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Abstract

In this paper we study automatic regularization techniques for
the fusion of automatic speaker recognition systems. Parame-
ter regularization could dramatically reduce the fusion training
time. In addition, there will not be any need for splitting the de-
velopment set into different folds for cross- validation. We uti-
lize majorization-minimization approach to automatic ridge re-
gression learning and design a similar way to learn LASSO reg-
ularization parameter automatically. By experiments we show
improvement in using automatic regularization.

1. Introduction
Score level fusion of multiple sub-systems has been the most
effective way of obtaining very high accuracy in speaker verifi-
cation. This trend is observed in the NIST SRE evaluations for
many years now. These systems utilize multiple classifiers in
order to produce the final score on whether the person speaking
in the test segment is the hypothesized speaker [1]. The goal
is to select a small set of base classifiers that are believed to be
complementary in order to improve the discriminiation ability
of the whole ensemble. To improve the generalization ability of
the ensemble, regularization is a commonly used approach [2].

A regularizer imposes an additional constraint on the fusion
weight optimization problem, where a regularization parameter
defines the maximum norm of fusion weights [3]. Then uncon-
strained optimization task is turned into a constraint optimiza-
tion task, where role of the constraint is to avoid fusion training
to overfit on the training data. In the Lagrangian formulation,
the role of the constraint is played by the well known Langrange
multiplier, λ. The meaning of theλ is that the larger it is, the
smaller search space is placed on the optimizer. Constraint is
origin centric. So regularization is commonly calledshrinkage,
as it tends to shrink the weight coefficients towards zero.

The functional form of the regularizer also plays a role in
overfit avoidance, as it defines the shape of the constraint re-
gion. The most common is theRidgeregularizer, which is just
quadratic function of the norm (l2), thus constraint is an origin
centric hypersphere [4]. Biggerλ will then shrink all classifier
weights fairly equally.Least absolute shrinkage(LASSO) [5]
is a regularizer, wherel1 norm leads to a origin centric diamod
as a constraint. LASSO is so called sparsity promoting regu-
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larizer, because if the corner of the diamond is optimum, then
some of the weights will turn out to be be exactly zero.

Regularized fusion could be carried out in a two-stage pro-
cess. First, a range of possibleλ values are selected, then the
weights are estimated for all these selected values. In this re-
gard, a fusion training set is split into two parts for weight op-
timization and cross-validation estimation, respectively. If the
training set is large, as was the case in NIST SRE 2012 [6], this
requires a large computational effort [7].

From the Bayesian perspective, we see that regularized fu-
sion training is actually themaximum a posteriori(MAP) esti-
mation of the fusion parameters consisting of the weight vector
w and biasb [7]. The regularizer is then the prior and theλ
is the hyper-parameter of the prior distribution. An improve-
ment to the frequentist interpretation is observed by using an
“integrating out” approach to estimate the regularization pa-
rameters [7], for instance, via variational Bayes. There, the
goal is to estimate the full posterior, while integrating out ev-
erything else [8]. Hyperparameters, are iteratively re-estimated,
with no need for cross-validation. In [9], it was noticed that
in speaker verification fusion, variational Bayes provides stable
results over different ensemble sizes, but the fused score is not
well calibrated as the synthetic prior cannot be easily included
into the optimization cost, in contrast to cross-entropy where it
is an additive term.

In case of using sparsity promoting priors, such asl1, few
Bayesian approaches have been reported in the literature, where
theλ is integrated out. In [7], hierarchial Bayesian model was
derived and non-informative and improper Jeffreys prior was
placed in the last stage. Anexpectation maximization(EM) al-
gorithm was specifically derived for this purpose. In [10], Jef-
freys prior was placed directly to the parameterλ, resulting in
a very tractable integral, but the resulting solution is less flexi-
ble than [7]. The integration by [10] results in an estimate that
λ is the number of non-zero weights. In the case of [10], the
hyperparameter is not estimated from the observed data.

In this work we apply the method for Bayesian ridge re-
gression [11] to regularized classifier fusion training. In that
methodλ is integrated out, but still, the selected method, the
majorization minimization lends to a possibility to use as any
tool that finds regularized optimum of the cross-entropy cost.
In addition, the method gives an estimate of theλ based on the
training data. In this work we find the closed form solution tol1
regularized optimization cost, whereλ has been integrated out.
We also attempt to optimize the weights using the majorization
minimization scheme. Additional benefit of such a scheme is



that not only is computational time reduced1, but no training set
splitting is needed and all data can be used for training.

2. Regularized cross-entropy
Given a development set of trialsD = {(sn, yn), n =
1, 2, . . . , Ndev} containingNdev score vectors fromL base
classifiers, we are interested to find a linear modelw

t
s + b

that minimizes errors on the development set and generalizes
well to an unseen corpus. Here,w = (w1, w2, . . . , wL)

t are
the weights to be applied to theL base classifier scores,b is
the bias term added to the fused scores, and the class labely is
defined to take values0 and+1 for non-target and target trial,
respectively.

For any class-conditional densities that follow exponential
family and share the dispersion parameter [12], the logistic re-
gression model can be written as:

p(y = 1|s) = (1 + exp{−(wt
s+ b)})−1 = σ(wt

s+ b).

In addition, the bias termb can be absorbed intow via a stan-
dard trick, by adding a default system that produces score 1 for
each trial. Then, the likelihood of the logistic regression model
can be written as:

p(D|w) =

Ndev
∏

n=1

{

σ(wt
sn)

ynσ(−w
t
sn)

1−yn
}

. (1)

Taking the negative logarithm of (1), we obtain the cost func-
tion [8]:

−

Ndev
∑

n=1

{

yn lnσ(wt
sn) + (1− yn) lnσ(−w

t
sn)

}

. (2)

In a speaker detection task, it is common to train the fusion
to be sensitive to a predefined cost function. Taking into ac-
count the Bayes risk optimal decision, the cost parameters
(Cmiss, CFA, Ptar) can be summarized as an effective prior,
Peff [13] such that:

Peff =
PtarCmiss

PtarCmiss + (1− Ptar)Cfa
(3)

Finally, due to the fact that the posterior probability of the target
trials is different from the syntheticPtar, the cost function in (2)
was further modified in [14] as follows:

E(w,D) =
Peff

Nt

Nt
∑

i=1

log
(

1 + e−w
t
si−logitPeff

)

+
1− Peff

Nf

Nf
∑

j=1

log
(

1 + ew
t
sj+logitPeff

)

, (4)

where the summation is over theNt target score vectorssi, and
theNf non-target score vectorssj , respectively.

Regularization can be added to the cost (4) in order to im-
prove the generalization ability of the classifier. In the case of
p-norm regularizer we will obtain

min
w

E(w,D) s.t. ‖w‖qp ≤ t. (5)

Then, the method of Lagrange multipliers will give us

min
w

{

E(w,D) + λ‖w‖qp
}

. (6)

In most typical settings,p andq are both set to 2 for the standard
Ridge regression, and set to 1 for the LASSO [5].

1In practice, the optimizer is needed to run only few times, versus
computing it for eachλ candidate.

3. Integrating out the hyperparameters
The solution to (6) can be interpreted as an MAP estimate
of [11]:

wMAP = argmin
w

{

E(w,D)− log p(w|λ)

}

(7)

We can simplify (7) by marginalizingλ out from the prior, i.e.,
p(w) =

∫

λ
p(w|λ)p(λ)dλ. Depending on the choice of regu-

larizer, we now need to define thep(λ) and compute the inte-
gral.

In [11], for the case of Ridge regression (p = 2), prior is de-
fined as an isotropic Gaussianp(w|λ) ∝ exp{− 1

2
λ‖w‖22} and

λ ∼ Ga(α, β), a Gamma distribution. Then, solving marginal-
ization and removing the terms independent ofw leads to [11]:

log p(w) = −

(

L

2
+ α

)

log

(

1

2
‖w‖22 + β

)

(8)

3.1. Sparsity promoting priors

In the case ofp = 1, a Laplacian distributionp(w|λ) =
λ
2
exp{−λ‖w‖1} is an appropriate representation of LASSO

regularization in the prior form. In [7], non-informative, also
improper at the same time, Jeffreys hyperprior was placed on
λ ∼ 1

λ
Then a simple EM algorithm was derived that optimizes

the model parameters in the hierarchial Bayes framework. In
this work, we assumeλ ∼ Ga(α, β). Similar approach was
taken in the context of variational Bayes approach by [15].

We follow the example of [11] in derivinglog p(w) in the
case of Laplacian prior. We start by assuming that

λ ∼ p(λ|α, β) = Ga(α, β) = βα 1

Γ(α)
λα−1 exp{−λβ}

(9)
and we can then write

p(w) =

∫

p(w|λ)p(λ|α, β)dλ

=

∫

λ

2
exp{−λ‖w‖1}β

α 1

Γ(α)
λα−1 exp{−λβ}dλ

= βα 1

2Γ(α)

∫

λα exp{−λ(‖w‖1 + β)}dλ

=
βαΓ(α+ 1)

2Γ(α)
(‖w‖1 + β)−(1+α)

∫

I(λ)dλ, (10)

where

I(λ) =
λα(‖w‖1 + β)α+1

Γ(α+ 1)
exp{−λ(‖w‖1 + β)}, (11)

which happens to be a Gamma distribution with parameters
Ga(α+1, ‖w‖1+β), so the last integral in (10) is 1. Finally, by
taking the logarithm of the result and removing additive terms
wherew does not appear, we obtain:

log p(w) = −(1 + α) log(‖w‖1 + β). (12)

3.2. Majorization-minimization

Using the results in (12) and (7) we arrive at the cost function
to be minimized:

f(w) = E(w,D) +

(

L

2
+ α

)

log

(

1

2
‖w‖2 + β

)

, (13)



which is differentiable, but unfortunately not convex. The solu-
tion proposed in [11] is to use themajorization-minimization
(MM) [16] algorithmic framework to solve the optimization
task in (13).

Majorization-minimization is based on the idea that we
solve the optimization problem iteratively, where in each iter-
ation we form a surrogate costg(w,w′), which is an upper
bound of the original cost functionf(w) ≤ g(w,w′). Mini-
mum ofg(w,w′) is found w.r.t.w, and the new bound is con-
structed. Algorithm converges when minimum, whether global
or local, is reached. For convergence, we require that equality
is reached only whenf(w′) ≤ g(w′,w′). Convergence is then
assured by the so calleddescent property[16]:

f(w′) = g(w′,w′) ≤ g(w′′,w′) ≤ f(w′′) (14)

The reader might now notice that EM framework is actually a
special case of MM optimization framework.

In [11], a surrogate functiong(w,w′) is constructed in the
following way. For notational convenience, we denote the terms
inside the log in (8) ash(w) = 1

2
‖w‖2 + β. Then, taking

the first order Taylor approximation aroundw′ of the term, we
notice that

log(h(w)) ≤ log(h(w)′) +
h(w)

h(w′)
− 1, (15)

for anyw′ and equality is obtained if and only ifw = w
′.

Using the result in (15),g(w,w′) can be written as [11]:

g(w,w′) = E(w,D) +

(

L/2 + α

1/2‖w′‖2 + β

)(

1

2
‖w‖2

)

,

(16)
where terms independent ofw have been removed. Obtained
algorithm is presented in Algorithm 1. We notice first of all
that, there is no need to manually (or by cross-validation) set
theλ-parameter. But what is even more interesting is that we
read an estimate of theλ directly from theg(w,w′). Using the
same strategy as in (15) for a LASSO regularizer, we can do
away with thelog operation inf(w).

f(w) = − log p(D|w) + (1 + α) log (‖w‖1 + β) . (18)

Which will lead toλ = 1+α

‖w(t)‖1+β
as a newλ estimate intth

iteration. However, the approach taken here requires that the
bound is exact if and only ifw = w

(t), and this unfortunately
is not the case with thel1 norm. It will lead to non-convergent
algorithm, however, in preliminary experiments we found out
that after a few iterations, differences between consecutiveλ’s
is not very large.

Algorithm 1 Majorization-minimization for fusion training
1: t = 0;
2: repeat
3:

λq(t) =

{

1 if t = 0
L/2+α

1
2
‖w(t)‖2+β

otherwise.
(17)

4: w
(t+1) = argminw

[

E(w + 1
2
λ(t)‖w‖2

]

5: until convergence

4. Experiments
Various solutions were put in place as part of the I4U2 sub-
mission consisting of 17 base classifiers of which 15 were
used in these experiments These include the GMM-SVM [17],
JFA [18], and the most advanced i-vector based classifier [19].
Briefly, the ensemble consists of 1 GMM-UBM, 3 GMM-
SVMs, 1 JFA, and 13 i-vector based classifiers. In essence,
all of these classifiers are based on the use of Gaussian mixture
model (GMM) in a GMM-UBM framework. In other words,
these classifiers require and have their own UBM for extract-
ing the Baum-Welch statistics. To this end, UBMs are trained
mainly using data drawn from SRE04, though SRE05, SRE06,
Switchboard and Fisher were also used. The channel compen-
sation components (NAP for GMM-SVM classifiers, channel
factors in JFA, LDA and PLDA for i-vector) were trained using
both the telephone and microphone data drawn from SRE04-
SRE10. Some i-vector based classifiers use cosine scoring,
while most classifiers use PLDA, such as back-ends of CRSS
systems [20].

To enable the researchers in the I4U coalition to optimize
speaker recognition systems performance on a condition simi-
lar to SRE’12 evaluation plan, the development sets were gen-
erated3. Two sets called development (DEV) and evaluation
(EVAL) are made to assess the absolute performance as well as
calibration performance of the systems. A disjoint set of speak-
ers from SRE’06 are held out from our DEV and EVAL train-
ing sets and only included in test phase to simulate theunknown
non-target trials. Number of segments, speakers and trials for
each set are given in Table 1. For the SRE12 fusion experi-
ments, we train the fusion device on DEV portion of the I4U
and apply it as is tocommon conditions(CC) 1 and 3.

We experimented with the maximum likelihood optimized
logistic regression (cross-entropy cost)4, Ridge regularized
cross-entropy, and LASSO regularized cross-entropy. In the
case of LASSO regularization, non-differentiability of the prior
is handled by the optimizer package we utilized. More details
on the optimizer can be found in [2]. Regularized variants are
the implementation of Section 3.2, whereλ is first integrated
out from the optimization cost leading to non-convex cost func-
tion. This cost function is then optimized by a local search
scheme, namely majorization-minimization. The MM estimates
gives as a side product the estimate of theλ. In all experiments
pknown = 0 and we report only theequal error rate(EER)
andminCprimary. In both regularized variants, parameters of
Gamma distribution were set toGa(0, 1). We also show best
individual base classifier, based on the performance on the dev
set, namely GMM-SVM utilizing an anti model [21].

In Table 2, we notice that majorization-minimization op-
timized Ridge andl1 improves theminCprimaryover non-
regularized approach and best individual classifier. However,
for EER, regularized approaches do not bring improvement
over non-regularized and even in the case of Female subset
EER is worse than best individual. Estimatedλ on Ridge and
l1 were similar for both Female and Male subsets, indicat-

2This is a collaboration of the following institutes: (1) Institute for
Infocomm Research, Singapore, (2) University of Eastern Finland, Fin-
land, (3) Radboud University Nijmegen (RUN), The Netherlands, (4)
CRSS, University of Texas at Dallas, USA (4) ValidSoft Ltd, London,
UK, (5) LIA, University of Avignon, France, (6) Idiap Research Insti-
tute, Switzerland, (7) Swansea University, UK, (8) University of New
South Wales, Australia

3The lists are available viahttp://lands.let.ru.nl/

˜ saeidi/I4U.tgz
4Similar to software package FoCal, but a different implementation



Table 1: Number of speakers, speech segments and trials in the development sets.
Number of speakers Number of segments Number of trials

DEV EVAL DEV EVAL DEV EVAL
Train Test Train Test Train Test Train Test True False True False

Males 680 868 763 804 16941 19866 29961 21837 14589 13494291 15483 16646148
Females 1039 1243 1155 1102 24693 25980 43119 28548 19863 26973357 20763 32952177

Table 2: Fusion performance on the I4U evalset
Method EER minCprimary Estimated

(%) λ

Female
Best ind. 0.54 0.0667 n/a
No Regul. 0.33 0.0524 n/a
Ridge 0.63 0.0449 4.0749
l1 0.63 0.0448 0.2963

Male
Best ind. 0.68 0.0656 n/a
No Regul. 0.40 0.0483 n/a
Ridge 0.49 0.0399 4.0835
l1 0.49 0.0398 0.2759

Table 3: Results on SRE12 evaluation corpus, common condi-
tion 1 (CC1) subset.

Method EER (%) minCprimary

Female
Best ind. 5.74 0.36179
No regul. 2.67 0.27674
Ridge 3.75 0.30752
l1 3.74 0.30775

Male
Best ind. 5.45 0.34738
No regul. 3.48 0.20204
Ridge 3.38 0.22670
l1 3.39 0.22670

ing close similarity in the trainingset score distributions. The
majorization-minimization algorithm converged for Ridge reg-
ularizer in three iterations and forl1 in two iterations.

In Tables 3 and 4 we see equal error rate and
minCprimaryfor SRE12 evaluation corpus subset CC1 and
CC2. We notice that the ridge andl1 give practically identical
results for these sets. In terms of both EER andminCprimarywe
note that regularization is better only in one case out of eight,
in other cases regularization does not help. This is an indication
that optimizing fusion weights on I4U DEV did not lead to an
overfit, which would make it necessary to regularize in order to
avoid it.

5. Conclusions
In this paper, we have compared different regularization tech-
niques for fusion of speaker verification systems when optimiz-
ing a cross-entropy function. We proposed to remove the need
of setting a hyper-parameter and to apply cross-validation by
integrating out the regularization parameter. Several regular-
ization constraint have been compared. For the case of Ridge
regularized logistic regression, we applied an existing marginal-
ization technique in complement of majorization-minimization

Table 4: Results on SRE12 evaluation corpus, common condi-
tion 3 (CC3) subset.

Method EER (%) minCprimary

Female
Best ind. 3.52 0.15913
No regul. 2.78 0.22766
Ridge 2.92 0.21396
l1 2.92 0.21396

Male
Best ind. 4.52 0.13511
No regul. 3.87 0.07187
Ridge 4.06 0.07604
l1 4.06 0.07604

algorithm to learn the regularization parameters. We also de-
rived a similar method for the case of sparsity promoting prior
focusing on thel1 regularization as sparse fusion. As a future
work, we plan to investigate an other bounds in the LASSO
case, so that majorization-minimization algorithm converges in
all cases.
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