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Abstract

Flow thinning (FT) is an active traffic protection mechanism destined for communication
networks with variable capacity of links, for example wireless networks. In FT, end-to-end
traffic demands are equipped with dedicated logical tunnels (for example MPLS tunnels)
whose maximal capacities are subject to thinning in order to follow the fluctuations of the
currently available link capacities. It follows that for each demand the instantaneous traffic
realized between its end nodes must accommodate to the current total capacity available on
its dedicated tunnels. In the paper we develop an optimization model for network dimen-
sioning for an important modification of FT with a feasible implementation, the so called
Quadratic Flow Thinning (QFT), and present a solution algorithm based on the path gener-
ation method. We derive relevant pricing problems for basic variants of the QFT mechanism,
and present a numerical study that illustrates efficiency of the optimization algorithm, as
well as compares the network cost for different variants of QFT.

Keywords: Resilient networks, free space optics, variable link capacity, linear and
mixed-integer programming, multicommodity flows, quadratic and affine routing, path
generation.

1. Introduction

Flow thinning (FT) is an active traffic protection mechanism for communication networks
whose links experience fluctuations in available capacity. Since in general the links composing
such networks do not achieve their nominal (maximum) capacity simultaneously, in a typical
network state only some links are fully available while on each of the remaining links only
a fraction of its maximum capacity is usable. The considered fluctuations are common in
wireless networks, in particular in Wireless Mesh Networks (WMN). Thus, an interesting
application of FT are WMNs carrying IP packet traffic over the MPLS tunnels realized
along the free space optical (FSO) links [1]. The FSO links are set up by means of laser
beams between transponders in the line of sight, commonly placed on top of high buildings
in a city [2].
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The concept of FT was introduced in [3]. FT copes with the phenomenon of variable link
capacity by using logical tunnels for the end-to-end traffic demands. Each end-to-end traffic
demand is assigned a set of such logical tunnels whose total capacity is dedicated to carry
the demand’s traffic. The nominal (i.e., maximum) capacity of the tunnels, supported by
the nominal (maximum) link capacity, is subject to state-dependent thinning to account for
variable capacity of the links, fluctuating below the maximum. The current capacity of the
tunnels is controlled at their source nodes on the basis of the knowledge of the current link
availability state. In consequence, the capacity available on the tunnels is also fluctuating
below their nominal levels, and hence the instantaneous traffic sent between the demand’s
end nodes must accommodate to the current total capacity available on its dedicated tunnels.

In the paper we deal with a (potentially) practical version of FT where the capacity of each
tunnel is thinned according to a tunnel-dependent quadratic function whose arguments are
link availability coefficients (for a given link such a coefficient is the fraction of the maximal
link capacity available in a given link availability state), and not in a arbitrary way as in the
original FT mechanism. We consider a general form of the quadratic flow thinning formula
(and call the resulting mechanism Quadratic Flow Thinning – QFT), and develop a network
dimensioning optimization model for QFT (and, for that matter, its variants, including the
so called Affine Flow Thinning (AFT) considered in [3, 4, 5]) – a fairly complicated issue
not yet studied. As the optimization process is based on the path generation approach
we derive a relevant pricing problem and present a numerical study illustrating efficiency
of the resulting optimization algorithm as such, and effectiveness, in terms of the network
cost, of QFT as compared with effectiveness of FT and a well known benchmark protection
mechanism called Global Rerouting (called also Unrestricted Reconfiguration, see [6, 7]).
All the derivations and results of the paper related to QFT are original and have not been
published before.

We mention here that FT is a generalization of the Demand-Wise Shared Protection
(DWSP) strategy [8, 9] devised for multiple total link failures (multiple total link failures
are sometimes called shared risk link groups – SRLG). In fact, FT mechanism is a non-trivial
extension of DWSP since thinning becomes trivial in the SRLG case: the affected tunnels
are entirely lost and non-affected tunnels are preserved. Since the network dimensioning
problem for DWSP is NP-hard (as shown in [10]), the problem is NP-hard also for FT, and
hence, most likely, for QFT.

The paper is organized as follows. We start with introducing basic notation in Section 2,
followed by Section 3 where a non-compact linear programming formulation of the network
dimensioning problem with FT and of its dual are presented, together with a solution algo-
rithm based on path-generation. In Section 4, we reformulate the dimensioning problem for
quadratic flow thinning (the variant of FT crucial to this paper) and discuss important vari-
ants of quadratic flow thinning dealt with in the paper, including affine flow thinning. Then,
in Section 5, which is crucial to the paper’s considerations, we derive the pricing problems
(used for path generation) for quadratic flow thinning and its variants (some derivations
related to Section 5 are moved to Appendix A). Next, in Section 6, we present and discuss
the results of an extensive numerical study illustrating the efficiency of the optimization
algorithms and effectiveness of various variants of flow thinning. Finally, we give concluding
remarks and comment on future work in Section 7.
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2. Notation

Although the considerations of the paper are valid for both directed and undirected
network graphs, for the space saving reason the presented optimization model will assume
the undirected case. Thus, the network graph G = (V , E) is composed of the set of nodes
V and the set of links E , where each (undirect) link represents an undirected pair {v, w} of
nodes for some v, w ∈ V , v �= w.

The maximal (referred to as nominal in the following) capacity of link e ∈ E is denoted
by y0e and its unit capacity cost by ξ(e). It follows that the network cost (to be minimized)
is expressed as F =

�
e∈E ξ(e)y

0
e . Yet, as in our network model the capacity of links can

vary, typically not all links reach their nominal capacity simultaneously. Thus, at any time
instant, nominal link capacities y0e , e ∈ E , are achieved only for a subset of links, while for
the remaining links their capacity is reduced with respect to the nominal value. To handle
this, we consider a set of link availability states S. Each state s ∈ S is described by link
availability coefficients α(e, s) (0 ≤ α(e, s) ≤ 1), e ∈ E . By definition, the capacity of link
e available in state s is equal to α(e, s)y0e . In the following we will also use the notion of
link failure coefficients defined as β(e, s) := 1 − α(e, s). The subset of states s in S for
which a particular link e ∈ E is not fully available (α(e, s) < 1) will be denoted by S(e);
symmetrically, the subset of links in E that are not fully available in state s ∈ S will be
denoted by E(s). The nominal link capacities, described by the vector y0 := (y0e , e ∈ E), are
optimization variables.

Traffic demands are represented by the set D. Each demand d ∈ D is characterized by an
undirected pair of the demand’s end nodes {o(d), t(d)}, and given traffic volumes h(d, s) to
be realized in each of the considered link availability states s ∈ S. Traffic volumes and link
capacities are expressed in the same units (e.g., Mbps). Each demand d is equipped with
a set of allowable paths P(d) (called the path-set) composed of selected elementary paths
between o(d) and t(d). Only the paths in P(d) can be used to realize the demand (traffic)
volumes and each such path p ∈ P(d) carries the nominal flow x0

dp. More precisely, each
x0
dp specifies the nominal capacity (expressed in the same units as link capacity and demand

volume) reserved on the tunnel realized along path p ∈ P(d). The set of all allowable paths is
denoted by P :=

�
d∈D P(d). The maximum path-sets, i.e., path-sets P(d) containing all the

elementary paths between o(d) and t(d), are denoted by �P(d), d ∈ D, and �P :=
�

d∈D
�P(d).

Clearly, the number of paths in �P grows exponentially with the size of the network graph.
Since we consider elementary paths, we can identify each of them with the set E(d, p) of

the links it traverses (E(d, p) ⊆ E). Similarly, V(d, p) will denote the set of nodes traversed
by the path. For a given path-set P(d), its subset containing a given link e will be denoted
with R(d, e), i.e., R(d, e) := {p ∈ P(d) : e ∈ E(d, p)}, d ∈ D, e ∈ E . The sets of allowable
paths P(d) are parameters in the problem formulations considered in the following.

In general, not all nominal path-flows x0
dp, d ∈ D, p ∈ P(d), can be realized when the

network is in a state s ∈ S, since for some links the available capacity α(e, s)y0e can be
decreased with respect to their nominal link capacity y0e . To account for that, the nominal
flows are thinned (decreased) to accommodate to the reduced link capacity. Still, the thinned
flows must be sufficient to carry the demands h(d, s), d ∈ D. The thinned nominal path-
flows for state s ∈ S are denoted by xs

dp. These flows are reserved on the allowable paths
for the duration of the state. As only thinning of nominal flows is allowed, the following
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inequalities must hold:
xs
dp ≤ x0

dp, d ∈ D, p ∈ P(d), s ∈ S.
In the following the path-flow vectors x0 := (x0

dp, d ∈ D, p ∈ P(d)) and xs := (xs
dp, d ∈

D, p ∈ P(d)), s ∈ S, will be treated, together with the capacity vector y0, as optimization
variables. For specifying the optimization variables we will use the following abbreviations:
R – the set of all real numbers (for continuous variables unconstrained in sign), R+ – the set
of non-negative real numbers (for non-negative continuous variables), B – the two-element
set {0, 1} (for binary variables).

3. FTOP – flow thinning optimization problem

3.1. Formulation of FTOP and its dual

For a given set of allowable paths P =
�

d∈D P(d), problem FTOP is denoted by P(P).
It is represented by the non-compact link-path linear programming (LP) formulation (1) in-
volving variables y0, x0, and xs (s ∈ S). In the following formulation the quantities indicated
in the square brackets are dual variables that will be used in (2).

Problem P(P):

F (P) = min
�

e∈E ξ(e)y
0
e (1a)

[π0
e ≥ 0]

�
d∈D

�
p∈R(d,e) x

0
dp ≤ y0e , e ∈ E (1b)

[λs
d ≥ 0]

�
p∈P(d) x

s
dp ≥ h(d, s), d ∈ D, s ∈ S (1c)

[πs
e ≥ 0]

�
d∈D

�
p∈R(d,e) x

s
dp ≤ α(e, s)y0e , e ∈ E , s ∈ S(e) (1d)

[σs
dp ≥ 0] xs

dp ≤ x0
dp, d ∈ D, p ∈ P(d), s ∈ S (1e)

y0e ∈ R+, e ∈ E ; x0
dp ∈ R+, d ∈ D, p ∈ P(d); xs

dp ∈ R+, d ∈ D, p ∈ P(d), s ∈ S.

Objective (1a) minimizes the cost of links. The first capacity constraint (1b) makes sure
that the nominal link loads do not exceed the nominal link capacities. Next, the demand
constraint (1c) assures that in each state s ∈ S, the thinned nominal flows are sufficient to
realize the volume of each demand d ∈ D assumed for this state. Then, the second capacity
constraint (1d) ensures that the capacity of each link e ∈ E available in each state s ∈ S(e)
is not exceeded (recall that S(e) denotes the set of states in which α(e, s) < 1). Finally,
inequalities (1e) ensure that in case of link failures the nominal flows are actually thinned.

Note that constraint (1d) is, for each link e ∈ E , written down only for s ∈ S(e), and
not for all s ∈ S. This is because for any state s ∈ S \ S(e) (in which the capacity of the
considered link e is fully available, α(e, s) = 1) constraint (1d) is implied by (1b) and (1e).

The following formulation, crucial for its solution algorithm based on path generation,
describes the dual to FTOP (1):

Problem D(P):

W (P) = max
�

d∈D
�

s∈S h(d, s)λ
s
d (2a)

[y0e ≥ 0] π0
e +

�
s∈S(e) α(e, s)π

s
e ≤ ξ(e), e ∈ E (2b)
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[x0
dp ≥ 0]

�
s∈S σ

s
dp ≤

�
e∈E(d,p) π

0
e , d ∈ D, p ∈ P(d) (2c)

[xs
dp ≥ 0] λs

d ≤ σs
dp +

�
e∈E(d,p)∩E(s) π

s
e, d ∈ D, p ∈ P(d), s ∈ S (2d)

π0
e ∈ R+, e ∈ E ; πs

e ∈ R+, e ∈ E , s ∈ S(e); λs
d ∈ R+, d ∈ D, s ∈ S;

σs
dp ∈ R+, d ∈ D, p ∈ P(d), s ∈ S.

Above, for each dual constraint its corresponding primal variable is given in the square
brackets.

3.2. Solving FTOP through path generation

Although in the following we will assume that the number of states in S is polynomial
with the number of links in E , the link-path LP formulation (1) of FTOP remains noncompact

because of exponentially many routing paths in the maximum path-set �P . In fact, we cannot
hope for finding a compact LP formulation since, as shown in [3], FTOP is NP-hard. Since
in practice formulation (1) cannot be solved directly (as we are not able to include all

elementary paths in the path-sets), in order to consider all paths in �P we need to apply
path generation (PG, see [11, 6, 7]) – a classical technique in multicommodity flow networks
related to column generation in linear programming (cf. [12]). With PG, starting from some
initial path-sets P(d), d ∈ D, we iteratively generate new paths, one per demand, and add
to the path-sets those paths that may improve the solution. Generating new paths is done
by solving an appropriate pricing problem (PP) using, as parameters, an optimal solution
(λ∗, π∗) of the current dual D(P). Adding new paths to the path-sets to the problem P(P)
consists in adding the corresponding variables and constraints to the problem formulation,
i.e., we generate new columns and rows in (1).

PP for FTOP is obtained as follows (for a detailed derivation see Section 4 of [3]).

Consider a given demand d ∈ D and a given path q ∈ �P(d) \ P(d). Introducing such a new
path q to the dual (2) introduces both new (we call them local in the following) dual variables
σs, s ∈ S, and new constraints (2c)–(2d). It can happen that some of the new constraints
will be violated by the optimal dual solution (λ∗, π∗) of D(P) for any non-negative values
of the local variables σs, s ∈ S. In such a case, those constraints in the set of constraints
(2c)–(2d) that are violated for a given vector σs, s ∈ S, will separate (λ∗, π∗) from the dual
polyhedron of D(P ∪ {q}). The minimum of the sum of such violations is expressed through
the quantity

P (q) = min
σs∈R+, s∈S

�
max

��
s∈S σ

s − |q|0, 0
�
+
�

s∈S max
�
λs
d
∗ − σs − |q|s, 0

��
(3)

where |q|0 :=
�

e∈E(d,q) π
0
e
∗
(nominal dual length of q), and |q|s :=

�
e∈E(d,q)∩E(s) π

s
e
∗, s ∈ S

(state-dependent dual length of q).
Thus, the pricing problem PP (defined for each demand d ∈ D) consists in maximizing

P (q) over q ∈ �P(d). If the resulting maximum is attained by a path q(d) ∈ �P(d) and the
maximum is greater than 0 (note that this implies q(d) /∈ P(d)), then path q(d) is added
to the problem: P(d) := P(d) ∪ {q(d)}. For undirected networks the so posed PP can be
stated by means of the following mixed-integer (MIP) formulation (where δ(v) denotes the
set of links incident to v ∈ V and the superscript ∗ in π∗,λ∗ is skipped).

P (u) =min
� �

e∈E π
0
eue +

�
s∈S

��
e∈E(s) π

s
eue − λs

d

�
Y s

�
(4a)
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�
e∈δ(v) ue = 1, v ∈ {o(d), t(d)}; �

e∈δ(v) ue = 2wv, v ∈ V \ {o(d), t(d)} (4b)

ue ∈ B, e ∈ E ; wv ∈ B, v ∈ V \ {o(d), t(d)}; Y s ∈ B, s ∈ S.

Equations (4b) define, through variables ue (and wv) equal to 1, a routing path q linking o(d)
and t(d). Note that in any optimal solution, Y s = 0 when the length, with respect to πs, of
the constructed path q (i.e., |qs|) is greater than λs

d, and Y s = 1 when |qs| < λs
d. This is easily

seen from the form of the objective function (4a), which in order to be minimized should
have all the terms

�
e∈E π

s
eue−λs

d cancelled (through Y s = 0) when positive, and maintained
(through Y s = 1) when negative. It turns out that an optimal solution u∗,W ∗, Y ∗, L of (4)
defines a path q(d) := {e ∈ E : u∗

e = 1} maximizing the value P (q) defined by (3). Hence,
q(d), d ∈ D, should be added to FTOP when L∗ > 0.

To get rid of bi-linearities ueY
s in the objective function (4a) we can introduce binary

variables Zs
e , s ∈ S, e ∈ E(s), rewrite the objective as

�
e∈E π

0
eue +

�
s∈S

�
e∈E(s) π

s
eZ

s
e −

�
s∈S λ

s
dY

s, (5)

and add the constraints

Zs
e ≤ ue, Z

s
e ≤ Y s, Zs

e ≥ 0, Zs
e ≥ ue + Y s − 1, s ∈ S, e ∈ E(s). (6)

For binary ue and Y s these constraints force the equalities Zs
e = ueY

s, s ∈ S, e ∈ E(s)
(hence, variables Z can formally be assumed continuous).

The PP counterpart for directed networks (with constraints (4b) replaced by the standard
load-conservation equations) is formulated in [3].

4. Flow thinning formulae

A solution of FTOP minimizes the cost of network links using optimized state-dependent
path-flow patterns xs that can be thinned with respect to the nominal path-flow pattern x0

in an arbitrary way (i.e., obeying only the inequality in (1e)). In this section we will assume
that the nominal path-flows are thinned according to a fixed flow thinning formula of a given
form depending on the link failure coefficients.

4.1. General quadratic formula (Q/G)

The most general form of the flow thinning formula considered in this paper is expressed
as a quadratic form of the link failure coefficients. It defines the flow on path p ∈ �P(d) of
demand d ∈ D in state s ∈ S as follows:

xs
dp = z0dp −

�
e∈�E(d,p) β(e, s)z

e
dp +

�
{e,e�}∈�E |2|(d,p) β(e, s)β(e

�, s)zee
�

dp . (7)

Above, the set �E(d, p) ⊆ E is a (predefined) subset of links whose failure coefficients influence

the thinning formula for a given path p ∈ P(d), d ∈ D. (In (7), �E |2|(d, p) denotes the set of

all 2-element subsets of �E(d, p).) For such a path, the quantities

zdp := (z0dp; z
e
dp, e ∈ �E(d, p); zee�dp , {e, e�} ∈ �E |2|(d, p))
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will be used as optimization variables which are continuous and unrestricted in sign. When
optimized (and fixed) they will define flow thinning formulae: for each path p ∈ P(d), d ∈ D,

such a formula is a quadratic form in β(e, s), e ∈ �E(d, p), determining the path’s flow for each
state s ∈ S. Note that since zdp are unconstrained in sign, we could as well add the first sum
on the right-hand side of (7) instead of subtracting it. We used the subtraction just to make
the formula analogous to the simple flow thinning formula (S) introduced in Section 4.2.2.

Inserting the thinning formula (7) into FTOP results in the following LP formulation:

Problem P(P):

F (P) = min
�

e∈E ξ(e)y
0
e (8a)

[π0
e ≥ 0]

�
d∈D

�
p∈R(d,e) x

0
dp ≤ y0e , e ∈ E (8b)

[λs
d ≥ 0]

�
p∈P(d) x

s
dp ≥ h(d, s), d ∈ D, s ∈ S (8c)

[πs
e ≥ 0]

�
d∈D

�
p∈R(d,e) x

s
dp ≤ α(e, s)y0e , e ∈ E , s ∈ S(e) (8d)

[ϕs
dp] xs

dp = z0dp −
�

e∈�E(d,p) β(e, s)z
e
dp +

�
{e,e�}∈�E |2|(d,p) β(e, s)β(e

�, s)zee
�

dp ,

d ∈ D, p ∈ P(d), s ∈ S (8e)

[σs
dp ≥ 0] xs

dp ≤ x0
dp, d ∈ D, p ∈ P(d), s ∈ S (8f)

y0e ∈ R+, e ∈ E ; x0
dp ∈ R+, d ∈ D, p ∈ P(d); xs

dp ∈ R+, d ∈ D, p ∈ P(d), s ∈ S;
z0dp, z

e
dp, z

ee�
dp ∈ R, d ∈ D, p ∈ P(d), e ∈ �E(d, p), {e, e�} ∈ �E |2|(d, p).

As in FTOP, the quantities indicated in the square brackets are dual variables.

4.2. Variants of the flow thinning formula

Various specific cases of the thinning formula (7) considered in the following will differ in
the three aspects listed below. All twelve combinations implied by these aspects lead to valid
flow thinning formulae and will be considered in the numerical study described in Section 6.

4.2.1. Form

Two basic forms of the thinning formula are considered:

◦ (Q) quadratic (7): xs
dp = z0dp −

�
e∈�E(d,p) β(e, s)z

e
dp +

�
{e,e�}∈�E |2|(d,p) β(e, s)β(e

�, s)zee
�

dp .

◦ (A) affine (no quadratic terms): xs
dp = z0dp −

�
e∈�E(d,p) β(e, s)z

e
dp.

4.2.2. Structure

The structure of the thinning formula is twofold:

◦ (G) general: no constraints on z0dp and zdp (as in (7)).

◦ (S) simple: z0dp = x0
dp and nonnegative zdp and, i.e.,

xs
dp = x0

dp −
�

e∈�E(d,p) β(e, s)z
e
dp +

�
{e,e�}∈�E |2|(d,p) β(e, s)β(e

�, s)zee
�

dp , zdp ≥ 0.

(9)
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v w t
β = 1

4 β = 1
2

Figure 1: A two-link network.

Above zdp denotes (for p ∈ P(d), d ∈ D) the vector of all zedp (in affine formulae) or the

vector of all zedp and zee
�

dp (in quadratic formulae).
With nonnegative coefficients zdp in the simple formula (S), the signs of the summations

on the right-hand side of (9) are important. To illustrate this point let us consider a very
simple network with two links (e = 1 between nodes v and w, and e = 2 between nodes w
and t) in series depicted in Figure 1, and one demand between nodes v and t. Both links
have capacity 1. We consider four states in S described in the first three columns in Table 1,
where the link failure coefficients for a particular state s ∈ S are specified in column 2 (for
link e = 1) and in column 3 (for link e = 2). Clearly, the maximum nominal flow for the
demand is x0 = 1 (the subscripts in x0 are skipped as there is only one demand d = 1 with
only one path p = 1 composed of links e = 1 and e = 2). With the simple affine formula

(with �E(d, p) = E) the maximum feasible flows in the remaining states (given in column 4)
are achieved with z1 = z2 = 1 (i.e., xs = 1 − β(1, s) − β(2, s)). For the simple quadratic
formula the maximum flows (given in column 5) are achieved with z1 = z2 = z12 = 1 (i.e.,
xs = 1− β(1, s)− β(2, s) + β(1, s) · β(2, s)). Note that the maximum flow in state s = 3 is
greater for the quadratic formula (x3 = 3

8
) than for the affine formula (x3 = 1

4
). Note also

that for FT (column 6) the maximum flow in state s = 3 is equal to 1
2
(of course, this value

cannot be further increased due to capacity constraints). The presented example clearly
shows why the sign before the first sum in (9) must be subtracted from x0 (to have feasible
flows), and the second sum added (to maximize the achievable flows).

s β(1, s) β(2, s) AFT: xs QFT: xs FT: xs

0 0 0 1 1 1

1 1
4

0 3
4

3
4

3
4

2 0 1
2

1
2

1
2

1
2

3 1
4

1
2

1
4

3
8

1
2

Table 1: Affine and quadratic flows with simple formula.

4.2.3. Range

The range of the thinning formula is the set �E(d, p) ⊆ E . As discussed in [3], typical examples

of the sets �E(d, p) are:

◦ (E(d, p)) path’s links: �E(d, p) = E(d, p) – the formula depends only on the failure
coefficients of the links along the path.

◦ (E+(d, p)) link’s incident to path’s nodes: �E(d, p) = �
v∈V(d,p) δ(v) (where δ(v) is the set

of links incident with v) – the formula depends on the failure coefficients of the links
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incident to the nodes along the path; in the following the set of links
�

v∈V(d,p) δ(v) will

be denoted with E+(d, p).

◦ (E) all links: �E(d, p) = E – the formula depends on the failure coefficients of all links.

5. Pricing problems

The counterparts of FTOP corresponding to the thinning formulae described in Sec-
tion 4.2 are solved through path-generation (see Section 3.2). For that, appropriate pricing
problems are required. Below we will derive the pricing problems (PP) for the simple affine
formula case (A/S) and for the general affine formula case (A/G). Both of them turn out to
be more complicated than their FT counterpart derived in Section 3.2. We will also discuss
the pricing problems for the quadratic forms.

5.1. PP for simple affine formula

We start with deriving the pricing problem for the simple affine formula A/S.

5.1.1. A/S – PP derivation for arbitrary range �E(d, p)
The optimization problem for the simple affine formula (a counterpart of (8)), i.e.,

Problem P(P):

F (P) = min
�

e∈E ξ(e)y
0
e (10a)

[π0
e ≥ 0]

�
d∈D

�
p∈R(d,e) x

0
dp ≤ y0e , e ∈ E (10b)

[λs
d ≥ 0]

�
p∈P(d) x

s
dp ≥ h(d, s), d ∈ D, s ∈ S (10c)

[πs
e ≥ 0]

�
d∈D

�
p∈R(d,e) x

s
dp ≤ α(e, s)y0e , e ∈ E , s ∈ S(e) (10d)

[ϕs
dp] xs

dp = x0
dp −

�
e∈�E(d,p) β(e, s)z

e
dp, d ∈ D, p ∈ P(d), s ∈ S (10e)

y0e ∈ R+, e ∈ E ; x0
dp ∈ R+, d ∈ D, p ∈ P(d); xs

dp ∈ R+, d ∈ D, p ∈ P(d), s ∈ S;
zedp ∈ R+, d ∈ D, p ∈ P(d), e ∈ �E(d, p)

has the following dual:

Problem D(P):

W (P) = max
�

d∈D
�

s∈S h(d, s)λ
s
d (11a)

[y0e ≥ 0] π0
e +

�
s∈S(e) α(e, s)π

s
e ≤ ξ(e), e ∈ E (11b)

[x0
dp ≥ 0]

�
s∈S ϕ

s
dp ≤

�
e∈E(d,p) π

0
e , d ∈ D, p ∈ P(d) (11c)

[xs
dp ≥ 0] λs

d ≤ ϕs
dp +

�
e∈E(d,p)∩E(s) π

s
e, s ∈ S, d ∈ D, p ∈ P(d) (11d)

[zedp ≥ 0]
�

s∈S β(e, s)ϕ
s
dp ≥ 0, d ∈ D, p ∈ P(d), e ∈ �E(d, p) (11e)

π0
e ∈ R+, e ∈ E ; πs

e ∈ R+, e ∈ E , s ∈ S(e); λs
d ∈ R+, d ∈ D, s ∈ S;

ϕs
dp ∈ R, d ∈ D, p ∈ P(d), s ∈ S.
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As in the derivation of PP for FT in Section 3.2, consider a given demand d ∈ D and a
given path q ∈ �P(d) \P(d). Adding such a new path q to the dual (11) introduces new local
variables ϕs, s ∈ S, and new constraints (11c)–(11e). If the new constraints (11c)–(11e) are
violated by the optimal solution (λ∗, π∗) of the dual (11) for any values of the local variables,
then the violated constraints will separate (λ∗, π∗) from the dual polyhedron. The minimum
of the sum of such violations (taken over all feasible local dual variables) is expressed through
the quantity

P (q) = min
ϕs∈R, s∈S

�
max

��
s∈S ϕ

s − |q|0, 0
�
+
�

s∈S max
�
λs
d
∗ − |q|s − ϕs, 0

�
+

+
�

e∈�E(d,q)max
�
−�

s∈S β(e, s)ϕ
s, 0

��
.

(recall that |q|0 := �
e∈E(d,q) π

0
e
∗
and |q|s := �

e∈E(d,q)∩E(s) π
s
e
∗, s ∈ S) which can be calculated

as the solution of the following LP.

P (q) =min
�
Z +

�
s∈S Ys +

�
e∈�E(d,q)Xe

�
(13a)

[g ≥ 0] Z ≥ �
s∈S ϕ

s − |q|0 (13b)

[as ≥ 0] Ys ≥ λs
d
∗ − |q|s − ϕs, s ∈ S (13c)

[be ≥ 0] Xe ≥ −�
s∈S β(e, s)ϕ

s, e ∈ �E(d, q) (13d)

Z ∈ R+; Ys ∈ R+, s ∈ S; Xe ∈ R+, e ∈ �E(d, q); ϕs ∈ R, s ∈ S. (13e)

In order to solve PP, we first notice that we can as well maximize the value of P (q) over all

paths q ∈ �P(d) since for all p ∈ P(d) the value P (p) is equal to zero, and a new path q will
be added to the current list P(d) only when P (q) is greater than zero. Hence, PP turns out
to be the max-min problem of the form

maxq∈ �P(d) minX,Y,Z,ϕ

�
Z +

�
s∈S Ys +

�
e∈�E(d,q)Xe

�
(14a)

subject to constraints (13b)-(13e) (14b)

(where Y andX are appropriate vectors of variables). As such, problem (14) cannot be solved
directly. A way to resolve this issue is to consider the problem dual to (13), formulated using
the dual variables specified in the square brackets in constraints (13b)-(13d):

P (q) =max
�
− g|q|0 +�

s∈S(g −
�

e∈�E(d,q) β(e, s)be)(λ
s
d
∗ − |q|s))

�
(15a)

g ≤ 1; be ≤ 1, e ∈ �E(d, q); �e∈�E(d,q) β(e, s)be ≤ g, s ∈ S (15b)

g ∈ R+; be ∈ R+, e ∈ �E(d, q). (15c)

Note that in (15), dual variables as, s ∈ S, have been eliminated. This is possible because
variables xs

dp, for all d, p, s, are auxiliary, and can be expressed through x0
dp and zedp, e ∈

�E(d, p), on the condition x0
dp ≥

�
e∈�E(d,p) β(e, s)z

e
dp.

Now we introduce binary quantities ue, e ∈ E , that represent the path q: E(d, q) = {e ∈
E : ue = 1}. Also, from now on we will skip superscript ∗ in π∗ and λ∗ in the derivations,

10



i.e., we will denote the optimal dual solution simply by π,λ. Hence, |q|0 =
�

e∈E π
0
eue and

|q|s = �
e∈E(s) π

s
eue, s ∈ S, and, in consequence, we can rewrite (15):

P (u) = max
�
− g(

�
e∈E π

0
eue) +

�
s∈S

�
g −�

e�∈�E(d,q) β(e
�, s)be�)(λs

d −
�

e∈E(s) π
s
eue)

�

(16a)

g ≤ 1; be� ≤ 1, e� ∈ �E(d, q); �e�∈�E(d,q) β(e
�, s)be� ≤ g, s ∈ S (16b)

g ∈ R+; be� ∈ R+, e
� ∈ �E(d, q). (16c)

Finally, by transforming objective (16a), treating ue, e ∈ E , as variables, and adding appro-
priate path-defining constraints (for undirected links) we arrive at the following formulation
of the pricing problem for problem (10).

P = max
�
−�

e∈E π
0
egue + (

�
s∈S λ

s
d)g −

�
s∈S

�
e∈E(s) π

s
egue+

+
�

s∈S
�

e�∈�E(d,q)
�

e∈E(s) β(e
�, s)πs

ebe�ue −
�

s∈S
�

e�∈�E(d,q) λ
s
dβ(e

�, s)be�
�

(17a)
�

e∈δ(v) ue = 1, v ∈ {s(d), t(d)}; �
e∈δ(v) ue = 2zv, v ∈ V \ {s(d), t(d)} (17b)

g ≤ 1; be� ≤ 1, e� ∈ �E(d, q); �
e�∈�E(d,q) β(e

�, s)be� ≤ g, s ∈ S (17c)

g ∈ R+; be� ∈ R+, e
� ∈ �E(d, q); ue ∈ B, e ∈ E ; zv ∈ B, v ∈ V , (17d)

where δ(v) denotes the set of all links incident to node v ∈ V . In the formulation, (17b)
are path-defining constraints so that an optimal solution u∗ of (17) defines the path q with
E(d, q) := {e ∈ E : u∗

e = 1} (and, for that matter, with V(d, q) := {v ∈ V : z∗v = 1}) that
should be added to (10), provided P (q) > 0. Note that any feasible set U := {e ∈ E : ue = 1}
will necessarily contain an elementary path between s(d) and t(d) and, possibly, a set of
disjoint isolated loops. The path is elementary because variables zv, v ∈ V , are binary (note
that assuming these variables to be integer-valued would allow the path to contain loops as
well). In fact, such loops may appear in optimal PP solutions because of a tradeoff related
to the number of elements in the set U : the more elements the more flexible formulae (10e),
and the less elements the lower link capacities.

Certainly, formulation (17) can be easily modified for directed networks (with links in E
directed) using the node-arc formulation with load conservation equations instead of (17b):

�
e∈δ−(t(d)) ue −

�
v∈V\{s(d),t(d)} ue = 1 (18a)

�
e∈δ+(v) ue −

�
a∈δ−(v) ue = 0, e ∈ E . (18b)

In fact, formulation (17) is incomplete as it makes use of the set �E(d, q) (specifying
the range of the thinning formula) which in general is path-dependent and not known in
advance. It also contains multiplication of variables. Thus, in order to obtain a proper MIP
formulation, an appropriate representation of �E(d, q) is required (by means of optimization
variables), along with linearization of variables’ multiplication. The particular forms of such
a MIP depend on the assumed thinning formula range, as shown below.

5.1.2. Case �E(d, p) = E(d, p)
For the range �E(d, p) = E(d, p) the proper PP formulation is as follows:
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P = max
�
−�

e∈E π
0
eGe + (

�
s∈S λ

s
d)g −

�
s∈S

�
e∈E(s) π

s
eGe+

+
�

s∈S
�

e∈E(s)
�

e�∈E π
s
eβ(e

�, s)Te�e −
�

s∈S
�

e�∈E λ
s
dβ(e

�, s)Be�
�

(19a)
�

e∈δ(v) ue = 1, v ∈ {s(d), t(d)}; �
e∈δ(v) ue = 2zv, v ∈ V \ {s(d), t(d)} (19b)

Be ≤ ue, Be ≤ be, Be ≥ be + ue − 1, e ∈ E (19c)

g ≤ 1; be ≤ 1, e ∈ E ; �
e∈E β(e, s)Be ≤ g, s ∈ S (19d)

Ge ≤ g,Ge ≤ ue, Ge ≥ g + ue − 1, e ∈ E (19e)

Te�e ≤ ue� , Te�e ≤ ue, Te�e ≤ be� , Te�e ≥ be� + ue� + ue − 2, e�, e ∈ E (19f)

g ∈ R+; be, Be, Ge ∈ R+, e ∈ E ; Tee� ∈ R+, e, e
� ∈ E (19g)

ue ∈ {0, 1}, e ∈ E ; zv ∈ {0, 1}, v ∈ V \ {s(d), t(d)}. (19h)

The extra variables in the above formulation are used to eliminate multiplication of variables
and have the following meaning: Be = be · ue, Ge = g · be, Te�e = be� · ue� · ue.

In order to eliminate the (isolated) loops in {e ∈ E : ue = 1} we introduce the bi-directed
version G � = (V ,A) of the original undirected network graph G = (V , E), where the set of
(directed) arcs is defined as A := {(v, w), (w, v) : {v, w} ∈ E}, i.e., each undirected link
e ∈ E is substituted by two oppositely directed arcs a�(e) and a��(e). Below, δ−(v) denotes
the set of all arcs incoming to node v, and δ+(v) – the set of all arcs outgoing from node v
(v ∈ V). Adding aggregated arc-flow variables fa ≥ 0, a ∈ A, and the following constraints
to (19) will eliminate the loops in question.

�
a∈δ−(t(d)) fa =

�
v∈V\{s(d),t(d)} zv (20a)

�
a∈δ+(s(d)) fa =

�
a∈δ−(s(d)) fa (20b)

�
a∈δ+(v) fa =

�
a∈δ−(v) fa + zv, v ∈ V \ {s(d), t(d)} (20c)

fa�(e) + fa��(e) ≤ (|V|− 2)ue, e ∈ E .. (20d)

We note that this case was considered in [5].

5.1.3. Case �E(d, p) = E+(d, p)

The version of PP for �E(d, p) = E+(d, p) (more complicated than (19)) is given in formulation
(A.1) presented in Section Appendix A.1.1 of Appendix A. We note that formulation (A.1)
requires loop-elimination constraints (20). It is also computationally less efficient than its

counterparts for �E(d, p) = E(d, p) and �E(d, p) = E . For this reason, the cases for range
E+(d, p) reported in Section 6 were optimized using the sets of paths generated for the
corresponding cases assuming range E .

5.1.4. Case �E(d, p) = E
The PP formulation for the considered full range case is given by (A.2) in Section Appendix
A.1.2. In the considered full range case, the PP formulation becomes simpler than (A.2)
since now variables Be� are equal to be� rather than to be�ue� , and variables Te�e express the
product ue�be� rather than ue�uebe� . Moreover, the loops in the optimal path will not appear
due to the maximal range of the thinning formula. We observe that formulation (A.2) is

simpler and computationally more efficient than its counterpart (19) for �E(d, p) = E(d, p).
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5.2. PP for general affine formula A/G

Now we consider problem formulation (10) with equation (10e) substituted by its general
affine version

xs
dp = z0dp −

�
e∈�E(d,p) β(e, s)z

e
dp (21)

where the affine coefficients z0dp, z
e
dp, d ∈ D, p ∈ P(d), e ∈ �E(d, p), are continuous and unre-

stricted in sign. Not surprisingly, it turns out that pricing for such obtained formulations (for
different thinning formula ranges) is more complicated than for their counterparts described
in Section 5.1 and Appendix A.1.

In Appendix A.2.1we give a general derivation of PP in the considered A/G case, following
the derivation for A/S presented in Section 5.1.1. Then, in Section Appendix A.2.2, we

present the proper MIP formulation (A.7) for the range �E(d, p) = E(d, p). As for the simple
affine formula case, PP formulations for the two remaining cases of thinning formula range are
analogous to (A.7). As before, the PP formulation for �E(d, p) = E+(d, p) is more complicated

(and less time consuming) while the PP formulation for �E(d, p) = E is less complicated (and

less time consuming) than (A.7). Besides, formulations for �E(d, p) = E(d, p) and �E(d, p) =
E+(d, p) require loop-elimination.

5.3. PP for quadratic formulae

The formulations of pricing problems for the thinning formulae containing the quadratic
terms as in the general formula Q/G (8e) or its simplified version Q/S can be derived
analogously as for the affine cases. Yet, the resulting PP formulations require much more
variables and become computationally inefficient. For example, products of the form ue ·ue� ·
ue�� · be appearing in the non-linear versions will have to eliminated, and this will involve |E|3
auxiliary variables. To resolve this issue, we simply use the sets of paths generated for the
affine counterparts of the quadratic problem in question (see Section 6.2.3).

6. Numerical study

In this section we will present optimization results obtained for medium size network
instance. The study illustrates efficiency of the considered versions of the flow thinning
formulae (in terms of the network cost), as well as of the path generation algorithm (in
terms of the computation time).

6.1. Network instance

The study was performed for a network described in the communication network instances
library SNDlib (sndlib.zib.de, see [13]) under the name polska. In the study we used the
data from the first instance (i.e., polska–D-B-M-N-C-A-N-N). The networks is composed of
|V | = 12 nodes, |E| = 18 (undirected) links, and |D| = 66 (undirected) demands. The link
unit capacity cost ξ(e) is equal to the link’s <module cost> divided by <module capacity>
for the first pair of these values. Thus, for the first link (between Gdansk and Warsaw)
ξ(1) = 156/155 = 1.0645, and the entire vector ξ of the unit capacity costs is as follows:
1.0645, 1.7548, 1.0064, 1.2000, 1.7548, 1.5290, 1.3419, 1.1677, 1.3419, 1.6129, 2.0903, 2.0903,
1.6129, 1.0645, 1.9677, 0.9161, 1.2581, 1.8968 (the order of the links is the same as in the
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SNDlib file). We note that the same network instance was used in the case study for A/S
presented in [4].

We consider three link availability state scenarios:

(SL) Single link failure scenario: SL contains the nominal state s(0) (all links fully available),
and all states with exactly one failing link (note that SL contains |E|+ 1 states). The
traffic demands in state s(0), h(d, s(0)), d ∈ D, are specified in SNDlib. In SL, 100%
traffic protection is assumed, i.e., h(d, s) = h(d, s(0)), d ∈ D, for all single link failure
states s. Link failure coefficients of the affected links are assumed to be β(e, s) = 0.5.

(DL) Double link failure scenario: DL contains SL and all states with exactly two failing
links (hence DL contains |E|(|E|−1)/2+ |E|+1) states). Link failure coefficients in the
double link failure states are assumed to be β(e, s) = 0.4. For the double link failure
states the demand volumes are reduced to 95% of h(d, s(0)) for all d ∈ D.

(TL) Triple link failure scenario: TL contains SL and DL, and all states with exactly three
failing links (TL contains |E|(|E|− 1)(|E|− 2)/6+ |E|(|E|− 1)/2+ |E|+1 states). Link
failure coefficients of the failing links in the triple link failure states are assumed to be
β(e, s) = 0.3 and the reduction of h(d, s(0)) is equal to 90%.

6.2. Network cost and algorithm efficiency

The results of the numerical study for polska are presented in Tables 2, 3, and 4. All
the reported calculations were executed on a PC-class computer (Windows 10 64-bit, 8 GB
RAM, Processor Intel Core i5-3210M, 4 logical processors, 2.5GHz) using CPLEX 12.4.0.0.
In the calculations, the initial path-lists for the PG algorithm contain only one path per
demand – the shortest path with respect to the link unit costs ξ(e), e ∈ E (66 paths in
total). Note that assigning the entire nominal demand volume h(d, s(0)) for each demand
d to its shortest path will result in the optimally dimensioned network when protection is
not considered. For the examined network example this cost turns out to be F 0 = 30275 (as
indicated in Table 2).

6.2.1. Results for GR and FT

Table 2 compares results obtained by means of the PG algorithm for GR (Global Rerout-
ing, see [6, 7]), and FT (Flow Thinning). The results for FT are obtained by solving problem
(1). The analogous problem for GR is obtained from (1) simply by deleting constraints (1b)
and (1e). Note that because of that GR, as the least constrained, and thus least costly, pro-
tection mechanism is used as a benchmark since it provides the lower bound for the network
cost achievable with any other mechanism.

For each failure scenario (SL, DL, TL), the rows in Table 2 contain the results for GR
and FT, and the consecutive columns describe:

– F 0: cost of unprotected network dimensioned for h(d, s(0)), d ∈ D

– F ∗: cost of the optimal solution resulting from the PG algorithm

– ΔF 0: cost increase with respect to unprotected network (ΔF 0 = F ∗−F 0

F 0 × 100%)
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– ΔF ∗: cost increase of FT with respect to GR (ΔF ∗ = F ∗(FT )−F ∗(GR)
F ∗(GR)

× 100%)

– |P∗|: final number of generated paths

– |Pu|: number of paths used in the final solution (i.e., paths with positive optimal x0
dp)

– number of iterations (iter), total computation time (total), time per iteration (t/iter),
computation time spent in problem P(P) (called the master problem, MP, in this
context) per iteration (t/MP), and pricing problem computation time per iteration
(t/PP).

F 0 F ∗ ΔF 0[%] ΔF ∗[%] |P∗| |Pu| iter total t/iter t/MP t/PP

SL
GR 30275 35858 18 – 189 149 3 2s 0.7s 0.1s 0.6s
FT 30275 40236 33 12 259 123 9 6s 0.6s 0.1s 0.5s

DL
GR 30275 38087 26 – 235 217 3 23s 7.6s 3s 4.6s
FT 30275 40093 32 5 269 143 8 1m12s 8.9s 5.5s 3.4s

TL
GR 30275 36630 21 – 249 249 4 4m13s 1m3s 45s 18s
FT 30275 37200 23 2 294 156 8 24m3s 3m 2m28s 32s

Table 2: Results for GR and FT.

The results show that lower bound for the cost of protection (achieved with GR) for
the considered instance is between 18% (SL) and 26% (DL). Certainly, FT requires more
capacity but the cost increase as compared to GR is not significant (between 2% for TL and
12% for SL. The number of generated paths is lower for GR than for FT, but the number of
the paths used in the final (optimal) solution is higher (which could be expected). In both
cases the computation times are negligible for SL and low for DL. For TL, the algorithm
applied to GR is still quite fast, while for FT it starts to be more time consuming, both
for MP and PP. We note here that the PG algorithm for GR works differently than for FT
(and, for that matter, for QFT and AFT). In the former case in each iteration a new path is
considered for each demand d ∈ D and each state s ∈ S, while for FT only one path demand
is considered. This is why GR requires less iterations than FT. Yet, even for FT the number
of iterations is small and the PG algorithm converges very quickly.

6.2.2. Results for AFT

Table 3 gives the results for AFT, i.e., for flow thinning with affine thinning formulae.
For each failure scenario, all six combinations of the range and the structure considered for
the thinning formulae of form A (see Section 4.2) are examined (and specified in columns
“range” and “structure”). Now, column “ΔF ∗” expresses the increase in the network cost
for a given variant of AFT with respect to the corresponding solution F ∗ for FT given in
Table 2. The meaning of the remaining columns is the same as before.

Regarding the network cost F ∗ achievable by the considered AFT formulae, we first of
all observe that in the SL case (single link failures), the minimal cost (i.e., the cost of FT) is
achieved already with the simplest form of the thinning formula, that is with A/S/E(d, p).
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range structure F ∗ ΔF ∗[%] |P∗| |Pu| iter total t/iter t/MP t/PP

SL

E(d, p) G 40236 0 275 125 8 7m34s 57s 0.1s 56.9s
S 40236 0 276 123 9 2m12s 15s 0.06s 14.94s

E+(d, p)
G 40236 0 283 128 – 0.3s – – –
S 40236 0 274 124 – 0.3s – – –

E G 40236 0 283 125 9 6m55s 46s 0.1s 45.9s
S 40236 0 274 124 9 2m5s 14s 0.1s 13.9s

DL

E(d, p) G 47174 18 285 161 9 11m59s 1m19s 3s 1m16s
S 47174 18 283 161 9 4m34s 30s 2s 28s

E+(d, p)
G 43543 9 216 159 – 40s – – –
S 47174 18 187 161 – 5s – – –

E G 42172 5 216 155 8 13m51s 1m43s 25s 1m18s
S 47174 18 187 161 7 2m21s 20s 1.6s 18.4s

TL

E(d, p) G 41863 13 232 161 10 27m21s 2m44s 29s 2m15s
S 41863 13 223 162 9 12m52s 1m25s 19s 1m6s

E+(d, p)
G 39986 7 191 145 – 4m20s – – –
S 41863 13 165 160 – 1m6s – – –

E G 38707 4 191 133 7 33m15s 4m45s 2m6s 2m39s
S 41863 13 165 160 6 5m51s 58s 19s 39s

Table 3: Results for affine thinning formulae (A).

The reason is as follows. Suppose x0
dp

∗
and xs

dp
∗ are optimal for FT. Then the thinning

formula

xs
dp = x0

dp −
�

e∈E(d,p) β(e, s)z
e
dp, where zedp :=

x0
dp

∗−x
s(e)
dp

∗

β(e,s)
, e ∈ E(d, p)

will give the optimal values of xs
dp, that is those found for FT. In the formula, s(e) denotes

the particular state s ∈ S in which link e is affected with the failure coefficient β(e, s(e)) > 0
(in the remaining states, i.e., for s ∈ S \ {s(e)}, β(e, s) = 0). (Recall that in the considered
example β(e, s(e)) = 0.5.)

For DL and for TL this is no longer the case. Assuming the range E(d, p), the increase
in F ∗ given by ΔF ∗ is quite high: for DL it is equal to 18% for both structures G (general)
and S (simple) while for TL it is equal to 13% for both structures. For the two other ranges
(E+(d, p) and E), the difference between G and S becomes visible. For E+(d, p) the considered
increase for G is roughly 2 times smaller than for S, while for E it is 3.25 (TL) to 3.6 (DL)
times smaller. Finally, we note that the cost increase ΔF ∗ for the case A/G/E is only 4%,
while for A/G/E+(d, p) it rises to 7%.

Note that for E+(d, p) Table 3 reports one computation time (t/MP). This is because this
particular range case was not treated by the path generation algorithm because of excessive
computation time (of the order of hours) required for the pricing problem (see the discussion
in the last paragraph of Section 5.1.3). Instead, we just solved the appropriate variant of
the master problem (10), assuming the path-sets P∗ generated for E . For the same reason
the number of iterations is not reported (– in column “iter”). Although this makes the
optimization approach heuristic, the obtained solutions are clearly near-optimal.

It is also interesting to note that the case A/S gives the same value of F ∗ for all the
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three ranges, and this means that the solution for E+(d, p) is optimal, as it is always less
than or equal to the optimal solution for E(d, p), and greater than or equal to the optimal
solution for E . Let us also note that in all the considered scenarios the costs of A/S/E(d, p)
and A/G/E(d, p) happen to be equal. Yet, this is not always true. We have found some
(randomly generated) state scenarios (with the states containing 4-9 links affected with the
failure coefficient equal to 0.4) for the polska network where the costs for these two cases are
different. Still, the difference is small, of the order of 1.5%.

The numbers of paths generated by the PG algorithm (column “|P∗|”) and the number of
paths used in the optimal solution (column “|Pu|”) do not exhibit any particular properties,
except that sometimes |Pu| is considerably smaller than |P∗| (even more than two times for
SL and E(d, p)).

The number of iterations performed by the PG algorithm varies from 6 to 10 and this is a
reasonable number indicating fast convergence. The computation time spent in pricing is also
reasonable although this requires solving MIP formulations. The time spent in the master
problem is typically smaller than the time required for pricing. Certainly, the computation
time increases with the number of states in S, but even for TL the total computation times
are acceptable.

6.2.3. Results for QFT

range structure F ∗ ΔF ∗[%] |P∗| |Pu| total

SL

E(d, p) G 40236 0 275 125 0.2s
S 40236 0 276 124 0.3s

E+(d, p)
G 40236 0 283 124 0.2s
S 40236 0 274 124 0.2s

E G 40236 0 283 124 0.2s
S 40236 0 274 124 0.3s

DL

E(d, p) G 41939 4.6 285 176 8s
S 42034 4.8 283 176 12s

E+(d, p)
G 41152 2.6 216 165 6s
S 41278 3.0 187 164 9s

E G 40104 0.03 216 144 3s
S 40285 0.5 187 147 10s

TL

E(d, p) G 39939 7.4 232 202 15m59s
S 40044 7.6 223 202 11m36s

E+(d, p)
G 38864 4.5 191 164 38h25m27s
S 39456 6.1 165 147 1h5m14s

E G 37269 0.2 191 134 15h59m39s
S 37705 1.3 165 132 7h58m31s

Table 4: Results for quadratic thinning formulae (Q).

Table 4 shows the results for QFT, i.e., for flow thinning with quadratic thinning formu-
lae. As for the AFT case, all the six combinations of range/structure (see Section 4.2) are
considered for each failure scenario. As already mentioned in Section 5.3, all the QFT cases
were directly optimized through solving an appropriate version of the master problem (8) for

17



the sets of paths obtained for the corresponding AFT cases – this is due to excessive pricing
time for QFT. (Therefore, Table 4 has a reduced set of columns as compared with Table 3.)
This near-optimal procedure has already been applied for the E+(d, p) range of the AFT.

Clearly, the QFT cost values given in Table 4 for SL are the same as for AFT (and, for
that matter, for FT), since AFT is a special case of QFT. Note that corresponding total
solution times are much shorter since no pricing is involved.

However, for DL and TL, the cost of the QFT solutions is considerably smaller than for
the corresponding AFT solutions. In fact, the case Q/G/E (general quadratic form with full
range) indicates virtually the same cost as FT (arbitrary flow thinning): cost increase 0.03%
for DL, and 0.2% for TL. At the same time, the simplified quadratic form with full range
(Q/S/E) is only marginally worse: cost increase 0.5% for DL, and 1.3% for TL. With respect
to E , the costs obtained with range E+(d, p) are not much greater. For DL the cost increase
is 2.6% for Q/G and 3.0% for Q/S, while for TL it is equal to 4.5% for Q/G and 6.1% for
Q/S. For E(d, p) further cost increase is observed, reaching 7.6% for Q/S and TL.

As far as computation time is concerned, the SL and DL cases are optimized very quickly,
yet the computation time becomes substantially longer for TL. The reason is excessive num-
ber of variables and constraints in the LP formulation.

6.3. Implementation issues and suggested formula

The flow thinning mechanisms assume that the capacity of each (MPLS) tunnel is con-
trolled at its source node by a packet admission control mechanism based on the on-line
knowledge of the currently available link capacity. Therefore, some signalling mechanism for
interchanging information concerning the current state of link capacities must be applied.
In the case of FT, and of QFT and AFT with the full range E , this requires some kind of
a flooding protocol since the source nodes of the tunnels need to be aware of the current
availability state of all links. Since flooding signalling takes time, the capacity adjustment
process may lead to unprecise tunnel capacity control and, in consequence, to traffic losses.
Moreover, flooding may be excessively complex to implement. This actually means that
feasibility of FT, QFT/E and AFT/E is problematic.

On the other hand, in the case of QFT and AFT with the E(d, p) range, the signalling in
question is simple and fast: when availability of a link is changed, an appropriate message is
propagated backwards to the source nodes of all the tunnels traversing the considered link,
resulting in efficient and timely message delivery for link availability state monitoring. For
the E+(d, p) range the signalling is similar, only more information is propagated.

Another issue is how the tunnel capacity control performs for the states not considered
in optimization, i.e., the states in the set S. For such a purpose the most cost effective flow
thinning mechanism, i.e., FT, is not satisfactory, as it does not provide consistent means
for this kind of control. Thus, since inappropriate setting of tunnel capacity can lead to
link overloads, the FT mechanism is risky in this aspect. On the contrary, the QFT and
AFT mechanisms can simply apply the flow thinning formula also for the unforeseen states,
modifying the tunnel capacity to 0 or x0

dp when necessary, i.e., when the value obtained from
the flow thinning formula is below 0 or above x0

dp, respectively. (Traffic efficiency of such
extended thinning is addressed in Section 8.2 of [3] for AFT/G.) We may also expect that
the larger the range of the affine formula, the better approximation of the proper tunnel
capacity in the states not considered in optimization – this, however, needs to be verified.
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Here, the simple structure (S) of the flow thinning formula seems more safe than the general
structure (G) because the former does not allow to exceed the nominal tunnel capacity in
any state.

FT is the most general flow thinning mechanism and therefore it results in the lowest cost
of link capacity. In fact, in this aspect FT is quite close to the benchmark GR mechanism,
which provides the lower bound on the link capacity cost for any protection/restoration
mechanism (see [7]). Tables 2, 3 and 4 show that the network cost achieved with QFT/G
with range E is almost the same as the cost of FT, while the cost for QFT/G with range
E+(d, p) is higher but to a reasonable extent (4.5% of cost increase with respect to FT at
most). The network cost achieved with QFT/G with the smallest range E(d, p) is up to
7.4% higher than the cost for FT. As far as AFT is concerned, the network cost increase is
significantly higher than for QFT.

Having in mind that the optimization of flow thinning is performed off-line, the total
computation times are acceptable in all the considered cases, besides QFT with the ranges E
and E+(d, p). This, however, is not a big issue taking into account that the results shown in
the tables were obtained using a plain laptop, and the efficiency of the optimization algorithm
could be improved (if really needed) by exploiting specific properties of its master problem.

range structure implementation states not in S capacity cost optimization time

GR E – infeasible not covered very low very short

FT E – problematic not covered low medium

A

E(d, p) G feasible covered high medium
S feasible+ covered high short

E+(d, p)
G feasible covered+ medium medium-
S feasible covered+ high medium

E G flooding covered++ medium medium
S flooding covered++ high short+

Q

E(d, p) G feasible covered medium medium-
S feasible+ covered medium medium-

E+(d, p)
G feasible covered+ low excessive
S feasible covered+ low medium

E G flooding covered++ low excessive
S flooding covered++ low excessive

Table 5: Summary of the results.

The above observations (summarized in Table 5) suggest that QFT/G/E+(d, p) (the
mechanism with the general quadratic thinning formula encompassing all links adjacent to
the nodes of the tunnel) is a reasonable traffic protection mechanism to be considered for
implementation in FSO networks.

7. Concluding remarks and future work

In the paper we have presented an original optimization model for the quadratic flow
thinning (QFT) traffic protection mechanism. The solution algorithm (based on path gener-
ation) developed for the model was tested in a numerical study and its time efficiency turned
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out to be satisfactory. In the numerical study we have examined a medium-size network in
order to compare the cost of various variants of QFT, including its simpler affine version
(AFT). Clearly, in comparison with the original FT mechanism, the thinning formula used
in QFT introduces an additional constraint on thinning (recall that with FT, (1e) is the only
constraint on flow thinning). In effect, QFT requires more link capacity than FT. Still this
extra cost can be made acceptable (of the order of few percent) when the proper range (the
set of all links, or the set of all links incident to the nodes of the path) of the quadratic for-
mula is adopted. Taking into account all the observations gathered in Table 5, we conclude
that the variant Q/G/E+(d, p) delivers the best compromise protection solution out of all
the considered thinning options.

As far the future research directly related to the presented considerations is concerned,
it is important to examine the following issues:

◦ Add modularity of link capacity (parallel FSO links); this will involve integer variables
y0 in problem FTOP (1) and its QFT counterpart (8).

◦ Test effectiveness of applying path-sets generated for AFT to QFT (this is done in the
paper) instead of using the exact approach with the QFT pricing problems.

◦ Improve efficiency of the path-generation algorithm for QFT with the E+(d, p) range.

◦ Repeat the numerical study for other network instances to verify the conclusions of
this paper.
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[7] M. Pióro, D. Medhi, Routing, Flow, and Capacity Design in Communication and Com-
puter Networks, Morgan-Kaufmann, 2004.
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Appendix A. Derivations of pricing problems

Appendix A.1. Simple affine formula

Appendix A.1.1. Case �E(d, p) = E+(d, p)

In this case the PP formulation is obtained using the following equality which is valid for an
arbitrary vector of link-dependent quantities (A(e), e ∈ E).

�
e�∈E+(d,q) A(e) =

�
v∈V

�
e�∈δ(v) A(e

�)zv −
�

e�∈E A(e
�)ue� , s ∈ S,

where E(d, q) = {e ∈ E : ue = 1} and V(d, q) = {v ∈ V : zv = 1}. The formulation is more
complicated than (19).

P = max
�
−�

e∈E π
0
eGe + (

�
s∈S λ

s
d)g −

�
s∈S

�
e∈E(s) π

s
eGe+

+
�

s∈S
�

e∈E(s)
��

v∈V
�

e�∈δ(v) π
s
eβ(e

�, s)Re�ev −
�

e�∈E π
s
eβ(e

�, s)Te�e
�
+ (A.1a)

−�
s∈S

��
v∈V

�
e�∈δ(v) λ

s
dβ(e

�, s)He�v −
�

e�∈E λ
s
dβ(e

�, s)Be�
� �

�
e∈δ(v) ue = 1, v ∈ {s(d), t(d)}; �

e∈δ(v) ue = 2zv, v ∈ V \ {s(d), t(d)} (A.1b)

g ≤ 1; be ≤ 1, e ∈ E ; �
v∈V

�
e∈δ(v) β(e, s)Hev −

�
e∈E β(e, s)Be ≤ g, s ∈ S (A.1c)

Be ≤ ue, Be ≤ be, Be ≥ be + ue� − 1, e ∈ E (A.1d)

Hev ≤ be, Hev ≤ zv, Hev ≥ be + zv − 1, v ∈ V , e ∈ δ(v) (A.1e)
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Ge ≤ g,Ge ≤ ue, Ge ≥ g + ue − 1, e ∈ E (A.1f)

Te�e ≤ ue� , Te�e ≤ ue, Te�e ≤ be� , Te�e ≥ be� + ue� + ue − 2, e�, e ∈ E (A.1g)

Re�ev ≤ be� , Re�ev ≤ ue, He�e ≤ zv, He�ev ≥ be� + ue + zv − 2, v ∈ V , e� ∈ δ(v), e ∈ E , (A.1h)

g ∈ R+; be ∈ R+, e ∈ E ; ue ∈ {0, 1}, e ∈ E ; zv ∈ {0, 1}, v ∈ V \ {s(d), t(d)} (A.1i)

Be ∈ R+, e ∈ E ; , Ge ∈ R+, e ∈ E ; Tee� ∈ R+, e, e
� ∈ E ; (A.1j)

Hev ∈ R+, e ∈ E , v ∈ V ; Re�ev, e
�, e ∈ E , v ∈ V . (A.1k)

Appendix A.1.2. Case �E(d, p) = E
In the considered case the PP formulation becomes simpler than (19) since now variables
Be� are equal to be� rather than to be� · ue� , and variables Te�e express the product ue� · be�
rather than ue� · ue · be� . Moreover, the loops in the optimal path will not appear due to the
maximal range of the thinning formula.

P = max
�
−�

e∈E π
0
eGe + (

�
s∈S λ

s
d)g −

�
s∈S

�
e∈E(s) π

s
eGe+

+
�

s∈S
�

e∈E(s)
�

e�∈E π
s
eβ(e

�, s)Te�e −
�

s∈S
�

e�∈E λ
s
dβ(e

�, s)be�
�

(A.2a)
�

e∈δ(v) ue = 1, v ∈ {s(d), t(d)}; �
e∈δ(v) ue = 2zv, v ∈ V \ {s(d), t(d)} (A.2b)

g ≤ 1; be ≤ 1, e ∈ E ; �
e∈E β(e, s)be ≤ g, s ∈ S (A.2c)

Ge ≤ g,Ge ≤ ue, Ge ≥ g + ue − 1, e ∈ E (A.2d)

Te�e ≤ ue, Te�e ≤ be� , Te�e ≥ be� + ue − 1, e�, e ∈ E (A.2e)

g ∈ R+; be ∈ R+, e ∈ E ; , Ge ∈ R+, e ∈ E ; Tee� ∈ R+, e, e
� ∈ E (A.2f)

ue ∈ {0, 1}, e ∈ E ; zv ∈ {0, 1}, v ∈ V \ {s(d), t(d)}. (A.2g)

The above formulation is computationally more efficient than its counterpart (19) for �E(d, p) =
E(d, p).

Appendix A.2. General affine formula

Appendix A.2.1. A/G – general PP derivation (for arbitrary range �E(d, p))
Problem D(P):

W (P) = max
�

d∈D
�

s∈S h(d, s)λ
s
d (A.3a)

[y0e ≥ 0] π0
e +

�
s∈S(e) α(e, s)π

s
e ≤ ξ(e), e ∈ E (A.3b)

[x0
dp ≥ 0]

�
s∈S σ

s
dp ≤

�
e∈E(d,p) π

0
e , d ∈ D, p ∈ P(d) (A.3c)

[xs
dp ≥ 0] λs

d − ϕs
dp ≤ σs

dp +
�

e∈E(d,p)∩E(s) π
s
e, d ∈ D, p ∈ P(d), s ∈ S (A.3d)

[zedp]
�

s∈S β(e, s)ϕ
s
dp = 0, d ∈ D, p ∈ P(d), e ∈ �E(d, p) (A.3e)

[z0dp]
�

s∈S ϕ
s
dp = 0, d ∈ D, p ∈ P(d) (A.3f)

π0
e ∈ R+, e ∈ E ; πs

e ∈ R+, e ∈ E , s ∈ S(e); λs
d ∈ R+, d ∈ D, s ∈ S;

σs
dp ∈ R+,ϕ

s
dp ∈ R, d ∈ D, p ∈ P(d), s ∈ S.

As before, we consider a given demand d ∈ D and a given path q ∈ �P(d) \ P(d) and an
optimal solution π,λ of the dual (A.3). The minimum of the sum of such violations (taken
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over all feasible local dual variables σ = (σs, s ∈ S) and ϕ = (ϕs, s ∈ S)) is expressed
through the quantity

P (q) = minσ≥0,ϕ

�
max

��
s∈S σ

s − |q|0, 0
�
+

�
s∈S max

�
λs
d − ϕs − σs − |q|s, 0

�
+

+
�

e∈�E(d,q) |
�

s∈S β(e, s)ϕ
s| + |�s∈S ϕ

s|
�
,

where |q|0 :=
�

e∈E(d,q) π
0
e (nominal dual length of q), and |q|s :=

�
e∈E(d,q)∩E(s) π

s
e (state-

dependent dual length of q), s ∈ S. The LP formulation for computing P (q) is as follows:

P (q) = min
�
Z +

�
s∈S Ys +

�
e∈�E(d,q)(X

�
e +X ��

e ) +W +W � � (A.5a)

[g ≥ 0] Z ≥ �
s∈S σ

s − |q|0 (A.5b)

[as ≥ 0] Ys ≥ λs
d − ϕs − σs − |q|s, s ∈ S (A.5c)

[b�e ≥ 0] X �
e ≥

�
s∈S β(e, s)ϕ

s, e ∈ �E(d, q) (A.5d)

[b��e ≥ 0] X ��
e ≥ −�

s∈S β(e, s)ϕ
s, e ∈ �E(d, q) (A.5e)

[c� ≥ 0] W � ≥ �
s∈S ϕ

s (A.5f)

[c�� ≥ 0] W �� ≥ −�
s∈S ϕ

s (A.5g)

σs ∈ R+, s ∈ S; ϕs ∈ R, s ∈ S (A.5h)

Z,W �,W �� ∈ R+; Ys ∈ R+, s ∈ S; X �
e, X

��
e ∈ R+, e ∈ �E(d, q). (A.5i)

Next we formulate the problem dual to (A.5), using the dual variables specified in the square
brackets in constraints (A.5b)-(A.5g).

P (q) = max
�
− g|q|0 +�

s∈S as(λ
s − |q|s)

�
(A.6a)

0 ≤ g ≤ 1, 0 ≤ c� ≤ 1, 0 ≤ c�� ≤ 1 (A.6b)

0 ≤ as ≤ g, s ∈ S (A.6c)

0 ≤ b�e ≤ 1, 0 ≤ b��e ≤ 1, e ∈ �E(d, q) (A.6d)

as = c� − c�� +
�

e∈�E(d,q) β(e, s)(b
�
e − b��e), s ∈ S. (A.6e)

Below we formulate the pricing problem for the considered general affine formula case
only for �E(d, p) = E(d, p) (and undirected networks).

Appendix A.2.2. Case �E(d, p) = E
Proceeding as in Section 5.1 (and eliminating variables as, s ∈ S, in (A.6)) we obtain the

following formulation.

P = max
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−�

e∈E π
0
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Ge����
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s∈S λ
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b�eueue� + (A.7a)
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+
�

s∈S
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e�∈E(s)
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e∈E β(e, s)π
s
e�
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b��eueue� −
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s∈S
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e∈E(s) π
s
e
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e����
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s∈S
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K��
e����
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�
e∈δ(v) ue = 1, v ∈ {s(d), t(d)}; �

e∈δ(v) ue = 2zv, v ∈ V \ {s(d), t(d)} (A.7b)

0 ≤ g ≤ 1, 0 ≤ c� ≤ 1, 0 ≤ c�� ≤ 1; 0 ≤ be ≤ 1, 0 ≤ b��e ≤ 1, e ∈ E (A.7c)

0 ≤ c� − c�� +
�

e∈E β(e, s)(B
�
e − B��

e ) ≤ g, s ∈ S (A.7d)

Ge ≤ g,Ge ≤ ue, Ge ≥ g + ue − 1, e ∈ E (A.7e)

B�
e ≤ ue, B

�
e ≤ b�e, B

�
e ≥ b�e + ue − 1, e ∈ E (A.7f)

B��
e ≤ ue, B

��
e ≤ b��e , B

��
e ≥ b��e + ue − 1, e ∈ E (A.7g)

T �
e�e ≤ ue� , T

�
e�e ≤ ue, T

�
e�e ≤ b�e, T

�
e�e ≥ b�e + ue� + ue − 2, e�, e ∈ E (A.7h)

T ��
e�e ≤ ue� , T

��
e�e ≤ ue, T

��
e�e ≤ b��e , T

��
e�e ≥ b��e + ue� + ue − 2, e�, e ∈ E

K �
e ≤ c�, K �

e ≤ ue, K
�
e ≥ c� + ue − 1, e ∈ E (A.7i)

K ��
e ≤ c��, Ke ≤ ue, K

��
e ≥ c�� + ue − 1, e ∈ E (A.7j)

B�
e, B

��
e , Ge, K

�
e, K

��
e ∈ R+, e ∈ E (A.7k)

T �
e�e, T

��
e�e ∈ R+, e

�, e ∈ E (A.7l)

ue ∈ {0, 1}, e ∈ E ; zv ∈ {0, 1}, v ∈ V \ {o(d), t(d)}. (A.7m)

Above, variables G�
e, B

�
e, T

�
e�e, K

�
e and G��

e , B
��
e , T

��
e�e, K

��
e are used to eliminate the products (bi-

linearities and tri-linearities) of the original variables – this is indicated in (A.7b). We note
that this particular case was considered in [4].
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