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ABSTRACT

Over the last decade speaker recognition has witnessed signif-
icant advances, with successful developments in Factor Anal-
ysis (FA) and more recently i-vectors, more than halving the
error rates achieved by the classical UBM/GMM approach.
However when very short duration utterances are considered,
it is known that these improvements are much less. This paper
begins with a review of the recent developments of i-vector
systems with a focus on short test duration, in the region of 10
s or less. Experimental results are then presented showing that
error rates rise from approximately 5% to 18% when the test
duration is systematically reduced from 30 s to just 3 s. In-
terestingly, with the 30 s condition the i-vector error rate is in
the region of half that of the corresponding UBM/GMM sys-
tem. Nevertheless, when the test segments are just 3 seconds
duration then the error rates of the 2 systems systems are very
similar. All experiments relate to the short-short condition of
the NIST 2008 SRE, but with the test duration systematically
reduced.

Index Terms— Speaker verification, GMM/UBM, i-
vectors, LDA, PLDA, short duration

1. INTRODUCTION

The growth of interest for telephony based authentication in
applications such as mobile banking [1] has brought new chal-
lenges to speaker verification. User convenience invariably
means that systems should operate with just a few seconds of
speech, certainly in the authentication (testing) phase. This
is in contrast to the majority of speaker recognition research
which has tended to focus on much longer durations, although
in recent times significant effort has been directed towards
short duration testing, including the work of [2, 3].

I-vectors have become the state-of-the-art in speaker
recognition since 2010. They have improved accuracy and
robustness while simplifying the classification task, bringing
it into a low-dimensional space. A considerable number of

works tested the performance of i-vectors in short duration
conditions [4] and recently some improvements have been
made [5, 6]. Given all the existing works, limitation of the
speech material is still a challenging constraint.

In this paper, we first present a brief review of some of
the latest developments in i-vector based systems when eval-
uated under short duration conditions. We then present some-
what related results with on a direct comparison with a con-
ventional UBM/GMM as a benchmark against one using i-
vectors. The main goal is to compare error rate trends of these
arrangements as the quantity of speech data is reduced. Here
we keep the enrolment (training) data constant and systemat-
ically reduce the amount of verification (test) data.

The paper is structured as follows. Section 2 presents
a brief survey of recent developments involving i-vector
schemes specifically encompassing short duration conditions
while Section 3 follows with an account of the related strate-
gies and techniques. The experimental configuration, in par-
ticular the test data shortening process, follows in Section 4,
while experimental results are presented in Section 5. Finally,
conclusions are drawn in Section 6.

2. I-VECTORS IN A SHORT DURATION CONTEXT

Since its appearance [4], i-vector framework rapidly became
the state-of-the-art in speaker recognition. Thanks to the in-
tensive use of development data provided by the NIST and
the Linguistic Data Consortium (LDC), i-vector systems out-
performed most of the other configuration involved in the
last two speaker recognition evaluations (2010 and 2012).
As a consequence of this enormous support from these two
institutions, i-vectors were initially only exploited in text-
independent contexts [7–9].

Recently, i-vectors have proved to be efficient in some
other areas such as language recognition [10] and text-
dependent speaker verification [11, 12]. Regarding the lat-
ter, the inclusion and development of new text-dependent
databases [13] has led to a new framework where short du-



ration is a requirement.
During time, the natural mainstream has been to evaluate

the robustness of i-vectors against different sources of vari-
ability, among which duration mismatch was one of the pri-
mary options. Several works [14, 15] proved that duration
mismatch between enrolment and test data is less harmful
than shortening both sets equally.

In the classical UBM/GMM configuration [16] it has long
been known [17] that, when the two speech segments under
consideration are of meaningfully different durations then it
proves beneficial to generate the GMM on the longer seg-
ment and carry out the UBM/GMM scoring on the shorter
segment. Of course in the context of the i-vector approach,
where two i-vectors are derived, one from test segment GMM
and one from training segment GMM, then no such separa-
tion exists and the models presented to the classification pro-
cess are structurally identical (and interchangeable) for the
two segments. This leads to the challenging question of how
to address the imbalance of data in the i-vector context when
one speech segment is meaningfully different in duration to
the second segment, see for example the recent work of [5].

3. SPEAKER VERIFICATION SYSTEMS

In the experimental work presented here speaker verification
scores for two i-vectors configurations are compared directly
with those derived from a conventional UBM/GMM. The lat-
ter is now well understood [16,18] with research and applica-
tion applied over almost two decades. Thus here we address
the much more recent i-vector approach which is then to be
directly compared with the UBM/GMM when tested against
different speech durations.

3.1. The i-vectors framework

The i-vector paradigm has been motivated by inconsistencies
found in the Joint Factor Analysis (JFA) [19] framework. In-
deed, it was shown in [4] the the assumption of speaker and
session variabilities laying in different subspaces is not true
and that the session subspace contains information on the
speaker identity.

In this paradigm, it is assumed that a speech segment
can be represented by a single vector, the i-vector, in a low-
dimensional space referred to as total variability space [4].
Then, a GMM super-vector can be decomposed as:

mh,s = µ+T ·wh,s (1)

where µ is the speaker-and-session-independent component,
i.e. the mean super-vector coming of the UBM. A basis of the
total-variability subspace is given by the rows of T, which
is a rectangular matrix of low rank and wh,s is a vector nor-
mally distributed with parameters N(0, I). Extracting an i-
vector wh,s, is essentially a Maximum a-Posteriori adaptation
(MAP) in the subspace defined by T.

In this paper, a pooled total-variability approach is uti-
lized for convenience, as considered by McLaren and van
Leeuwen [20]. Therefore, all available training speech has
been compiled into a dataset regardless its source (telephone,
microphone or interview).

3.2. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA), was used in [4] to mini-
mize the intra-class variance and maximize the between-class
variance in the total variability space. These techniques at-
tempt to project i-vectors onto a new set of orthogonal axes,
so that those which belong to the same speaker lay into the
same region, and apart from others. This problem is defined
according to the Rayleigh coefficient:

J(v) =
vt · Sb · v
vt · Sw · v

(2)

where v represents a space direction, Sb is the between-class
variance and Sw is the within-class variance. Therefore, J(v)
is proportional to the quality of the LDA performance. To
calculate the variances:

Sb =

S∑
s=1

(ws −w) · (ws −w)t (3)

Sw =

S∑
s=1

1

ns

ns∑
i=1

(ws
i −ws) · (ws

i −ws)
t (4)

where ws is the centroid of the class s, i.e. the mean of the i-
vectors of each speaker, S is the number of speakers involved,
and ns is the number of sessions per speaker s. LDA seeks
a projection matrix which consists in the eigenvectors whose
eigenvalues are the highest from the general equation:

Sb · v = λ · Sw · v (5)

3.3. Mahalanobis distance scoring

The Mahalanobis distance originates from the Euclidean met-
ric concept and has been proved to outperform the classical
cosine distance [21]. As explained by Bousquet et al. [7],
given a new observation w representing an i-vector, the goal
of a statistical classifier is to identify to which class it be-
longs. Assuming equality of class covariances and Gaussian
conditional density models, an i-vector w is assigned to that
particular class which minimizes:

(w −ws)
t ·W−1 · (w −ws) = ‖w −ws‖2W−1 (6)

where W is the within class covariance matrix. ws represents
the same as in (4). Note that this score is proportional to the
log - probability that w belongs to the class s. Therefore, the
Mahalanobis metric between two i-vectors w1 and w2 is:

score(w1,w2) = −‖w1 −w2‖2W−1 (7)



with W being the within-class covariance matrix of any class
of interest. In this work, the Mahalanobis metric is used after
LDA.

3.4. Probabilistic Linear Discriminant Analysis

The aim of the approach is to define a set of factors which di-
rectly model session and speaker variability in that subspace.
The generative model [22] is:

wr = w +U1 · x1 +U2 · x2r + εr (8)

where wr is a feature vector with r = 1, ..., R, being R the
number of recordings of a speaker; U1 is the eigenvoice ma-
trix and U2 is the eigenchannel matrix. x1, x2r and εr are
respectively the speaker, channel and residual factors.

4. SYSTEM CONFIGURATIONS AND
EXPERIMENTS

4.1. Data and evaluation protocol

Unlike previous editions, NIST SRE 2012 [23] core task in-
volved duration mismatch [5]. This increasing interest has
led us to choose data which include a more constrained task
in terms of duration.

Here we have taken data from a previous NIST evaluation
(2008) and the ”short-short” condition for which the speech
durations are typically 180 s. The shortened test segments are
obtained by systematically and successively utilising a lower
and lower percentage of the original test segment. Follow the
procedure proposed in [2, 24], which takes portions of active
speech. This keeps an x% of frames from the original test ex-
cerpts, being 100% the actual NIST 2008 SRE short2 - short3
condition. The mean duration and mode are shown in the Ta-
ble 1 and the distributions of the utterances’ length for each
subset are presented in the Figure 1. The standard deviation
is in all cases approximately just over 30% of the mode value.

Performance was evaluated using the equal error rate
(EER) and the minimum decision cost function (minDCF)
with the values proposed by NIST SRE 2008, i.e. Cmiss =
10, CFA = 1 and Ptarget = 0.01, and for the evaluation con-
dition DET6. Evaluation involved for 12,511 trials employing
1,270 enrolled speakers and 2,528 test segments.

4.2. System configuration

The baseline configuration used for all experiments utilizes
an energy-based voice activity detector (VAD) [2, 24] with
19 dimensional feature-warped linear frequency cepstral co-
efficients (LFCC) and appended delta (19), double delta (11)
and the delta energy coefficients, for an overall sum of 50.
A gender-dependent UBM of 512 Gaussians has been used,
trained on NIST 2004 SRE corpus, specifically 219 male
speakers. The total variability matrix and the PLDA esti-

Table 1: The percentage of speech frames from the original and the
mean duration of the utterances involved.

Percentage of Utterances
remaining frames mode duration

2% 2.14 s
5% 5.12 s

10% 10.3 s
20% 20.8 s
30% 30.6 s
40% 40.7 s
50% 50.8 s
75% 74.5 s
100% 99.9 s
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Fig. 1: Distributions of the given utterance sets after shortening in 8
stages down to approximately 2% of original durations.

mation involved utterances from NIST-SRE 2004, 2005 and
2006 as well as Switchboard II, Phases II and III and Switch-
board Cellular, Parts I and II. In total, 1,289 male speakers and
16,969 sessions have been used. The rank of the total variabil-
ity matrix (i.e. the dimension of the i-vectors) has been set to
400.

In order to show the sensitivity of the configurations to
short duration excerpts, the number of remaining dimensions
after LDA has been varied from 50 to 400 in steps of 50. The
number of eigenvoices for PLDA has been changed in the
same manner while the number of eigenchannels have fixed
to 400 throughout. For both, LDA and PLDA, 3 iterations of
Eigen Factor Radial (EFR) [25] have been applied for i-vector
normalization. Each of these iterations is equivalent to length
normalization [26].

5. PERFORMANCE COMPARISONS

Figure 2 shows results in the form of DET plots for the 3
systems, namely the UBM/GMM and the 2 i-vector systems,
LDA and PLDA. Each plot has 6 profiles reflecting the differ-
ent durations of the test segments, from 2% upto 100%, which
is the original recording in full. The immediate difference in
the three plots is the bunching of the profiles in the case of
the UBM/GMM. This claims that the initial performance on
the full original segments is far superior for both the LDA and
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Fig. 2: DET plots for three systems: (a) a standard UBM/GMM
providing a benchmark (b) an i-vector system and LDA, and (c) an
i-vector system and PLDA. In all 3 cases the profiles relate to data
reduction in the test segment only, from 100% (original duration)
down to 2% of the original. Note the profiles for the 2% condition
are similar in all 3 cases, with an EER just below 20%
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Fig. 3: EER vs % of active speech retained for each test segment in
the original set.

PLDA i-vector systems.
A second observation is that the upper profile in each case

(the one representing just 2% of the original test data) is sim-
ilar in all 3 cases at just below 20%. So the performance of
these three systems in terms of EER, certainly tends to con-
verge when just 2 to 3 seconds are available at the test stage.
In contrast, for the full duration (1 to 2 minutes of speech), the
performances of the i-vector systems are far better than that
of the UBM/GMM, with EER’s of approximately 5% for the
latter 2 compared with 10% for the UBM/GMM. These du-
ration performances are shown more clearly in Figure 3, with
the convergence of the i-vector schemes with the UBM/GMM
at 2.5 seconds well illustrated. Following we consider varia-
tions in the i-vector parameters, with particular attention to
the shortest duration performance, specifically to see if there
are any simple gains to be made in this area.

Figure 4 shows a series of profiles for the i-vector LDA
and PLDA configurations where each one reflect variations in
i-vector subspace dimension, from 50 up to 400. For PLDA,
dimension of the speaker factor (represented by x1 in equa-
tion 8) is taken as a parameter. In the case of LDA, the vari-
able to be changed is the number of eigenvectors which form
the projection matrix, eq. 5. The profiles show minimal varia-
tions, certainly for the higher dimensions, 150 up to 400. This
changes at 5% profile and is quite marked at the shortest du-
ration of 2%. Here, in the case of LDA the error rates fall
slightly and in the case of PLDA increase. This is perhaps an
interesting trend, worthy of further investigation.

Finally, Figure 5 compares both i-vector systems, when
only 2% of test data remains. The parameter involved from
each scheme is the same as the one varied in the previous fig-
ure, respectively. We can observe a knee point in the middle
of both graphs, which marks a sustainable change. Consider-
ing the profiles, it can be stated that LDA shows a more con-
sistent performance than PLDA, which deteriorates abruptly
when only a few dimensions are present.
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Fig. 5: Comparison of LDA and PLDA systems at 2% of active
speech. Performances vary according to the values of the space di-
mension after LDA and the number of eigenvoices in PLDA

6. CONCLUSIONS

The work described here focuses on short duration segments
in the test stage of speaker recognition; it assumes well trained
models are available from adequate quantities of enrolment
speech.

In this paper we have compared the behaviour or two
state-of-the-art i-vector systems and a classical GMM/UBM
engine when varying the speech duration. Experimental re-
sults confirm the fact that i-vector based systems are indeed
markedly better than the UBM/GMM, when sufficient test
data are available. Here for instance, the first scores 5% EER
against the UBM/GMM of 10% EER with full length utter-

ances. However, such a huge improvement decreases con-
sistently when short duration utterances are involved. In this
regard, it is observed a knee point in the region of 10 sec. to
20 sec. and when data is reduced further to the region of 2 sec.
to 3 sec., the performance of the two type of systems (i-vector
system and UBM/GMM) converge to give very similar scores
just below 20% EER. Furthermore, if we consider the most
restrictive test condition represented by the blue solid line on
2a, it is remarkable that UBM/GMM gives a performance not
very far from the i-vectors one. This observation has led to
consider that i-vector does not bring the same improvement
for all durations and hereby, it is more sensitive to the lack of
data than the UBM/GMM. In the same way, LDA has proved
to be more consistent than PLDA when very short utterances
are evaluated and dimension reduction is carried out in both
approaches.
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