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Abstract

ALIZE is an open-source platform for speaker recognition. The
ALIZE library implements a low-level statistical engine based
on the well-known Gaussian mixture modelling. The toolkit in-
cludes a set of high level tools dedicated to speaker recognition
based on the latest developments in speaker recognition such as
Joint Factor Analysis, Support Vector Machine, i-vector mod-
elling and Probabilistic Linear Discriminant Analysis. Since
2005, the performance of ALIZE has been demonstrated in se-
ries of Speaker Recognition Evaluations (SREs) conducted by
NIST and has been used by many participants in the last NIST-
SRE 2012. This paper presents the latest version of the corpus
and performance on the NIST-SRE 2010 extended task.

Index Terms: speaker recognition, open-source platform, i-
vector

1. Introduction

As indicated by the number of applications developed recently,
speech technologies have now reached a level of performance
that makes them attractive for distributed and embedded appli-
cations. Following this trend, NIST speaker recognition eval-
uations (SREs) have seen their number of participants increase
significantly since the first edition. These campaigns clearly il-
lustrate the substantial improvements in performance that have
been achieved in the last few years. Speaker verification sys-
tems have benefited from a number of developments in noise
and channel robustness [34, 30, 3] and new paradigms such as
Joint Factor Analysis [21] and i-vectors [12]. At the same time,
techniques developed in the field of speaker verification have
been shown to be useful for other areas [13, 27, 35].

State-of-the-art techniques are now based on intensive use
of corpus and computational resources [16, 11]. The contin-
ual improvement in performance calls for enormous number of
trials to maintain confidence in the results. For instance, the
number of trials from the core task of NIST-SRE evaluation has
increased from about 24,000 in 2006 to more than 1.88 millions
in 2012 (or 88 millions for the extended task) and participation
to such an event has become a true engineering challenge. The
rapidly growing effort needed to keep up-to-date with state-of-
the-art performance has strongly motivated an increasing num-
ber of collaborations between sites. However, system devel-
opment often remains a challenge and large scale implementa-
tion is resource consuming. In this context, collaborative open-
source software offers a viable solution as it can be used to
reduce the individual development effort and offer a baseline
system implementation [26].

The ALIZE project has been initiated in 2004 by the Uni-
versity of Avignon LIA within the ELISA consortium [29] with

the aim to create an open-source C++ library for speaker recog-
nition. Since then, many research institutes and companies
have contributed to the toolkit through research projects or by
sharing source code. More recently the development has been
supported by the BioSpeak project, part of the EU-funded Eu-
rostar/Eureka program'. Based on the ALIZE core library,
high level functionalities dedicated to speaker recognition are
available through the LIA RAL package. All the code from
the toolkit is distributed through open source software licenses
(LPGL) and has been tested on different platform including
Windows, Linux and Mac-OS.

Recent developments include Joint Factor Analysis [21], i-
vector modelling and Probabilistic Linear Discriminant Analy-
sis [32]. These developments stem mainly from a collaboration
between LIA and the Institute for Infocomm Research (1 2R).

This paper presents an overview of the ALIZE toolkit. Sec-
tion 2 gives a description of the collaborative tools and details
about the toolkit implementation. In Section 3 we describe the
main functions available in the LIA_RAL package. Section 4
presents the performance of i-vector systems based on ALIZE
for the NIST-SRE 2010 extended task. Finally, Section 5 dis-
cusses the future evolution of the project.

2. ALIZE: an Open Source Platform
2.1. A Community of Users

A number of tools are available for dissemination, exchange and
collaborative work through a web portal®. To federate the com-
munity, this portal collects and publishes scientific work and
industrial realisations related to ALIZE. The users can register
to the mailing list that allows them to be informed of the latest
developments and to share their experience with the commu-
nity. A LinkedIn group also provides a way to know about the
facilities and the people working in the field of speaker recog-
nition.

Documentation, wiki and tutorials are available on the web-
site to get started with the different parts of the toolkit. The
official release of the toolkit can be downloaded from the web-
site and the latest version of the sources are available through a
SVN server.

2.2. Source Code

ALIZE software architecture is based on UML modelling and
strict code conventions in order to facilitate collaborative de-
velopment and maintenance of the code. An open-source
and cross-platform test suite enables ALIZEs contributors to

lhttp://www.eurekanetwork.org/activities/eurostars
2http://alize.univfavignon.fr
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Figure 1: General structure of a speaker verification system.

quickly run regression tests in order to increase the reliability
of future releases and to make the code easier to maintain. Test
cases include low level unit tests on the core ALIZE and the
most important algorithmic classes as well as an integration test
level on the high-level executable tools. Doxygen documenta-
tion is available on line and can be compiled from the sources.

The platform includes a Visual Studio solution and auto-
tools for compilation under Windows and UNIX-like platforms.
A large part of the LIA RAL functions use parallel process-
ing for speed The multi-thread implementation based on the
standard POSIX library is fully compatible with the most com-
mon platforms. The LIA RAL library can be linked to the well
known Lapack® library to give high accuracy in matrix manipu-
lations.

All sources are available under LPGL licence that impose
minimal restriction on the redistribution of the software.

3. High Level Executables

The goal of this paper is to show the steps to set-up a state-of-the
art biometric engine using the different components of ALIZE.
For more details, excellent tutorials on speaker recognition can
be found in the literature [7, 2, 22].

Figure 1 shows the general architecture of a speaker recog-
nition engine. LIA_RAL high level toolkit provides a number
of executables that can be used to achieve the different func-
tions depicted in this diagram. The rest of this section gives an
overview of the main functionnalities of the LIA_RAL toolkit
with the corresponding executables.

3.1. Front-End

The first stage of a speaker recognition engine consists of a fea-
ture extraction module that transforms the raw signal into a se-
quence of low dimension feature vectors. ALIZE interfaces to
features generated by SPRO* and HTK® and also accepts “raw”
format.

Once the acoustic features have been generated, they can be
normalised to remove the contribution of slowly varying convo-
lutive noises (mean subtraction) as well as reduced (variance
normalization) by using the function NormFeat.

Low energy frames, corresponding to silence and noise, can
then be discarded with EnergyDetector. This executable
computes a bi- or tri-Gaussian model of the feature vector or of
the log-energy distribution and selects the features belonging to
“highest” mean distribution.

Finally, it is possible to smooth a selection of feature vec-
tors. Applied to a single channel recording, LabelFusion
smooths the selection of frames with a morphological window.

3http: //www.netlib.org/lapack/
4http: //www.irisa.fr/metiss/guig/spro/
5http://htk.eng.c:amuac.Lll(/

When applied to a two-channel recording, LabelFusion re-
moves overlapping sections of high energy features.

3.2. Enrolment

In speaker recognition, the enrolment module generates a statis-
tical model from one or several sequences of features. Although
it is possible to generate one model for each recording session,
depending on the system’s architecture, it is common to con-
sider a single model to represent a speaker. By extension, we
refer to this as the speaker model for the remainder of the paper.

State-of-the-art speaker recognition engines are mainly
based on three types of speaker models. Although these three
models are all related to a Gaussian mixture model (GMM),
we distinguish between a first first type of model that explic-
itly makes use of a GMM and the two other types that represent
the speaker or session as a fixed-length vector derived from a
GMM. This vector can be a super-vector [8] (concatenation of
the mean parameters of the GMM) or a more compact represen-
tation known as an i-vector [12]. Each of the three models can
be obtained from the corresponding executable of the LIA_RAL
toolkit.

Robustness to inter-session variability, that could be due to
channel or noise, is one of the main issue in speaker recognition.
Therefore, ALIZE includes the most common solutions to this
challenge for each type of model described below.

TrainTarget generates GMM models given one or more
feature sequences. The GMM:s can be adapted from a universal
background model (UBM) M by using a maximum a poste-
riori (MAP) criterion [15, 33] or a maximum likelihood linear
regression (MLLR) [25]. Noise and channel robust represen-
tations can be obtained by using Factor-Analysis (FA) based
approaches. Factor Analysis for speaker recognition has been
introduced in [20] and assumes that the variability due to the
speaker and channel both lie in distinct low dimension sub-
spaces. Different flavours of FA have been proposed and two
are available in ALIZE. The more general one is known as Joint
Factor Analysis [21], in which the super-vector m ) of the
session and speaker dependent GMM is a sum of three terms
given by Eq.1.

m(sm = ./\/l +Vy(5) -I-Uw(syn) +DZ(S) (1)

In this formulation, V and U are “factor loaded matrices”, D is
a diagonal MAP matrix while y, and x5, are respectively
called speaker and channel factors. Y(s)» L(s,n) and z(,) are
assumed to be independent and have standard normal distribu-
tions. A simplified version of this model, often referred to as
EigenChannel or Latent Factor Analysis [30] is also available
in the TrainTarget. In this version, the simplified genera-



tive equation becomes:

mes ) = M+ Uz n) + Dz )

ModeToSv extracts super-vectors from GMMs. A super-
vector is the representation of a speaker in a high dimension
space that has been popularised by the development of Support
Vector Machines (SVM) for speaker recognition [8]. LibSVM
library [10] has been integrated into the ALIZE SVM executable.
Nuisance Attribute Projection (NAP) [34] aims to attenuate the
channel variability in the super-vector space by rejecting a sub-
space that contains most of the channel variability (nuisance ef-
fect). The most straightforward approach consists of estimating
the within-session co-variance matrix W of a set of speakers
and to compute the projection i, ) of super-vector m ,,)
such that:

l’il(s,n) = (I - SSt)m(s,n) 3

where S contains the first eigenvectors resulting from the sin-
gular value decomposition of W.

IvExtractor extracts a low-dimensional i-vector [12]
from a sequence of feature vectors. An i-vectors is generated
according to

m;,n) = M+ Tws,n) )

where T is a low rank rectangular matrix called the Total Vari-
ability matrix and the i-vector w s ) is the probabilistic projec-
tion of the super-vector m(,, ,,) onto the Total Variability space,
defined by the columns of T.

Many normalization techniques have been proposed to
compensate for the session variability into the Total Variability
space. The IvNorm executable can be used to apply normaliza-
tions based on the Eigen Factor Radial (EFR) method [4]. EFR
iteratively modifies the distribution of i-vectors such that it be-
comes standard normal and the i-vectors have a unitary norm.
Given a development set 7 of i-vectors, of mean p and total
co-variance matrix 3, an i-vectors is modified according to:

we 22w K (5)
= w - )|

After this transformation has been applied to all i-vectors from
the development set 7 and from the test data, the mean, p, and
co-variance matrix, X, are re-estimated to perform the next iter-
ation. Note that the length-norm proposed in [14] is equivalent
to one iteration of the EFR algorithm.

A variation of the EFR, proposed later in [3] as Spherical
Nuisance Normalization (sphNorm), is also available in the AL-
IZE toolkit. For sphNorm, the total co-variance matrix 3 is
replaced by the within class co-variance matrix of the develop-
ment set 7. After normalization of their norm, all i-vectors lie
on a sphere and it is therefore difficult to estimate a relevant
within-class co-variance matrix. Spherical Nuisance Normal-
ization is then used to project the i-vectors onto a spherical sur-
face while assuring that there is no principal direction for the
session variability.

Other standard techniques such as Within Class Co-
variance Normalization (WCCN) and Linear Discriminant
Analysis (LDA) [12] are also available in ALIZE.

3.3. Pattern Matching

Given a test utterance, X, and a target speaker model, the
matching module returns a score that reflects the confidence of

the system in X’ being spoken by the target speaker. The na-
ture and computation of this score vary depending on the type
of speaker model and the different assumptions made. Similarly
for the enrolment module, LIA_RAL includes three executables,
each dedicated to a specific type of model.

ComputeTest, given a sequence of acoustic features, X =
{@+}ter of length T', computes a log-likelihood ratio between
the UBM and a speaker dependent GMM. If no channel com-
pensation method is applied, the log-likelihood of utterance X
over a model s is computed as the average log-likelihood of fea-
tures a+ such that:

T C
log P(X[s) =Y log > veN (i, ., Be) (6)
t=1 c=1

where C' is the number of distribution in s and 7., p. and 2.
are the weight, mean and co-variance matrix of the ¢*”* distribu-
tion respectively.

For the case of Joint Factor Analysis where it is difficult
to integrate out the channel effect, ComputeTest can com-
pute two approximations of the log-likelihood. The first one is
adapted directly from [19] and uses a MAP point estimate for
the channel factor and the second is the linear scoring proposed
in [17]. A detailed description of both approaches can be found
in [17].

SVM returns a score that reflects the distance of a test super-
vector to the hyper-plan defined by the classifier. Different
kernels such as GLDS [9] or GSL derived from the Kullback-
Liebler divergence [8] are available through the LibSVM li-
brary.

IvTest is dedicated to i-vector comparison. The i-vector
paradigm offers an attractive low-dimensional representation of
speech segments that enables standard classification techniques
to be applied for speaker recognition. Amongst the most popu-
lar scoring methods, four have been implemented in IvTest:
cosine [12] and Mahalanobis [4] scoring, two-co-variance scor-
ing (2cov) [6] as well as two versions of the Probabilistic Linear
Discriminant Analysis (PLDA) scoring [32].

In the remainder of this section, W, B and p are respec-
tively the within- and between-class co-variance matrices and
the mean of a large set of i-vector.

Cosine similarity has been proposed in [12] to compute the
similarity between two i-vectors w1 and w2. In the same paper,
the authors compensate the session variability through Within
Class Co-variance Normalization (WCCN) and Linear Discrim-
inant Analysis (LDA). Considering that Y is the Cholesky de-
composition of the within-class co-variance matrix W calcu-
lated over a large data set and that A is the LDA matrix com-
puted on the same data set, the cosine similarity score is given
by:

- < TtAtwl\TtAtwg >
It A s || [T A wo|

@)

S (w 1, W2 )
Mahalanobis distance is a generalisation of the Euclidian
distance for the case where the data are not following a standard

normal distribution. The Mahalanobis score is given by:

S(wi,w2) = (w1 — wz)tWﬁl(’w1 — wa) (®)



The two-co-variance model, described in [6], can be seen
as a special case of the PLDA. It consists of a simple linear-
Gaussian generative model in which an i-vector w can be de-
composed as w = y, + € where the speaker and noise compo-
nents Yy, and € follow respectively normal distributions given by
P(y,) = N(p, B) and P(ely,) = N(y,, W). The resulting
score can be expressed as:

o= SN (ily, W)N (wsly, W) N (y|p, B) dy
Hi:l,Q IN (w’blyv W)N (y‘uﬁ B) dy
PLDA [32] is one of the most recent addition to the AL-

IZE toolkit. The generative model of PLDA considers that an
i-vector w is a sum of three terms:

®

W(sn) = K+ F¢<S) + Gd)(sm) + € (10)

where F and G are low rank speaker and channel “factor loaded
matrices”. € is a normally distributed additive noise of full co-
variance matrix. ALIZE implementation of the PLDA follows
the work of [18]. Two scoring methods, described by Figure 2,
have been implemented. The first is based on the native PLDA
scoring while the second one is using the mean of the L en-
rolment i-vectors, w. Note that both methods allow multiple
enrolment sessions. More details can be found in [23] and in a

companion paper [24].

Same speaker

Different speakers

Same speaker

Different speakers

a. PLDA Native scoring b. PLDA mean scoring

Figure 2: Graphical model of the two PLDA scoring imple-
mentations in ALIZE for L enrolment i-vectors.

3.4. Background Modelling

Speaker recognition is a data-driven technology and all ap-
proaches implemented in ALIZE rely on a background knowl-
edge learned from a large quantity of development data. Esti-
mation of the knowledge component is computationally intense.
Efficient tools have been developed in the toolkit to optimize
and simplify the development efforts. The UBM can be trained
efficiently by using the TrainWor1d that uses a random selec-
tion of features to speed up the iterative learning process based
on the EM algorithm. Meta-parameters of JFA and LFA mod-
els can be trained by using EigenVoice, EigenChannel
and EstimateDmatrix while the TotalVariability
has been especially optimised to deal with the computational
constraints of learning the Total Variability matrix for i-vector
extraction. The implementation follows the work described
in [20] with additional minimum divergence described in [5].
Nuisance Attribute Projection matrices can be trained using
CovIntra and, for i-vector systems, normalization and PLDA
meta-parameters can be trained by respectively using PLDA and
IvNorm. PLDA estimation follows the algorithm described in
[18].

3.5. Score Normalization

Different combinations of score normalization based on Z- and
T-norm are available through ComputeNorm, [28, 1].

4. Performance of i-Vector Systems

This section presents the performance of different i-vector sys-
tems based on the ALIZE toolkit on the Condition 5 of the
NIST-SRE’10 extended task for male speakers [31]. 50 dimen-
sion MFCC vectors are used as input features (19 MFCC, 19A,
11AA and AE). High energy frames are retained and normal-
ized so that the distribution of each cepstral coefficient is O-
mean and 1-variance for a given utterance. A 2048-distribution
UBM with diagonal co-variance matrix is trained on 6,687 male
sessions from NIST-SRE 04, 05 and 06 telephone and micro-
phone data. The same data augmented with Fisher and Switch-
board databases (28,524 sessions) are used to train a Total Vari-
ability matrix of rank 500. All meta-parameters required for i-
vector normalization and scoring are estimated from 710 speak-
ers from NIST-SRE 04,05 and 06 with a total of 11,177 ses-
sions. Rank of the F and G matrices from the PLDA model are
set to 400 and O respectively. When applied, two iterations of
Eigen Factor Radial and 3 iterations of Spherical Nuisance Nor-
malization are performed.

: ==(5.81 ; 0.690) - Cosine-WCCN

40 NG i (3,65 5 0.548) - Cosine-LDA150-WCCN
} | m—(2.53 ; 0.511) - Mahalanobis-EFR

: —(2.23 ; 0.412) - 2cov-sphNorm

Na, i|==1(4.90 ; 0.499) - PLDA400
: i |==—(2.33; 0.411) - PLDA400-length norm
| m==(2.24 ; 0.404) - PLDA400-sphNorm
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Figure 3: Performance of ALIZE i-vector systems on NIST-
SRE10 extended male tel-tel task (condition 5) given in terms
of (% EER, minDCF2010).

Figure 3 shows the performance of seven systems using differ-
ent i-vector normalization and scoring functions. The perfor-
mance of these systems are consistent with the current state-
of-the-art considering that simple acoustic features have been
used.

5. Discussion

We have described ALIZE, an open-source speaker recognition
toolkit. This toolkit includes most of the standard algorithms
recently developed in the field of speaker recognition, includ-
ing Joint Factor Analysis, i-vector modelling and Probabilistic
Linear Discriminant Analysis. The aim of ALIZE collabora-
tive project is to pool development efforts and to make efficient
implementation of standard algorithms available for the com-
munity. In the future, efforts will be concentrated on the docu-
mentation of the toolkit through online help and tutorials.
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