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ABSTRACT

This paper describes text-dependent speaker verification as a task in-
volving four classes of trials depending on whether the target speaker
or an impostor pronounces the expected pass-phrase or not. These
four classes are used to reformulate the log-likelihood ratio tradi-
tionally used in text-independent speaker verification. Three formu-
lations of the alternative hypothesis are considered, leading to three
new expressions of the verification score. Experiments performed
on the publicly available RSR2015 database show a significant im-
provement compared to existing baseline scores. A relative gain up
to 61% in term of minimum cost is achieved when considering that
the alternative hypothesis is the union of three sub-hypotheses cor-
responding to the three existing classes of impostures.

Index Terms— Speaker verification, Text-Dependent, Impos-
tures

1. INTRODUCTION

Authentication of a person can rely on three types of informa-
tion: a possession, a knowledge or a biometric sample [1]. In
text-dependent speaker verification, a specific case of speaker recog-
nition, an automatic system is expected to only authorize access to
a person who can match both the voice characteristic and lexical
content. The advantage is twofold. First, security is strengthened
by verifying both the knowledge and biometric sample. Second,
constraining the lexical content of the spoken utterance improves
the performance of speaker verification systems when dealing with
short duration speech segments [2, 3]. There are different ways
to constrain the lexical content [4] and we focus this work on the
case where each target speaker is free to choose from a finite set of
personal pass-phrases.

In general, speaker verification[5] is a binary classification task.
Given a verification trial involving a target speaker X and a speech
segmentO, an automatic system has to decide whether the hypothe-
sis, HX , that the speech segment was spoken by the target speaker is
true or not. Ideally, a verification score, reflecting the confidence of
the system in hypothesis HX , is computed as a log-likelihood ratio
between HX and its alternative HX , for which the speech segment
was spoken by an impostor [6].

When introducing text-dependency, the recognition task be-
comes two-dimensional as the system has to determine if the speech
segment was spoken by the target speaker or by an impostor but
also if the lexical content, i.e. the pass-phrase P , is correct.
Speaker recognition systems are now exposed to four classes of
trials described in Table 1. A new verification hypothesis has to be
considered: H(X ,P) for which the speech segment is the correct
pass-phrase spoken by the target speaker. In other words, hypothesis

H(X ,P) states that the trial belongs to the class (X ,P). Subse-
quently, the new alternative hypothesis H(X ,P) can be defined
as the union of three exclusive sub-hypotheses; namely, H(X ,P) in
which the target speaker pronounces a wrong pass-phrase,H(X ,P) in
which an impostor pronounces the correct pass-phrase and H(X ,P)

in which an impostor pronounces a wrong pass-phrase.

Table 1: Four classes of trials existing for text-dependent speaker
verification task.

Correct Pass-Phrase Wrong Pass-Phrase
P P

Target Speaker X (X ,P) (X ,P)

Impostor X (X ,P) (X ,P)

Approaches existing in the literature propose to solve this prob-
lem by applying a two steps process [7, 8]. First a speech recognition
system verifies the pass-phrase, then a text-independent speaker ver-
ification system tests the identity of the speaker. If both pass-phrase
and identity are correct, the trial is accepted. However, running two
systems in parallel increases the demand of computing resources that
may become critical for specific applications. In this work we pro-
pose to base the verification decision on a single log-likelihood ratio
which considers the composite nature of the alternative hypothesis.
Indeed, recent works [9, 10] on text-independent speaker verifica-
tion have shown that an appropriate definition and modelling of the
alternative hypothesis improves the performance of the speaker ver-
ification system. A single system, introduced in [11] and based on
a hierarchical acoustic model, is used to model the verification hy-
pothesis, H(X ,P), as well as its alternative H(X ,P).

In the following section, we introduce the task of text-dependent
speaker verification and propose different approaches to model the
alternative hypothesis in order to form a log-likelihood ratio. Sec-
tion 3 describes the acoustic architecture that is used to model the
four hypothesis and approximate the verification scores. The perfor-
mance of the different scoring methods are then compared in Section
4. Finally we discuss the benefit of this approach and the possible
extensions in Section 5.

2. TEXT-DEPENDENT SPEAKER VERIFICATION

2.1. Log-Likelihood Ratio Test

In text-independent speaker verification, given an utterance O and
a speaker X , answering the verification task consists of testing the
hypothesis HX that O was spoken by X against its alternative hy-
pothesis, HX , that O has not been spoken by X . The decision can



be obtained by comparing a log-likelihood ratio between the proba-
bility distributions of both hypotheses, p(O|HX ) and p(O|HX ), to
a fixed threshold Θ, as follows

log p(O|HX )− log p(O|HX ) ≶ Θ

{
HX rejected
HX accepted (1)

In addition to the speaker identity, a text-dependent speaker ver-
ification system also needs to verify that the speaker pronounces a
given pass-phrase P . Thus, the null hypothesis to test, H(X ,P), as-
sumes thatO belongs to the class (X ,P), for which the pass-phrase
P is spoken byX . A new composite alternative hypothesis,H(X ,P),
is then defined accordingly by considering that the absolute comple-
ment of the class (X ,P) is the union of three exclusive classes such
that:

P (O|H(X ,P)) = P (O|H(X ,P)) +P (O|H(X ,P)) +P (O|H(X ,P))

(2)
These three classes are: (X ,P), in which O is the speaker X

pronouncing a pass-phrase different from P , (X ,P) where O is a
speaker different fromX pronouncing the pass-phraseP and (X ,P)
where O is a speaker different from X pronouncing a pass-phrase
different from P . Note that these classes correspond to the three
classes of trials shadowed in Table 1.

2.2. The Case of a Composite Alternative Hypothesis

Due to its composite nature, it could be difficult to estimate the prob-
ability distributions of the alternative hypothesis. One way to alle-
viate this difficulty is to consider separately each class of trials and
to compute the probability distribution, p(O|H(X ,P)) as a combina-
tion of the likelihoods of the three sub-hypotheses, H(X ,P), H(X ,P)

and H(X ,P), that compose H(X ,P).
The first approach we propose to computeH(X ,P) is commonly

used in speech recognition [12] and language detection [13, 14]. It
could be related to a weighted mean of the likelihood of the compet-
ing sub-hypotheses given by:

p(O|H(X ,P)) =

(
1

N

∑
c ∈ Ω

p(O|Hc)η
) 1
η

(3)

Where Ω is a set of N trial classes that form H(X ,P) and η is a
positive constant. Here, Ω = {(X ,P); (X ,P); (X ,P)}.

The second approach proposed here, is equivalent to the fusion
of score which is used to combine several systems in speaker verifi-
cation [15]. We compute now the logarithm of p(O|H(X ,P)) as the
mean of the log-likelihood of the competing sub-hypotheses such
that:

log p(O|H(X ,P)) =
1

N

∑
c ∈ Ω

log p(O|Hc) (4)

In practice, it is not possible to estimate precisely p(O|H(X ,P))
and p(O|H(X ,P)). These likelihood are thus approximated by
scores s(O|λ(X ,P)) and s(O|λ(X ,P)) where λ(X ,P) and λ(X ,P)

are statistical model representing hypotheses H(X ,P) and H(X ,P)

respectively.

3. MODELLING OF THE FOUR HYPOTHESES

Fair comparison of several hypotheses requires consistency across
hypotheses modelling. For this reason, we use in this work the hier-
archical multi-layer acoustic model (HiLAM) introduced in [11, 3].

Based on this acoustic model, which is an extension of the well
known GMM/UBM paradigm [16], we propose an approximation
of the verification scores described above.

3.1. The Hierarchical Multi-Layer Acoustic Model (HiLAM)

HiLAM is a three layer acoustic architecture described in Figure
1. The upper layer model, λubm, is a universal background model
(UBM) trained on a reasonably large amount of data. If the train-
ing data is covering sufficiently large number of speakers and lexical
content, λubm is considered speaker- and text-independent. Simi-
larly to the text-independent scenario [16], the UBM is used in the
rest of the paper to model the hypothesisHX such that P (O|HX ) =
P (O|H(X ,P)) + P (O|H(X ,P))

Fig. 1: The hierarchical multi-layer acoustic model (HiLAM)

The middle layer of the HiLAM is a speaker-dependent Gaus-
sian mixture model (GMM). This model, λgmm, is adapted from the
UBM using all data available from the target speaker and a Maxi-
mum A Posteriori (MAP) criteria [17]. If the lexical content pro-
nounced by the target speaker during the enrolment is large enough,
λgmm could be considered text-independent. However, we pro-
pose to use λgmm to represent the hypothesis H(X ,P), assuming
that when the enrolment material covers a large lexical content, then
H(X ,P) tends to the text-independent hypothesis HX if not using
discriminative training.

The bottom layer of the HiLAM is a hidden Markov model
(HMM) modelling a specific pass-phrase. Each state of this HMM
is a GMM derived from the speaker-dependent, text-independent
GMM from the second layer, λgmm, by using all recordings of the
given pass-phrase from the target speaker enrolment. This HMM,
referred to as λhmm, is a speaker- and text-dependent model that
is used to represent the hypothesis H(X ,P). More details about the
HiLAM or its training process can be find in [11, 18].

3.2. Score Approximation

During the authentication phase, the likelihood of a given test ut-
terance O is computed over each of the thee layers of the HiLAM
architecture:

• Λ(O|λubm) is the likelihood of utterance O against the
speaker- and text-independent first layer of the HiLAM,

• Λ(O|λgmm) is the likelihood of utterance O against the
speaker-dependent, text-independent middle layer of the
HiLAM,

• Λ(O|λhmm) is the likelihood of utterance O aligned on the
speaker- and text-dependent HMM by using a Viterbi decod-
ing. Probability of transition are not considered here [18].



Those likelihoods can then be used to compute the verification score
as a log-likelihood ratio in which the alternative hypothesis is ap-
proximated according to the expressions given in Section 2.2. Note
that by modelling the four hypotheses with the HiLAM architec-
ture, we assume that λubm models H(X ,P) ∪ H(X ,P). Thus, the
number of sub-hypotheses of H(X ,P), N , is reduced to 2 and Ω =

{(X ,P);X}.
A first score, Sη1 (O), is adapted from Equation 3.

Sη1 (O) = log Λ(O|λhmm)− log

[(
Λ(O|λgmm)η

2
+

Λ(O|λubm)η

2

) 1
η

]
(5)

When η tends to infinity, Sη1 (O) tends to Smax1 (O) given by:

Smax1 (O) = log Λ(O|λhmm)− log max

{
Λ(O|λgmm),Λ(O|λubm)

}
(6)

The expression of the alternative hypothesis from Eq.4 leads to
a third expression of the verification score, S2(O), given by:

S2(O) = log Λ(O|λhmm)−
[

log Λ(O|λgmm)

2
+

log Λ(O|λubm)

2

]
(7)

Two other verification scores are given here for comparison. The
baseline, SHMM (O), is the natural text-dependent score computed
from the HiLAM architecture and used in [19, 20].

SHMM (O) = log Λ(O|λhmm)− log Λ(O|λubm) (8)

In this expression, the alternative hypothesis is only modelled by
the first layer of the HiLAM architecture, λubm, that can be seen as
a rough approximation of the H(X ,P) hypothesis. Eventually, the
classic GMM/UBM score, SGMM (O), is considered for compari-
son.

SGMM (O) = log Λ(O|λgmm)− log Λ(O|λubm) (9)

4. EXPERIMENTS

4.1. Performance Estimator

Experiments have been conducted to compare the performance of the
different scoring methods when dealing with the different classes of
impostures existing in text-dependent speaker verification. Amongst
the three classes of impostures, the case of an impostor pronouncing
a wrong lexical content (X ,P), is the easiest to reject as neither
identity nor the lexical content is correct [3]. This class of imposture
does not represent a major threat to the system and would make the
result look over optimistic. Therefore, we report the performance in
terms of minimum detection cost where we exclude the case of an
impostor pronouncing a wrong lexical content. This cost function,
similar to the one used for the NIST-SRE 2012 evaluation [21], is a
single estimator that takes into account the two classes of impostures
(X ,P) and (X ,P). The cost function is given by

CNorm = PMiss|X ,P + β × (0.5× PFA|X ,P) (10)

with β = CFA
CMiss

× (1−PX ,P )

PX ,P
where the parameters of this function

are:

• PX ,P , the a priori probability that the test speaker is the target
speaker,

• PMiss|X ,P , the miss error probability,

• PFA|X ,P , the false alarm error probability for target speaker
pronouncing a wrong pass-phrase,

• PFA|X ,P , the false alarm error probability for impostor pro-
nouncing the correct pass-phrase,

• CFA, the cost of a false alarm,

• CMiss, the cost of a miss.

Note that the a priori probability of an impostor trial to be of class
(X ,P) or (X ,P) are considered equal and that the costs CFA and
CMiss are set to 1. Eventually, two values of Cnorm will be reported
when setting the a priori probability of target speaker pronouncing
the correct pass-phrase to different values:{

CnormA for PX ,P = 0.01
CnormB for PX ,P = 0.001

(11)

4.2. Experimental Protocol

Experiments are conducted on 50 speakers of the Part 1 of the
RSR2015 database [19, 20]. In this corpus, each speaker recorded
9 sessions using several mobile devices. During each session, all
speakers read a common set of 30 short sentences (< 3seconds) that
are used as pass-phrases for the regarded text-dependent speaker
verification task. Out of the 9 recording sessions, 3 are used for
enrolment while 6 are set aside to be used as testing material. For
each speaker, the 30 pass-phrases of the 3 enrolment sessions are
used to adapt a text-independent GMM (second layer of the HiLAM
architecture). Each text-independent GMM is then used to adapt one
speaker- and text-dependent HMMs for each of the 30 pass-phrases
by using the 3 sessions of this specific pass-phrase (third layer of
the HiLAM). Through this process, 1,500 models are generated (50
speakers, 30 pass-phrases).

The UBM is trained on 6,435 utterances from 50 different male
speakers, using materials from the forthcoming Parts 2 and 3 of the
RSR2015 database. Thus, none of the 30 pass-phrases has been seen
by the UBM.

During the testing phase, for a given speaker, each of the 30
models is compared to all pass-phrases from the remaining 6 ses-
sions of this speaker, generating both (X ,P) and (X ,P) trials. Tri-
als involving impostor speakers are generated by testing all mod-
els from the selected speaker against the test material from the 49
remaining speakers of the test-set. Note that in order to limit the
number of impostor trials for which the the speaker pronounces a
wrong pass-phrase, (X ,P), each model is tested against a sub-set
of test segment randomly chosen to cover all speakers, sessions and
pass-phrases of the test-set. The number of trials resulting from this
process is given in Table 2

Table 2: Number of tests performed for each of the four classes of
trials existing for text-dependent speaker verification.

Trial definition Speaker Pass-Phrase Number of tests
(X ,P) target-speaker correct 8,931
(X ,P) target-speaker wrong 259,001
(X ,P) impostor correct 437,631
(X ,P) impostor wrong 6,342,019



4.3. System Configuration

Front-end processing produced 50 dimensions acoustic features (19
MFCC, 19 derivatives, first 11 second derivatives and the delta en-
ergy). Acoustic features are computed on a 20ms sliding window
with shifting of 10ms. Feature of lower energy are discarded and
mean variance normalization is applied. Each node of the HiLAM
architecture is a 64-distribution GMM. Speaker- and Text-dependent
models are 5 states HMMs.

4.4. Performance Analysis

First we evaluate the effect of the parameter η in the expression of
the score Sη1 . Figure 2 show the evolution of the two minimum costs
as a function of η. This experiment shows that the best performance
is obtained when η = 0.1 and that increasing the value of this pa-
rameter degrades the performance. For the next experiment, η is
fixed to 0.1.

Fig. 2: Variation of the minimum costs for different values of the η
parameter when computing the Sη1 score.

Table 3 contains the performance of the five scoring methods
proposed in Section 3.2, in terms of minimum cost. A first look at
the result shows that Sη1 obtains the lower cost for both functions
but that the difference with S2 is not significant. It is clear that the
group of scores including Sη1 , Smax1 and S2, which use a composite
modelling of the alternative hypothesis H(X ,P) outperform the two
scores, SHMM and SGMM that use a classical UBM model. Com-
pared to SHMM , Sη1 reduces CnormA and CnormB minimum costs
by 61% and 48% respectively. As expected, Smax1 does not perform
as well as Sη1 . Indeed, Smax1 is the limit of Sη1 when η tends to in-
finity and Figure 2 shows that performance of the system degrades
when increasing η. Finally, SGMM obtains maximal value of 1 for
each of the minimum cost CnormA and CnormB . This result is ex-
plained below by analyzing Table 4.

Table 3: Performances of different scoring methods given as mini-
mum detection cost for two values of Ptarget.

Cost Function Sη1 Smax1 S2 SHMM SGMM

CnormA 0.130 0.171 0.132 0.336 1
CnormB 0.245 0.313 0.245 0.474 1

Table 4 presents the performance of the five scoring methods on
the same experiments as before in terms of Equal Error Rates (EER).
Performance are given for each of the three classes of imposture in-
volved in text-dependent speaker verification separately. By looking
at each class of imposture, we aim to better understand the effect of
each modelling of the alternative hypothesis.

Results from the last column of Table 4 illustrate the fact that
SGMM score is not designed for text-dependent speaker verifica-

Table 4: Performances of the different scoring methods in terms of
Equal Error Rate (%) when testing the target speaker pronouncing
the correct pass-phrase against the three classes of impostor trials
defined for text-dependent speaker verification.

Imposture definition Sη1 Smax1 S2 SHMM SGMM

(X ,P) 1.51 0.46 1.68 4.57 50
(X ,P) 1.75 2.22 1.75 1.60 4.92
(X ,P) 0.24 0.20 0.25 0.37 5.04

tion. Thus, it does not consider the pass-phrase information and get
an EER of 50% for the case of target speaker pronouncing a wrong
pass-phrase, (X ,P), as it cannot separate the target speaker pro-
nouncing the correct pass-phrase from the target speaker pronounc-
ing a wrong pass-phrase. This phenomenon explains the high mini-
mum cost values observed previously for SGMM .

Sη1 and S2 which were shown to minimize the cost functions,
do not minimize EER for any of the imposture class. However, they
don’t either maximize EER in any condition but rather offer a good
compromise for all classes of impostures. This compromise is re-
flected by the minimization of the cost functions.

One interesting observation is that the lowest EER when dealing
with target speaker pronouncing a wrong pass-phrase (row 1 of Table
4) belongs to Smax1 score. For each trial, this scoring method selects
the more likely imposture class to model the alternative hypothe-
sis. A deeper analysis shows that for 99.07% of the TAR-wrong
trials, Smax1 models the alternative hypothesis by using the speaker-
dependent text-independent model λgmm. This correct detection of
the class of imposture allows the Smax1 score to reduce the EER by
90% relatively to the SHMM score for this class of impostures

Performance against impostor pronouncing a wrong pass-phrase
(X ,P) are given in the third row of Table 4 for reference. These
results are consistent with the previous conclusions. As expected,
the equal error rate is low for this condition as neither the identity
nor the lexical content is correct.

5. DISCUSSION

In this paper, we have described text-dependent speaker verification
as a classification task involving four classes of trials. We proposed
to compute the verification score as a log-likelihood ratio in which
the two competing components are defined by considering those four
classes of trials. More specifically, we proposed three formulations
of the alternative hypothesis score, written as a combination of the
scores computed for the different classes of impostures separately.

The three scores resulting from our work have been compared
to two existing scores: the classical GMM/UBM text-independent
score and its text-dependent equivalent proposed for the HiLAM
architecture in [18, 11]. Experiments conducted on the RSR2015
database have shown that the proposed scores outperform the two
baseline scores. Indeed, the best scoring method proposed in this
work decreases the two minimum costs considered by 61% and 48%
relatively to our text-dependent baseline.

Interestingly, we observed that scoring methods minimizing the
cost functions do not obtain the lowest equal error rate for any of the
imposture class. Future work will focus on the different characteris-
tics of the proposed scoring methods in order to minimize the error
rate for each class of imposture separately.
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