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Abstract 
This paper advocates the use of probabilistic linear 
discriminant analysis (PLDA) for partially open-set detection 
task with multiple i-vectors enrollment condition. Also 
referred to as speaker verification, the speaker detection task 
has always been considered under an open-set scenario. In this 
paper, a more general partially open-set speaker detection 
problem in considered, where the imposters might be one of 
the known speakers previously enrolled to the system. We 
show how this could be coped with by modifying the 
definition of the alternative hypothesis in the PLDA scoring 
function. We also look into the impact of the conditional-
independent assumption as it was used to derive the PLDA 
scoring function with multiple training i-vectors. Experiments 
were conducted using the NIST 2012 Speaker Recognition 
Evaluation (SRE’12) datasets to validate various points 
discussed in the paper. 
Index Terms: speaker verification, multi-session training. 

1. Introduction 
Probabilistic linear discriminative analysis (PLDA) [1] has 
shown to be an effective model for disentangling speaker and 
channel variability in the i-vector space for text-independent 
speaker verification [2]. An i-vector is a low-dimensional 
vector containing both speaker and session information 
acquired from a speech segment [3]. The unwanted session 
variability could be due to the transmission channel, acoustic 
environment or phonetic content of the speech segment itself 
[4].  

In this paper, we look into two aspects in generalizing the 
use of PLDA to a more general setting, namely multi-session 
training and partially open-set detection problem. It is 
customary to assume that only one i-vector is available per 
speaker during enrolment [2, 5]. Given multiple training 
utterances, one could easily accumulate the statistics over all 
these utterances to end up with one single i-vector. Another 
alternative that has shown to be viable is by taking the mean 
before feeding the i-vectors to the PLDA that follows [6, 7]. 
Nevertheless, neither of these solutions is optimal. They are 
actually undesirable short-cuts so as to stick with the single-
session solution without having to deal with the problems 
related to the multi-session PLDA scoring, notably, the 
conditional independent assumption used in the derivation.  

Another issue that has been brought to our attention, partly 
due to the recent NIST Speaker Recognition Evaluation 2012 
(SRE’12), is the use of PLDA for the so-called partially open-
set speaker detection task. Speaker detection (or verification) 
task has always been considered in an open-set scenario [8, 4]. 
The imposters (i.e., those falsely claiming to be valid users) 
are assumed to be unknown to the system. A more general 
condition one might consider is that the imposters could be 
one of the known speakers previously enrolled to the system. 
This leads to the partially open-set speaker detection problem. 

On the application side, the partially open-set problem is of 
particular interest when the test segment consists of speech 
from multiple speakers intervening in the audio recording, for 
example, in a meeting where some participants are known 
with some out-of-set or unseen speakers1

The aim of this paper is twofold. First, we present a concise 
formulation for the multi-session PLDA, in which the scoring 
function could take arbitrary number of i-vectors as inputs. 
More importantly, we look into the impact of the conditional-
independence assumption used in the derivation. Second, we 
extend the PLDA scoring function for partially open-set 
speaker detection task, taking into account the conventional 
open-set and closed set conditions as special cases. 

. Effective use of the 
joint knowledge of known speakers could lead to a significant 
performance improvement. 

In the following, we first present a brief overview of i-
vector and PLDA in Section 2. Section 3 presents the scoring 
function for multi-session PLDA. In Section 4, we look into 
the use of PLDA for partially open-set detection task. Section 
5 is dedicated to experiments and Section 6 concludes the 
paper.   

2. PLDA modeling of i-vector 
2.1. I-vector extraction 
The central idea of i-vector extraction is to represent variable-
length utterances with fixed-length low-dimensional vectors 
for the classifiers that followed. The fundamental assumption 
is that the feature vector sequence of an utterance was 
generated from a session-specific GMM. Furthermore, the 
mean supervector (i.e., obtained by stacking the means from 
all mixtures) of each session, rm , is constrained to lie in a 
low dimensional subspace T with origin m , as follows    
 r r= +m m Tx . (1) 

The matrix T, referred to as the total variability matrix, models 
the speaker and session variations learned from a training set. 
An i-vector is then taken as the posterior mean of the latent 
variable xr, representing both the speaker and session 
information of an utterance [3]. Notice that the rank of the 
matrix T, and therefore the dimensionality of the i-vectors, is 
usually taken to be a small fraction of the original supervector. 

2.2. Probabilistic linear discriminant analysis 
In PLDA, speaker and session variability is modeled with 
separate subspaces in order to tease apart the contribution of 
session variability from that of the speaker. The fixed-length 
nature of the i-vector allows this to be done relatively easier 
than in the acoustic space. 

                                                                 
 
1 More precisely, here we are referring to the speaker tracking 
task (usually speaker segmentation followed by detection), 
which aims at localizing a particular speaker in an audio 
recording [9]. 



Let ,l rφ  be an i-vector representing the r-th session of the l-
th speaker. PLDA assumes that the i-vector is generated from 
a linear-Gaussian model [10], as follows 
 , , ,l r l l r l rφ = + + +μ Fh Gw ε . (2) 

Here, the low-rank rectangular matrices, F and G, model the 
subspaces corresponding to the speaker and session variability, 
respectively. The vectors lh  and ,l rw  quantify the observed 
deviations from the mean μ  due the changes of speaker or 
different sessions of the same speaker. The remaining 
variation is described by the residual noise term 

( ), ~ 0,l rε Σ .  
Given a fixed set of parameters, θPLDA = {F, G, μ, Σ} we 

can see from (2) that an i-vector ,l rφ  is determined by the 
speaker-specific vector lh  and the session specific vector 

,l rw , both assumed to be normally distributed. Notice also the 
same vector lh  is shared across all sessions from the same 
speaker. In probabilistic term, we write (2) as  

 ( ) ( ), , | , T T
l r l rp φ φ= + +μ FF GG Σ , (3) 

where μ  and T T= + +Γ FF GG Σ  denotes the global mean 
and covariance of all the i-vectors. Notice that the ranks of the 
matrices, F and G, are bounded by the dimensionality of the i-
vector. The parameters θPLDA = {F, G, μ, Σ} of the PLDA 
model are estimated using the expectation maximization (EM) 
algorithm. Details about training procedure used in this paper 
could be found in [5].     

3. Multi-session PLDA 
The ultimate motivation of training the PLDA model is to use 
it for explaining new observations, i.e., the i-vector rφ . For 
brevity, we have dropped the speaker-dependent index l . 
Figure 1 illustrates the idea in the form of graphical model. 
The number R of observed i-vectors { } 1

R
r r

φ
=

 are made 
dependent (indicated by the horizontal and downward arrows) 
on the latent variables rw , for r = 1, 2, …, R, each 
characterizing an individual session while sharing the same 
speaker-dependent latent variable h .  

The model in Fig. 1 explains a given set of i-vectors as if 
they belong to the same speaker. That is, all observations are 
tied to the same latent variable h, and they are conditionally 
independent given h [10]. The likelihood of the model can be 
computed by using the result in (3), with a slight twist, as 
follows: 
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Taking the logarithm of (4) and breaking down the composite 
terms into component matrices, we represent (4) in a more 
convenient form, as follow 
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Here, yr = (ϕr −μ) is the centralized i-vector of the r-th session, 
( ) log RRα = K  is the matrix log-determinant depending on 

the number of sessions R, and ( )( )0.5 log 2 logc D π= × − J  is 
a scalar which holds constant for a given PLDA model. The 
two precision matrices involved are defined as follows   
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We use the general form as given in (5) to derive the scoring 
function for speaker detection tasks in the next section. As we 
shall see, only the first and second terms are relevant for 
scoring, while the remaining terms will be canceled off. For 
the special case of 1R = , where only one i-vector is given, (5) 
reduces to the simple evaluation of (3) by taking its logarithm. 

Both the PLDA training [5] and multi-session scoring are 
now available via the recent release of the open-source toolkit 
Alize 3.0 [11].     

4. PLDA for partially open-set detection 
task 

Speaker detection or verification is a binary classification 
problem, where a decision has to be made between two classes 
with respect to a decision threshold (i.e., a likelihood-ratio 
test). To this end, the detection score is taken as the log-
likelihood ratio between two hypotheses {H0, H1}: 

 ( ) ( )
( )

t 0
t

t 1

|
log

|

p H
s

p H

φ
φ

φ

 
 =
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The null hypothesis 0H  says that a test segment, represented 
by the i-vector tφ , is from the target speaker while the 
alternative 1H  hypothesizes the opposite. Mathematically, 

0H  is represented by a model that characterizes the target 
speaker. In a completely open-set scenario, the alternative 
hypothesis represents any yet unseen out-of-set speakers (i.e., 
those other than the known speakers). This was conventionally 
achieved using a background model like the UBM [12].      

The assumption that a known speaker might also appear as 
an imposter in other detection trials leads to a partially open-
set speaker detection problem. From the modeling perspective, 
this essentially boils down to reformulating the alternative 
hypothesis. In addition to the unseen out-of-set speakers as 
already considered in the open-set case, 1H  now includes all 
known speakers except the one considered as the target in a 
specific trial. In the following, we show how this could be 
formulated using PLDA scoring model presented in Section 2. 

 

Figure 1: Graphical model illustrating the use of a PLDA model 
with parameter θPLDA = {F, G, μ, Σ} for explaining new 
observations. The shaded circles represent the i-vectors rφ  as the 
observed variables as opposed to the latent variables h  and rw  
used to represent the speaker identity and session variation. The 
box denotes R observations. 
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4.1. Score conditioning for partially open-set 
detection task 
Let N  be the number of target speakers. Considering an open 
set scenario, we dedicate one model for each target speaker 
and an additional model to represent the out-of-set option. 
This amounts to ( )1N +  models as illustrated in Fig. 2 for the 
case of 3N = . The model l , where 1,2, ,l N=  , says that 
the test i-vector tφ  is from the l-th speaker compared to other 
speakers in the target set. This is indicated by the arrows 
extending from the same speaker-specific latent variable lh  to 
the observations ,l rφ  and tφ , where { }, 1

R
l r r

φ
=

 are the i-vectors 
pertaining to training segments of the l-th speaker. The out-of-
set model 1N +  represents the proposition that the test tφ  is 
generated by some yet unseen speakers other than the N  
target speakers known by the system. This is explained by the 
arrow between the test tφ  and a latent variable 1N +h  
representing the out-of-set option.                 

Let lL  be the likelihood of the model l  (we shall deal 
with the likelihood computation in the next section). For the 
case of speaker identification, we simply pick the model with 
the highest likelihood. For the case of detection [13], we form 
the log-likelihood ratio between the null and alternative 
hypotheses, defined in (7), as follows: 

( ) ( )
( ) ( ) ( ) ( )
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log 1 1
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The likelihood of the null hypothesis in the numerator is given 
by lL . In the denominator, the alternative hypothesis consists 
of two terms. The first term accounts for the joint knowledge 
of all known speakers other than the l-th target, while the 
second term is the likelihood of the out-of-set model. The 
probability KnownP  controls the balance between these two 
terms. Clearly, (8) falls back to the open-set case by setting 

Known 0P = , while Known 1P =  leads to the closed-set scenario at 
the other end. Any value between these two extremes leads to 
the partially open-set detection task.  

One thing to note in Fig. 2 and (8) is that PLDA allows the 
out-of-set class to be established in a systematic way by model 
comparison. We created ( )1N +  models using training data 
from N  target speakers. Except for the completely open-case 
case, where Known 0P = , the joint-knowledge from all models 
is used in forming the score for each trial. 

4.2. Likelihood-ratio computation 
Let 1l l NL L +Λ =  be the likelihood ratio of the model l

 with respect to the out-of-set model 1N + . Looking at Fig. 3, 

it could be seen that the computation of the likelihood ratio 
lΛ  is greatly simplified by cancelling off common terms. 

Notice that, the normalization also renders 1N +Λ  equals to 
unity. Using these results in (8), we arrive at 
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Given a test i-vector tφ , we compute the likelihood ratio 
1l l NL L +Λ =  in log domain, as follows 
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As before, each speaker is assumed to have R  sessions of i-
vectors, { }, 1

R
l r r

φ
=

, for enrollment. Here 1R ≥  could be 
different for individual speaker (more on this in Section 5). 
Notice also the first term in (10) corresponds to ( )tlog lL φ  
while the remaining corresponds to ( )1 tlog NL φ+ .  

The third term in (10) can be evaluated directly using (5). 
The first and second terms could be evaluated using the same 
formula by noticing that they are essentially cases with 1R +  
and 1 session(s), respectively.  Using these, we arrive at 
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Figure 2: Model comparison in an open-set task illustrated for the case of 3N =  speakers in the target set. For brevity, the session-specific 
variable ,l rw  is not shown and each target speaker is assumed to have R enrollment sessions given by the i-vector { }, 1

R
l r r
φ

=
. Each model l  

represents a hypothesis about the identity of the test segment tφ . 
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Figure 3: Likelihood ratio computation leads to a simpler 
implementation by which common components (with shaded 
background) in l  cancel off those in 1N+ . Shown above for 

1l = . Similar concept applies for 1, 2, ,l N=   with respect to the 
common out-of-set model 1N+ . 
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where the covariance matrix RK  and log-determinant ( )Rα , 
as defined earlier, depend on the number of sessions R. For 
ease of notation, we have projected the centralized i-vector y = 
(ϕ − μ) such that T←y F Jy . Notice also, letting R = 1, (11) 
reduces to the special case of single-session training.   

5. Experiments 
Experiments were carried out on the core task of NIST 
SRE’12 using the equal error rate (EER) as the performance 
metric. We focus on Common Condition 2 of the core task 
where the target speakers have number of training samples 
ranging from one to over hundred, while the test segments are 
telephone speech collected under relatively clean condition. 
We used gender-dependent setup, where the male and female 
UBMs consisting of 512 Gaussians (with full covariance 
matrices) were trained using data drawn from the SRE’04 
dataset. Speech parameters used are 57-dimensional vector of 
mel frequency cepstral coefficients (MFCC) with first and 
second derivatives appended. The first-order sufficient 
statistics were whiten with respect to the covariance matrices 
of the UBM. Details could be found in [14]. The total 
variability matrix T in (1) consists of two subspaces, Ttel and 
Tmic, trained in a decoupled manner, as described in [15]. The 
ranks of the matrices, Ttel and Tmic, are 400 and 200, 
respectively. LDA was then used to reduce the dimension of 
the i-vector to 400. The ranks of the subspaces F and G are, 
250 and 50, respectively.  

First, we examine the effectiveness of the multi-session 
scoring function in (11). To this end, we change the number of 
training sessions (or i-vectors), R, for all speakers from 1 to 10 
and test on the same data. Results are shown in Fig. 4. 
Progressive reduction in the EER can be observed with more 
training sessions used (i.e., R increases). This result confirms 
that the multi-session scoring function in (11) is valid. Figure 
5 shows the distributions of the target and non-target scores 
for R = 1 and 4 sessions. Notice that, the score exhibits a larger 
range with larger R. This would be fine if all speakers are 
enrolled with the same number of sessions. However, for the 
case whereby target speakers are trained with different number 
of training sessions, such mismatch would cause inconsistency 
between the score produced by the speaker models. This by far 
is believed to attribute to the incorrect assumption of 
conditional independence as used in Section 3. 

 One solution is to restrict the same number of training 
sessions for all speakers. One could also take the mean of all i-
vector and set R to 1 or the average number of sessions of all 
speakers. Another solution is to use score normalization (for 
instance, s-norm [2]). Here, we could consider tying speakers 
with the same number of sessions to have the same 
normalization. Nevertheless, the ultimate goal is to find the 

right compensation factor (which obviously depends on R) for 
the multi-session scoring function in (11). These are some 
points for future research. 

Next, we examine the score conditioning for partially 
open-set detection task. We follow the core condition as 
specified in SRE’12, where the “known” and “unknown” non-
target score distributions are weighted according to knownP . 
Table I shows the EER at various values of knownP . One point 
to note here is that the known non-target set is more difficult 
than the unknown non-target set. This can be seen when 

knownP  increases from 0 to 1, false alarm rate and therefore the 
EER increase as higher weight is given to the known non-
target set. From the last column of Table I, it is clear that 
significant improvement could be obtained by using the prior 
information as given by knownP  in score conditioning for 
partially open-set detection task. This amounts to 43% of 
relative improvement given known 1P = .        

6. Conclusions 
We have shown that PLDA model can be systematically used 
to form the log-likelihood ratio for partially open-set and 
closed-set detection task. In this regard, open-set detection 
scores are conditioned based on the prior probability and the 
joint information of the known non-targets leading to 
significant performance improvement. We also look into 
various aspects when multiple sessions are available for 
speaker enrollment. The remaining challenge is to find a 
suitable compensation factor for the multi-session scoring 
function which balances out the complexity from speakers 
with different number of enrollment sessions. 

7. Acknowledgements 
The proposal presented in this paper was partly inspired by the 
discussion during the NIST SRE’12 workshop in Orlando. 

 

 

Figure 5: Distribution of target (right) and non-target (left) 
scores for R = 1 and 4 sessions. 

 

Table I: The effect of proper conditioning of detection 
scores for open-set, Pknown = 0, partially open-set, Pknown ∈ 
{ }1 4, 1 2, 3 4 , and closed-set, Pknown = 1, detection task. 

knownP  Equal Error Rate (%) 

w/o cond. with cond. 
0 2.5704 2.5704 
1/4 2.5972 2.4340 
1/2 2.6244 2.2981 
3/4 2.6910 2.1757 
1 2.7468 1.5774 
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Figure 4: The EER reduces with increasing number of training i-
vectors, R, from 1 to 10. 
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