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ABSTRACT 

Thébaud, G., Sauvion, N., Chadœuf, J., Dufils, A., and Labonne, G. 2006. 
Identifying risk factors for European stone fruit yellows from a survey. 
Phytopathology 96:890-899. 

European stone fruit yellows (ESFY) is becoming a major economic 
problem for Prunus growers in Europe. The causal agent (“Candidatus 
Phytoplasma prunorum”) and its vector (Cacopsylla pruni) have been 
identified, but the present knowledge of the risk factors for this disease 
relies, at best, on specific experiments. To assess the relative significance 
of several factors correlated with ESFY incidence in the field, an exhaus-
tive survey was performed on apricot and Japanese plum orchards in the 
Crau plain (France). After a preliminary multivariate exploration of the 
data, we used a logistic regression model to analyze and predict the 
cumulative number of diseased trees on the basis of a set of quantitative 
(age, planting density, and area of the orchard) and categorical variables 
(species, cultivar, and rootstock). Because of the nature of the data, we 

used an overdispersed binomial model and we developed a parametric 
bootstrap procedure based on the beta-binomial distribution to obtain 
confidence intervals. Our results indicated that the age, species, and 
cultivar of the scion were the major factors explaining the observed 
number of diseased trees. The planting density and the rootstocks used in 
the zone under study were less significant, and the area of the orchard had 
no effect. The residuals of the model showed that some explanatory 
variables had not been taken into account, because part of the remaining 
variability could be explained by a grower effect. The spatial distribution 
of the residuals suggested that one of the reasons for this grower effect 
was the correlation between orchards closer than 100 m, possibly caused 
by the flight behavior of infectious vectors. 

Additional keywords: generalized linear model, Monte Carlo, over-
dispersion. 

 
A frequent goal of epidemiological studies is to highlight the 

factors that are highly correlated with disease incidence or sever-
ity, or even to point at causal factors explaining the emergence of 
a new disease. To these aims, the analysis of surveys can be seen 
as an introduction or an alternative to the experimental approach, 
in particular (i) for quarantine diseases, (ii) when many potential 
factors are considered, (iii) when the investigated factors are re-
lated to the agricultural landscape (e.g., size, shape, or density of 
the plots), (iv) when an immense number of replicates would be 
necessary to achieve enough statistical power, or (v) when a lack 
of knowledge about the biological system could question the epi-
demiological significance of the experiments. For example, if an 
unknown insect transmits a disease, the study of risk factors by 
the experimental inoculation of plant material may not reflect field 
conditions because of the vector’s behavior, among other reasons. 
In contrast, analyzing survey data is a way to take advantage of 
many “natural experiments” that occur under field conditions, 
where more factors can be investigated simulaneously, the side 
effect being a lack of a priori control by an experimental design. 
Such observational studies are common in animal and human 
epidemiology, but are rarer in botanical epidemiology, probably 
because the networks for high-quality data collection on a large 
scale are infrequent for plant diseases, and because many risk 

factors can be investigated directly through cost-effective experi-
ments. Most of these surveys linked disease incidence with 
climatic parameters such as temperature and moisture. Soil struc-
ture or pH (41) and the quantity and proximity in space or time of 
putative sources of inoculum (12,38) also have been examined. 
Finally, only a few observational studies have characterized how 
disease incidence was influenced by human-driven factors such as 
agricultural practices, control methods, and the choice of the culti-
vated genotype (21,43,47). However, for some of these variables, 
prophylactic practices can be defined so that the growers can 
make preventive choices to reduce disease incidence without the 
economic and environmental costs associated with the use of pesti-
cides. Our study focused on these human-driven factors because 
of their high practical impact on the management of European 
stone fruit yellows (ESFY). 

ESFY is a systemic disease affecting the genus Prunus (32). It 
has been present in Europe since at least the beginning of the 20th 
century (7,19), but its prevalence has increased in recent decades 
(30) and ESFY is now a major economic problem on apricot 
(Prunus armeniaca) and Japanese plum (P. salicina) in Europe. 
We know that “Candidatus Phytoplasma prunorum” (42), the 
causal agent of the disease, is transmitted on the persistent mode 
by Cacopsylla pruni (5), but the risk factors of ESFY are still 
poorly understood. Standardized captures in the field (29) and ex-
perimental breeding (3,4) showed the vector’s strong host prefer-
ence for blackthorn (P. spinosa), myrobalan (P. cerasifera), 
Japanese plum, and plum trees (P. domestica). Experimental vector 
transmissions and graft inoculations (3,4) demonstrated that there 
is a wide range of susceptibility to “Ca. P. prunorum” within the 
genus Prunus, with cherry trees being highly resistant (27) and 
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Japanese plum being highly susceptible (19). Field evaluations (6) 
and experimental inoculations (16,26,28) also repeatedly indi-
cated a differential sensitivity to infection between cultivars and 
between rootstocks. In order to assess whether the choice of root-
stock and cultivar is the only risk factor of ESFY, some other 
potential risk factors had to be investigated, as well as their poten-
tial interactions. Addressing this question with an experimental 
approach would require an immense number of trees and a lot of 
time because the annual incidence in apricot is quite low. Thus, 
we preferred the alternative of analyzing survey data generated by 
a prophylactic program undertaken in France. This program intends 
to reduce the number of secondary transmissions and the regional 
pool of inoculum, on the basis of experience with Plum pox virus, 
another vector-borne disease of Prunus spp. with a high economic 
impact. 

In the Crau plain (France), a partnership was initiated to collect 
epidemiologically relevant data in addition to the data that were 
necessary for disease management. Several potential risk factors 
were recorded to explain the dependent variable, which was de-
fined as the number of diseased trees among a known number of 
exposed trees in each orchard. In order to analyze such binomial 
data, a generalized linear model (GLM) with a logit link function 
(i.e., logistic regression) is often preferred to the more classical 
linear models because it appropriately takes into account the 
binomial nature of the dependent variable (8,18,25,35). However, 
few studies have analyzed survey data with GLMs (1,13,36,38, 
43). In this article, we present a logistic regression model for 
identifying and quantifying risk factors of ESFY through the 
analysis of a regional survey. 

MATERIALS AND METHODS 

Data record and selection. The survey extended inside a 
square of ≈25 km per side in the Crau plain, an area of apricot 
production in southeastern France. Most of the data were col-
lected in 2003 by well-trained technical staff and the database was 
updated in 2004. In each orchard, nine variables were recorded. 
The dependent variable was the cumulative number of diseased 
trees among a known number of exposed trees from the date of 
orchard planting to March 2004 (the term “incidence” will denote 
this variable in the rest of the article). Except for a few trees that 
were excluded from the analysis, ESFY was the only cause of tree 
death. The growers frequently removed the trees with typical 
symptoms and new trees were often replanted, but only the initial 
trees were considered in the analysis. Thus, the incidence was 
estimated on the basis of the number of trees that were dead or re-
moved, or with the characteristic winter symptom of early leafing. 
Some of the potential risk factors that we recorded were related 
directly to the biological characteristics of the system (species and 
cultivar of the scion, rootstock, surface, planting density, and age 
of the orchard). We also recorded human factors such as the 
grower and the nurseries that provided the planting material (the 
abbreviated names of the variables are indicated in Table 1). The 
mean ESFY incidence in relation to the age of the orchards was 

assessed in 517 apricot orchards. For more reliability in the esti-
mated effects, we removed the plots with missing data and those 
with uncommon cultivars or rootstocks. The mean of the quanti-
tative variables and the levels of the categorical variables in the 
final data subset (225 orchards and ≈69,000 trees from 17 farms) 
are summarized in Table 1. The mean ESFY incidence in these 
orchards was 6.3%. 

Method overview. Our general approach to the statistical analy-
sis of this survey consisted of five successive steps: (i) a multi-
variate analysis was performed to remove overly correlated vari-
ables from the model, (ii) the most parsimonious overdispersed 
logistic regression model was built by a stepwise selection of the 
variables, (iii) the adequacy of this final model then was checked 
by an analysis of the residuals and by assessing its predictive 
power for an external data set, (iv) we subsequently evaluated the 
relative significance of the different variables on disease incidence, 
and then (v) a test was performed on the residuals to track the 
remaining spatial covariates. Unless otherwise stated, all analyses 
were performed with the R statistical software, version 2.0.1 (39). 

Selection of the variables. In order to avoid overloading the 
model with redundant explanatory variables, a preliminary multi-
variate exploration of the data was undertaken. We first performed 
a normalized principal components analysis (23) on the quantita-
tive variables (cumulative incidence [Y], area [AREA], age [AGE], 
and planting density [DENS]), and a multiple correspondence 
analysis (2) on the categorical variables (cultivar [CLV], rootstock 
[RST], origin of the cultivar [OCLV], and origin of the rootstock 
[ORST]). Then, a Hill and Smith analysis (22) was performed to 
mix these two analyses and, thus, analyze the relationships among 
all variables simultaneously. The ADE-4 software (46) was used 
for the computation and generation of factorial maps. 

Logistic regression model. To estimate simultaneously the 
impact of potential factors on ESFY incidence, we built a logistic 
regression model (35). This GLM was dedicated to the analysis of 
proportions arising from binomial data: in each orchard, the num-
bers of exposed (ni) and diseased trees (Di) were known. The 
number of diseased trees in the ith orchard initially was assumed 
to have a binomial distribution with probability pi for each tree to 
show symptoms, whereas a given combination of k explanatory 
factors defined this probability pi. Thus, the model could be 
written Di|pi ~ B(ni,pi), where pi was defined by 

 ln[pi /(1 – pi)] = a0 + a1,i (Fact1) + a2,i (Fact2) + … + ak,i (Factk)  

The best-fitting model was obtained by a manual stepwise 
procedure for selecting significant variables and biologically 
meaningful second-order interactions. The R function glm was 
used for model fitting by iteratively reweighted least squares. 

Modeling overdispersion. In the model described above, the 
observed number of diseased trees (Di) should have a binomial 
variance: Var(Di) = nipi (1 – pi). However, in observational studies, 
the presence of overdispersion (extrabinomial variation, here) is 
very common (18,35), and it also was encountered in this study. 
Following Collett (8), we accounted for the extrabinomial vari-
ance with Williams’ iterative algorithm (48) because the number 

TABLE 1. Summary of the variables used in the preliminary multivariate analysis 

Variable Full name Mode Levels (frequency) or mean (range)a 

Y Cumulative incidence Dependent, quantitative 6.3 (0–29.7) % 
GRW Grower Categorical 17 levels (2–55 orchards/grower) 
CLV Cultivar Categorical Goldrich (27), Early Blush (33), Hargrand (66), Orangered (99) 
RST Rootstock Categorical Manicot-GF 1236 (11), Montclar (28), myrobalan (36), GF 305 (61), peach (89) 
OCLV Origin of the cultivar Categorical 8 levels (1–119 orchards/origin) + 71 NA 
ORST Origin of the rootstock Categorical 9 levels (1–118 orchards/origin) + 71 NA 
AGE Age Quantitative 8.3 (2–15) years 
AREA Area Quantitative 0.73 (0.08–2.5) ha 
DENS Planting density Quantitative 410 (238–571) trees/ha 

a  NA = not available. 
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of trees was not identical in all the orchards. Overdispersed 
models were fitted with the dispmod R package. 

Model assessment. The standard goodness-of-fit criterion for 
GLMs (the ratio between the residual deviance and the residual 
degrees of freedom) is meaningless for overdispersed models (8). 
Hence, several other procedures were carried out in order to 
check the model. First, we examined the standardized deviance 
residuals in order to look for outlying values or for correlation 
with the linear predictors or with the variables (included or not in 
the final model). Then, after weighting each point by the corre-
sponding number of trees in the orchard, we compared the linear 
regression between observed and predicted values with their ex-
pected linear relationship. We also performed both an external 
validation and a robustness analysis by assessing the ability of the 
final model to provide an accurate estimate of incidence in an 
independent data set composed of the 57 orchards excluded from 
the initial data because their rootstocks were unknown or under-
represented. To obtain predictions in these new orchards, the 
parameters associated with the rootstock were replaced by the 
weighted mean of rootstock effects obtained after fitting the final 
model. 

A characteristic of the data set was the low number of expected 
diseased trees in many orchards. Thus, for this discrete variable, 
the validity of confidence intervals based on asymptotic theorems 
could be questioned. Consequently, we used a parametric boot-
strap approach (17) to derive confidence intervals (i) for the 
predicted number of diseased trees in each orchard and (ii) for the 
estimated value of the ak parameters. This bootstrap procedure 
was performed as follows. First, the fitted overdispersed binomial 
model provided estimates of disease incidence in each orchard 
(pi) and of an overdispersion parameter φ. These parameters were 
used (as shown in the Appendix) to draw 1,000 independent reali-
zations for each orchard from a beta-binomial distribution, corre-
sponding to a binomial law with extra-binomial variance (8,10, 
24). For the predicted number of diseased trees in each orchard, 
95% confidence intervals then could be derived from the quantiles 
2.5 and 97.5% of the simulated distributions. After refitting the 
model (with Williams’ procedure) on the 1,000 simulated data 
sets, the subsequent 1,000 reestimated values of each ak parameter 
were used similarly to define a 95% confidence interval around 
their mean value. 

Influence of the risk factors. The relative significance of the 
different factors was evaluated through deviance analysis. We ini-
tially assessed the significance of each variable alone. Afterwards, 
to evaluate the significance of each variable adjusted for the other 
variables, we used the final weights of the best overdispersed 
model to fit reduced models in which each factor and its inter-
actions with other factors were removed in turn. Then, a χ2 test 
was used to compare the full model with each reduced model. For 
disease management, quantifying the impact of the factors on the 
predicted incidence could be as useful as ranking their signifi-
cance. Therefore, the influence of the factors was assessed through 
the increase of the residual sum of squares (RSS) and it was 
visualized by predicting disease progress for different levels of 
the variables (default parameters to their mode or mean: CLV = 
Orangered, RST = Peach, DENS = 384 trees/ha). 

Spatial analysis of the residuals. The coordinates of the 
orchards’ centroids were obtained from aerial orthophotographs 
(BD ORTHO, Institut Géographique National, France). The re-
siduals then could be plotted at the location of the corresponding 
orchard for a visual inspection of their spatial pattern. The spatial 
dependence of the residuals was investigated further with a non-
parametric test relying on the empirical semivariogram (34). This 
function, γ, is based on the squared difference between the values 
of the residuals separated by a distance h ± ε (i.e., residuals with 
coordinates s within the distance class h): 
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where N(h) is the number of pairs of residuals r in the distance 
class h. We chose 32-m-wide distance classes (ε = 16) in order to 
have at least 50 pairs of points in each class. Under the hypothesis 
of spatial independence, the values of the residuals should be dis-
tributed at random among the locations of the orchards’ centroids. 
Therefore, this hypothesis of independence was challenged by a 
random labeling test (14,40): the function γ(h) computed on the 
observed residuals was compared with 1,000 random realloca-
tions of the values of these residuals. After ordering the 1,000 
simulated values of γ(h), a bilateral P value was computed, follow-
ing Manly (33), as twice the proportion of simulated values more 
extreme or equal to the observed value of γ(h). A 95% confidence 
envelope also was derived from the 25th and 975th values of γ(h). 
The hypothesis of spatial independence between residuals should 
be rejected at the 5% significance level when the observed vario-
gram is outside this envelope. However, when the model is mis-
specified in some way (e.g., biased estimate or different variance 
for some levels, or significant variable not included), the grower’s 
trend to plant similar orchards side by side could produce spatial 
correlation between residuals under the null hypothesis of inde-
pendence; therefore, as a precaution, the random labeling pro-
cedure was adapted to perform the permutations inside groups 
with homogeneous characteristics (for more details, see Manly, 
pages 182–199 [33]). Splitting the initial data set on the basis  
of the grower, cultivar, and age of the orchards defined 76  
highly homogeneous groups that were used for conditioning the 
simulations. 

RESULTS 

Influence of the species. The subset that was specially selected 
to analyze the species effect included 15 Japanese plum orchards 
and 10 apricot orchards with the same characteristics: all were 6 
to 8 years old on myrobalan rootstocks. The age of the orchards 
had no significant influence on disease incidence (data not shown); 
thus, the resulting model for pi was simply ln[pi/(1 – pi)] = 
a1,species. The estimated disease incidence (23.1% for the Japanese 
plum and 5.96% for the apricot plots) and the corresponding 
confidence intervals indicated that 6 to 8 years after planting, Japa-
nese plum orchards were considerably more affected by ESFY 
than apricot orchards (Table 2). An analysis of deviance showed 
that, even after allowing for overdispersion (φ = 0.019), this four-
fold effect of the species was highly significant (P = 1.7 × 10–14, 

TABLE 2. Estimated mean and confidence intervals for the effect of the species on European stone fruit yellows incidence (one-variable overdispersed generalized
linear model)  

 Logit scale Response scalea 

Species Estimate ± SEb Estimate Bootstrap confidence intervalc Asymptotic confidence intervald 

Prunus armeniaca –2.76 ± 0.209 0.060 0.038–0.085 0.039–0.089 
P. salicina –1.20 ± 0.097 0.231 0.197–0.265 0.197–0.268 

a  Estimated disease incidence and the corresponding 95% confidence interval are back-transformed from the logit scale. 
b SE = standard error. 
c  Parametric bootstrap procedure is described in the text. 
d  From a t distribution on 23 degrees of freedom. 
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χ2 test on 1 degree of freedom [df]). Therefore, in the rest of the 
study, the few orchards planted with Japanese plum trees were 
excluded, so that our model only analyzed the incidence of ESFY 
in apricot orchards. 

Multivariate analysis. When initially included in the prelimi-
nary multivariate analysis, the grower (GRW) completely defined 
the first factorial plane and masked any correlation between the 
variables. Thus, it was treated as a supplementary variable in this 

analysis (Fig. 1), which showed that the data set was quite struc-
tured because many categorical variables were interrelated. The 
projections of the orchards on the first factorial plane (Fig. 1A) 
could be subdivided into distinct groups (denoted I to V) sharing 
some specific combinations of the variables, as indicated by Figure 
1K and by a visual comparison between maps in Figure 1A to J. 
The most significant multicorrelation involved sparse and older 
orchards with cultivar 1 (Early Blush), origin 6, and rootstocks 2 

 

Fig. 1. Factorial maps from a multivariate Hill & Smith analysis coupling the categorical and quantitative variables that describe the 225 apricot orchards. A, 
Projections of the orchards on the first factorial plane (F1 × F2, F1 and F2 representing 13.8 and 8.5% of the total inertia, respectively). B to F, Categorical 
variables. For a given variable, each circle represents the mean position (barycenter) of one modality on F1 × F2, in connection with all the associated orchards.
The supplementary variable grower (GRW) was not used to define F1 × F2 (see text). G to J, Quantitative variables. For a given variable, each orchard is 
represented by a gray circle (positive value) or a white square (negative value) with an area proportional to the absolute value of the normalized variable. K, 
Projection of the variables defining F1 × F2. Thin arrows: categorical variables; thick arrows: quantitative variables. Correlated variables have collinear vectors;
the weight of the variables in the analysis increases with their distance from the center of the graph. CLV = cultivar, RST = rootstock, OCLV = origin of the 
cultivar, ORST = origin of the rootstock, AREA = area, AGE = age, DENS = planting density, and Y = cumulative incidence. 
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(Montclar) and 5 (GF 305) in group I; or dense and young 
orchards with cultivar 2 (Goldrich), rootstock 4 (peach), and ori-
gins 3 and 9 in group II. The only dependence between quantita-
tive variables was the slight anticorrelation of AGE and DENS  
(r = –0.29). As expected, OCLV and ORST were almost com-
pletely correlated (Fig. 1E, F, and K). Additionally, these vari-
ables were strongly unbalanced and included 71 missing values; 
hence, they had to be removed. The supplementary variable GRW 
clearly was structured by the other variables (Fig. 1B) and, thus, 
strongly correlated to them. We were more interested in these 
underlying correlates; therefore, the descriptive variable GRW 
was not included in the model until the ultimate step of the analy-
sis. Finally, Figure 1K showed that no explicative factor or vari-
able was obviously correlated to the dependent variable Y, further 
highlighting the need for an explicative model. 

GLM. An initial GLM was built with the five remaining vari-
ables and their biologically meaningful interactions. AREA then 
was dropped because it was not significant (P = 0.24, χ2 test on  
1 df). The deviance of the resulting model was much higher than 
twice the number of degrees of freedom, a value that is used as a 
rule of thumb for the detection of overdispersion (31). Because 
the analysis of the residuals indicated no obvious problem with 
the model, intraorchard dependence was the most probable cause 
of overdispersion. Thus, the model was corrected to allow extra-
binomial variation (φ = 0.042) so as not to overestimate the sig-
nificance of the effects. The remaining four variables and four inter-
actions were significant (all P values < 4.3 × 10–3); therefore, the 
final model for pi was  ln[pi/(1 – pi)] = a0 + a1,i(CLV) + a2,i(RST) + 
a3 × AGEi + a4 × DENSi + a4,i(CLV:AGE) × AGEi + a6,i(RST:AGE) 
× AGEi + a7,i(RST:DENS) × DENSi + a8 × AGEi × DENSi. 

This model then was checked. One point appeared to be overly 
influential on the basis of Cook’s distance (9). Because the analy-
ses provided consistent results with or without this point, it was 
not discarded from the data set. The asymptotic results and para-
metric bootstrap distributions consistently identified only one 
slightly outlying value that was conserved because the associated 
information was accurate. A quantile-quantile plot indicated that 
the normal distribution roughly approximated the distribution of 
the standardized deviance residuals (Fig. 2A). There was no indi-
cation of inadequacy in the linear predictors because they were 
not correlated to the residuals. When plotted against the included 
variables, the residuals showed no particular trend other than a 
slight overestimation of ESFY incidence in young (2- to 4-year-
old) orchards. The residuals also were distributed randomly with 
respect to the excluded variable AREA. In contrast, the residuals 
significantly differed with respect to the grower (Fig. 2C) and 
origin of the planting material (Fig. 2D): the observed mean of 
the residuals frequently was outside the range expected under the 
null hypothesis of independence. This fact indicates that the hu-
man factors not only summarized the other variables, but also had 
an additional significant effect that remained even after including 
some of the underlying factors in the model. 

The weighted linear regression between observed and predicted 
incidence (Fig. 2B) had the following equation: Observed = 0.946 × 
Predicted + 0.003 (R2 = 0.49 and standard error [SE] of 0.065 and 
0.006, respectively). On the logit scale, an R2 of 0.42 confirmed 
that the fit of the model was acceptable for an observational 
study; this model captured half of the variability of the data with a 
relatively small number of parameters (21 of the initial 224 df 
were used). The same procedure carried out on the external data 

 

Fig. 2. Examination of the model fit. A, Normal quantile-quantile plot of the residuals. B, Linear regression of observed against predicted incidence (solid line) 
and expected line (dashed). C and D, Plot of the residuals by grower (GRW) and origin of the cultivar (OCLV), respectively. Points: mean of the observed 
residuals; brackets and solid line: 95% confidence interval for the expected mean under the null hypothesis of independence between residuals and GRW or OCLV,
respectively. Under the null hypothesis, the points should lie between the brackets. 
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set resulted in a higher R2 of 0.63, but the model tended to over-
estimate the incidence, as shown by the equation of the regression 
line: Observed = 0.870 × Predicted – 0.016 (SE = 0.088 and 
0.009, respectively). Thus, despite the lack of information on the 
rootstock in the validation data set, the model still provided an 
acceptable prediction of ESFY incidence. 

The extent of the confidence intervals for some parameters of 
the model (Table 3) confirmed that the four variables and four 
interactions included in the model only explained part of the vari-
ability of the observed incidence. For these parameters, the dis-
crepancy between bootstrap and the asymptotic confidence inter-
vals was sometimes quite high (e.g., for the rootstocks), indicating 
that the assumptions of the asymptotic results were not fulfilled. 
Thus, in the rest of the study, we used the more reliable and more 
conservative bootstrap intervals. 

Influence of the risk factors. ESFY incidence in relation to 
the age of the orchards (Fig. 3A) was summarized by the follow-
ing equation: Y = 1/(1 + e–0.198t + 4.69). However, this binomial over-
dispersed model was not satisfactory (R2 = 0.1), thus indicating a 

major role for the other variables. The analysis of deviance for the 
one-variable models (Table 4) showed that the grower was the 
best single explanatory factor, much better than the cultivar or the 
other variables. However, because of the observed multicorrela-
tion, it was statistically more accurate to assess the role of each 
variable after adjusting for the effect of the others. The corre-
sponding deviance analysis (Table 5) showed that tree age was the 
most significant variable, followed by both density and cultivar, 
and then the rootstock, with the area of the orchard having no 
influence on disease incidence. These results were robust to some 
alterations of the model, because congruent conclusions (except 
that CLV became much more significant than DENS) were drawn 
when the same procedure was performed after fitting a simpler 
model without the interaction terms (data not shown). The influ-
ence of the main factors on the predicted incidence, assessed on 
the basis of the RSS, ranked in the same order as their signifi-
cance. The interaction between the density and the age of the 
orchard was more significant than any other interaction. No con-
clusion could be drawn from the model concerning the effect of 

 

Fig. 3. European stone fruit yellows incidence in relation to the age of the orchards. A, Observed in the initial data set (517 orchards) and B, predicted for cvs. 
Orangered and Hargrand from the final data subset (including 225 orchards); mean prediction (bold lines) with the associated 95% bootstrap confidence envelopes
(thin lines). 

TABLE 3. Estimates and confidence intervals for the parameters of the final overdispersed generalized linear modela 

Parameterb Estimate ± SEc Bootstrap confidence intervald Asymptotic confidence intervale 

Intercept –24.20 ± 6.36 –94.9 –16.8 –36.7 –11.7 
CLV Goldrich 1.31 ± 1.37 –1.06 4.34 –1.39 4.00 
CLV Hargrand –1.24 ± 1.20 –3.45 1.46 –3.61 1.13 
CLV Orangered 0.85 ± 1.17 –1.31 3.50 –1.45 3.15 
RST Montclar –0.12 ± 6.66 –10.5 67.7 –13.3 13.0 
RST myrobalan 9.87 ± 6.36 2.21 80.2 –2.66 22.4 
RST peach 11.50 ± 6.14 4.24 82.5 –0.61 23.6 
RST GF305 11.50 ± 6.10 4.48 82.5 –0.57 23.5 
AGE 1.54 ± 0.39 0.95 8.30 0.76 2.31 
DENS (×10–2) 3.67 ± 1.53 0.46 8.42 0.65 6.69 
CLV Goldrich:AGE (×10–1) –1.59 ± 1.57 –5.28 1.12 –4.67 1.50 
CLV Hargrand:AGE (×10–1) 1.50 ± 1.21 –1.12 3.76 –0.89 3.89 
CLV Orangered:AGE (×10–1) –0.08 ± 1.19 –2.71 2.20 –2.43 2.27 
RST Montclar:AGE –0.21 ± 0.34 –7.00 0.32 –0.88 0.46 
RST myrobalan:AGE –0.55 ± 0.34 –7.43 –0.07 –1.22 0.12 
RST peach:AGE –0.57 ± 0.33 –7.41 –0.09 –1.23 0.09 
RST GF305:AGE –0.59 ± 0.33 –7.40 –0.14 –1.24 0.06 
RST Montclar:DENS (×10–2) 0.24 ± 1.54 –4.14 3.53 –2.79 3.27 
RST myrobalan:DENS (×10–2) –1.36 ± 1.48 –5.79 1.67 –4.28 1.56 
RST peach:DENS (×10–2) –1.67 ± 1.47 –6.16 1.45 –4.56 1.23 
RST GF305:DENS (×10–2) –1.46 ± 1.48 –6.04 1.51 –4.37 1.46 
AGE:DENS (×10–3) –2.08 ± 0.53 –3.18 –1.08 –3.12 –1.04 

a  All the values are on the logit scale. 
b CLV = cultivar, RST = rootstock, AGE = age, and DENS = planting density. 
c SE = standard error. 
d  Parametric bootstrap procedure is described in the text. 
e  From a t distribution on 203 degrees of freedom. 
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different levels of the factors, because the interactions were sig-
nificant. The predictions for specific values generally were incon-
clusive as well because of the wide confidence intervals. How-
ever, the analysis of the model without interaction terms indicated 
that the incidence was significantly higher on GF 305 rootstock 
and on the cv. Orangered. This was further confirmed by the 
predicted ESFY progress in cvs. Orangered and Hargrand with 
the complete model (Fig. 3B). 

Spatial analysis of the residuals. A simple map of the stan-
dardized deviance residuals clearly pointed out the spatial correla-
tion between residuals. However, this correlation could have been 
at least partly explained by the spatial factor GRW (Fig. 2C), 
which had been discarded from the model. Thus, the mean of 
each level of this factor was deducted from the corresponding 
residuals. Then, the grower-adjusted residuals were used to com-
pute an empirical variogram and its confidence envelopes ob-
tained by random labeling within homogeneous subgroups (Fig. 
4). The first values of γ(h) (up to a distance of 100 m) were below 
or near the 95% confidence envelope (P values ranging from 
<0.002 to 0.062), indicating that close orchards tended to behave 
similarly. Thus, the spatial dependence between close orchards 
was highly significant, even after having adjusted for the effect of 
the other variables, including the grower and the location of simi-

lar plots. Given the several conservative corrections that were ap-
plied and the conservative definition of the homogeneous groups, 
this range of dependence may be slightly underestimated. 

DISCUSSION 

Risk factors. The aim of this study was to provide insight into 
the risk factors of ESFY on the basis of a regional survey. Some 
of these factors are related to the genetics or to the structure of the 
orchards, others are linked with unidentified human factors, and 
some have a spatial component. Our results demonstrated that the 
age of the orchard had the expected effect on the cumulative 
disease incidence. Nevertheless, several other factors were influ-
ential enough to be detected and ranked. Among the other factors, 
the species of the scion (P. armeniaca or P. salicina) was the most 
influential factor, with the incidence in 6- to 8-year-old Japanese 
plum trees being fourfold that of apricot trees of the same age 
when the two species are planted in the same zone. In fact, the 
progress of ESFY is so fast in Japanese plum orchards that it 
restricts the cultivation of this species in Europe (15). The differ-
ence between the two species probably is caused by a strong host 
preference of the vector C. pruni, because its relative density on 
these two hosts (29) and its better fecundity and life expectancy in 
experimental conditions (4) demonstrate that Japanese plum trees 
are more suitable hosts for the vector. The results (Tables 4 and 5) 
show that the scion cultivar was the second influential factor on 
disease incidence, with cv. Orangered more heavily infected than 
the other cultivars. This could be the result of a high attraction to 
the vector, or the consequence of a high level of susceptibility or 
sensitivity to the pathogen. Thus, to reduce the cost of ESFY, 
growers should take into account the relative disease risk of the 
planted scion. The planting density stood at a surprising third 
rank, which points out original speculative explanations: denser 
orchards could be more attractive, could influence the mobility of 
the vector, or could speed up symptom expression in plants that 
are under more severe stress. The rootstock played an unexpected 
minor role in the system, which was confirmed by the relatively 
good prediction obtained even when it is unknown or different 
from the subset used to build the model. This apparent discrep-

TABLE 5. Analysis of deviance for each variable adjusted for the other effects
(final model) in the generalized linear model 

Variablea RSSb Δdfc Deviance P valued 

Full model 0.62 … 203.3 … 
Main effect     
AGE 1.07 9 360.5 2.77 × 10–27 
DENS 0.79 6 243.4 4.18 × 10–7 
CLV 0.76 6 242.1 7.67 × 10–7 
RST 0.76 12 250.5 4.19 × 10–6 

Interaction only     
AGE:DENS 0.67 1 219.4 5.99 × 10–5 
RST:AGE 0.74 4 223.2 5.13 × 10–4 
CLV:AGE 0.71 3 218.5 1.64 × 10–3 
RST:DENS 0.70 4 218.5 4.27 × 10–3 

a Main effect = main effect and its interactions, AGE = age, DENS = planting
density, CLV = cultivar, and RST = rootstock. 

b  

Residual sum of squares: RSS = ,)( 2
,

225

1
, estimatedi

i
observedi pp −∑

=
 where pi de-

notes the incidence in the ith orchard. Higher values of RSS indicate a higher
influence of the factor on the predicted incidence. 

c  Difference between the number of degrees of freedom (df) in each reduced
model and the number of df in the full overdispersed model. 

d  From a χ2 distribution on Δdf. 

Fig. 4. Bilateral random labeling test (α = 5%) of spatial independence be-
tween the standardized deviance residuals. Solid line: variogram of the ob-
served residuals; dotted line: mean of the simulated values; dashed lines: 95%
confidence envelope. After a correction for the grower effect, the residuals
were randomized conditional on the similarity between the orchards (see text).

TABLE 4. Analysis of deviance for each one-variable generalized linear
model (without overdispersion) 

Variablea Δdfb Deviance AICc P valued 

None … 5,761 6,514 … 
GRW 16 4,273 5,057 <10–40 
CLV 3 4,970 5,728 <10–40 
OCLV 8 5,298 6,066 <10–40 
ORST 9 5,338 6,108 <10–40 
AREA 1 5,449 6,203 <10–40 
RST 4 5,613 6,374 5.8 × 10–31 
AGE 1 5,643 6,397 1.7 × 10–27 
DENS 1 5,756 6,510 2.1 × 10–2 

a GRW = grower, CLV = cultivar, OCLV = origin of the cultivar, ORST =
origin of the rootstock, AREA = area, RST = rootstock, AGE = age, and
DENS = planting density. 

b  Difference between the number of degrees of freedom (df) in the null model
and the number of df in each one-variable model. 

c  Models are sorted by increasing Akaike information criterion (AIC) (AIC = 
–2 × log-likelihood + 2 × df); a smaller value of AIC indicates a more
parsimonious fit. 

d  From a χ2 distribution on Δdf. 
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ancy with previous observations indicating a major role of the 
rootstock in disease progress (28,37) may be caused by the exces-
sive homogeneity of the rootstocks in the zone under study (80% 
of the rootstocks being peach cultivars). However, a competing 
explanatory hypothesis is that a faster visual detection of diseased 
trees (enabled by acute symptoms) has a decreasing influence on 
the cumulative incidence as the orchards grow old. This also 
could explain the significant interaction between the age of the 
orchard and the rootstock. 

Both human variables had a significant impact on ESFY inci-
dence, but the growers had much more influence than the nurseries 
(Table 4; Fig. 2C and D). The grower was the best informative 
one-variable model (Table 4). On the one hand, a large part of this 
high significance was the result of the correlation between the 
grower and many other variables (Fig. 1), with the grower being a 
good summary of several variables. On the other hand, the analy-
sis of the residuals unequivocally demonstrated the existence of a 
grower effect not explained by the other variables (Fig. 2C). This 
result indicates that at least one grower-specific risk factor, though 
significant, was not included in the model. In practice, a more in-
depth analysis of the differences in the agricultural practices of 
the growers with extremely low and extremely high incidence 
could point to the interesting factors. The level of prophylaxis, the 
insecticide protection, and the location of P. spinosa hedges are 
among the additional factors that could be investigated. Concern-
ing the apparent nursery effect, we cannot completely rule out the 
possibility that some nurseries have differential levels of exposure 
to infectious vectors. However, it is more probably a case of con-
founding that results from the strong correlation between growers 
and nurseries (Fig. 1B and E). The difference in incidence 
between nurseries (Fig. 2D) is considerably reduced by the use of 
grower-adjusted residuals, whereas the grower effect (Fig. 2C) is 
only slightly attenuated by the use of the symmetrical nursery-
adjusted residuals (data not shown). 

The spatial dependence was significant up to 100 m, and cannot 
be explained by an underlying grower effect because we used 
grower-adjusted residuals. Neither could it be the biologically 
uninteresting result of a spatial proximity between orchards with 
similar characteristics, because we simulated the null hypothesis 
conditional on such similarity. Several hypotheses can be pro-
posed to account for the remaining spatial dependence. It might 
be indirectly caused by underlying physical spatial factors that 
have not been recorded, such as the impact of soil characteristics 
on symptom expression. The spatial dependence also can origi-
nate from some properties of the vectorial transmission of ESFY. 
The most obvious explanation comes from the presence in the 
data of cultivar mixtures within some plots (with very close 
centroids, all closer than 41 m), where the vector could transmit 
the phytoplasma equivalently to one cultivar or the other. How-
ever, because this is not sufficient to generate dependence up to 
100 m, other hypotheses are required, but they are more specu-
lative. The population density of C. pruni could be higher in some 
places, thereby forming small patches with a range of action 
limited to the adjacent orchards. The other processes that can play 
a role are either multiple primary or secondary transmissions oc-
curring across orchards, mainly in a radius of 100 m (which, in 
the study area, often corresponds to the nearest orchard only). For 
testing hypotheses related to these processes of disease spread, it 
would be interesting to analyze in detail the individual trees and 
the spatiotemporal pattern of diseased trees (45). 

This kind of model-based analysis of a case study can raise 
questions related to its generality. The results showed that our 
model was more efficient for identifying and ranking the risk fac-
tors of ESFY than for predicting disease progress, because of the 
significant unexplained variability. However, the model is suitable 
for an approximate evaluation of disease progress in the Crau 
plain as far as it is not used to extrapolate to other levels of the 
factors (except for other rootstocks). This allows participating 

growers to integrate the cost of disease control in the evaluation 
of the profitability of their orchards. Of course, outside the Crau 
plain, it would be inappropriate to make predictions with this 
model. The results on the risk factors clearly show that, even if 
the conclusions concerning particular levels of these factors may 
be of only local interest, the respective significance of the differ-
ent factors is expected to be quite general. In this regard, the dem-
onstration of a substantial effect of the grower should be high-
lighted because it indicates that, in addition to the choice of the 
cultivar, some agricultural practices can reduce or increase the 
incidence of ESFY. 

Validity of the GLM. The data, by some of their features (de-
pendence and small binomial coefficients), did not strictly corre-
spond to the assumptions of the logistic regression model. These 
problems frequently arise in the analysis of surveys with GLMs; 
therefore, we discuss how they have been detected and handled. 
The spatial correlation between residuals can be seen as an un-
welcome characteristic that does not meet the assumption of inde-
pendence between observations, which underlie most of the com-
mon statistical models. It also can be seen as a biologically mean-
ingful feature that may motivate further investigation. Whatever 
the purpose, simple and versatile nonparametric tests based on 
random labeling can be included in the final steps of the analysis 
of the data to track spatial dependence in the residuals (33,41). In 
this large-scale study, a multiscale exploration of spatial depend-
ence using a variogram allowed the detection of a significant 
spatial correlation at a short distance (up to 100 m) between the 
residuals of the model. Taking this spatial correlation into account 
in the analysis is an interesting prospect for this study; however, 
building a statistically irreproachable model to this aim would 
require developing cutting-edge spatial statistics methods that ex-
tend far beyond the scope of this article. Moreover, the hierarchy 
of the factors is expected to be quite robust to the incorporation of 
spatial effects in the model, and the observed P values (Table 5) 
are so low that all the corresponding effects still would be sig-
nificant after an improbable 10-fold correction. In addition to the 
dependence between orchards, the assumption of independence 
can be challenged within the orchards, leading to extrabinomial 
variation. This phenomenon can be suspected when the fit of a bi-
nomial model is unsatisfactory though nothing in the residuals 
indicates an incorrect specification of the model (35). In this 
study, both sources of dependence were identified (i.e., within and 
between orchards). A previous analysis of the spatial pattern of 
diseased trees within an orchard also indicated dependence be-
tween transmission events (44). These results may be partly ex-
plained by short-distance secondary transmissions. Moreover, 
because the phytoplasma is persistently transmitted by C. pruni 
(5), multiple transmissions also may account for the observed 
dependence within (and to a lesser extent, between) orchards. 
Finally, it should be mentioned that the data experience a slight 
dependent censoring, because some orchards have been removed 
in the past when the growers considered that they were too 
heavily infected. Thus, the increase in incidence as a function of 
time underestimates the real disease progress. 

When some predicted values (pi) are close to zero or when the 
number of individuals in some orchards (ni) is very low, the as-
sumptions for the asymptotic results are not met. This situation 
can arise quite frequently in epidemiological surveys. In such cir-
cumstances, parametric bootstrap procedures could be used more 
frequently when satisfactory resampling models are available. 
Here, we expressed the parameters of the beta-binomial distribu-
tion as a function of φ and pi (the overdispersion parameter and 
estimated proportions, respectively). To our knowledge, it is a 
new result that allows the computing of parametric bootstrap con-
fidence intervals for overdispersed logistic models. In practice, 
bootstrap and asymptotic methods gave consistent results in the 
identification of outliers and similar confidence intervals for the 
species effect (Table 2), as well as for half of the parameters of 
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the final model (Table 3). For the other parameters, the bootstrap 
intervals were wider and, hence, more conservative. 

Concluding remarks. Performing a large-scale disease assess-
ment for a control program (e.g., 11,12,20) can provide reliable 
information for epidemiological studies. In such situations, a 
close collaboration with plant protection services from the initial 
steps is a prerequisite to ensure that some epidemiologically 
important data which are inexpensively and easily obtained are 
not omitted because of their lack of relevance to the short-term 
control program. Our results highlight the need for a rigorous 
experimental or field evaluation of the sensitivity of different cul-
tivars to ESFY as a basis for future genetic improvement. In 
addition, more detailed investigations of the grower-specific agri-
cultural practices possibly would identify other risk factors, and 
the analysis of the spatiotemporal point pattern formed by the 
diseased trees probably would provide insight into the transmis-
sion behavior of C. pruni. 

APPENDIX 

Here, we show how the parameters of a beta-binomial model 
can be derived from an overdispersed binomial model fitted by 
the Williams procedure (48), which provides estimates of both pi 
and the overdispersion parameter φ.  

Let Di be a binomial random variable: Di ~ B(ni,pi). The 
variance of Di is: Var(Di) = nipi(1 – pi). As explained by Collett, 
pages 192–195 (8), the variance of an overdispersed binomial varia-
ble Di can be written: Var(Di) = nipi(1 – pi)[1 + (ni – 1)φ]. This is, 
in particular, the variance of a beta-binomial random variable Di in 
which Di|Pi ~ B(ni,pi), Pi having a beta distribution with E(Pi) = pi 
and Var(Pi) = φpi(1 – pi). The mean and variance of a random 
variable Pi with a beta distribution (with shape parameters αi and 
βi) are E(Pi) = αi/(αi + βi) = pi, and Var(Pi) = pi(1 – pi)/(αi + βi + 1); 
therefore, we obtain by identification and resolution of the sub-
sequent two-parameter equation:  

αi = pi ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

φ
1

1
 and βi = (1 – pi) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

φ
1

1
 

Thus, the parameters pi and φ estimated by Williams’ algorithm 
define the parameters αi and βi of the beta-binomial distribution. 
These parameters then can be used in a parametric bootstrap pro-
cedure to derive confidence intervals for the predicted incidence 
in the orchards (pi) and for the parameters (ak) of the logistic 
regression model.  
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