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Introduction

Probabilistic linear discriminative analysis (PLDA) [START_REF] Prince | Probabilistic linear discriminant analysis for inferences about identity[END_REF] has shown to be an effective model for disentangling speaker and channel variability in the i-vector space for text-independent speaker verification [START_REF] Kenny | Bayesian speaker verification with heavytailed priors[END_REF]. An i-vector is a low-dimensional vector containing both speaker and session information acquired from a speech segment [START_REF] Dehak | Front-end factor analysis for speaker verification[END_REF]. The unwanted session variability could be due to the transmission channel, acoustic environment or phonetic content of the speech segment itself [START_REF] Kinnunen | An overview of textindependent speaker recognition: from features to supervectors[END_REF].

In this paper, we look into two aspects in generalizing the use of PLDA to a more general setting, namely multi-session training and partially open-set detection problem. It is customary to assume that only one i-vector is available per speaker during enrolment [START_REF] Kenny | Bayesian speaker verification with heavytailed priors[END_REF][START_REF] Jiang | PLDA modeling in i-vector and supervector space for speaker verification[END_REF]. Given multiple training utterances, one could easily accumulate the statistics over all these utterances to end up with one single i-vector. Another alternative that has shown to be viable is by taking the mean before feeding the i-vectors to the PLDA that follows [START_REF] Li | IIR system description for the NIST 2012 speaker recognition evaluation[END_REF][START_REF] Brümmer | ABC System description for NIST SRE 2012[END_REF]. Nevertheless, neither of these solutions is optimal. They are actually undesirable short-cuts so as to stick with the singlesession solution without having to deal with the problems related to the multi-session PLDA scoring, notably, the conditional independent assumption used in the derivation.

Another issue that has been brought to our attention, partly due to the recent NIST Speaker Recognition Evaluation 2012 (SRE '12), is the use of PLDA for the so-called partially openset speaker detection task. Speaker detection (or verification) task has always been considered in an open-set scenario [START_REF] Reynolds | An overview of automatic speaker recognition technology[END_REF][START_REF] Kinnunen | An overview of textindependent speaker recognition: from features to supervectors[END_REF]. The imposters (i.e., those falsely claiming to be valid users) are assumed to be unknown to the system. A more general condition one might consider is that the imposters could be one of the known speakers previously enrolled to the system. This leads to the partially open-set speaker detection problem.

On the application side, the partially open-set problem is of particular interest when the test segment consists of speech from multiple speakers intervening in the audio recording, for example, in a meeting where some participants are known with some out-of-set or unseen speakers 1The aim of this paper is twofold. First, we present a concise formulation for the multi-session PLDA, in which the scoring function could take arbitrary number of i-vectors as inputs. More importantly, we look into the impact of the conditionalindependence assumption used in the derivation. Second, we extend the PLDA scoring function for partially open-set speaker detection task, taking into account the conventional open-set and closed set conditions as special cases.

. Effective use of the joint knowledge of known speakers could lead to a significant performance improvement.

In the following, we first present a brief overview of ivector and PLDA in Section 2. Section 3 presents the scoring function for multi-session PLDA. In Section 4, we look into the use of PLDA for partially open-set detection task. Section 5 is dedicated to experiments and Section 6 concludes the paper.

PLDA modeling of i-vector

I-vector extraction

The central idea of i-vector extraction is to represent variablelength utterances with fixed-length low-dimensional vectors for the classifiers that followed. The fundamental assumption is that the feature vector sequence of an utterance was generated from a session-specific GMM. Furthermore, the mean supervector (i.e., obtained by stacking the means from all mixtures) of each session, r m , is constrained to lie in a low dimensional subspace T with origin m , as follows

r r = + m m Tx . (1) 
The matrix T, referred to as the total variability matrix, models the speaker and session variations learned from a training set. An i-vector is then taken as the posterior mean of the latent variable x r , representing both the speaker and session information of an utterance [START_REF] Dehak | Front-end factor analysis for speaker verification[END_REF]. Notice that the rank of the matrix T, and therefore the dimensionality of the i-vectors, is usually taken to be a small fraction of the original supervector.

Probabilistic linear discriminant analysis

In PLDA, speaker and session variability is modeled with separate subspaces in order to tease apart the contribution of session variability from that of the speaker. The fixed-length nature of the i-vector allows this to be done relatively easier than in the acoustic space.

Let , l r φ be an i-vector representing the r-th session of the l- th speaker. PLDA assumes that the i-vector is generated from a linear-Gaussian model [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF], as follows , , , l r l l r l r

φ =+ + + μ Fh Gw ε . (2)
Here, the low-rank rectangular matrices, F and G, model the subspaces corresponding to the speaker and session variability, respectively. The vectors l h and , l r w quantify the observed deviations from the mean μ due the changes of speaker or different sessions of the same speaker. The remaining variation is described by the residual noise term ( )

, ~0, l r ε Σ  .
Given a fixed set of parameters, θ PLDA = {F, G, μ, Σ} we can see from (2) that an i-vector , l r φ is determined by the speaker-specific vector l h and the session specific vector , l r w , both assumed to be normally distributed. Notice also the same vector l h is shared across all sessions from the same speaker. In probabilistic term, we write (2) as

( ) ( ) , , | , T T l r l r p φ φ = + + μ FF GG Σ  , (3) 
where μ and

T T = + + Γ FF GG Σ
denotes the global mean and covariance of all the i-vectors. Notice that the ranks of the matrices, F and G, are bounded by the dimensionality of the ivector. The parameters θ PLDA = {F, G, μ, Σ} of the PLDA model are estimated using the expectation maximization (EM) algorithm. Details about training procedure used in this paper could be found in [START_REF] Jiang | PLDA modeling in i-vector and supervector space for speaker verification[END_REF].

Multi-session PLDA

The ultimate motivation of training the PLDA model is to use it for explaining new observations, i.e., the i-vector r φ . For brevity, we have dropped the speaker-dependent index l . The model in Fig. 1 explains a given set of i-vectors as if they belong to the same speaker. That is, all observations are tied to the same latent variable h, and they are conditionally independent given h [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]. The likelihood of the model can be computed by using the result in (3), with a slight twist, as follows:

( )

1 T 1 2 PLDA , , , | , R R R R R p φ φ φ φ θ φ           = Ω Ω +               μ S μ     (4) 
where

0 0 R   Ω =       F G F G       and 0 0 R   =       Σ S Σ      .
Taking the logarithm of (4) and breaking down the composite terms into component matrices, we represent (4) in a more convenient form, as follow ( )

( ) T T 1 2 PLDA 1 T T 1 1 1 log , , , | 2 1 1 2 2 R R r R r R R r r r r r p R Rc φ φ φ θ α = = =   =       × + - -     ∑ ∑ ∑ F J y K F J y y J y  . (5) 
Here, y r = (ϕ r -μ) is the centralized i-vector of the r-th session,

( ) log R R α = K
is the matrix log-determinant depending on the number of sessions R, and ( ) ( )

0.5 log 2 log c D π
= × -J is a scalar which holds constant for a given PLDA model. The two precision matrices involved are defined as follows

1 T 1 T R R I - -   = + ∑     = +   J GG K F JF (6) 
We use the general form as given in ( 5) to derive the scoring function for speaker detection tasks in the next section. As we shall see, only the first and second terms are relevant for scoring, while the remaining terms will be canceled off. For the special case of 1 R = , where only one i-vector is given, [START_REF] Jiang | PLDA modeling in i-vector and supervector space for speaker verification[END_REF] reduces to the simple evaluation of (3) by taking its logarithm.

Both the PLDA training [START_REF] Jiang | PLDA modeling in i-vector and supervector space for speaker verification[END_REF] and multi-session scoring are now available via the recent release of the open-source toolkit Alize 3.0 [START_REF] Larcher | ALIZE 3.0 -open source toolkit for state-of-the-art speaker recognition[END_REF].

PLDA for partially open-set detection task

Speaker detection or verification is a binary classification problem, where a decision has to be made between two classes with respect to a decision threshold (i.e., a likelihood-ratio test). To this end, the detection score is taken as the loglikelihood ratio between two hypotheses {H 0 , H 1 }:

( ) ( ) ( ) t 0 t t 1 | log | p H s p H φ φ φ     =     . ( 7 
)
The null hypothesis 0 H says that a test segment, represented by the i-vector t φ , is from the target speaker while the alternative 1 H hypothesizes the opposite. Mathematically, 0 H is represented by a model that characterizes the target speaker. In a completely open-set scenario, the alternative hypothesis represents any yet unseen out-of-set speakers (i.e., those other than the known speakers). This was conventionally achieved using a background model like the UBM [START_REF] Reynolds | Speaker verification using adapted Gaussian mixture model[END_REF].

The assumption that a known speaker might also appear as an imposter in other detection trials leads to a partially openset speaker detection problem. From the modeling perspective, this essentially boils down to reformulating the alternative hypothesis. In addition to the unseen out-of-set speakers as already considered in the open-set case, [START_REF] Prince | Probabilistic linear discriminant analysis for inferences about identity[END_REF] H now includes all known speakers except the one considered as the target in a specific trial. In the following, we show how this could be formulated using PLDA scoring model presented in Section 2. 



represents the proposition that the test t φ is generated by some yet unseen speakers other than the N target speakers known by the system. This is explained by the arrow between the test t φ and a latent variable Let l L be the likelihood of the model l  (we shall deal with the likelihood computation in the next section). For the case of speaker identification, we simply pick the model with the highest likelihood. For the case of detection [START_REF] Brummer | On calibration of language recognition scores[END_REF], we form the ratio between the null and alternative hypotheses, defined in [START_REF] Brümmer | ABC System description for NIST SRE 2012[END_REF], as follows:

( ) ( ) ( ) ( ) ( ) ( ) t t Known t Known 1 t log 1 1 1 l l k N k l L s P L P L N φ φ φ φ + ≠       =   + -   -   ∑ . ( 8 
)
The likelihood of the null hypothesis in the numerator is given by l L . In the denominator, the alternative hypothesis consists of two terms. The first term accounts for the joint knowledge of all known speakers other than the l-th target, while the second term is the likelihood of the out-of-set model. The probability Known P controls the balance between these two terms. Clearly, [START_REF] Reynolds | An overview of automatic speaker recognition technology[END_REF] One thing to note in Fig. 2 and ( 8) is that PLDA allows the out-of-set class to be established in a systematic way by model comparison. We created ( )

1 N +
models using training data from N target speakers. Except for the completely open-case case, where Known 0 P = , the joint-knowledge from all models is used in forming the score for each trial.  . Looking at Fig. 3, it could be seen that the computation of the likelihood ratio l Λ is greatly simplified by cancelling off common terms. Notice that, the normalization also renders 

Likelihood-ratio computation

( ) ( ) ( ) ( ) ( ) t t Known t Known log 1 1 1 l l k k l s P P N φ φ φ ≠     Λ =     Λ + -   -   ∑ . ( 9 
)
Given a test i-vector t φ , we compute the likelihood ratio

1 l l N L L + Λ = in log domain, as follows ( ) ( ) ( ) ( ) t t ,1 , PLDA t PLDA ,1 , PLDA log log , , , | log | log , , | . l l l R l l R p p p φ φ φ φ θ φ θ φ φ θ Λ = - -   (10) 
As before, each speaker is assumed to have R sessions of i- vectors, { } 

1 t log N L φ + .
The third term in [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF] can be evaluated directly using [START_REF] Jiang | PLDA modeling in i-vector and supervector space for speaker verification[END_REF]. The first and second terms could be evaluated using the same formula by noticing that they are essentially cases with 1 R + and 1 session(s), respectively. Using these, we arrive at 1

( ) ( ) ( ) ( ) T t t 1 t 1 1 T 1 1 T t 1 t 1 1 log 1 2 2 1 1 2 2 1 1 1 2 2 R R l r R r r r R R r R r r r R R φ α α α + = = = =     Λ = + + + +             - -         - - ∑ ∑ ∑ ∑ y y K y y y K y y K y (11) 
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Figure 3: Likelihood ratio computation leads to a simpler implementation by which common components (with shaded background) in

l  cancel off those in 1 N +  . Shown above for 1 l = . Similar concept applies for 1, 2, , l N =  with respect to the common out-of-set model 1 N +  . 1 h 2 h 3 h 3, r φ R t φ 2, r φ R 1, r φ R 1  1 h 2 h 3 h 3, r φ R t φ 2, r φ R 1, r φ R 4 h 4 
where the covariance matrix R K and log-determinant ( ) R α , as defined earlier, depend on the number of sessions R. For ease of notation, we have projected the centralized i-vector y = (ϕ -μ) such that T ← y F Jy . Notice also, letting R = 1, [START_REF] Larcher | ALIZE 3.0 -open source toolkit for state-of-the-art speaker recognition[END_REF] reduces to the special case of single-session training.

Experiments

Experiments were carried out on the core task of NIST SRE'12 using the equal error rate (EER) as the performance metric. We focus on Common Condition 2 of the core task where the target speakers have number of training samples ranging from one to over hundred, while the test segments are telephone speech collected under relatively clean condition. We used gender-dependent setup, where the male and female UBMs consisting of 512 Gaussians (with full covariance matrices) were trained using data drawn from the SRE'04 dataset. Speech parameters used are 57-dimensional vector of mel frequency cepstral coefficients (MFCC) with first and second derivatives appended. The first-order sufficient statistics were whiten with respect to the covariance matrices of the UBM. Details could be found in [START_REF] Kenny | A small foot-print i-vector extractor[END_REF]. The total variability matrix T in (1) consists of two subspaces, T tel and T mic , trained in a decoupled manner, as described in [START_REF] Senoussaoui | An i-vector extractor suitable for speaker recognition with both microphone and telephone speech[END_REF]. The ranks of the matrices, T tel and T mic , are 400 and 200, respectively. LDA was then used to reduce the dimension of the i-vector to 400. The ranks of the subspaces F and G are, 250 and 50, respectively. First, we examine the effectiveness of the multi-session scoring function in [START_REF] Larcher | ALIZE 3.0 -open source toolkit for state-of-the-art speaker recognition[END_REF]. To this end, we change the number of training sessions (or i-vectors), R, for all speakers from 1 to 10 and test on the same data. Results are shown in Fig. 4. Progressive reduction in the EER can be observed with more training sessions used (i.e., R increases). This result confirms that the multi-session scoring function in (11) is valid. Figure 5 shows the distributions of the target and non-target scores for R = 1 and 4 sessions. Notice that, the score exhibits a larger range with larger R. This would be fine if all speakers are enrolled with the same number of sessions. However, for the case whereby target speakers are trained with different number of training sessions, such mismatch would cause inconsistency between the score produced by the speaker models. This by far is believed to attribute to the incorrect assumption of conditional independence as used in Section 3.

One solution is to restrict the same number of training sessions for all speakers. One could also take the mean of all ivector and set R to 1 or the average number of sessions of all speakers. Another solution is to use score normalization (for instance, s-norm [START_REF] Kenny | Bayesian speaker verification with heavytailed priors[END_REF]). Here, we could consider tying speakers with the same number of sessions to have the same normalization. Nevertheless, the ultimate goal is to find the right compensation factor (which obviously depends on R) for the multi-session scoring function in [START_REF] Larcher | ALIZE 3.0 -open source toolkit for state-of-the-art speaker recognition[END_REF]. These are some points for future research.

Next, we examine the score conditioning for partially open-set detection task. We follow the core condition as specified in SRE'12, where the "known" and "unknown" nontarget score distributions are weighted according to known P . Table I shows the EER at various values of known P . One point to note here is that the known non-target set is more difficult than the unknown non-target set. This can be seen when known P increases from 0 to 1, false alarm rate and therefore the EER increase as higher weight is given to the known nontarget set. From the last column of Table I, it is clear that significant improvement could be obtained by using the prior information as given by known P in score conditioning for partially open-set detection task. This amounts to 43% of relative improvement given known 1 P = .

Conclusions

We have shown that PLDA model can be systematically used to form the log-likelihood ratio for partially open-set and closed-set detection task. In this regard, open-set detection scores are conditioned based on the prior probability and the joint information of the known non-targets leading to significant performance improvement. We also look into various aspects when multiple sessions are available for speaker enrollment. The remaining challenge is to find a suitable compensation factor for the multi-session scoring function which balances out the complexity from speakers with different number of enrollment sessions.
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Figure 1

 1 illustrates the idea in the form of graphical model. The number R of observed i-vectors { } 1 R r r φ = are made dependent (indicated by the horizontal and downward arrows) on the latent variables r w , for r = 1, 2, …, R, each characterizing an individual session while sharing the same speaker-dependent latent variable h .

Figure 1 : 4 . 1 .

 141 Figure 1: Graphical model illustrating the use of a PLDA model with parameter θ PLDA = {F, G, μ, Σ} for explaining new observations. The shaded circles represent the i-vectors r φ as the observed variables as opposed to the latent variables h and r w used to represent the speaker identity and session variation. The box denotes R observations.

  out-of-set option.

= , while Known 1 P=

 1 falls back to the open-set case by setting Known 0 P leads to the closed-set scenario at the other end. Any value between these two extremes leads to the partially open-set detection task.

  be the likelihood ratio of the model l  with respect to the out-of-set model 1 N +

  these results in[START_REF] Reynolds | An overview of automatic speaker recognition technology[END_REF], we arrive at

1 R

 1 ≥ could be different for individual speaker (more on this in Section 5). Notice also the first term in[START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF] corresponds to

Figure 2 :

 2 Figure 2: Model comparison in an open-set task illustrated for the case of 3 N = speakers in the target set. For brevity, the session-specific

Figure 5 :

 5 Figure 5: Distribution of target (right) and non-target (left) scores for R = 1 and 4 sessions.

Figure 4 :

 4 Figure 4: The EER reduces with increasing number of training ivectors, R, from 1 to 10.
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Table I :

 I The effect of proper conditioning of detection scores for open-set, P known = 0, partially open-set, P known ∈ { } 1 4, 1 2, 3 4 , and closed-set, P known = 1, detection task.

	0.02								
	0.01								
	-300 0	-250	-200	-150	-100	-50	0	50	100
	0.02								
	0.01								
	-300 0	-250	-200	-150	-100	-50	0	50	100
	known P				Equal Error Rate (%)	
				w/o cond.			with cond.
	0			2.5704			2.5704
	1/4			2.5972			2.4340
	1/2			2.6244			2.2981
	3/4			2.6910			2.1757
	1			2.7468			1.5774

More precisely, here we are referring to the speaker tracking task (usually speaker segmentation followed by detection), which aims at localizing a particular speaker in an audio recording[START_REF] Bimbot | Automatic speaker recognition[END_REF].