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Abstract

I4U is a joint entry of nine research Institutes and Universities

across 4 continents to NIST SRE 2012. It started with a brief

discussion during the Odyssey 2012 workshop in Singapore.

An online discussion group was soon set up, providing a dis-

cussion platform for different issues surrounding NIST SRE’12.

Noisy test segments, uneven multi-session training, variable en-

rollment duration, and the issue of open-set identification were

actively discussed leading to various solutions integrated to the

I4U submission. The joint submission and several of its 17 sub-

systems were among top-performing systems. We summarize

the lessons learnt from this large-scale effort.

Index Terms: Speaker Verification, NIST SRE 2012, I4U, i-

vector

1. Introduction

The I4U submission to National Institute of Standards

and Technology (NIST) speaker recognition evaluation 2012

(SRE’12) [1] is a result of active exchange of information be-

tween the coalition participants across nine institutions. The

name of the institutes and corresponding system identifiers are

provided in Table 1. The submitted results are based on the fu-

sion of multiple classifiers. The optimization of the component

classifiers and the fusion device were done with development

sets jointly designed within the I4U coalition with multiple de-

sign iterations, refinement of noise adding protocol and various

other details. Different from previous SREs, the task of SRE’12

involves:

Handling noisy test segments: This required speech en-

hancement algorithms and employing mixed training or parallel

model combination techniques.

Imbalanced multi-session training: There are tens of seg-

ments available for training some speaker models while only

a single segment for some other speakers.

Open-set identification: SRE’12 evaluation protocol allows

the use of knowledge of all target speakers in each detection

trials which resulted in utilizing compound log-likelihood ratio.

This work was partly supported by Academy of Finland (proj. no
253120 and 132129), Swiss National Science Foundation under the
LOBI project, contract no. SNSF-235 and European Community’s
Seventh Framework Program (FP7/2007-2013) under grant agreement
no. 238803.

Table 1: I4U Coalition and assigned system indexes
Site System index

ValidSoft Ltd (VLD) Sys1

Swansea University (UWS) Sys2

University of Avignon (LIA) Sys3

Radboud University Nijmegen (RUN) Sys4

University of Texas at Dallas (CRSS) Sys5–10

University of Eastern Finland (UEF) Sys11

Institute for Infocomm Research (IIR) Sys12–16

Idiap Research Institute (IDIAP) Sys17

This paper is organized as follows: In Section 2, we present

the strategies taken to make a development set coping with

SRE’12 new conditions. Details of the submitted systems and

the component classifiers, together with the strategies to deal

with the new challenges listed above are described in Section 3.

One of the motivations underlying the I4U coalition is to exper-

iment with the fusion of large numbers of sub-systems. Results

for the individual and the fused system are presented in Section

4.

2. Development sets

The development sets were generated to help I4U team mem-

bers in developing their speaker recognition systems consider-

ing the special conditions in SRE’12 including multiple seg-

ments training for a speaker1. All the members of I4U coali-

tion helped in refining the lists with respect to detecting empty

or otherwise problematic segments with conflicts in gender

and speaker PIN (there are issues with pre-SRE’12 lists like

multiple-genders or wrong genders for some speakers). The

latest lists from NIST were utilized and speech segments for all

1918 target speakers were fetched from SRE’06, SRE’08 and

SRE’10 corpora and corresponding meta-data were extracted.

To be able to assess both the recognition systems’ generaliza-

tion and calibration performance, separate development (DEV)

and evaluation (EVAL) sets were created. The number of seg-

ments, speakers and trials for each set are given in Table 2. In

designing these sets, the following criteria were considered:

• Test segments are disjoint for DEV-test and EVAL-test.

• Most of the train segments in DEV-train are added to EVAL-

train. The number of train segments in EVAL-train is almost

1The lists are available via http://cls.ru.nl/˜saeidi/

file_library/I4U.tgz



Table 2: Number of speakers, speech segments and trials in the development sets.
Number of speakers Number of segments Number of trials

DEV EVAL DEV EVAL DEV EVAL

Train Test Train Test Train Test Train Test True False True False

Males 680 868 763 804 16941 19866 29961 21837 14589 13494291 15483 16646148

Females 1039 1243 1155 1102 24693 25980 43119 28548 19863 26973357 20763 32952177

Table 3: Feature extraction setup for the systems in I4U, CMVN: cepstral mean and variance normalization, RFCC: repartitioned

frequency cepstral coefficients [2], MHEC: mean Hilbert envelope coefficients [3].

Features SAD Speech enhancement Features post-processing

Sys1–3 19 LFCCs + ∆ + ∆E + first 11 ∆∆ Energy-based Spectral subtraction CMVN

Sys4 19 MFCCs + E + ∆ + ∆∆ Energy-based [4] Wiener filtering[5] Feature warping [6]

Sys5–7 12 MHEC + logE + ∆ + ∆∆ Voicing feature [7] - RASTALP [8] + CMVN

Sys8–10 12 RFCC + c0 + ∆ + ∆∆ Statistical SAD [9] - Feature warping

Sys11 18 MFCCs + ∆ + ∆∆ Adaptive SAD [10] - RASTA + CMVN

sys12–14 18 MFCCs + logE + ∆ + ∆∆ Energy-based Qualcomm-ICSI-OGI 2 RASTA + CMVN

sys15–16 19 LPCCs + ∆ + ∆∆ + 12 MFCCs Energy-based Qualcomm-ICSI-OGI RASTA + CMVN

Sys17 19 MFCCs + logE + ∆ + ∆∆ Energy-based Qualcomm-ICSI-OGI CMVN

twice the number of segments in DEV-train. This design

choice is made to evaluate the systems performance under the

condition that speaker and channel spaces are already trained

but the number of enrollment segments for target speaker

modeling has increased.

• The segments from train to test have all different LDC-IDs to

avoid testing against same session from training.

• Two disjoint sets of speakers from SRE’06 data that do not

appear in SRE’12 are added to DEV-test and EVAL-test to

form unknown non-target trials.

• For those speakers having telephone and microphone data,

both types of channels were included in the train set so that

systems could benefit from having different channels in train-

ing.

• Considering noisy segments inclusion in NIST SRE’12, for

every original NIST segment, two noisy versions were gen-

erated. Noise adding was carried out using FaNT 3. We have

used ten noise segments for each HVAC (heating, ventilation

and air-conditioning) and crowd noise type. Noise signals

used to contaminate the speech segments were different from

train to test and from DEV to EVAL. Noises are added at two

SNR-levels 6dB and 15dB. The mean measured SNR-levels

were 40dB, 15dB and 10dB for original, 15dB and 6dB seg-

ments, respectively4 . Since there are two noisy versions of

each clean segment being utilized in DEV and EVAL sets,

the performance of the developed systems are optimized to

perform well under noisy condition rather than clean (“not

altered”) condition.

3. Recognition systems

The systems developed in the I4U coalition were based on

state-of-the-art: 1) i-vector system [11] with probabilistic lin-

ear discriminant analysis (PLDA) [12] modeling, or 2) Gaus-

sian supervector representation and joint factor analysis (JFA)

[13, 14], or support vector machine (SVM) modeling. All 16

kHz audio data were down-sampled to 8 kHz to match to the

existing 8 kHz background data. Energy-based speech activ-

ity detection (SAD) was applied to telephone segments, while

for interview segments a dual-channel SAD is employed. The

automatic speech recognition (ASR) transcripts from NIST for

interview segments in SRE’08 and SRE’10 were used to refine

3http://dnt.kr.hsnr.de/download.html
4The SNR is measured using stnr tool from NIST

the SAD labels. All of the systems are gender-dependent. The

components and data usage of sub-systems are presented in Ta-

bles 3, 4 and 5 for features, transform and classifier, respec-

tively.

Sys1: Validsoft’s i-vector system uses spectral subtraction

to enhance energy profile for SAD. Test i-vectors are scored

against all target segment i-vectors followed by score averaging.

Sys2: Swansea’s i-vectors are normalized with eigen-

factors radial (EFR) method [15] utilizing total covariance ma-

trix of the background data. LDA-reduced 200-dimensional i-

vectors are averaged for each target speaker and used with Ma-

halanobis scoring.

Sys3: LIA’s system uses two fused sub-subsystems. The

first uses LDA reduction preceded by iterative i-vector nor-

malization according to the covariance matrix [15] and two-

covariance scoring; the second uses PLDA preceded by spheri-

cal nuisance normalization with within-class covariance matrix

[15]. Score is computing as a) the average score of the test i-

vector against all target i-vectors and b) an equal-weights com-

bination of these scores according to multiple PLDA subspace

dimensions (from 50 to 400 in steps of 50).

Sys 4: RUN’s i-vector PLDA system uses dynamic noise

suppression within a Wiener filter applied both for speech en-

hancement and SAD. Noise estimation uses improved minima

controlled recursive averaging (IMCRA) [5, 19] which aver-

ages the previous estimate of the noise power spectra and has

proven robust against input SNR and different noise types due

to rapid noise tracking. The noise power spectral density es-

timate is used for decision-directed a-priori SNR estimation,

which further defines a Wiener filter applied for magnitude en-

hancement.

Sys5–10: The CRSS’s i-vector systems use combinations

of two different front-ends and three back-ends [20, 21]. Gaus-

sianized cosine-distance scoring (GCDS) and a discriminative

back-end using L2-regularized logistic regression (using LIB-

LINEAR [18]) are used. The enrollment i-vectors are averaged

and then Gaussianized using mean and variance of devset. LDA

dimensionality reduction and cosine scoring are used.

Sys11: UEF contributed the overall fusion component for

I4U [22, 23] and developed a robust utterance-adaptive SAD

[10]5 where 16-component speech and non-speech codebooks

are trained from 12 MFCCs including c0. Training labels

5SAD available at http://cs.uef.fi/pages/tkinnu/VQVAD/VQVAD.zip



Table 4: Transform details for sub-systems in I4U. Numbers in data columns are standing for corresponding NIST SRE corpus, SW:

Switchboard II Phase 2 and 3, Switchboard cellular part 1 and 2, Fis: Fisher, -D: diagonal covariance, -F: full covariance, TV: total

variability [11], NAP: nuisance attribute projection [11], ISV: inter session variability [16].

UBM UBM data Transform Transform data

Sys1 512-D 04 TV 400 04, 05, SW, DEV

Sys2 512-D 04 TV 400 04, 05, 06, SW, Fis

Sys3 512-D 04, 05, Fis TV 400 04, 05, 06, 08, 10, SW

Sys4 2048-D 04, 05, 06, SW, Fis TV 400 Same as UBM

Sys5–10 1024-D Tel only from 04, 05, 06, SW TV 600 04, 05, 06, SW, DEV

Sys11 1024-D 04, 05, 06 and 08 TV 600 04, 05, 06, SW and Fis

Sys12 512-F Tel only from 04, 05, 06, SW TV 600 (400 Tel + 200 mic) Tel from 04, 05, 06, SW and mic from 05, 06, MIXER5

Sys13,14 1024-D 04 NAP 60 Tel from 04, 05, 06, SW and mic from 05, 06, MIXER5

Sys15 512-F 04 NAP 60 04, 06, 08, 10, 08-followup

Sys16 512-F 04 JFA 06, 08, 10

Sys17 512-D 04 ISV 200 06, 08, 10

Table 5: Classifier details for i-vector based systems in I4U: Lnorm, Length normalization [17], EFR: eigen-factors radial normaliza-

tion [15], <IV> and <scores>: average over i-vectors or scores in multi-session training.

Background

data for IV

processing

IV pre-processing scoring #Voice #Channel Scoring strategy

Sys1 DEV train EFR (W) PLDA 300 50 <scores>

Sys2 DEV train EFR (C), LDA(300) Mahanabolis - - <IV>

Sys3 DEV train i. EFR (C), LDA (50 to 400) ii. EFR (W) i. 2Cov ii. PLDA 50 to 400 400 <IV>

Sys4 DEV train LDA(200), centering, WCCN, Lnorm PLDA 200 50 <IV>

Sys5 and Sys8 04, 05, 06, SW,

DEV train

LDA(400), centering, Lnorm PLDA 400 400 <IV>

Sys6 and Sys9 04, 05, 06, SW,

DEV train

LDA(400), Gaussianization, Lnorm Cosine - - <IV>

Sys7 and Sys 10 04, 05, 06, SW,

DEV train

L2-regularized [18] linear regression - - <IV>

Sys11 04, 06, 08, 10

and SW

- PLDA 200 0 <IV>

Sys12 04, 06, 08, 10,

SW, MIXER5

and DEV train

LDA(400) PLDA 200 50 <IV> and Snorm

are obtained from reliable frames with the help of aggressive

spectral oversubtraction. The recognizer is a standard i-vector

PLDA system and, unlike most of the other I4U system, does

not use multicondition training.

Sys12 by I2R whitens the first-order sufficient statistics us-

ing UBM covariances, which speeds up estimation of the pos-

terior distribution during the total variability matrix (T-matrix)

training and i-vector extraction [24]. T-matrix estimation uses

two subspaces, Ttel and Tmic, where Ttel is trained from tele-

phone data and Tmic from microphone data following decou-

pled method on [25]. This enables easy control of the dimen-

sionality of the subspaces in T = [Ttel, Tmic] and avoids the

problem of data type imbalance encountered when all data are

pooled for T-matrix training in one go. For details of the PLDA

implementation, refer to [26].

Sys 13 by I2R is a GMM supervector system with KL diver-

gence kernel [27]. Utterance GMM is obtained via MAP adap-

tation of the UBM means that are concatenated and normalized

by the UBM standard deviation and square root of the mixture

weights. Nuisance attribute projection (NAP) [28] and tz-norm

are applied for channel and score normalization, respectively.

Sys 14 is an anti-model variant of Sys 13. The use of other

target speakers is allowed in SRE’12 which leads to an open-

set identification problem. The anti-model approach of [29] is

adopted for increased discrimination between target and unseen

non-targets. SVM for each target speaker is trained using the su-

pervectors of the other target speakers as the SVM background

together with additional data drawn from SRE’04 for the unseen

speakers.

Sys 15 is a Bhattacharyya-kernel GMM-SVM system with

data-dependent relevance factor [30, 31] and zt-norm. Sys 16, in

turn, uses joint factor analysis (JFA) implementation for I2R’s

SRE’10 submission [32]. It is composed of 300 speaker factors,

200 channel factors (100 for telephone, 50 for microphone, 50

for interview), and full rank diagonal matrix. For eigenchan-

nel training, the tel, mic and interview channels were separately

trained and concatenated into an eigenchannel matrix. Enroll-

ment and scoring (with zt-norm) are as in Sys 15.

Sys 17: IDIAP’s system is a single classifier with inter-

session variability (ISV) modeling technique of [16]. It is im-

plemented using Bob6, an open-source signal processing and

machine learning toolbox. ISV is similar to JFA with linear

scoring approximation [33] but with merged eigen-voice and

-channel spaces. Scores are normalized using zt-norm.

4. System performance

We analyze and compare system performance on the core task

of NIST SRE’12 using the equal error rate (EER) and primary

cost. The notion of EER is commonly known. What is new

in SRE’12 is the use of the so-called primary cost Cprimary,

defined as the average cost at two specific points on the DET

curve. At either of these points, the detection cost function

(DCF) is defined in normalized form (such that the maximum

value is one), as follows

CNorm(θ) = Pmiss(θ) +
1−Ptar

Ptar
×

[Pfa(θ|known)+Pfa(θ|unknown)]

2
.

6http://idiap.github.com/bob/



Table 6: Analysis of system performance based on equal er-

ror rate (EER) and minimum Cprimary (minC) for Pknown =
0. NIST SRE’12 common conditions include multi-session in

train and specific channel in test; CC1: interview and CC3:

added noise interview. Fusion:1) Auto Ridge [22] submitted

to SRE’12 as I4U submission 2) Auto Ridge post evaluation 3)

FoCal post evaluation.

Males Females

CC1 CC3 CC1 CC3

EER minC EER minC EER minC EER minC

Sys1 5.55 0.2674 4.22 0.4154 4.26 0.1674 4.07 0.5600

Sys2 5.44 0.2633 4.27 0.4246 4.77 0.1950 4.27 0.5663

Sys3 12.10 0.4998 10.90 0.5579 11.50 0.4363 10.50 0.5498

Sys4 5.75 0.2670 4.83 0.3741 4.86 0.1580 4.09 0.3018

Sys5 4.73 0.2669 4.14 0.3635 4.53 0.1373 3.52 0.3072

Sys6 4.28 0.2168 3.79 0.3053 4.05 0.1118 3.43 0.2420

Sys7 9.71 0.4742 9.32 0.6071 5.81 0.3083 5.18 0.3840

Sys8 4.81 0.3051 4.28 0.3918 4.65 0.1167 3.27 0.3094

Sys9 4.86 0.2374 4.22 0.2894 4.15 0.0948 3.38 0.2346

Sys10 9.84 0.4251 9.61 0.5714 5.56 0.1635 5.13 0.4124

Sys11 13.30 0.5276 9.72 0.6316 12.60 0.3985 7.48 0.5316

Sys12 3.74 0.2765 3.29 0.3322 4.01 0.2290 3.62 0.3877

Sys13 4.77 0.4440 4.50 0.3587 4.36 0.3055 3.35 0.2470

Sys14 5.45 0.3474 5.74 0.3618 4.52 0.1351 3.52 0.1591

Sys15 4.85 0.3347 5.57 0.3751 4.55 0.1708 4.10 0.2188

Sys16 3.78 0.2333 5.56 0.3415 5.17 0.1906 5.31 0.4245

Sys17 9.03 0.4932 7.88 0.4302 8.48 0.4189 5.66 0.3797

Fusion1 3.62 0.2306 3.25 0.3162 3.96 0.1196 2.81 0.2470

Fusion2 3.38 0.2267 3.75 0.3075 4.06 0.0760 2.92 0.2140

Fusion3 3.48 0.2020 2.67 0.2767 3.87 0.0719 2.78 0.2277

Here, Ptar is the a priori probability that a trial is a target trial,

while Pmiss(θ) and Pfa(θ) are, respectively, the probability of

miss and false alarm at threshold θ. Notice that Pfa(θ) consists

of two components computed separately from the known and

unknown non-target trials. Now, let θA be the threshold which

gives the CNorm(θA) with Ptar = 0.01 and θB be the threshold

which gives the CNorm(θB) with Ptar = 0.001, the primary

detection cost is defined as the average cost between the points

on the detection error trade-off (DET) curve, as follows

Cprimary = CNorm(θA)+CNorm(θB)
2

Table 6 shows the absolute performance of all 17 systems

and their fusion for common conditions 1 and 3 as defined in

SRE’12. One obvious point to note here is that, the PLDA i-

vector systems give consistently better performance in terms of

EER and minimum Cprimary when the test signal is collected

over clean (CC1) and noisy (CC3) interview sessions. It is also

obvious that, the GMM-SVM (Sys 13, 14, and 15) and JFA (Sys

16) give equally good performance compared to, and for some

instances better than i-vector based systems.

The fusion of large ensemble of recognition systems was

by itself a challenging issue, for instance, over-fitting may eas-

ily degrade the performance. We followed the recent work in

[22, 23] whereby fusion weights are trained using regulariza-

tion to avoid over fitting. Different regularizers were systemat-

ically evaluated, and ridge regression (L2-norm regularization)

was chosen. Instead of cross-validating the regularization fac-

tor λ, we decided to use a simple Bayesian method that allows

automatic selection of λ, as described in [35]. This method in-

tegrates out λ and the resulting non-convex optimization prob-

lem is solved via majorization-minimization approach. Conver-

gence was assumed after two iterations. The fusion results are

shown in Table 6 with Fusion1-3. Though effective on our DEV

set, the ridge-regression regularization (Fusion1 and 2) does not

always give improved performance over the single best system,

Figure 1: Analysis of excluding one system at a time in fusion

using Focal and employing compound log-likelihood ratio [34]

for Pknown = 0.5. Using the full ensemble of classifiers re-

sults in actual Cprimary of 0.3959 and 0.2836 for first two com-

mon conditions (CC1 and CC2) respectively in SRE’12 for the

pooled scores of males and females. A positive relative change

indicates increased actual Cprimary by excluding a system in

fusion resulting in fusion performance drop. Systems number 2

and 3 are not considered for this analysis.
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while the original FoCal7 fusion (Fusion3) does. One possi-

ble insight that we might draw here is that regularization might

hamper effective training of fusion parameters when the devel-

opment data is sufficient. This is a point for future research.

The results for Fusion1 are slightly inferior to Fusion2 because

of some mis-labeled scores during the evaluation which are cor-

rected for post-evaluation (Fusion2). An analysis of individual

systems importance in fusion is provided in Fig. 1. Compar-

ing between interview (CC1) and telephone (CC2) conditions

in Fig. 1, the most influensive systems in fusion are not the

same across different conditions.

5. Conclusion

This paper provides an overview of fusion of 17 systems sub-

mitted to NIST SRE’12 by different sites in I4U coalition. The

collaboration of over 30 researchers within the coalition bene-

fited all the sites in preparing robust speaker recognition sys-

tems. It is hard to compare the individual subsystems and

determine the strengths of each system but in a very general

prospective, the systems that utilized more recent features and

employ speech enhancement in the front-end were more suc-

cessful. Averaging the enrollment i-vectors gave about the same

performance as averaging the scores of i-vectors. Discrimina-

tive training schemes, such as SVMs, using a proper distance

kernel on Gaussian supervector representation was found to out-

perform generative i-vector representation with PLDA classifi-

cation. The new paradigm shift in NIST SRE’12 is expected

to emphasize the discriminative training in modeling and even

i-vector representation.

7 http://niko.brummer.googlepages.com/focal
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