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ABSTRACT

This work focuses on text-dependent speaker verification, where a
user is required to chose and pronounce a customized pass-phrase
to get authenticated. In this context, there are three types of impos-
tures: an impostor pronouncing the correct pass-phrase, an impostor
pronouncing a wrong pass-phrase and the most difficult one: an im-
postor playing back a recording of the target speaker pronouncing a
wrong pass-phrase. Detecting and classifying different types of im-
postures can help to prevent future impostures of the same type. In
this work, we first propose a new verification score to reject Play-
back impostures. This score allows a relative reduction of 90% of
the equal error rate against Playback impostures while offering per-
formance similar to the baseline text-dependent score against other
types of impostures. As a second contribution, we show that the new
score can be combined with an existing text-dependent verification
score to improve the classification of the different types of impos-
tures. The performance of the speaker verification engine for impos-
ture classification is significantly improved with the Cj;,- decreasing
by at least 29% compared to the original system.

Index Terms— Speaker verification, Text-Dependent, Impos-
tures, Playback

1. INTRODUCTION

Speaker verification is the task of accepting or rejecting an identity
claim based on the information extracted from a voice sample [1].
This task consists of classifying two types of trials: the genuine tri-
als that have to be accepted and the impostures trials that must be
rejected. This work deals with a specific scenario of text-dependent
speaker verification [2], where the customer is required to chose a
personal pass-phrase and to pronounce it to be authenticated. In this
context, three types of impostures can be defined given the the nature
of the speaker (target or impostor), and the pass-phrase pronounced
(correct or wrong).

Amongst the possible impostures, illustrated in Fig.1, the Naive
imposture consists of an impostor pronouncing a pass-phrase differ-
ent from the one chosen by the user (s)he is imposting. This impos-
ture where both the identity and the pass-phrase are different from
the ones expected by the system is supposed to be easily rejected. On
the contrary, the two other types of imposture represent more serious
threats to the system as either the pass-phrase or the speaker identity
is correct. In this work, we refer to the case of an impostor pro-
nouncing the correct pass-phrase as Sly imposture, while Playback
imposture will be use for the case of the target speaker pronouncing
a sentence different from his/her personal pass-phrase. This last case
refers to the situation where an impostor playbacks a recorded voice
of the target speaker in order to spoof the system.

This work aims at increasing the performance of a single speaker
verification engine to discriminate between the different types of im-
postures. Indeed, Naive impostures are relatively easy to reject and
the cost of accepting this imposture may not be high if we consider

that the impostor did not especially prepared his/her attack to the
system. On the contrary, a Sly or Playback imposture requires ad-
ditional preparation efforts and might involves malevolent intention.
It might also imply that the impostor will attack again in the future
and knowledge about imposture attempts would help preserve the in-
tegrity of the system. For instance, when detecting a Sly imposture,
the system can ask the speaker to change the pass-phrase, already
known by the impostor. For a Playback imposture, the system can
keep a copy of the speech sample so as to detect future use of this
sample or to identify the impostor.
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Fig. 1. Text-dependent speaker verification systems encounter 4
types of trials whether the speaker is the target speaker or an im-
postor who pronounces the correct pass-phrase or a wrong one.

Prior works considering Playback impostures propose to make
use of a speech recognition system to reject a user pronouncing a
wrong pass-phrase [3] or to use a second biometric modality to re-
ject impostors playing back a recording [4]. However, these solu-
tions imply an extra computational cost due to the additional system,
that is not suitable for all applications [5]. Multi-modality can also
be used to thwart Sly impostures [6] but lighter approaches involv-
ing only speech processing have been proposed. In [7], a HMM-
based system is reinforced by an additional duration information.
This method is not suitable for the case of user-customized pass-
phrases as it requires to train a speaker-independent HMM model for
each pass-phrase. Another approach includes high-level information
such as pitch contour or source information in a dynamic program-
ming framework [8]. However, this approach adds in complexity and
might be more sensitive to session variability.

In this work we propose to tackle different types of impostures
by using a single engine, thus not increasing the computational cost
of the verification. Based on the existing HILAM engine [9, 10, 11],
we first propose a new score that shows better discrimination against
Playback and Naive impostures while offering similar performance
against the Sly impostures. We then show that combining this new
score with the one originally proposed in [9] into a dual scoring al-
lows a better separation of the three different types of impostures.

2. MODELING BACKGROUND, SPEAKER AND TEXT

Classical text-independent speaker verification engines are based on
the GMM/UBM paradigm [12, 13]. Given a sequence of features



X at testing time, the verification score produced is a log-likelihood
ratio between the hypothesis, Ho, that the speech segment has been
spoken by the target speaker and its alternative hypothesis, Hi,
that is was spoken by an impostor. A speaker and text independent
Universal Background Model (UBM), trained on a relatively large
amount of data, is used to model hypothesis H; while a speaker-
dependent, text-independent Gaussian mixture model (GMM) is
adapted from the UBM by using all data available from the target
speaker. The verification score is given by:

L)\gmm, (X)

Sti (X) = log L)\ (X)

6]

ubm

where L»,,,,,(X) and Ly, . (X) are respectively likelihood of X
over the speaker’s text-independent GMM and the UBM. However,
the performance of such system degrades strongly when the duration
of speech material is limited.

Text-dependency is well known to compensate for the lack
of speech material by harnessing the temporal structure and pho-
netic content of a specific pass-phrase [2, 14]. Modeling of both
the speaker and the pass-phrase is commonly done using Hid-
den Markov Models (HMMs) which offer a relative robustness to
speaker and environment variabilities. In this context, the compu-
tation of a likelihood ratio for speaker verification often makes use
of a speaker-independent HMM to model the alternative hypothesis
H, [15, 16, 17]. This approach is not suitable for the case of user-
customized pass-phrase and we proposed in a previous [9, 10, 11]
work to derive the pass-phrase-dependent HMM from a UBM that
is also used to model the alternative hypothesis for any chosen
pass-phrase.

In our previous work [10, 11], a text-dependent log-likelihood
ratio, S¢q(X), is computed as:

L>‘}L7n7n (X)

Sta(X) = log T )

@)

ubm

where Ly, (X) is the likelihood of X over the speaker’s text-
dependent HMM aligned by Viterbi decoding.

The resulting architecture, called HILAM, has been recently de-
ployed in a large scale commercial application [5]. A complete de-
scription of HILAM and its training process can be found in [9, 10,
11]. Considering the aim of this work, essential information regard-

Fig. 2. The Hierarchical multi-Layer Acoustic Model (HiLAM). The
first two layers are similar to the standard GMM/UBM while the
bottom layer hinges on the abilities of a left-right HMM to harness
the specific temporal structure of pass-phrases.

ing the HILAM architecture can be summarized as follows:

o the first layer is the classical, speaker- and text-independent,
Universal Background Model (UBM)

o the middle layer is a speaker-dependent and text-independent
GMM with its means adapted from the first layer UBM

e the bottom layer is a speaker- and text-dependent HMM mod-
eling the user-specific pass-phrase. All state’s density distri-
butions of this HMM are GMM:s with its mean adapted from
the middle layer speaker model

e all nodes in the HiLAM architecture are IN-distribution
GMMs sharing the same covariance and weight coefficients

The acoustic features used in our experiments are 50-dimension
vectors composed of 19 MFCC, their derivatives, 11 first second
derivatives and delta energy. Feature frames are computed on a 20ms
sliding window with shifting of 10ms. Low-energy frames are dis-
carded and mean-variance normalization is applied. Each node of
the HiLAM architecture is a GMM with N=64 mixtures.

3. IMPOSTURE CLASSIFICATION

3.1. Playback detection

Playbacks are the most difficult impostures to reject. For both text-
independent (St;) and -dependent scores (S:q), the denominator of
the likelihood ratio is computed by using the UBM which is assumed
to model all speakers except the target. Therefore, none of this score
is designed to reject Playback impostures involving recording from
the target speaker. In order to explicitly tackle the Playback impos-
tures, we propose to use a new score based on the log-likelihood ra-
tio of X over the speaker’s text-dependent HMM aligned by Viterbi
decoding and the speaker text-independent GMM such that:

3
o () 3)
This score, hereafter referred to as Speaker Normalized, Sy, ex-
plicitly compares the hypothesis of the target speaker pronounc-
ing the correct pass-phrase, modeled by a speaker- and text-
dependent HMM, to the hypothesis of the target speaker pro-
nouncing any pass-phrase, modeled by a speaker-dependent and
text-independent GMM. Note that this score can be expressed as the
difference between the text-dependent and text-independent scores:
Sen(X) = Sta(X) — Sti(X). A direct comparison of these two
scores is given by Figure 3 and provides more insight. The use of
the additional text-dependent component of the HILAM does not af-
fect the score distributions of Naive and Playback impostures where
the impostor pronounces a wrong pass-phrase (Figures 3-B and
-D). On the contrary, the text-dependent component of the HILAM
architecture increases the scores of speaker pronouncing the cor-
rect pass-phrase. This increase, very limited for the Sly impostures
(Figure 3-C), is very significant for the Genuine trials (Figure 3-A).

3.2. Dual scoring for imposture classification

We propose now to classify the different types of impostures in a
two dimensional space obtained by combining the the original text-
dependent score, S:q, and the proposed Speaker Normalized score,
Ssn, introduced in Section 3.1. The different behaviors exhibited by
these two scores is expected to improve the separation of the four
types of trials. The benefit of the resulting dual-score, of the form
s = [Sta; Ssn]7, is illustrated by the Figure 4 that shows the four
types of trial in this two-dimensional space. Note that the repartition
of the four types of trials on this figure presents a certain similarity
with the theoretical framework represented in Figure 1.
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Fig. 3. Distribution of the GMM/UBM and HMM/UBM likelihood ratio scores generated by the HILAM system for four different types of
trials. The addition of the temporal information in the in the HMM/UBM score significantly increases the scores of the Genuine trials while
keeping the distributions of Playback, Sly and Naive impostures unchanged.
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Fig. 4. Representation of a subset of scores for the four types of
trials: Genuine, Playback, Sly and Naive, in a 2-dimensional space.
The two dimensions of the space correspond to the text-dependent
score, Stq and the Speaker Normalized score, Ssy, .

Classification in the dual-score space can be done using clas-
sifiers such as Multi-class Logistic Regression [18] or multi-class
SVM [19]. In order to demonstrate the potential of the dual-scoring,
a gender-dependent hetero-scedastic Gaussian back-end' is trained
on the scores of a development set. Given the collection of output
score vectors computed on the development set, a multivariate nor-
mal distribution is trained for each type of trial by using the Maxi-
mum Likelihood criteria, as described in [20]. During the test, given
an output score vector, s, the final classification score for the corre-
sponding trial is obtained by evaluating the log-likelihood of the vec-
tor s over the Gaussian distributions learned for each type of trial.

4. DATA, PROTOCOL AND EVALUATION METRICS

A text-dependent database, different from its text-independent coun-
terpart, requires the recording of the same set of sentences across
different speakers. To this end, Part I of the RSR2015 database meets
this requirement with sufficiently large number of speakers though
the channel effects are benign [10, 11]. The 300 speakers of the
RSR2015 database are divided into three non-overlapping groups re-
ferred to as background, development and evaluation. Each speaker
pronounces a set of 30 fixed pass-phrases across 9 sessions. To avoid
the use of the 30 pass-phrases in background training, two gender-
dependent UBMs are trained by using different lexical material from

"https://sites.google.com/site/nikobrummer/
focalmulticlass

the Part I and III material of the background data.

Performance of the HILAM system is evaluated on the develop-
ment and validated on the evaluation set of the Part I of the RSR2015
database. Out of the 9 sessions, 3 are used for enrollment and 6 for
test. During the enrollment, three occurrences of the first 15 pass-
phrases of a speaker are used to adapt a speaker-dependent GMM.
For each of these 15 pass-phrases, a text-dependent HMM is adapted
from this GMM to produce 15 text-dependent models of a same
speaker. During the test, all 30 sentences from the 6 test sessions
of a speaker are used to generate Genuine target trials and Playback
impostures. The Sly and Naive impostures are generated by compar-
ing all 30 sentences from the 6 test sessions of a speaker against all
the models trained for the remaining speakers of the group, i.e. de-
velopment or evaluation. Note that we don’t consider cross gender
tests and that 15 pass-phrases out of the 30 have been used during
the enrollment phase while the 15 others have never been seen by
the system. The total number of tests for each type of trial is given
in Table 1. In the remaining of this paper, speaker verification per-

Table 1. Number of tests per speaker-set for each type of trial.

. Male Female
Type of trial dev eval dev eval
Genuine 4,479 5,089 4,199 4,303
Playback 129,906 147,611 121,771 124,832
Sly 219,472 284,987 193,157 202,242
Naive 3,185,841 4,133,183 2,799,411 2,933,184

formance is reported in terms of Equal Error Rate (EER) for each
type of imposture separately. The deployment of an engine classify-
ing the different types of impostures would require to fix the cost of
the misclassification errors for evaluating the classifier performance.
In order to eschews the use of specific mis-classification costs, the
discriminancy is evaluated by using a log-likelihood-ratio-based per-
formance measure, the multi-class Cyy,- [21]:

T
1
Cur =~ > wilog, P, 4)

t=1

where P; is the posterior probability of the true class of the trial ¢
calculated for a flat prior and w; is a weighting factor that normal-
ized the class proportions in the test set. Multi-class C};- is a positive
value expressed in bits of information that measures the actual per-
formance of the classifier (the lower the better). For comparison,

C'™ and Reference Loss are also provided. C7}," is the Cy;,- value



obtained for an optimum calibration of the scores; it reflects the po-
tential of the classifier without considering the calibration issue. The
Reference Loss is the Cy;, value of a system that extract no informa-
tion from the speech signal for the given task.

5. EXPERIMENTS

The first experiment is conducted on the RSR2015 development set
to compare the performance of the three scores introduced previ-
ously. Even though the system performs better for female speakers,
the behavior of the different scores is consistent across gender. The
GMM/UBM text-independent score, S¢;, which is given as refer-
ence, obtains the worse performance for all impostures (Table 2). Es-
pecially, the text-independent score is not good to reject the Playback
impostures due to its lack of lexical information. Naive impostures,
however, are better rejected than Sly impostures, probably because
the training material of the speaker text-independent GMM covers
the lexical content of half of the test pass-phrases. It shows the
speaker GMM not to be completely text-independent while trained
with 15 different pass-phrases.

Table 2. Performance of the HILAM system on the devel-
opment part of the RSR2015 database. Performance is given
in terms of EER (%) for three scores: the text-independent
GMM/UBM score, St;, the text-dependent score, Szq and the
Speaker normalized score, S, .

Imposture Male Female

Sti Std Ssn Sti Std Ssn
Playback  43.48 6.23 059 4299 250 0.22
Sly 6.14 182 190 529 093 0.88
Naive 553 059 020 463 012 0.07

The text-dependent score, S:q, greatly reduces the error rates
for all impostures (columns 3 and 6 of Table 2). Nevertheless, EER
remains at 6.23% for male and 2.50% for the female for Playback
impostures, which are still the most difficult to reject. During enroll-
ment, 15 of the 30 available pass-phrases have been used to train the
speaker models. As a consequence, Playback impostures using one
of these 15 pass-phrases are more difficult to reject than the 15 un-
seen pass-phrases. EER obtained for both seen and unseen sentences
respectively vary from 7.21% to 5.27% for male and from 2.95% to
1.91% for female speakers.

The proposed S, is expected to thwart the three types of im-
postures together and especially the Playback. Playback impostures
are better rejected than when using the two other scores (columns 4
and 7 of Table 2). Compared to the original text-dependent score, the
EER reduces from more than 90% for both male and female speak-
ers, reaching respectively 0.59% and 0.22%. Playback impostures
generated with the 15 pass-phrases seen during the enrollment are
now better rejected than the 15 unseen pass-phrases, due to the fact
that the GMM speaker model used for the denominator of the like-
lihood ratio was trained using these pass-phrases. EER obtained for
both seen and unseen sentences now vary from 0.38% to 0.67% for
male and from 0.14% to 0.24% for female speakers. We can see that
the Speaker normalized score also provides improvement against
Naive impostures and preserves performance of the text-dependent
score, Stq, against Sly impostures.

In a second experiment, we evaluate the ability of the system
to discriminate between the four types of trials (Genuine, Playback,

Table 3. Performance of the dual-score compared to the HILAM orig-
inal text-dependent score on the development and evaluation parts of
the RSR2015 database. Performance is given in terms of Cj;,. and
Cpin | Reference loss is given for comparison

Male Female
Dev Eval Dev Eval
Text-dependent C’”T‘ 0.9071 0.9429 0.8297 0.8860
P Ci™ 09069 09410 0.8271  0.8774
Dual-Score C’”,y‘ 0.5941 0.6110 0.6055 06325
ot 0.5896  0.6075  0.5857  0.6061
Reference loss 2

Sly and Naive). Classification performance using the dual-score is
evaluated in terms of Cy;,- and C[i“™ and compared to a baseline
for which the input of the Gaussian back-end is a mono-dimensional
score consisting of the original text-dependent score: S;q alone. This
simple baseline is motivated by the lack of equivalent approach in
the literature. This baseline present also the advantage to be similar
to our approach in terms of complexity as the computational cost
of the likelihood of the test utterance over the second layer GMM
and of the Gaussian back-end is negligible. Performance of the two
back-ends are given in terms of C;,- and C[%™ in Table 3.
Compared to the baseline, the dual-score strongly reduces the
Cly1, for both genders. Indeed, the Cy;,- is reduced by a relative 35%
for male speakers and 29% for the female speakers. Performance
on the development set are given as reference as the Gaussian back-
end has been trained on these data. However, we can see that the
improvement on development and evaluation set is consistent.

6. DISCUSSION

The first contribution of this work is the detection of playback im-
postures. This is accomplished by combining a speaker-dependent
text-independent GMM with a HMM which is both speaker and text-
dependent. In our experiments, it was found that this new score
greatly outperforms the existing text-dependent score when reject-
ing Playback impostures for which the target speaker pronounces a
wrong pass-phrase. The EER obtained against this type of imposture
is reduced by 90% for both male and female speakers compared to
the original text-dependent score. Additionally, the S, score also
outperforms the baseline text-dependent score when considering the
case of an impostor pronouncing a wrong pass-phrase.

The second contribution of this work consists of combining two
verification scores, the original text-dependent score and the new
Ssn, score, into a dual-score to improve the classification of the four
types of trials encountered by a text-dependent speaker verification
system. Integrated into a Gaussian back-end, the dual-score provides
a significant improvement compared to the baseline as the Cj;, de-
creases by at least 29% for both male and female speakers. This
improvement is obtained without significant increase of the com-
putational cost as both scores are obtained from the same HiLAM
architecture.

Improving the rejection of the Playbacks and the classification
of the different types of impostures is expected to benefit to the secu-
rity of text-dependent speaker verification systems by allowing the
prevention of future impostures. For further work we aim to increase
the flexibility of this approach and provide similar improvements in
different text-dependent scenarios such as scenarios using prompted
text for liveness detection.
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