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A quantum solid (solid 4He) in contact with a classical solid defines a new class of interfaces. In addition to
its quantum nature, solid 4He is indeed a very plastic medium. We examine the thermal interface resistance upon
solidification of superfluid 4He in contact with a silicon crystal surface (111) and show that dislocations play a
crucial role in the thermal interface transport. The growth of solid 4He and the measurements are conducted at
the minimum of the melting curve of helium (0.778 K and ∼25 bar). The results display a first-order transition
in the Kapitza resistance from a value of RK,L = (80 ± 8) cm2K/W at a pressure of 24.5 bar to a value of
RK,S = (41.7 ± 8) cm2K/W after the formation of solid helium at ∼25.2 bar. The drop in RK,S is only of a factor
of ∼2, although transverse phonon modes in solid 4He now participate in heat transmission at the interface. We
provide an explanation for the measured RK,S by considering the interaction of thermal phonons with vibrating
dislocations in solid 4He. We demonstrate that this mechanism, also called fluttering, induces a thermal resistance
RFl ∝ NdT

−6, where T is the temperature and Nd is the density of dislocations. We estimate that for dislocation
densities on the order of ∼107cm−2, RFl predominates over the boundary resistance RK,S . These fundamental
findings shed light on the role of dislocations and provide a quantitative explanation for previous experiments
which showed no measurable change in the Kapitza resistance between Cu and superfluid 4He upon solidification
of the latter. This demonstrates the possibility of using dislocations as an additional means to tailor thermal
resistances at interfaces, formed especially with a plastic material.

DOI: 10.1103/PhysRevB.97.014308

I. INTRODUCTION

Heat flow across a solid/solid 4He interface is original in
that solid 4He is a quantum solid. The atoms in solid 4He
have a large zero-point motion, approaching almost 25% of
the lattice spacing. Also, recent studies [1–5] on the quest for
supersolidity of 4He in the group of Balibar and co-workers
have revealed that its elastic properties are strongly impacted
by the gliding motion of dislocations along the basal plane [6]
of the hcp solid 4He crystal, which is in contact with a classical
solid surface. This defines a new class of interfaces thanks also
to the giant plasticity of solid 4He. There is therefore a fresh
interest in studying these interfaces and in observing how their
quantum features may influence thermal interface properties,
and in particular, the Kapitza resistance RK .

An earlier interest in studying solid/solid 4He interfaces
was triggered from a quest to understand the enigmatic Kapitza
resistance at a solid/superfluid 4He interface. Indeed, liquid he-
lium at low temperatures is one of the rare pure materials whose
phase state can be monitored by mechanical pressurization at a
constant given temperature. The phase change from superfluid
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to solid 4He leads to a discontinuous increase in its density by
∼20%. Transverse modes are now present in solid 4He and they
play a direct role in phonon transmission, thereby increasing
the amount of thermal energy carried across the interface.
Rotons, which are elementary excitations present in superfluid
helium, disappear abruptly with phase change. A literature
survey reveals a scarcity in the studies ofRK upon solidification
of helium. To our knowledge the only experiments conducted
between a classical solid and solid 4He are those of Folinsbee
and Anderson [7] and Mezhov-Deglin [8]. Both experiments
were conducted for copper/solid 4He interfaces. And, both ex-
periments led to another enigmatic result which is the absence
of a change in RK when 4He is either superfluid or in the solid
phase.

Significant progress in the understanding of the Kapitza
resistance RK between a silicon crystal (dielectric solid) and
pressurized superfluid 4He has been made by considering a
new mechanism of resonant scattering of phonons in collision
with the surface [9], as first predicted by Adamenko and Fuks
[10]. We have demonstrated that resonant scattering occurs
when σ ≈ 0.33λHeII (see Fig. 3 in Ref. [9]) where σ is the rms
surface roughness height and λHeII is the dominant phonon
wavelength in the superfluid.

In this paper we examine the thermal interface resistance
between Si crystal surface and helium solid at the minimum
of the melting curve of 4He. We discover a distinct first-
order transition in the thermal interface resistance with the
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FIG. 1. Cell configuration for measurement of the Kapitza resis-
tance at Si/solid 4He interface. Solid 4He is grown at the minimum of
the melting curve from the superfluid phase.

solidification of helium, contrary to the results of Folinsbee
and Anderson, and Mezhov-Deglin. We analyze these mea-
surements by combining the two recent path-breaking find-
ings related to the resonant scattering mechanism by surface
roughnesses [8] and to the interaction of thermal phonons with
vibrating dislocations in plastic solid 4He [1–4]. We show
that dislocation densities on the order of 107cm−2 suffice to
create thermal resistances in solid 4He which predominate
over RK . Our analysis gives a coherent explanation for all
experimental data, including those of Folinsbee and Anderson,
and Mezhov-Deglin.

This paper is organized as follows: Section II describes the
experimental setup, crystal-growth technique, and measure-
ments. Section III analyzes the experimental data and shows
that the nature of the scattering is predominately diffuse or
resonant as in the case of the Si/superfluid 4He interface. A
major part of this section quantifies the role of dislocations
(core and screw) in solid 4He and the contribution of phonon
interaction with mobile dislocations is clearly established as a
function of the dislocation densities. Section IV concludes the
paper.

II. EXPERIMENTAL

A. Cell and experimental configuration

The experimental cell is shown in Fig. 1 and it has been
used in previous experiments [9]. The polished extremity of
the single-crystal Si rod is in contact with helium present
in a thin-walled tube which is filled using a stainless-steel
capillary having an inner diameter of 0.2 mm. This filling
line is thermally anchored below the 1 K pot of a helium-3
refrigerator. The 1 K pot is run at a temperature of ∼1.4 K. The
top part of the cell is made of copper and is tightly attached to
the cold source of the refrigerator. The cell is equipped with
six RuO2 thermometers, of which three are equally spaced
on the Si crystal and the other three are in the tube. A heat
flux generated with the use of manganin wire at the bottom
extremity of the silicon crystal propagates along the c axis of
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FIG. 2. Temperature evolution during growth of 4He crystal under
a constant heat flux. Solidification is accompanied by a change in
temperature at the interface as shown by the RuO2 thermometers THe

and T1. The temperature jump at the interface changes from �T to
�T ′ under a constant heat flux.

the crystal. Further details of the cell and the heat loss analysis
are given in Ref. [11].

B. Crystal growth and measurements

The melting curve of helium-4 has a dip of approximately
8 mbar at a temperature of 0.775 ± 0.012 K and a pressure
of 24.985 ± 0.005 atm [12]. For temperatures above the
minimum point, the pressure in the cell is monitored directly
by condensing helium through the gas-handling system. We
used high-purity helium gas (AlphagazTM 2 supplied by Air
Liquide, global purity 99.9999%) in the experiment. The gas
is sent through a nitrogen trap to remove residual impurities
before injection into the cell. To ensure that helium solid forms
in the cell and on the Si surface, the superfluid 4He in the cell is
first pressurized to ∼22 bar and then regulated to the minimum
temperature. With the temperature controlled to within ∼1 mK
of the minimum temperature, the pressure in the cell is discon-
tinuously increased at a rate not exceeding ∼0.2 bar per minute
with the aid of a needle valve. The pressure is read on a Bourdon
manometer. All thermometers were recorded continuously as
liquid helium was solidified. The estimated crystal growth rate
did not exceed ∼0.48 mm/min. This filling-rate condition
was respected so as to obtain a good-quality helium crystal.
Generally, solid 4He grown at the minimum temperature of
the melting curve by slow pressurization of the cell produces
a high-quality single crystal [13]. At the minimum point there
is no latent heat release, eliminating thermal stresses in solid
4He as it is grown.

III. RESULTS AND DISCUSSION

A. Transition in RK with phase change from superfluid to solid

Figure 2 shows the trace of helium temperature given by THe

which is situated at a distance �He ≈ 2 mm from the interface.
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FIG. 3. Measurements of RK at the minimum of melting curve.
Open symbols: RK between a solid and superfluid. Full symbols: RK

between a solid and solid 4He. For the Si/He interface: RK gradually
decreases as the pressure varies from SVP to 25.2 bar (open red
squares). The first-order transition is observed upon solidification (full
square) as highlighted by the dashed red line. For the Cu/He interface:
the triangles are measurements of Mezhov-Deglin (Ref. [8]) and the
circles are taken from works of Folinsbee and Anderson (Ref. [7]).
Here the dashed lines are visual guides to indicate the absence of a
transition in RK upon solidification. The continuous blue and red lines
are the diffuse mismatch model predictions of RK , respectively, for
Cu and Si in contact with solid 4He. The (×) indicates the radiation
limit model prediction.

Also shown in this figure is the temperature evolution along
the silicon crystal, depicted by T1 and T2, which are situated,
respectively, at 2 and 12 mm from the interface. When super-
fluid is present in the cell, its temperature is that of the regulated
temperature of the copper part of the cell, which is attached to
the cold source. THe remains constant at all times even when
the heat flux directed from the crystal across the interface is
modified. Throughout this experiment, a small heat flux less
than 30 µW is applied across the interface and it is maintained
constant. The solidification process is clearly observed as it
provokes a temperature shift on all thermometers as shown in
Fig. 2. The change in the temperature difference before and
after solidification from �T = (THe − T1) to �T ′ is directly
proportional to the change in RK with the crystallization of
4He. The Kapitza resistance at the Si/solid 4He interface is
given by RK,S = RK,L × (�T ′/�T ).

Figure 3 shows the measurements of the Kapitza resistance
as a function of the pressure in the superfluid as the latter
approaches solidification. Details of typical measurements
before solidification are given in Ref. [9]. The Kapitza resis-

tance undergoes a clear jump upon solidification of the su-
perfluid. Just before the transition, RK,L = (80 ± 8) cm2K/W.
After solidification, the Kapitza resistance reaches a value of
RK,S = (41.7 ± 8) cm2K/W. This change corresponds to an
instant ∼48 % drop in the Kapitza resistance.

The thermal boundary resistance clearly undergoes a first-
order transition. The order parameter here is the helium density
and the order variable is the thermal boundary resistance RK

or the average transmission coefficient. The sharp increase in
the transmission, as shown later, is due to the fact that there are
more modes present in solid 4He than in the superfluid. Indeed,
the presence of transverse branches in solid helium allows for
a better coupling to silicon.

B. Predictions of models for interface resistance

1. A modified acoustic mismatch (AM) model for
strongly mismatched solids

To analyze our results we developed a simple modified ver-
sion of the AM model for solids having very large discrepancies
in their acoustic impedances. In our model (see Supplemental
Material [14]) the thermal interface resistance is given by

RAM = 1

4aT 3(1 − cos θc)

[
αL

c2
He,L

+ 2αT

c2
He,T

]−1

, (3)

where the transmission coefficients αL = (4z1,Lz2,L)
(z1,L + z2,L)−2 and αT = (4z1,T z2,T )(z1,T + z2,T )−2 with
the acoustic impedances zi,j = ρici,j , i = (1,2) refer to
medium 1 and 2; and j = (L,T ) refers to the longitudinal and
transverse phonon branches, respectively. The key feature is
the use of a unique critical angle θc which is the average of
the critical cone angles θc,L and θc,T , associated, respectively,
with the L- and T -phonon branches in the less-dense medium
(solid He in our case). Using appropriate values for ρi and
ci,j (see Supplemental Material), our modified AM model
prediction of the Kapitza resistance between solid 4He and Si
therefore behaves as

RAM = 0.89

T 3(1 − cos θc)
cm2K.W−1. (4)

Equation (4) infers a rapid growth in the thermal boundary
resistance as θc tends to 0 for materials having very different
sound velocities.

In solid 4He we found θc ≈ 3◦, which yields RAM =
1371 cm2K/W at T = 0.778 K. This predication is ap-
proximately 30 times our measured value of RK,S = (41.7 ±
8) cm2K/W. It clearly confirms that the Kapitza resistance
between Si and solid 4He is anomalous just as it is between Si
and superfluid 4He. These findings also suggest that a more
general phenomenon, other than the acoustic impedances,
plays a key role in phonon transmission when two bodies
are highly mismatched, irrespective of whether 4He is in the
superfluid or solid phase in our case.

In applying the AM model, the Si/solid 4He interface is
assumed to be atomically flat, with both solids being perfect
crystals with their c axes aligned perpendicularly to the
interface. Under these conditions the scattering at the interface
is purely of a specular nature. It is interesting to note that our
experimental value can be retrieved if the critical cone angle
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in Eq. (4) is extended from θc ≈ 3◦ to θc ≈ 17◦. Increasing
the critical angle implies “softening” the boundary condition
on the continuity of the parallel components of the phonon
wave vectors in the plane of the interface (see Supplemental
Material). The transmission of phonons of longer wavelengths
(and therefore smaller frequencies) is facilitated across the
interface by a nonspecular (diffuse) scattering mechanism.
This scenario is highly plausible since our Si crystal surface has
roughnesses on the order of a few nanometers at scale lengths
comparable to phonon wavelengths in solid 4He. We note
that the lattice misfit at the interface also favors this scenario
despite the fact that both the Si (111) and solid helium have
hexagonal crystalline structures. In summary, not only does
the nonspecular contribution constitute a parallel transmission
channel, it predominates over specular scattering mechanisms
just as for solid/superfluid 4He interfaces.

2. Diffuse mismatch (DM) model

The DM model [15] describes a fully diffusive
phonon scattering regime at the interface and the
thermal boundary resistance is given by RDM =
1

2a
[(1/

∑
j c−2

He,j ) + (1/
∑

j c−2
Si,j )]T −3. Using the velocities

given above we estimate RDM ≈ 11.9T −3 cm2K/W for
the Si/solid 4He interface. At T = 0.778 K, RDM =
25.3 cm2K/W, which is ∼2 times smaller than our measured
value (see Fig. 3).

3. Phonon radiation (PR) limit

In the PR limit [16], phonons of all wavelengths in the
less-dense material (medium 1) are elastically transmitted
whereas the shorter-wavelength phonons in the dense material
are reflected. Consequently, all thermal frequencies in medium
2 larger than the maximum frequency in medium 1 are cut
off. Here, anharmonic/inelastic [17] phonon-scattering mech-
anisms are neglected. From Eq. (3), the thermal resistance in
the phonon radiation limit for the Si/solid 4He interface can
therefore be written as Rrad = (4aT 3)−1[c−2

He,L + 2c−2
He,T ]−1 =

0.0149T −3 cm2K/W. At T = 0.778 K, the lower bound of the
elastic thermal resistance is Rrad = 0.0316 cm2K/W. Works
[18] claim that the PR model prediction tends to agree with
experimental results for highly mismatched interfaces at low
temperatures. Our experimental value exceeds both the DM
and the PR model predictions. Finally, we note that anisotropy
of the RDM and Rrad as a function of the 4He crystal orientation
with respect to the solid surface is negligible in our analysis
(see Supplemental Material).

4. Density of states and resonant scattering

In our recent study [9] we demonstrated that the Adamenko
and Fuks (AF) theory of resonant scattering of phonons
makes a significant advancement in explaining the observed
Kapitza resistance RK,L at the Si/superfluid interface. In the
AF model the heat flux across an interface is amplified by
factor f ∝ (σ/λHeII)2. This arises from the surface resonant
scattering mechanism which prevails when nanoscale surface
roughness heights σ preferentially interact with wavelengths
from the incident phonon spectrum. Consequently, the ther-
mal resistance decreases by a factor RAM/Rσ = 1 + 0.5γ 2f ,

where Rσ is the thermal resistance calculated in the AF model
for an isotropically rough surface with an average surface-
roughness inclination γ = (2σ/�), where � is the roughness
height-height correlation length. Since the sound velocity
cL(P ) in superfluid 4He varies from 239 m/s at saturated
vapor pressure (SVP) to 362 m/s at P = 24 bar, the domi-
nant wavelength λHeII = (hcL(P ))/(3.8kBT ) correspondingly
changes from λHeII ≈ 3.86 nm at SVP to λHeII ≈ 5.83 nm
just before solidification at T = 0.778 K. The presence of a
Gaussian distribution of roughnesses assures that the resonant
scattering criterion σ = λHeII/3 is fulfilled for all λHeII at all
pressures, thereby explaining the rather small change in our
RK,L measurements as seen in Fig. 3. We find that a σ value of
∼1.9 nm suffices to explain the observed experimental value
RK,L = (80 ± 8) cm2K/W at 24 bar.

Now in solid 4He, the dominant wavelengths of lon-
gitudinal and transverse thermal phonons vary as λHe,j =
hcj (ϕ)/(3.8kBT ), where ϕ is the 4He crystal tilt angle with
respect to the c axis. Considering the variation of cj with ϕ

determined by Crepeau et al. [19], we estimate λHe,L � 9.86
nm and λHe,T � 4.75 nm at T = 0.778 K. These values are
close to phonon wavelengths in superfluid 4He. We recall that
λHeII = 5.83 nm at 0.778 K. Atomic force microscopy (AFM)
surface roughness analysis of our Si sample shows that surface
roughnesses on the order of λHe,j /3 are present. Consequently,
the resonant scattering criterion σ ≈ λHe,j /3 is also fulfilled
for the Si/solid 4He case just as it is for Si/superfluid He. We
therefore conjecture that the origin of diffuse scattering can
very well emerge from the resonant scattering mechanism of
phonons discussed previously.

If resonant scattering is indeed the key thermal transfer
mechanism at the interface, then the sharp drop in RK upon
solidification must depend strongly on the difference in the
number of phonon density of states accessible between solid
and superfluid helium. We estimate the increase in the density
of states due to the phase change of helium as follows. For
solid 4He the density of states in the frequency interval of
ω is gs(ω) = 9nsω

2/ω3
D , where ns is the number of atoms

per unit volume and ωD is the Debye frequency. Treating
superfluid 4He as a dilute Bose gas, the density of states can be
written as gL(ω) = 3nLω2/ω3

D ,where nL is the number density
in the superfluid. The ratio (gs/gL) ≈ 3ρs/ρL = 3.3, where
ρL = 0.17 g/cm3 is the superfluid density at ∼24 bar, just
before solidification. The scattering mechanism being the same
(resonant) before and after solidification, we expect RK,S ≈
RK,L/3 ≈ 26 cm2K4/W since there are two more modes now
participating in phonon transmission. It is interesting to note
that this value is in very good agreement with the DM model
prediction calculated above.

C. Influence of dislocations in solid 4He

1. Interaction phonon dislocations

In order to make progress in the interpretation of our results,
we present an analysis based on the presence of dislocations
in solid 4He. The analysis brings to light a source of thermal
resistance in bulk solid 4He which corroborates the plausibility
of the large discrepancy between our measured value and the
DM and PR model predictions for the Si/solid 4He interface.
The analysis also provides a tentative explanation of the
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TABLE I. Expressions for thermal resistivity in (mK/W) determined for different scattering mechanisms. The numerical coefficients are
calculated in SI units, with Nd in m−2. The integral in Eq. (8) is calculated numerically with the upper limit determined using xD = θD/T , with
θD ≈ 25 K.

Mechanism Relaxation time τp (s) Thermal resistivity Wp (mK/W)

Core τ−1
c = Vo

4/3Ndω
3/v2

D Wc = 8.23 × 10−15Nd/vD

Fluttering τ−1
F l = 4.95 × 107b2v3

DNd/T
3 WFl = 1.21 × 10−3v4

Db2Nd/T
6

Screw τ−1
s = 0.06Ndb

2γ 2ω Ws = 0.696vDb2γ 2Nd/T
2

thermal resistances measured at the Cu/solid 4He interface,
performed in two independent studies.

Dislocations are known to have an important effect on the
thermal and mechanical properties of solids. Recent studies
have shown that the large mobility of dislocations plays a
decisive role in explaining an elastic anomaly called “giant
plasticity” and thereby refute the supersolidity of 4He crystals
around 0.2 K. From the findings of the group of Balibar [1–4]
we infer that at our temperature ofT = 0.778 K, 3He impurities
present in solid 4He have no longer a pinning effect on dislo-
cations and mobile dislocations flutter under collisions with
thermal phonons. Following Granato and Lücke [20], Souris
et al. [3] cast the scattering time for this fluttering process as
τF l = BL2/π2C, where C ≈ 1.7 × 107b2 is the dislocation
energy per unit length in (J/m) with b the Burgers vector, L the
typical length between dislocations in the absence of a pinning
effect due to 3He impurities, and B = 14.4k3

BT 3/π2h̄2v3
D is the

phonon damping coefficient derived by Ninomiya [21,22] by
considering the interaction of phonons at a given temperature
with a mobile dislocation. In fact, the coefficient B charac-
terizes the momentum transfer from phonons to the mobile
dislocation. The latter experiences a drag force per unit length
FD = −Bvdis, where the dislocation velocity vdis decreases as
T increases. Taking L2 ≈ 1/Nd , where Nd is the dislocation
density, the relaxation time simplifies to

τ−1
F l = 4.95 × 107b2v3

DNd/T
3. (5)

The numerical coefficient is due only to the physical
constants and is given in SI units.

To highlight the importance of the fluttering mechanism,
we recall that in ordinary solids the effective dislocation
scattering rate τ−1

d is generally the sum of two frequency-
dependent phonon-scattering processes occurring at (i) lattice
distortion sites (called dislocation cores), characterized by
τ−1
c and (ii) outside the core within the elastic strain field

(called screw dislocation), characterized by τ−1
s . Klemens [23]

derived the scattering rates for both these cases. For a network
of screw dislocations parallel to the plane of the interface
and perpendicular to the temperature gradient, he showed
1
τs

=
√

23/37Ndb
2γ 2ω[ 1

2 + 1
24 ( 1−2ν

1−ν
)
2{1 + √

2( cL

cT
)2}2

], where
γ and ν are, respectively, the Grüneisen constant and the
Poisson ratio. Taking ν = 1/3 and noting that (cHe,T /cHe,L) ≈
0.5, the above equation simplifies to

τ−1
s = 0.06b2γ 2ωNd. (6)

The scattering rate from the dislocation core is expressed as

τ−1
c = Vo

4/3ω3Nd/v
2
D, (7)

where the hcp unit-cell volume Vo = 21/23a3, with a = 0.367
nm being the basal lattice constant of solid 4He.

The lattice thermal resistivity Wp due to type-p dislocations
(where p refers to core, screw, and fluttering dislocations) in an
isotropic dielectric solid is given, in the Debye approximation,
by W−1

p = 1
3

∑
j

∫
h̄ωj

∂N(ωj ,T )
∂T

c2
j τpdωj , where τ−1

p is the
scattering rate. Now, letting x = 2πhω/kBT and introducing
the Debye velocity vD given by 3v−3

D = ∑
j c−3

j , the inverse
thermal resistivity becomes

W−1
p = 4πkB

vD

(
kB

h

)3

T 3
∫ xD

0
τp(x)

x4ex

(ex − 1)2 dx. (8)

In the determination of vD , the velocities cj of each branch
are averaged over all angles. Table I shows the expressions
of Wp we found for each scattering mechanism. In Fig. 4
we plotted the thermal resistivity normalized with respect to
the dislocation density, as a function of temperature for each
scattering mechanism. For solid 4He, we took the Burgers
vector b = 0.367 nm (Ref. [2]), γ = 2.7 (Ref. [24]), and
vD = 285 m/s (Ref [19]). This figure clearly illustrates that
(WFl/Nd ) is almost four orders of magnitude stronger com-
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mechanism described in Refs. [21,22].

014308-5



JAY AMRIT, AYMERIC RAMIERE, AND SEBASTIAN VOLZ PHYSICAL REVIEW B 97, 014308 (2018)

0

10

20

30

40

50

60

70

104 105 106 107 108 109

Mezhov-Deglin ref. [8]
Folinsbee et al. ref. [7]
This work

R
TO

T
(c

m
2 K

/W
)

Dislocation density N
d
(cm-2)

Si Cu

R
TOT

= R
DM 

+ R
Fl

R
TOT

= R
rad

+ R
Fl

FIG. 5. The solid and dashed curves represent, respectively,
RDM + RFl and Rrad + RFl at T = 0.778 K. Pink curves are for
Si/solid 4He and blue curves are for Cu/solid 4He. The data points are
placed on the curves to show the dislocation densities which explain
RKS measurements.

pared to (Wc/Nd ) and (Ws/Nd ) at T < 1 K. Consequently,
the influence of core and screw dislocations can therefore be
neglected for simplicity hereon.

Unlike scattering from core and screw dislocations, the
fluttering mechanism is frequency independent. Therefore
phonons of all wavelengths participate in transferring, even
partially, their momentum to dislocations.

In our experimental configuration the thermometer mea-
suring the temperature in solid 4He is situated at a distance
of �He ≈ 0.2 cm from the interface. The thermal resistance
due to the fluttering mechanism is therefore given by RFl =
WFl�He = 2.13 × 10−7Nd/T

6 cm2K/W, where Nd is now in
cm−2.

To demonstrate the impact of dislocations on our mea-
surement, we plot in Fig. 5 the quantities RDM + RFl and
Rrad + RFl as a function of Nd (in cm−2) at T = 0.778 K.
The solid and dashed curves in pink depict the excess thermal
resistance for the Si/solid 4He interface with the limiting
values being, respectively, RDM = 25.3 cm2K/W and Rrad =
0.0316 cm2K/W. The key result here is that our experimental
data (pink dots) are retrieved for a dislocation density Nd =
1.5 × 107 cm−2 when the limit is given by the DM model.
This dislocation density increases by a factor of ∼3 only
when the phonon radiation value is considered to be the
alternate limit. For Nd < 106 cm−2 the thermal resistance
contribution due to dislocations is negligible. On the contrary,
for Nd > 108 cm−2 the thermal impedance due to the fluttering
mechanism predominates over the limiting values of the two
models. This clearly indicates that the measurements are highly
dependent on the solid 4He crystal quality.

2. Comparison to the Cu-solid 4He interface

To our knowledge previous studies conducted were for cop-
per/solid 4He interfaces by Mezhov-Deglin [8] and Folinsbee
and Anderson [7]. We examine their experimental values at
the minimum temperature T = 0.778 K. Folinsbee and An-
derson found RF

K ≈ 40.6 cm2K/W whereas Mezhov-Deglin
measured two distinct values, namely RM1

K ≈ 53 cm2K/W for
a chemically polished and annealed Cu sample; and RM2

K ≈
15 cm2K/W for very pure Cu sample annealed in high vacuum.
Since these Cu surfaces are not atomic planes, they must
have roughnesses less than ∼3.5 nm on scale lengths of λHe,j

which satisfy the resonant scattering condition σ = λHe,j /3
discussed above. Further, the striking common feature in all
these experiments is that the measured values of the thermal
boundary resistances remain the same (within experimental
error), independent of whether helium is in the superfluid or the
solid phase. These puzzling results hint that a thermal contribu-
tion from some other mechanism emerges after solidification
of superfluid 4He and compensates the drop in the thermal
boundary resistance.

In Fig. 5 the blue solid and dashed curves show the evolution
of the effective thermal resistance for Cu/solid 4He interface as
a function of Nd . The two limiting values are given by RDM =
5.1 cm2K/W and Rrad = 0.0316 cm2K/W at T = 0.778 K.
For these resistances we took �He ≈ 0.1 cm, corresponding to
the thickness of the solid layer in these experiments. As seen
from Fig. 5, dislocation densities in the range 107 to 108 cm−2

once again suffice to fully compensate the decrease in the
thermal boundary resistance with solidification as can be seen
by their data points on these curves. In summary, there is a
critical dislocation density above which RFl has a detectable
influence on the measurements of RKS .

3. Dislocation densities

We note that the dislocation densities that we determined
may be overestimated by an order of magnitude. This is
so because we set Nd ≈ 1/L2 in the expression leading to
Eq. (5) for the relaxation time τF l . In fact, the product NdL

2

represents a geometrical parameter which characterizes the
dislocation network connectedness. Since L depends on Nd ,
NdL

2 increases with improvement in the quality of the 4He
crystal to reach values of ∼20 − 60 [25]. Our crystals were
grown at the minimum of the melting curve and remained
in equilibrium with the superfluid phase. These conditions
strongly suggest that our solid 4He is a high-quality single
crystal and therefore NdL

2 can be greater than 1. Consequently,
our Nd values represent an upper limit.

One may hypothesize that the quality of the interface in
our case may be imperfect owing to pockets of superfluid. In
such a case, it is clear that the intrinsic value of the thermal
interface resistance between Si and solid 4He must be smaller
than RDM and greater than Rrad, the latter being the lower limit.
This is why we considered both these thermal resistances in
determining the dislocation densities. The difference in the
dislocation densities obtained using these limits vary at most
by a factor of approximately three as found above and therefore
do not alter our conclusions.

The dislocation densities on the order of 107 cm−2 which
we have extracted from our measurements (see Fig. 5) are
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very consistent with those found in good-quality crystals grown
at constant pressure and temperature as in our case. This is
in support of the robustness of our analysis as Nd does not
appear to depend on the concentration of 3He impurities above
0.6 K [26].

IV. CONCLUSION

We experimentally show that a first-order transition occurs
in the Kapitza resistance at the superfluid 4He/Si (111)
interface upon crystallization of 4He at the minimum of
the melting curve. Using our modified acoustic mismatch
model we demonstrate a predominant contribution from dif-
fuse scattering outside the critical angle in the less-dense
medium. The bulk acoustic impedances of each medium do
not control phonon transmission, in complete discord with the
AM theory [27] for solid/solid interfaces. As established for
solid/superfluid interfaces, we show that the same roughness-
phonon wavelength criterion for the surface resonant scattering
is fulfilled for solid/solid 4He interfaces. We argue that the
drop in the measured values of the Kapitza resistance at
the Si/solid 4He interface is less than expected considering
the higher density of states available in solid 4He compared
to the superfluid. We then explain our measurements by
demonstrating that the interaction of thermal phonons with
vibrating dislocations within solid 4He dramatically influ-
ences the thermal interface resistance. We clearly identify the
phonon fluttering mechanism and exclude the influence of
screw and cores dislocations. We show that densities greater
than ∼107 cm−2 suffice to overshadow the interface thermal
resistance. Dislocation densities less than ∼106 cm−2 have no
effect on the intrinsic values on the thermal interface resistance.
The present analysis provides a consistent interpretation of the
measurements of the thermal resistance between Cu and solid
4He, conducted independently by Folinsbee and Anderson, and
Mezhov-Deglin.

Further experiments in a wide temperature range are neces-
sary to establish the temperature dependency of the Kapitza
resistance between solid 4He (a quantum solid) and Si (a
classical solid). In particular it would be interesting to examine
the evolution in the thermal resistance at T < 0.3 K where
important changes in shear modulus occur, leading to the giant
plasticity of solid 4He. At these low temperatures the fluttering
mechanism disappears and dislocations move without dissipa-
tion. At slightly lower temperatures (below 0.1 K) the disloca-
tions are immobilized by 3He impurity binding. Consequently,
we would expect changes in the thermal interface resistance
RKS which shall serve to corroborate our interpretation.

Finally, the impact of dislocations at interfaces between
classical materials at nanoscale and in nanowire structures are
still at an infancy stage. The study of the interface between
a classical solid and solid 4He helps unveil the role of dislo-
cations [28] which impacts the tailoring of thermal interface
resistance as we have demonstrated.
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