noise
ratio (PSNR), which are two measures commonly used for
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evaluation purposes, are defined as follows:

ERR = ∥XREC −X∥F , (92)

PSNR = 10× log10
2552

MSE
, (93)

MSE =
1

3T · SE
, (94)

SE = ERR2
r + ERR2

g + ERR2
b , (95)

where T is the total number of missing entries, X is the
original matrix, and XREC is the recovered matrix.

1) Synthetic Data: LNM-QR and IRLNM-QR are tested on
a synthetic low-rank data matrix M , generated as follows:

M = Mm×r1
L Mr1×n

R + PΩ(σ · randn(m,n)), (96)

where ML and MR are generated as in Eqs. (90-91), respec-
tively. r1 > 0 is the rank of M , and σ regulates the noise
level for M . Clearly, a larger σ(σ > 0) can make M more
difficult to recover. In this section, m = 1000, n = 1000,
r1 = 50, and 50% of the entries of M are randomly missing.
Let µ0 = 10−2 and ρ = 1.4 (see Eq. (74)) for LNM-QR and
IRLNM-QR, and let µ0 = 10−4 and ρ = 1.4 for FTF and
MBF. The parameter S in Eqs. (87-88) was tested from 2 to
40 to determine the best value for IRLNM-QR. The parameter
θ in Eqs. (87-88) was set to 20 for IRLNM-QR.

First, the effects of r (the rank of D) on LNM-QR, IRLNM-
QR and FTF are tested. Let σ = 0.5 and r increase from 10
to 300, with a step size of 10. The effects of r on the three
methods are shown in Fig. 3.
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Fig. 3 The effects of parameter r (rank of D) on the LNM-QR, IRLNM-QR,

and FTF methods using synthetic data matrices.

Fig. 3 shows that the reconstruction error of FTF is much
larger than those of LNM-QR and IRLNM-QR when r > 50.
Thus, LNM-QR and IRLNM-QR are much more robust with
respect to r than FTF. This result also shows that the three
methods obtain the best reconstruction error at r = 50, i.e.,
the rank of M . Because estimating the rank of an incomplete
matrix is difficult, we must set r to a larger value in FTF.
Consequently, the accuracy and speed of FTF will be reduced.

Second, the effects of the noise level (σ) on LNM-QR
and IRLNM-QR are compared with those on the FTF, RBF,
SVT, and IRNN methods. Let r = 1.5r1 for FTF, LNM-
QR, and IRLNM-QR. Then, we repeat the experiments 10
times, with σ increasing from 0.1 to 0.9 for each method.
The mean reconstruction errors with standard errors of the six

methods are shown in Table III (the standard errors are shown
in parentheses) and the corresponding CPU times are shown
in Fig. 4.

TABLE III: MEAN RECONSTRUCTION ERRORS AND STANDARD
ERRORS OF THE SIX METHODS USING SYNTHETIC DATA, 50% OF

WHICH IS RANDOMLY MISSING.

Noise LNM IRLNM IRNN SVT FTF RBF
level -QR -QR -SCAD

0.1 41.463 35.493 36.266 55.325 59.825 59.751
(0.153) (0.065) (0.084) (0.027) (16.770) (5.931)

0.2 81.741 71.254 72.423 108.333 115.333 103.768
(0.274) (0.261) (0.119) (0.145) (16.082) (2.871)

0.3 123.654 107.247 106.708 176.110 162.110 150.452
(0.357) (0.263) (0.175) (0.140) (41.325) (1.668)

0.4 169.648 142.676 140.824 200.791 209.791 199.547
(0.702) (0.405) (0.341) (0.143) (26.347) (1.770)

0.5 218.630 177.684 175.013 302.106 310.106 247.318
(0.765) (0.495) (0.504) (0.479) (27.893) (1.891)

0.6 261.513 213.589 211.327 323.247 333.247 295.879
(1.191) (0.452) (0.612) (0.453) (25.894) (1.918)

0.7 308.720 249.447 253.629 343.896 353.896 343.460
(1.213) (0.571) (0.637) (0.726) (28.369) (1.752)

0.8 354.001 284.824 281.419 384.264 387.264 390.843
(1.348) (0.689) (0.792) (0.657) (26.232) (1.984)

0.9 398.841 320.044 315.756 412.214 412.214 412.175
(1.419) (0.976) (1.174) (1.123) (26.367) (1.998)

Table III shows that the IRLNM-QR method, which is as
accurate as IRNN-SCAD, is more accurate than LNM-QR,
SVT, RBF, and FTF. The reason is that IRLNM-QR can
obtain the same optimal solution as an iteratively reweighted
nuclear norm minimization method. Table III still shows that
IRLNM-QR and LNM-QR are as stable as SVT and IRNN-
SCAD, which are considerably more stable than FTF. The
standard errors of IRLNM-QR and LNM-QR are much smaller
than those of FTF and RBF. Unlike other tested methods, the
standard error of RBF is relatively large when the noise level
is equal to 0.1 and becomes small when the noise level varies
from 0.2 to 0.9. This may result from the fact that optimizing
the l1-norm of a sparse matrix [18] may make RBF be more
stable when recovering matrices with high noise levels.
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Fig. 4 The CPU times of the six methods on random data.

Fig. 4 shows that LNM-QR and IRLNM-QR are much faster
than SVT and IRNN-SCAD. The speed of IRLNM-QR is
approximately 80∼100 times those of SVT and IRNN-SCAD.
The reason is that the computational cost of a full SVD in
each iteration of SVT or IRNN-SCAD is much larger than
that of the QR decomposition in LNM-QR and IRLNM-QR
when r = 75(1.5r1). The speed of LNM-QR or IRLNM-
QR is only 2∼3 times that of FTF or RBF. When r = 75,
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the computational cost of the SVD in FTF is not very large.
However, FTF will become slow if r is given a large value.

2) Real-World Data: Recovering useful information cov-
ered by the texts in an image is much more challenging than
recovering matrices with missing entries randomly distributed.
We first check the positions of the texts and then initialize
the corresponding entries to be zero to generate incomplete
images. The original images and incomplete images in Fig. 5
(on the next page) are 1024× 1024 in size. Because the color
images have three channels, we treat each channel separately
and then combine the results to form the final recovered
images. The incomplete images in Fig. 5 are recovered by
LNM-QR and IRLNM-QR. Then, their results, i.e., conver-
gence accuracies, CPU times, and numbers of iterations, are
compared with those of RBF, FTF, SVT, and IRNN-SCAD.

First, the effects of the parameter r on FTF, LNM-QR, and
IRLNM-QR are tested. Let µ0 = 10−5 and ρ = 1 for FTF
and RBF, and let µ0 = 10−3 and ρ = 1 for LNM-QR and
IRLNM-QR. Let r increase from 10 to 300, with a step size
of 10. By using these values, the 5th incomplete image in Fig.
5 is recovered by the three methods. The PSNR values and
CPU times of the three methods for different r are shown in
Fig. 6 and Fig. 7, respectively.
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Fig. 6 The effects of r on the three methods,

i.e., FTF, LNM-QR, and IRLNM-QR.
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Fig. 7 The CPU times of the three methods with different r.

Fig. 6 shows that the convergence accuracies of the three
methods increase with the parameter r. The PSNR curves
of LNM-QR and IRLNM-QR converge when r > 180 and
r > 200, respectively. Similarly, the PSNR curve of FTF
increases sharply when r < 120 and increases gradually
when 120 < r < 200. However, FTF slows down when r

becomes large because the computational cost of the SVD in
FTF is dominated by the parameter r. The CPU times of the
three methods for different values of r (Fig. 7) confirm this
conclusion.

Fig. 7 shows that the CPU time of FTF increases very
quickly compared to those of LNM-QR and IRLNM-QR.
Approximately 0.5 s to 42 s and 9 s to 190s are required
for LNM-QR and IRLNM-QR and for FTF, respectively, to
recover the 5th incomplete image in Fig. 5 when r ranges from
10 to 300. Thus, LNM-QR and IRLNM-QR are approximately
5∼18 times faster than FTF. Furthermore, the accuracy of
IRLNM-QR is much better than those of FTF and LNM-QR.

Second, the convergence accuracies of LNM-QR and
IRLNM-QR are compared with those of RBF, FTF, SVT,
and IRNN-SCAD. Let µ0 = 10−5 and ρ = 1.1 for RBF,
µ0 = 10−5 and ρ = 1 for FTF, and µ0 = 10−3 and ρ = 1
for LNM-QR and IRLNM-QR. From the analyses of Fig. 6,
it is suitable to let r = 200 for RBF, FTF, LNM-QR, and
IRLNM-QR when recovering the eight incomplete images in
the second row of Fig. 5. The parameter S (see Eqs. (87-88))
is tested from 2 to 20 to choose the best value for IRLNM-
QR, and θ (in Eqs. (87-88)) is set to 3. With these values,
the incomplete images are recovered by the six methods. The
convergence accuracies, recovered images, PSNR curves and
CPU times of the six methods are shown in Table IV, Fig. 8,
Fig. 9, and Fig. 10, respectively.

TABLE IV: PSNR OF RECOVERY RESULTS OF THE SIX
METHODS ON THE INCOMPLETE IMAGES IN FIG. 5.

Images SVT FTF RBF IRLNM LNM IRNN
(1-8) -QR -QR -SCAD

1 39.244 39.471 40.191 41.202 40.534 41.186
2 33.741 33.994 37.171 38.143 37.187 38.695
3 31.576 32.664 33.966 35.625 33.789 35.739
4 30.092 29.765 31.517 35.173 32.143 34.379
5 25.510 26.247 26.346 27.769 26.606 27.732
6 20.225 20.299 21.273 22.217 21.329 22.184
7 22.478 22.787 24.373 25.314 24.264 25.200
8 25.529 25.635 27.172 27.844 27.129 28.045

As shown in Table IV, the accuracy of LNM-QR is much
better than that of SVT and is slightly better than those of
RBF and FTF. However, the PSNR of IRLNM-QR on the eight
images, which is much better than those of RBF and FTF, is
approximately equal to that of IRNN-SCAD. The reason is
that by using matrices L and R in the previous iteration as an
initialization, IRLNM-QR can converge to the optimal solution
of an iteratively reweighted nuclear norm method. Some of the
recovery results are plotted in Fig. 8 due to space limitations.

As shown in Fig. 8, the recovery result of IRLNM-QR is
as clear as that of IRNN-SCAD but much clearer than that
of SVT. The recovery results of RBF, FTF, and LNM-QR are
very similar to each other, with some abnormal points being
present (please see the points between the bird and the tree
in Fig. 8 (D), (E), and (F)). Note that by using the outputs of
CSVD-QR with one iteration, LNM-QR and IRLNM-QR can
converge very efficiently. The PSNR curves of the six methods
on the 5th incomplete image in Fig. 5 are shown in Fig. 9.

Fig. 9 shows that IRLNM-QR is much more accurate
than FTF, SVT and LNM-QR. Moreover, IRLNM-QR and
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(A) The original images used in Section IV.B.2).

(B) The incomplete images generated.

Fig. 5 The real-world images (1-8) used in Section IV.B.2), which are 1024× 1024 in size.

(A) (B) (C) (D)

(E) (F) (G) (H)
Fig. 8 The recovery results of the six methods on image 3 in Fig. 5 with text noise. (A) The original image. (B) The incomplete image. (C) IRLNM-QR, PSNR=35.625.

(D) LNM-QR, PSNR=33.789. (E) RBF, PSNR=33.966. (F) FTF, PSNR=32.664. (G) SVT, PSNR=31.576. (H) IRNN-SCAD, PSNR=35.739.
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Fig. 9 The PSNR curve of the six methods on the 5th

incomplete image with texts in Fig. 5.

LNM-QR can converge with fewer iterations than SVT, RBF,
FTF, and IRNN-SCAD. IRLNM-QR converges to the optimal
solution after approximately 50 iterations, whereas IRNN-
SCAD, RBF, FTF, and SVT require at least 130, 120, 180,
and 150 iterations, respectively.

Fig. 10 shows that LNM-QR is a bit faster than IRLNM-
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Fig. 10 The CPU times of the six methods.

QR. The reasons is that IRLNM-QR may require a few more
iterations to search for a better solution. IRNN-SCAD and
SVT require approximately 400 s∼450 s and 580 s∼680 s,
respectively. The FTF method, which is almost as fast as
RBF, is not fast when recovering real-world images, as the
parameter r in FTF should be set at a large value to improve its
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convergence accuracy. In general, LNM-QR and IRLNM-QR
are approximately 15 times, 15 times, 35 times, and 20 times
faster than the FTF, RBF, SVT, and IRNN-SCAD methods.

V. CONCLUSIONS

To investigate a fast and accurate completion method, a QR-
decomposition-based method for computing an approximate
SVD (CSVD-QR) is proposed. This method can be used to
compute the largest r(r > 0) singular values of a matrix
by QR decomposition iteratively. Then, under the frame-
work of matrix tri-factorization, a CSVD-QR-based L2,1-norm
minimization method (LNM-QR) is proposed for fast matrix
completion. Theoretical analysis shows that the L2,1-norm of
a submatrix in LNM-QR can converge to its nuclear norm.
Consequently, an LNM-QR-based iteratively reweighted L2,1-
norm minimization method (IRLNM-QR) for improving the
accuracy of LNM-QR is proposed. Theoretical analysis shows
that IRLNM-QR is as accurate as an iteratively reweighted
nuclear norm minimization method, which is much more
accurate than the traditional QR-decomposition-based matrix
completion methods. The experimental results obtained using
both synthetic and real-world visual datasets show that LNM-
QR and IRLNM-QR are much faster than the FTF, RBF, SVT,
and IRNN-SCAD methods. The experimental results still show
that IRLNM-QR is almost as accurate as the IRNN method.

VI. APPENDIX

In this appendix, some mathematical details regarding
CSVD-QR, LNM-QR and IRLNM-QR are provided. In ad-
dition, Theorems 1, 2 and 3 are proven.

A. Proof of Theorem 1
Suppose that X ∈ Rm×n (m ≥ n) is a real matrix, the QR

decomposition of which [30] is as follows:

X = LR. (97)

Let T = QX , where Q ∈ Rm×n is an orthogonal matrix.
Then, the QR decomposition of T is as follows:

T = LR, (98)

where L ∈ Rm×m and R ∈ Rm×n satisfy

L = QL, (99)
R = R, (100)

where L is an orthogonal matrix.
Let r = n, L1 = eye(m, r), and R1 = eye(r, n). In the jth

iteration of CSVD-QR, Lj+1 is updated as follows:

[Q,Tj ] = qr(XRT
j ), (101)

Lj+1 =Q(q1, · · · , qr), (102)

Rj+1 is updated as follows:

[Q, Tj ] = qr(XTLj+1), (103)
Rj+1 = Q(q1, · · · , qr), (104)
Rj+1 = RT

j+1, (105)

and Dj+1 is updated as follows:

Dj+1 = T T
j (1 · · · r, 1 · · · r). (106)

If m > n, we let Q ∈ Rm×n and Tj ∈ Rn×n for Eq. (101).
When j = 1, we have

[L2, T1] = qr(X), (107)
[R2, D

T
2 ] = qr(TT

1 LT
2 L2). (108)

Since LT
2 L2 = I , DT

2 is equal to Λ2 in SVD-SIM.
When j = 2, we have

[L3, T2] = qr(XRT
2 ), (109)

XRT
2 = L2D2R2R

T
2 (110)

= L2D2. (111)

Consequently,
[L3, T2] = qr(L2D2). (112)

According to Eqs. (99-100),

[LT
2 L3, T2] = qr(D2). (113)

Because DT
2 is equal to Λ2, T2 in Eq. (113) is equal to the

S1 term in Eq. (3). D3 is updated as follows:

[R3, D
T
3 ] = qr(XTL3), (114)

XTL3 = RT
2 D

T
2 L

T
2 L3. (115)

According to Eq. (113), Eq. (115) is equal to

XTL3 = RT
2 T

T
2 . (116)

According to Eq. (114) and (116), we have

[R2R3, D
T
3 ] = qr(TT

2 ). (117)

According to Eq. (6) in Section II.A, DT
3 is equal to Λ3. Thus,

we can conclude that the diagonal entries of Dj are equal to
those of Λj , where j = 1, · · · , N (N > 1).

B. Proof of Theorem 2
We rewrite the problem in Eq. (81) as follows:

min
X∈Rr×r

1

µ
∥X∥w·(2,1) +

1

2
∥X − C∥2F , (118)

where µ > 0. According to Eq. (76), the optimal solution Xopt

to the problem in Eq. (118) is as follows:

Xj
opt = arg min

Xj
opt

wj

µ

∥∥Xj
∥∥
∗ +

1

2

∥∥Xj − Cj
∥∥2
F
, (119)

where j = 1, · · · , r and Xopt = Σr
j=1X

j
opt. Suppose Cj =

UΛV T is the SVD of Cj . Cj has only one singular value that
can be denoted as σ(Cj). According to Lemma 1, the optimal
solution to Eq. (119) is

Xj
opt = (

∥∥Cj
∥∥
F
− wj

µ
)+UV T , (120)

where
∥∥Cj

∥∥
F
= σ(Cj). Then, we have

Xj
opt =

(
∥∥Cj

∥∥
F
− wj

µ )+

∥Cj∥F
Cj . (121)
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Finally, we form the final optimal Xopt as follows:

Xopt = CK, (122)
K = diag(k1, · · · , kr), (123)

kj =
(
∥∥Cj

∥∥
F
− wj

µ )+

∥Cj∥F
. (124)

C. Proof of Theorem 3
Because the sequence of {Dk} produced by IRLNM-QR

can converge to a diagonal matrix D that obeys Eq. (75) in
Section III, the DT term in Eq. (85) in Section III can also
converge to a diagonal matrix T ∈ Rr×r, the entries of which
obey ∥Tii∥1 ≥ ∥Tjj∥1 (i < j). Thus, the problem in Eq. (79)
can be reformulated as follows:

min
D

1

µk
Σr

j=1∇g(
∥∥Dj

∥∥
∗)

∥∥Dj
∥∥
∗ +

1

2
∥D − T∥2F . (125)

Since
∥∥Dj

∥∥
∗ = σj(D), Eq. (125) can be rewritten as follows:

min
D

1

µk
Σr

j=1∇g(σj(D))σj(D) +
1

2
∥D − T∥2F . (126)

According to Lemma 2, the problem in Eq. (126) can be
solved as follows:

D = Udiag(Pj(Λjj), j = 1, · · · , r)V T , (127)

Pj(Λjj) = (∥Tjj∥1 −
1

µk
∇g(σj(D)))+, (128)

∇g(σj(D)) = µk(1− k̄j)
∥∥∥Dj

T

∥∥∥
∗
, (129)

where T = UΛV T , Λjj = ∥Tjj∥1 , j = 1, · · · , r. 1 ≥ k1 ≥
k2 ≥, · · · , kr > 0, and j ∈ [1, · · · , r]. According to Eq. (128)
and Eq. (129) (Eq. (80) in Section III), we have

Pj(Λjj) = ∥Tjj∥1 −
1

µk
(1− k̄j) ∥Tjj∥1 (130)

= k̄j ∥Tjj∥1 . (131)

When k̄i ≥ k̄j , Pi(Λii) obeys Eq. (23) in Lemma 2, i.e.,

(k̄i ∥Tii∥1 − k̄j ∥Tjj∥1)(∥Tii∥1 − ∥Tjj∥1) ≥ 0. (132)

Thus, IRLNM-QR can converge to the optimal solution of an
iteratively reweighted nuclear norm minimization method and
can converge with an accuracy equal to that of IRNN.
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